]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/forcedeth.c
[PATCH] forcedeth: Add support for 64bit rings
[linux-beck.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *
108  * Known bugs:
109  * We suspect that on some hardware no TX done interrupts are generated.
110  * This means recovery from netif_stop_queue only happens if the hw timer
111  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
112  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
113  * If your hardware reliably generates tx done interrupts, then you can remove
114  * DEV_NEED_TIMERIRQ from the driver_data flags.
115  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
116  * superfluous timer interrupts from the nic.
117  */
118 #define FORCEDETH_VERSION               "0.51"
119 #define DRV_NAME                        "forcedeth"
120
121 #include <linux/module.h>
122 #include <linux/types.h>
123 #include <linux/pci.h>
124 #include <linux/interrupt.h>
125 #include <linux/netdevice.h>
126 #include <linux/etherdevice.h>
127 #include <linux/delay.h>
128 #include <linux/spinlock.h>
129 #include <linux/ethtool.h>
130 #include <linux/timer.h>
131 #include <linux/skbuff.h>
132 #include <linux/mii.h>
133 #include <linux/random.h>
134 #include <linux/init.h>
135 #include <linux/if_vlan.h>
136
137 #include <asm/irq.h>
138 #include <asm/io.h>
139 #include <asm/uaccess.h>
140 #include <asm/system.h>
141
142 #if 0
143 #define dprintk                 printk
144 #else
145 #define dprintk(x...)           do { } while (0)
146 #endif
147
148
149 /*
150  * Hardware access:
151  */
152
153 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
154 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
155 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
156 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
157 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
158 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
159
160 enum {
161         NvRegIrqStatus = 0x000,
162 #define NVREG_IRQSTAT_MIIEVENT  0x040
163 #define NVREG_IRQSTAT_MASK              0x1ff
164         NvRegIrqMask = 0x004,
165 #define NVREG_IRQ_RX_ERROR              0x0001
166 #define NVREG_IRQ_RX                    0x0002
167 #define NVREG_IRQ_RX_NOBUF              0x0004
168 #define NVREG_IRQ_TX_ERR                0x0008
169 #define NVREG_IRQ_TX_OK                 0x0010
170 #define NVREG_IRQ_TIMER                 0x0020
171 #define NVREG_IRQ_LINK                  0x0040
172 #define NVREG_IRQ_TX_ERROR              0x0080
173 #define NVREG_IRQ_TX1                   0x0100
174 #define NVREG_IRQMASK_THROUGHPUT        0x00df
175 #define NVREG_IRQMASK_CPU               0x0040
176
177 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
178                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
179                                         NVREG_IRQ_TX1))
180
181         NvRegUnknownSetupReg6 = 0x008,
182 #define NVREG_UNKSETUP6_VAL             3
183
184 /*
185  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
186  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
187  */
188         NvRegPollingInterval = 0x00c,
189 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
190 #define NVREG_POLL_DEFAULT_CPU  13
191         NvRegMisc1 = 0x080,
192 #define NVREG_MISC1_HD          0x02
193 #define NVREG_MISC1_FORCE       0x3b0f3c
194
195         NvRegTransmitterControl = 0x084,
196 #define NVREG_XMITCTL_START     0x01
197         NvRegTransmitterStatus = 0x088,
198 #define NVREG_XMITSTAT_BUSY     0x01
199
200         NvRegPacketFilterFlags = 0x8c,
201 #define NVREG_PFF_ALWAYS        0x7F0008
202 #define NVREG_PFF_PROMISC       0x80
203 #define NVREG_PFF_MYADDR        0x20
204
205         NvRegOffloadConfig = 0x90,
206 #define NVREG_OFFLOAD_HOMEPHY   0x601
207 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
208         NvRegReceiverControl = 0x094,
209 #define NVREG_RCVCTL_START      0x01
210         NvRegReceiverStatus = 0x98,
211 #define NVREG_RCVSTAT_BUSY      0x01
212
213         NvRegRandomSeed = 0x9c,
214 #define NVREG_RNDSEED_MASK      0x00ff
215 #define NVREG_RNDSEED_FORCE     0x7f00
216 #define NVREG_RNDSEED_FORCE2    0x2d00
217 #define NVREG_RNDSEED_FORCE3    0x7400
218
219         NvRegUnknownSetupReg1 = 0xA0,
220 #define NVREG_UNKSETUP1_VAL     0x16070f
221         NvRegUnknownSetupReg2 = 0xA4,
222 #define NVREG_UNKSETUP2_VAL     0x16
223         NvRegMacAddrA = 0xA8,
224         NvRegMacAddrB = 0xAC,
225         NvRegMulticastAddrA = 0xB0,
226 #define NVREG_MCASTADDRA_FORCE  0x01
227         NvRegMulticastAddrB = 0xB4,
228         NvRegMulticastMaskA = 0xB8,
229         NvRegMulticastMaskB = 0xBC,
230
231         NvRegPhyInterface = 0xC0,
232 #define PHY_RGMII               0x10000000
233
234         NvRegTxRingPhysAddr = 0x100,
235         NvRegRxRingPhysAddr = 0x104,
236         NvRegRingSizes = 0x108,
237 #define NVREG_RINGSZ_TXSHIFT 0
238 #define NVREG_RINGSZ_RXSHIFT 16
239         NvRegUnknownTransmitterReg = 0x10c,
240         NvRegLinkSpeed = 0x110,
241 #define NVREG_LINKSPEED_FORCE 0x10000
242 #define NVREG_LINKSPEED_10      1000
243 #define NVREG_LINKSPEED_100     100
244 #define NVREG_LINKSPEED_1000    50
245 #define NVREG_LINKSPEED_MASK    (0xFFF)
246         NvRegUnknownSetupReg5 = 0x130,
247 #define NVREG_UNKSETUP5_BIT31   (1<<31)
248         NvRegUnknownSetupReg3 = 0x13c,
249 #define NVREG_UNKSETUP3_VAL1    0x200010
250         NvRegTxRxControl = 0x144,
251 #define NVREG_TXRXCTL_KICK      0x0001
252 #define NVREG_TXRXCTL_BIT1      0x0002
253 #define NVREG_TXRXCTL_BIT2      0x0004
254 #define NVREG_TXRXCTL_IDLE      0x0008
255 #define NVREG_TXRXCTL_RESET     0x0010
256 #define NVREG_TXRXCTL_RXCHECK   0x0400
257 #define NVREG_TXRXCTL_DESC_1    0
258 #define NVREG_TXRXCTL_DESC_2    0x02100
259 #define NVREG_TXRXCTL_DESC_3    0x02200
260 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
261 #define NVREG_TXRXCTL_VLANINS   0x00080
262         NvRegTxRingPhysAddrHigh = 0x148,
263         NvRegRxRingPhysAddrHigh = 0x14C,
264         NvRegMIIStatus = 0x180,
265 #define NVREG_MIISTAT_ERROR             0x0001
266 #define NVREG_MIISTAT_LINKCHANGE        0x0008
267 #define NVREG_MIISTAT_MASK              0x000f
268 #define NVREG_MIISTAT_MASK2             0x000f
269         NvRegUnknownSetupReg4 = 0x184,
270 #define NVREG_UNKSETUP4_VAL     8
271
272         NvRegAdapterControl = 0x188,
273 #define NVREG_ADAPTCTL_START    0x02
274 #define NVREG_ADAPTCTL_LINKUP   0x04
275 #define NVREG_ADAPTCTL_PHYVALID 0x40000
276 #define NVREG_ADAPTCTL_RUNNING  0x100000
277 #define NVREG_ADAPTCTL_PHYSHIFT 24
278         NvRegMIISpeed = 0x18c,
279 #define NVREG_MIISPEED_BIT8     (1<<8)
280 #define NVREG_MIIDELAY  5
281         NvRegMIIControl = 0x190,
282 #define NVREG_MIICTL_INUSE      0x08000
283 #define NVREG_MIICTL_WRITE      0x00400
284 #define NVREG_MIICTL_ADDRSHIFT  5
285         NvRegMIIData = 0x194,
286         NvRegWakeUpFlags = 0x200,
287 #define NVREG_WAKEUPFLAGS_VAL           0x7770
288 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
289 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
290 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
291 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
292 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
293 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
294 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
295 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
296 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
297 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
298
299         NvRegPatternCRC = 0x204,
300         NvRegPatternMask = 0x208,
301         NvRegPowerCap = 0x268,
302 #define NVREG_POWERCAP_D3SUPP   (1<<30)
303 #define NVREG_POWERCAP_D2SUPP   (1<<26)
304 #define NVREG_POWERCAP_D1SUPP   (1<<25)
305         NvRegPowerState = 0x26c,
306 #define NVREG_POWERSTATE_POWEREDUP      0x8000
307 #define NVREG_POWERSTATE_VALID          0x0100
308 #define NVREG_POWERSTATE_MASK           0x0003
309 #define NVREG_POWERSTATE_D0             0x0000
310 #define NVREG_POWERSTATE_D1             0x0001
311 #define NVREG_POWERSTATE_D2             0x0002
312 #define NVREG_POWERSTATE_D3             0x0003
313         NvRegVlanControl = 0x300,
314 #define NVREG_VLANCONTROL_ENABLE        0x2000
315 };
316
317 /* Big endian: should work, but is untested */
318 struct ring_desc {
319         u32 PacketBuffer;
320         u32 FlagLen;
321 };
322
323 struct ring_desc_ex {
324         u32 PacketBufferHigh;
325         u32 PacketBufferLow;
326         u32 TxVlan;
327         u32 FlagLen;
328 };
329
330 typedef union _ring_type {
331         struct ring_desc* orig;
332         struct ring_desc_ex* ex;
333 } ring_type;
334
335 #define FLAG_MASK_V1 0xffff0000
336 #define FLAG_MASK_V2 0xffffc000
337 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
338 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
339
340 #define NV_TX_LASTPACKET        (1<<16)
341 #define NV_TX_RETRYERROR        (1<<19)
342 #define NV_TX_FORCED_INTERRUPT  (1<<24)
343 #define NV_TX_DEFERRED          (1<<26)
344 #define NV_TX_CARRIERLOST       (1<<27)
345 #define NV_TX_LATECOLLISION     (1<<28)
346 #define NV_TX_UNDERFLOW         (1<<29)
347 #define NV_TX_ERROR             (1<<30)
348 #define NV_TX_VALID             (1<<31)
349
350 #define NV_TX2_LASTPACKET       (1<<29)
351 #define NV_TX2_RETRYERROR       (1<<18)
352 #define NV_TX2_FORCED_INTERRUPT (1<<30)
353 #define NV_TX2_DEFERRED         (1<<25)
354 #define NV_TX2_CARRIERLOST      (1<<26)
355 #define NV_TX2_LATECOLLISION    (1<<27)
356 #define NV_TX2_UNDERFLOW        (1<<28)
357 /* error and valid are the same for both */
358 #define NV_TX2_ERROR            (1<<30)
359 #define NV_TX2_VALID            (1<<31)
360 #define NV_TX2_TSO              (1<<28)
361 #define NV_TX2_TSO_SHIFT        14
362 #define NV_TX2_TSO_MAX_SHIFT    14
363 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
364 #define NV_TX2_CHECKSUM_L3      (1<<27)
365 #define NV_TX2_CHECKSUM_L4      (1<<26)
366
367 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
368
369 #define NV_RX_DESCRIPTORVALID   (1<<16)
370 #define NV_RX_MISSEDFRAME       (1<<17)
371 #define NV_RX_SUBSTRACT1        (1<<18)
372 #define NV_RX_ERROR1            (1<<23)
373 #define NV_RX_ERROR2            (1<<24)
374 #define NV_RX_ERROR3            (1<<25)
375 #define NV_RX_ERROR4            (1<<26)
376 #define NV_RX_CRCERR            (1<<27)
377 #define NV_RX_OVERFLOW          (1<<28)
378 #define NV_RX_FRAMINGERR        (1<<29)
379 #define NV_RX_ERROR             (1<<30)
380 #define NV_RX_AVAIL             (1<<31)
381
382 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
383 #define NV_RX2_CHECKSUMOK1      (0x10000000)
384 #define NV_RX2_CHECKSUMOK2      (0x14000000)
385 #define NV_RX2_CHECKSUMOK3      (0x18000000)
386 #define NV_RX2_DESCRIPTORVALID  (1<<29)
387 #define NV_RX2_SUBSTRACT1       (1<<25)
388 #define NV_RX2_ERROR1           (1<<18)
389 #define NV_RX2_ERROR2           (1<<19)
390 #define NV_RX2_ERROR3           (1<<20)
391 #define NV_RX2_ERROR4           (1<<21)
392 #define NV_RX2_CRCERR           (1<<22)
393 #define NV_RX2_OVERFLOW         (1<<23)
394 #define NV_RX2_FRAMINGERR       (1<<24)
395 /* error and avail are the same for both */
396 #define NV_RX2_ERROR            (1<<30)
397 #define NV_RX2_AVAIL            (1<<31)
398
399 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
400 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
401
402 /* Miscelaneous hardware related defines: */
403 #define NV_PCI_REGSZ            0x270
404
405 /* various timeout delays: all in usec */
406 #define NV_TXRX_RESET_DELAY     4
407 #define NV_TXSTOP_DELAY1        10
408 #define NV_TXSTOP_DELAY1MAX     500000
409 #define NV_TXSTOP_DELAY2        100
410 #define NV_RXSTOP_DELAY1        10
411 #define NV_RXSTOP_DELAY1MAX     500000
412 #define NV_RXSTOP_DELAY2        100
413 #define NV_SETUP5_DELAY         5
414 #define NV_SETUP5_DELAYMAX      50000
415 #define NV_POWERUP_DELAY        5
416 #define NV_POWERUP_DELAYMAX     5000
417 #define NV_MIIBUSY_DELAY        50
418 #define NV_MIIPHY_DELAY 10
419 #define NV_MIIPHY_DELAYMAX      10000
420
421 #define NV_WAKEUPPATTERNS       5
422 #define NV_WAKEUPMASKENTRIES    4
423
424 /* General driver defaults */
425 #define NV_WATCHDOG_TIMEO       (5*HZ)
426
427 #define RX_RING         128
428 #define TX_RING         256
429 /* 
430  * If your nic mysteriously hangs then try to reduce the limits
431  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
432  * last valid ring entry. But this would be impossible to
433  * implement - probably a disassembly error.
434  */
435 #define TX_LIMIT_STOP   255
436 #define TX_LIMIT_START  254
437
438 /* rx/tx mac addr + type + vlan + align + slack*/
439 #define NV_RX_HEADERS           (64)
440 /* even more slack. */
441 #define NV_RX_ALLOC_PAD         (64)
442
443 /* maximum mtu size */
444 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
445 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
446
447 #define OOM_REFILL      (1+HZ/20)
448 #define POLL_WAIT       (1+HZ/100)
449 #define LINK_TIMEOUT    (3*HZ)
450
451 /* 
452  * desc_ver values:
453  * The nic supports three different descriptor types:
454  * - DESC_VER_1: Original
455  * - DESC_VER_2: support for jumbo frames.
456  * - DESC_VER_3: 64-bit format.
457  */
458 #define DESC_VER_1      1
459 #define DESC_VER_2      2
460 #define DESC_VER_3      3
461
462 /* PHY defines */
463 #define PHY_OUI_MARVELL 0x5043
464 #define PHY_OUI_CICADA  0x03f1
465 #define PHYID1_OUI_MASK 0x03ff
466 #define PHYID1_OUI_SHFT 6
467 #define PHYID2_OUI_MASK 0xfc00
468 #define PHYID2_OUI_SHFT 10
469 #define PHY_INIT1       0x0f000
470 #define PHY_INIT2       0x0e00
471 #define PHY_INIT3       0x01000
472 #define PHY_INIT4       0x0200
473 #define PHY_INIT5       0x0004
474 #define PHY_INIT6       0x02000
475 #define PHY_GIGABIT     0x0100
476
477 #define PHY_TIMEOUT     0x1
478 #define PHY_ERROR       0x2
479
480 #define PHY_100 0x1
481 #define PHY_1000        0x2
482 #define PHY_HALF        0x100
483
484 /* FIXME: MII defines that should be added to <linux/mii.h> */
485 #define MII_1000BT_CR   0x09
486 #define MII_1000BT_SR   0x0a
487 #define ADVERTISE_1000FULL      0x0200
488 #define ADVERTISE_1000HALF      0x0100
489 #define LPA_1000FULL    0x0800
490 #define LPA_1000HALF    0x0400
491
492
493 /*
494  * SMP locking:
495  * All hardware access under dev->priv->lock, except the performance
496  * critical parts:
497  * - rx is (pseudo-) lockless: it relies on the single-threading provided
498  *      by the arch code for interrupts.
499  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
500  *      needs dev->priv->lock :-(
501  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
502  */
503
504 /* in dev: base, irq */
505 struct fe_priv {
506         spinlock_t lock;
507
508         /* General data:
509          * Locking: spin_lock(&np->lock); */
510         struct net_device_stats stats;
511         int in_shutdown;
512         u32 linkspeed;
513         int duplex;
514         int autoneg;
515         int fixed_mode;
516         int phyaddr;
517         int wolenabled;
518         unsigned int phy_oui;
519         u16 gigabit;
520
521         /* General data: RO fields */
522         dma_addr_t ring_addr;
523         struct pci_dev *pci_dev;
524         u32 orig_mac[2];
525         u32 irqmask;
526         u32 desc_ver;
527         u32 txrxctl_bits;
528         u32 vlanctl_bits;
529
530         void __iomem *base;
531
532         /* rx specific fields.
533          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
534          */
535         ring_type rx_ring;
536         unsigned int cur_rx, refill_rx;
537         struct sk_buff *rx_skbuff[RX_RING];
538         dma_addr_t rx_dma[RX_RING];
539         unsigned int rx_buf_sz;
540         unsigned int pkt_limit;
541         struct timer_list oom_kick;
542         struct timer_list nic_poll;
543
544         /* media detection workaround.
545          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
546          */
547         int need_linktimer;
548         unsigned long link_timeout;
549         /*
550          * tx specific fields.
551          */
552         ring_type tx_ring;
553         unsigned int next_tx, nic_tx;
554         struct sk_buff *tx_skbuff[TX_RING];
555         dma_addr_t tx_dma[TX_RING];
556         unsigned int tx_dma_len[TX_RING];
557         u32 tx_flags;
558
559         /* vlan fields */
560         struct vlan_group *vlangrp;
561 };
562
563 /*
564  * Maximum number of loops until we assume that a bit in the irq mask
565  * is stuck. Overridable with module param.
566  */
567 static int max_interrupt_work = 5;
568
569 /*
570  * Optimization can be either throuput mode or cpu mode
571  * 
572  * Throughput Mode: Every tx and rx packet will generate an interrupt.
573  * CPU Mode: Interrupts are controlled by a timer.
574  */
575 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
576 #define NV_OPTIMIZATION_MODE_CPU        1
577 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
578
579 /*
580  * Poll interval for timer irq
581  *
582  * This interval determines how frequent an interrupt is generated.
583  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
584  * Min = 0, and Max = 65535
585  */
586 static int poll_interval = -1;
587
588 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
589 {
590         return netdev_priv(dev);
591 }
592
593 static inline u8 __iomem *get_hwbase(struct net_device *dev)
594 {
595         return ((struct fe_priv *)netdev_priv(dev))->base;
596 }
597
598 static inline void pci_push(u8 __iomem *base)
599 {
600         /* force out pending posted writes */
601         readl(base);
602 }
603
604 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
605 {
606         return le32_to_cpu(prd->FlagLen)
607                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
608 }
609
610 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
611 {
612         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
613 }
614
615 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
616                                 int delay, int delaymax, const char *msg)
617 {
618         u8 __iomem *base = get_hwbase(dev);
619
620         pci_push(base);
621         do {
622                 udelay(delay);
623                 delaymax -= delay;
624                 if (delaymax < 0) {
625                         if (msg)
626                                 printk(msg);
627                         return 1;
628                 }
629         } while ((readl(base + offset) & mask) != target);
630         return 0;
631 }
632
633 #define NV_SETUP_RX_RING 0x01
634 #define NV_SETUP_TX_RING 0x02
635
636 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
637 {
638         struct fe_priv *np = get_nvpriv(dev);
639         u8 __iomem *base = get_hwbase(dev);
640
641         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
642                 if (rxtx_flags & NV_SETUP_RX_RING) {
643                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
644                 }
645                 if (rxtx_flags & NV_SETUP_TX_RING) {
646                         writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
647                 }
648         } else {
649                 if (rxtx_flags & NV_SETUP_RX_RING) {
650                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
651                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
652                 }
653                 if (rxtx_flags & NV_SETUP_TX_RING) {
654                         writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
655                         writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
656                 }
657         }
658 }
659
660 #define MII_READ        (-1)
661 /* mii_rw: read/write a register on the PHY.
662  *
663  * Caller must guarantee serialization
664  */
665 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
666 {
667         u8 __iomem *base = get_hwbase(dev);
668         u32 reg;
669         int retval;
670
671         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
672
673         reg = readl(base + NvRegMIIControl);
674         if (reg & NVREG_MIICTL_INUSE) {
675                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
676                 udelay(NV_MIIBUSY_DELAY);
677         }
678
679         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
680         if (value != MII_READ) {
681                 writel(value, base + NvRegMIIData);
682                 reg |= NVREG_MIICTL_WRITE;
683         }
684         writel(reg, base + NvRegMIIControl);
685
686         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
687                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
688                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
689                                 dev->name, miireg, addr);
690                 retval = -1;
691         } else if (value != MII_READ) {
692                 /* it was a write operation - fewer failures are detectable */
693                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
694                                 dev->name, value, miireg, addr);
695                 retval = 0;
696         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
697                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
698                                 dev->name, miireg, addr);
699                 retval = -1;
700         } else {
701                 retval = readl(base + NvRegMIIData);
702                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
703                                 dev->name, miireg, addr, retval);
704         }
705
706         return retval;
707 }
708
709 static int phy_reset(struct net_device *dev)
710 {
711         struct fe_priv *np = netdev_priv(dev);
712         u32 miicontrol;
713         unsigned int tries = 0;
714
715         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
716         miicontrol |= BMCR_RESET;
717         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
718                 return -1;
719         }
720
721         /* wait for 500ms */
722         msleep(500);
723
724         /* must wait till reset is deasserted */
725         while (miicontrol & BMCR_RESET) {
726                 msleep(10);
727                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
728                 /* FIXME: 100 tries seem excessive */
729                 if (tries++ > 100)
730                         return -1;
731         }
732         return 0;
733 }
734
735 static int phy_init(struct net_device *dev)
736 {
737         struct fe_priv *np = get_nvpriv(dev);
738         u8 __iomem *base = get_hwbase(dev);
739         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
740
741         /* set advertise register */
742         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
743         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
744         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
745                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
746                 return PHY_ERROR;
747         }
748
749         /* get phy interface type */
750         phyinterface = readl(base + NvRegPhyInterface);
751
752         /* see if gigabit phy */
753         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
754         if (mii_status & PHY_GIGABIT) {
755                 np->gigabit = PHY_GIGABIT;
756                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
757                 mii_control_1000 &= ~ADVERTISE_1000HALF;
758                 if (phyinterface & PHY_RGMII)
759                         mii_control_1000 |= ADVERTISE_1000FULL;
760                 else
761                         mii_control_1000 &= ~ADVERTISE_1000FULL;
762
763                 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
764                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
765                         return PHY_ERROR;
766                 }
767         }
768         else
769                 np->gigabit = 0;
770
771         /* reset the phy */
772         if (phy_reset(dev)) {
773                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
774                 return PHY_ERROR;
775         }
776
777         /* phy vendor specific configuration */
778         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
779                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
780                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
781                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
782                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
783                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
784                         return PHY_ERROR;
785                 }
786                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
787                 phy_reserved |= PHY_INIT5;
788                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
789                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
790                         return PHY_ERROR;
791                 }
792         }
793         if (np->phy_oui == PHY_OUI_CICADA) {
794                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
795                 phy_reserved |= PHY_INIT6;
796                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
797                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
798                         return PHY_ERROR;
799                 }
800         }
801
802         /* restart auto negotiation */
803         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
804         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
805         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
806                 return PHY_ERROR;
807         }
808
809         return 0;
810 }
811
812 static void nv_start_rx(struct net_device *dev)
813 {
814         struct fe_priv *np = netdev_priv(dev);
815         u8 __iomem *base = get_hwbase(dev);
816
817         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
818         /* Already running? Stop it. */
819         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
820                 writel(0, base + NvRegReceiverControl);
821                 pci_push(base);
822         }
823         writel(np->linkspeed, base + NvRegLinkSpeed);
824         pci_push(base);
825         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
826         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
827                                 dev->name, np->duplex, np->linkspeed);
828         pci_push(base);
829 }
830
831 static void nv_stop_rx(struct net_device *dev)
832 {
833         u8 __iomem *base = get_hwbase(dev);
834
835         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
836         writel(0, base + NvRegReceiverControl);
837         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
838                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
839                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
840
841         udelay(NV_RXSTOP_DELAY2);
842         writel(0, base + NvRegLinkSpeed);
843 }
844
845 static void nv_start_tx(struct net_device *dev)
846 {
847         u8 __iomem *base = get_hwbase(dev);
848
849         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
850         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
851         pci_push(base);
852 }
853
854 static void nv_stop_tx(struct net_device *dev)
855 {
856         u8 __iomem *base = get_hwbase(dev);
857
858         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
859         writel(0, base + NvRegTransmitterControl);
860         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
861                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
862                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
863
864         udelay(NV_TXSTOP_DELAY2);
865         writel(0, base + NvRegUnknownTransmitterReg);
866 }
867
868 static void nv_txrx_reset(struct net_device *dev)
869 {
870         struct fe_priv *np = netdev_priv(dev);
871         u8 __iomem *base = get_hwbase(dev);
872
873         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
874         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
875         pci_push(base);
876         udelay(NV_TXRX_RESET_DELAY);
877         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
878         pci_push(base);
879 }
880
881 /*
882  * nv_get_stats: dev->get_stats function
883  * Get latest stats value from the nic.
884  * Called with read_lock(&dev_base_lock) held for read -
885  * only synchronized against unregister_netdevice.
886  */
887 static struct net_device_stats *nv_get_stats(struct net_device *dev)
888 {
889         struct fe_priv *np = netdev_priv(dev);
890
891         /* It seems that the nic always generates interrupts and doesn't
892          * accumulate errors internally. Thus the current values in np->stats
893          * are already up to date.
894          */
895         return &np->stats;
896 }
897
898 /*
899  * nv_alloc_rx: fill rx ring entries.
900  * Return 1 if the allocations for the skbs failed and the
901  * rx engine is without Available descriptors
902  */
903 static int nv_alloc_rx(struct net_device *dev)
904 {
905         struct fe_priv *np = netdev_priv(dev);
906         unsigned int refill_rx = np->refill_rx;
907         int nr;
908
909         while (np->cur_rx != refill_rx) {
910                 struct sk_buff *skb;
911
912                 nr = refill_rx % RX_RING;
913                 if (np->rx_skbuff[nr] == NULL) {
914
915                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
916                         if (!skb)
917                                 break;
918
919                         skb->dev = dev;
920                         np->rx_skbuff[nr] = skb;
921                 } else {
922                         skb = np->rx_skbuff[nr];
923                 }
924                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
925                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
926                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
927                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
928                         wmb();
929                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
930                 } else {
931                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
932                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
933                         wmb();
934                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
935                 }
936                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
937                                         dev->name, refill_rx);
938                 refill_rx++;
939         }
940         np->refill_rx = refill_rx;
941         if (np->cur_rx - refill_rx == RX_RING)
942                 return 1;
943         return 0;
944 }
945
946 static void nv_do_rx_refill(unsigned long data)
947 {
948         struct net_device *dev = (struct net_device *) data;
949         struct fe_priv *np = netdev_priv(dev);
950
951         disable_irq(dev->irq);
952         if (nv_alloc_rx(dev)) {
953                 spin_lock(&np->lock);
954                 if (!np->in_shutdown)
955                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
956                 spin_unlock(&np->lock);
957         }
958         enable_irq(dev->irq);
959 }
960
961 static void nv_init_rx(struct net_device *dev) 
962 {
963         struct fe_priv *np = netdev_priv(dev);
964         int i;
965
966         np->cur_rx = RX_RING;
967         np->refill_rx = 0;
968         for (i = 0; i < RX_RING; i++)
969                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
970                         np->rx_ring.orig[i].FlagLen = 0;
971                 else
972                         np->rx_ring.ex[i].FlagLen = 0;
973 }
974
975 static void nv_init_tx(struct net_device *dev)
976 {
977         struct fe_priv *np = netdev_priv(dev);
978         int i;
979
980         np->next_tx = np->nic_tx = 0;
981         for (i = 0; i < TX_RING; i++) {
982                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
983                         np->tx_ring.orig[i].FlagLen = 0;
984                 else
985                         np->tx_ring.ex[i].FlagLen = 0;
986                 np->tx_skbuff[i] = NULL;
987                 np->tx_dma[i] = 0;
988         }
989 }
990
991 static int nv_init_ring(struct net_device *dev)
992 {
993         nv_init_tx(dev);
994         nv_init_rx(dev);
995         return nv_alloc_rx(dev);
996 }
997
998 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
999 {
1000         struct fe_priv *np = netdev_priv(dev);
1001
1002         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1003                 dev->name, skbnr);
1004
1005         if (np->tx_dma[skbnr]) {
1006                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1007                                np->tx_dma_len[skbnr],
1008                                PCI_DMA_TODEVICE);
1009                 np->tx_dma[skbnr] = 0;
1010         }
1011
1012         if (np->tx_skbuff[skbnr]) {
1013                 dev_kfree_skb_irq(np->tx_skbuff[skbnr]);
1014                 np->tx_skbuff[skbnr] = NULL;
1015                 return 1;
1016         } else {
1017                 return 0;
1018         }
1019 }
1020
1021 static void nv_drain_tx(struct net_device *dev)
1022 {
1023         struct fe_priv *np = netdev_priv(dev);
1024         unsigned int i;
1025         
1026         for (i = 0; i < TX_RING; i++) {
1027                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1028                         np->tx_ring.orig[i].FlagLen = 0;
1029                 else
1030                         np->tx_ring.ex[i].FlagLen = 0;
1031                 if (nv_release_txskb(dev, i))
1032                         np->stats.tx_dropped++;
1033         }
1034 }
1035
1036 static void nv_drain_rx(struct net_device *dev)
1037 {
1038         struct fe_priv *np = netdev_priv(dev);
1039         int i;
1040         for (i = 0; i < RX_RING; i++) {
1041                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1042                         np->rx_ring.orig[i].FlagLen = 0;
1043                 else
1044                         np->rx_ring.ex[i].FlagLen = 0;
1045                 wmb();
1046                 if (np->rx_skbuff[i]) {
1047                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1048                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1049                                                 PCI_DMA_FROMDEVICE);
1050                         dev_kfree_skb(np->rx_skbuff[i]);
1051                         np->rx_skbuff[i] = NULL;
1052                 }
1053         }
1054 }
1055
1056 static void drain_ring(struct net_device *dev)
1057 {
1058         nv_drain_tx(dev);
1059         nv_drain_rx(dev);
1060 }
1061
1062 /*
1063  * nv_start_xmit: dev->hard_start_xmit function
1064  * Called with dev->xmit_lock held.
1065  */
1066 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1067 {
1068         struct fe_priv *np = netdev_priv(dev);
1069         u32 tx_flags = 0;
1070         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1071         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1072         unsigned int nr = (np->next_tx - 1) % TX_RING;
1073         unsigned int start_nr = np->next_tx % TX_RING;
1074         unsigned int i;
1075         u32 offset = 0;
1076         u32 bcnt;
1077         u32 size = skb->len-skb->data_len;
1078         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1079         u32 tx_flags_vlan = 0;
1080
1081         /* add fragments to entries count */
1082         for (i = 0; i < fragments; i++) {
1083                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1084                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1085         }
1086
1087         spin_lock_irq(&np->lock);
1088
1089         if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
1090                 spin_unlock_irq(&np->lock);
1091                 netif_stop_queue(dev);
1092                 return NETDEV_TX_BUSY;
1093         }
1094
1095         /* setup the header buffer */
1096         do {
1097                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1098                 nr = (nr + 1) % TX_RING;
1099
1100                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1101                                                 PCI_DMA_TODEVICE);
1102                 np->tx_dma_len[nr] = bcnt;
1103
1104                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1105                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1106                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1107                 } else {
1108                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1109                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1110                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1111                 }
1112                 tx_flags = np->tx_flags;
1113                 offset += bcnt;
1114                 size -= bcnt;
1115         } while(size);
1116
1117         /* setup the fragments */
1118         for (i = 0; i < fragments; i++) {
1119                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1120                 u32 size = frag->size;
1121                 offset = 0;
1122
1123                 do {
1124                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1125                         nr = (nr + 1) % TX_RING;
1126
1127                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1128                                                       PCI_DMA_TODEVICE);
1129                         np->tx_dma_len[nr] = bcnt;
1130
1131                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1132                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1133                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1134                         } else {
1135                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1136                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1137                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1138                         }
1139                         offset += bcnt;
1140                         size -= bcnt;
1141                 } while (size);
1142         }
1143
1144         /* set last fragment flag  */
1145         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1146                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1147         } else {
1148                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1149         }
1150
1151         np->tx_skbuff[nr] = skb;
1152
1153 #ifdef NETIF_F_TSO
1154         if (skb_shinfo(skb)->tso_size)
1155                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1156         else
1157 #endif
1158         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1159
1160         /* vlan tag */
1161         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1162                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1163         }
1164
1165         /* set tx flags */
1166         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1167                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1168         } else {
1169                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1170                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1171         }       
1172
1173         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1174                 dev->name, np->next_tx, entries, tx_flags_extra);
1175         {
1176                 int j;
1177                 for (j=0; j<64; j++) {
1178                         if ((j%16) == 0)
1179                                 dprintk("\n%03x:", j);
1180                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1181                 }
1182                 dprintk("\n");
1183         }
1184
1185         np->next_tx += entries;
1186
1187         dev->trans_start = jiffies;
1188         spin_unlock_irq(&np->lock);
1189         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1190         pci_push(get_hwbase(dev));
1191         return NETDEV_TX_OK;
1192 }
1193
1194 /*
1195  * nv_tx_done: check for completed packets, release the skbs.
1196  *
1197  * Caller must own np->lock.
1198  */
1199 static void nv_tx_done(struct net_device *dev)
1200 {
1201         struct fe_priv *np = netdev_priv(dev);
1202         u32 Flags;
1203         unsigned int i;
1204         struct sk_buff *skb;
1205
1206         while (np->nic_tx != np->next_tx) {
1207                 i = np->nic_tx % TX_RING;
1208
1209                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1210                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1211                 else
1212                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1213
1214                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1215                                         dev->name, np->nic_tx, Flags);
1216                 if (Flags & NV_TX_VALID)
1217                         break;
1218                 if (np->desc_ver == DESC_VER_1) {
1219                         if (Flags & NV_TX_LASTPACKET) {
1220                                 skb = np->tx_skbuff[i];
1221                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1222                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1223                                         if (Flags & NV_TX_UNDERFLOW)
1224                                                 np->stats.tx_fifo_errors++;
1225                                         if (Flags & NV_TX_CARRIERLOST)
1226                                                 np->stats.tx_carrier_errors++;
1227                                         np->stats.tx_errors++;
1228                                 } else {
1229                                         np->stats.tx_packets++;
1230                                         np->stats.tx_bytes += skb->len;
1231                                 }
1232                         }
1233                 } else {
1234                         if (Flags & NV_TX2_LASTPACKET) {
1235                                 skb = np->tx_skbuff[i];
1236                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1237                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1238                                         if (Flags & NV_TX2_UNDERFLOW)
1239                                                 np->stats.tx_fifo_errors++;
1240                                         if (Flags & NV_TX2_CARRIERLOST)
1241                                                 np->stats.tx_carrier_errors++;
1242                                         np->stats.tx_errors++;
1243                                 } else {
1244                                         np->stats.tx_packets++;
1245                                         np->stats.tx_bytes += skb->len;
1246                                 }                               
1247                         }
1248                 }
1249                 nv_release_txskb(dev, i);
1250                 np->nic_tx++;
1251         }
1252         if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1253                 netif_wake_queue(dev);
1254 }
1255
1256 /*
1257  * nv_tx_timeout: dev->tx_timeout function
1258  * Called with dev->xmit_lock held.
1259  */
1260 static void nv_tx_timeout(struct net_device *dev)
1261 {
1262         struct fe_priv *np = netdev_priv(dev);
1263         u8 __iomem *base = get_hwbase(dev);
1264
1265         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
1266                         readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
1267
1268         {
1269                 int i;
1270
1271                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1272                                 dev->name, (unsigned long)np->ring_addr,
1273                                 np->next_tx, np->nic_tx);
1274                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1275                 for (i=0;i<0x400;i+= 32) {
1276                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1277                                         i,
1278                                         readl(base + i + 0), readl(base + i + 4),
1279                                         readl(base + i + 8), readl(base + i + 12),
1280                                         readl(base + i + 16), readl(base + i + 20),
1281                                         readl(base + i + 24), readl(base + i + 28));
1282                 }
1283                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1284                 for (i=0;i<TX_RING;i+= 4) {
1285                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1286                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1287                                        i, 
1288                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1289                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1290                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1291                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1292                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1293                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1294                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1295                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1296                         } else {
1297                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1298                                        i, 
1299                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1300                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1301                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1302                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1303                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1304                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1305                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1306                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1307                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1308                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1309                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1310                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1311                         }
1312                 }
1313         }
1314
1315         spin_lock_irq(&np->lock);
1316
1317         /* 1) stop tx engine */
1318         nv_stop_tx(dev);
1319
1320         /* 2) check that the packets were not sent already: */
1321         nv_tx_done(dev);
1322
1323         /* 3) if there are dead entries: clear everything */
1324         if (np->next_tx != np->nic_tx) {
1325                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1326                 nv_drain_tx(dev);
1327                 np->next_tx = np->nic_tx = 0;
1328                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1329                 netif_wake_queue(dev);
1330         }
1331
1332         /* 4) restart tx engine */
1333         nv_start_tx(dev);
1334         spin_unlock_irq(&np->lock);
1335 }
1336
1337 /*
1338  * Called when the nic notices a mismatch between the actual data len on the
1339  * wire and the len indicated in the 802 header
1340  */
1341 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1342 {
1343         int hdrlen;     /* length of the 802 header */
1344         int protolen;   /* length as stored in the proto field */
1345
1346         /* 1) calculate len according to header */
1347         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1348                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1349                 hdrlen = VLAN_HLEN;
1350         } else {
1351                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1352                 hdrlen = ETH_HLEN;
1353         }
1354         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1355                                 dev->name, datalen, protolen, hdrlen);
1356         if (protolen > ETH_DATA_LEN)
1357                 return datalen; /* Value in proto field not a len, no checks possible */
1358
1359         protolen += hdrlen;
1360         /* consistency checks: */
1361         if (datalen > ETH_ZLEN) {
1362                 if (datalen >= protolen) {
1363                         /* more data on wire than in 802 header, trim of
1364                          * additional data.
1365                          */
1366                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1367                                         dev->name, protolen);
1368                         return protolen;
1369                 } else {
1370                         /* less data on wire than mentioned in header.
1371                          * Discard the packet.
1372                          */
1373                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1374                                         dev->name);
1375                         return -1;
1376                 }
1377         } else {
1378                 /* short packet. Accept only if 802 values are also short */
1379                 if (protolen > ETH_ZLEN) {
1380                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1381                                         dev->name);
1382                         return -1;
1383                 }
1384                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1385                                 dev->name, datalen);
1386                 return datalen;
1387         }
1388 }
1389
1390 static void nv_rx_process(struct net_device *dev)
1391 {
1392         struct fe_priv *np = netdev_priv(dev);
1393         u32 Flags;
1394         u32 vlanflags = 0;
1395
1396
1397         for (;;) {
1398                 struct sk_buff *skb;
1399                 int len;
1400                 int i;
1401                 if (np->cur_rx - np->refill_rx >= RX_RING)
1402                         break;  /* we scanned the whole ring - do not continue */
1403
1404                 i = np->cur_rx % RX_RING;
1405                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1406                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1407                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1408                 } else {
1409                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1410                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1411                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1412                 }
1413
1414                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1415                                         dev->name, np->cur_rx, Flags);
1416
1417                 if (Flags & NV_RX_AVAIL)
1418                         break;  /* still owned by hardware, */
1419
1420                 /*
1421                  * the packet is for us - immediately tear down the pci mapping.
1422                  * TODO: check if a prefetch of the first cacheline improves
1423                  * the performance.
1424                  */
1425                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1426                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1427                                 PCI_DMA_FROMDEVICE);
1428
1429                 {
1430                         int j;
1431                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1432                         for (j=0; j<64; j++) {
1433                                 if ((j%16) == 0)
1434                                         dprintk("\n%03x:", j);
1435                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1436                         }
1437                         dprintk("\n");
1438                 }
1439                 /* look at what we actually got: */
1440                 if (np->desc_ver == DESC_VER_1) {
1441                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1442                                 goto next_pkt;
1443
1444                         if (Flags & NV_RX_ERROR) {
1445                                 if (Flags & NV_RX_MISSEDFRAME) {
1446                                         np->stats.rx_missed_errors++;
1447                                         np->stats.rx_errors++;
1448                                         goto next_pkt;
1449                                 }
1450                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1451                                         np->stats.rx_errors++;
1452                                         goto next_pkt;
1453                                 }
1454                                 if (Flags & NV_RX_CRCERR) {
1455                                         np->stats.rx_crc_errors++;
1456                                         np->stats.rx_errors++;
1457                                         goto next_pkt;
1458                                 }
1459                                 if (Flags & NV_RX_OVERFLOW) {
1460                                         np->stats.rx_over_errors++;
1461                                         np->stats.rx_errors++;
1462                                         goto next_pkt;
1463                                 }
1464                                 if (Flags & NV_RX_ERROR4) {
1465                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1466                                         if (len < 0) {
1467                                                 np->stats.rx_errors++;
1468                                                 goto next_pkt;
1469                                         }
1470                                 }
1471                                 /* framing errors are soft errors. */
1472                                 if (Flags & NV_RX_FRAMINGERR) {
1473                                         if (Flags & NV_RX_SUBSTRACT1) {
1474                                                 len--;
1475                                         }
1476                                 }
1477                         }
1478                 } else {
1479                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1480                                 goto next_pkt;
1481
1482                         if (Flags & NV_RX2_ERROR) {
1483                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1484                                         np->stats.rx_errors++;
1485                                         goto next_pkt;
1486                                 }
1487                                 if (Flags & NV_RX2_CRCERR) {
1488                                         np->stats.rx_crc_errors++;
1489                                         np->stats.rx_errors++;
1490                                         goto next_pkt;
1491                                 }
1492                                 if (Flags & NV_RX2_OVERFLOW) {
1493                                         np->stats.rx_over_errors++;
1494                                         np->stats.rx_errors++;
1495                                         goto next_pkt;
1496                                 }
1497                                 if (Flags & NV_RX2_ERROR4) {
1498                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1499                                         if (len < 0) {
1500                                                 np->stats.rx_errors++;
1501                                                 goto next_pkt;
1502                                         }
1503                                 }
1504                                 /* framing errors are soft errors */
1505                                 if (Flags & NV_RX2_FRAMINGERR) {
1506                                         if (Flags & NV_RX2_SUBSTRACT1) {
1507                                                 len--;
1508                                         }
1509                                 }
1510                         }
1511                         Flags &= NV_RX2_CHECKSUMMASK;
1512                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1513                                         Flags == NV_RX2_CHECKSUMOK2 ||
1514                                         Flags == NV_RX2_CHECKSUMOK3) {
1515                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1516                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1517                         } else {
1518                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1519                         }
1520                 }
1521                 /* got a valid packet - forward it to the network core */
1522                 skb = np->rx_skbuff[i];
1523                 np->rx_skbuff[i] = NULL;
1524
1525                 skb_put(skb, len);
1526                 skb->protocol = eth_type_trans(skb, dev);
1527                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1528                                         dev->name, np->cur_rx, len, skb->protocol);
1529                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1530                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1531                 } else {
1532                         netif_rx(skb);
1533                 }
1534                 dev->last_rx = jiffies;
1535                 np->stats.rx_packets++;
1536                 np->stats.rx_bytes += len;
1537 next_pkt:
1538                 np->cur_rx++;
1539         }
1540 }
1541
1542 static void set_bufsize(struct net_device *dev)
1543 {
1544         struct fe_priv *np = netdev_priv(dev);
1545
1546         if (dev->mtu <= ETH_DATA_LEN)
1547                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1548         else
1549                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1550 }
1551
1552 /*
1553  * nv_change_mtu: dev->change_mtu function
1554  * Called with dev_base_lock held for read.
1555  */
1556 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1557 {
1558         struct fe_priv *np = netdev_priv(dev);
1559         int old_mtu;
1560
1561         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1562                 return -EINVAL;
1563
1564         old_mtu = dev->mtu;
1565         dev->mtu = new_mtu;
1566
1567         /* return early if the buffer sizes will not change */
1568         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1569                 return 0;
1570         if (old_mtu == new_mtu)
1571                 return 0;
1572
1573         /* synchronized against open : rtnl_lock() held by caller */
1574         if (netif_running(dev)) {
1575                 u8 __iomem *base = get_hwbase(dev);
1576                 /*
1577                  * It seems that the nic preloads valid ring entries into an
1578                  * internal buffer. The procedure for flushing everything is
1579                  * guessed, there is probably a simpler approach.
1580                  * Changing the MTU is a rare event, it shouldn't matter.
1581                  */
1582                 disable_irq(dev->irq);
1583                 spin_lock_bh(&dev->xmit_lock);
1584                 spin_lock(&np->lock);
1585                 /* stop engines */
1586                 nv_stop_rx(dev);
1587                 nv_stop_tx(dev);
1588                 nv_txrx_reset(dev);
1589                 /* drain rx queue */
1590                 nv_drain_rx(dev);
1591                 nv_drain_tx(dev);
1592                 /* reinit driver view of the rx queue */
1593                 nv_init_rx(dev);
1594                 nv_init_tx(dev);
1595                 /* alloc new rx buffers */
1596                 set_bufsize(dev);
1597                 if (nv_alloc_rx(dev)) {
1598                         if (!np->in_shutdown)
1599                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1600                 }
1601                 /* reinit nic view of the rx queue */
1602                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1603                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1604                 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1605                         base + NvRegRingSizes);
1606                 pci_push(base);
1607                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1608                 pci_push(base);
1609
1610                 /* restart rx engine */
1611                 nv_start_rx(dev);
1612                 nv_start_tx(dev);
1613                 spin_unlock(&np->lock);
1614                 spin_unlock_bh(&dev->xmit_lock);
1615                 enable_irq(dev->irq);
1616         }
1617         return 0;
1618 }
1619
1620 static void nv_copy_mac_to_hw(struct net_device *dev)
1621 {
1622         u8 __iomem *base = get_hwbase(dev);
1623         u32 mac[2];
1624
1625         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1626                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1627         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1628
1629         writel(mac[0], base + NvRegMacAddrA);
1630         writel(mac[1], base + NvRegMacAddrB);
1631 }
1632
1633 /*
1634  * nv_set_mac_address: dev->set_mac_address function
1635  * Called with rtnl_lock() held.
1636  */
1637 static int nv_set_mac_address(struct net_device *dev, void *addr)
1638 {
1639         struct fe_priv *np = netdev_priv(dev);
1640         struct sockaddr *macaddr = (struct sockaddr*)addr;
1641
1642         if(!is_valid_ether_addr(macaddr->sa_data))
1643                 return -EADDRNOTAVAIL;
1644
1645         /* synchronized against open : rtnl_lock() held by caller */
1646         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1647
1648         if (netif_running(dev)) {
1649                 spin_lock_bh(&dev->xmit_lock);
1650                 spin_lock_irq(&np->lock);
1651
1652                 /* stop rx engine */
1653                 nv_stop_rx(dev);
1654
1655                 /* set mac address */
1656                 nv_copy_mac_to_hw(dev);
1657
1658                 /* restart rx engine */
1659                 nv_start_rx(dev);
1660                 spin_unlock_irq(&np->lock);
1661                 spin_unlock_bh(&dev->xmit_lock);
1662         } else {
1663                 nv_copy_mac_to_hw(dev);
1664         }
1665         return 0;
1666 }
1667
1668 /*
1669  * nv_set_multicast: dev->set_multicast function
1670  * Called with dev->xmit_lock held.
1671  */
1672 static void nv_set_multicast(struct net_device *dev)
1673 {
1674         struct fe_priv *np = netdev_priv(dev);
1675         u8 __iomem *base = get_hwbase(dev);
1676         u32 addr[2];
1677         u32 mask[2];
1678         u32 pff;
1679
1680         memset(addr, 0, sizeof(addr));
1681         memset(mask, 0, sizeof(mask));
1682
1683         if (dev->flags & IFF_PROMISC) {
1684                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1685                 pff = NVREG_PFF_PROMISC;
1686         } else {
1687                 pff = NVREG_PFF_MYADDR;
1688
1689                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1690                         u32 alwaysOff[2];
1691                         u32 alwaysOn[2];
1692
1693                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1694                         if (dev->flags & IFF_ALLMULTI) {
1695                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1696                         } else {
1697                                 struct dev_mc_list *walk;
1698
1699                                 walk = dev->mc_list;
1700                                 while (walk != NULL) {
1701                                         u32 a, b;
1702                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1703                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1704                                         alwaysOn[0] &= a;
1705                                         alwaysOff[0] &= ~a;
1706                                         alwaysOn[1] &= b;
1707                                         alwaysOff[1] &= ~b;
1708                                         walk = walk->next;
1709                                 }
1710                         }
1711                         addr[0] = alwaysOn[0];
1712                         addr[1] = alwaysOn[1];
1713                         mask[0] = alwaysOn[0] | alwaysOff[0];
1714                         mask[1] = alwaysOn[1] | alwaysOff[1];
1715                 }
1716         }
1717         addr[0] |= NVREG_MCASTADDRA_FORCE;
1718         pff |= NVREG_PFF_ALWAYS;
1719         spin_lock_irq(&np->lock);
1720         nv_stop_rx(dev);
1721         writel(addr[0], base + NvRegMulticastAddrA);
1722         writel(addr[1], base + NvRegMulticastAddrB);
1723         writel(mask[0], base + NvRegMulticastMaskA);
1724         writel(mask[1], base + NvRegMulticastMaskB);
1725         writel(pff, base + NvRegPacketFilterFlags);
1726         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1727                 dev->name);
1728         nv_start_rx(dev);
1729         spin_unlock_irq(&np->lock);
1730 }
1731
1732 /**
1733  * nv_update_linkspeed: Setup the MAC according to the link partner
1734  * @dev: Network device to be configured
1735  *
1736  * The function queries the PHY and checks if there is a link partner.
1737  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1738  * set to 10 MBit HD.
1739  *
1740  * The function returns 0 if there is no link partner and 1 if there is
1741  * a good link partner.
1742  */
1743 static int nv_update_linkspeed(struct net_device *dev)
1744 {
1745         struct fe_priv *np = netdev_priv(dev);
1746         u8 __iomem *base = get_hwbase(dev);
1747         int adv, lpa;
1748         int newls = np->linkspeed;
1749         int newdup = np->duplex;
1750         int mii_status;
1751         int retval = 0;
1752         u32 control_1000, status_1000, phyreg;
1753
1754         /* BMSR_LSTATUS is latched, read it twice:
1755          * we want the current value.
1756          */
1757         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1758         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1759
1760         if (!(mii_status & BMSR_LSTATUS)) {
1761                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1762                                 dev->name);
1763                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1764                 newdup = 0;
1765                 retval = 0;
1766                 goto set_speed;
1767         }
1768
1769         if (np->autoneg == 0) {
1770                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1771                                 dev->name, np->fixed_mode);
1772                 if (np->fixed_mode & LPA_100FULL) {
1773                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1774                         newdup = 1;
1775                 } else if (np->fixed_mode & LPA_100HALF) {
1776                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1777                         newdup = 0;
1778                 } else if (np->fixed_mode & LPA_10FULL) {
1779                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1780                         newdup = 1;
1781                 } else {
1782                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1783                         newdup = 0;
1784                 }
1785                 retval = 1;
1786                 goto set_speed;
1787         }
1788         /* check auto negotiation is complete */
1789         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1790                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1791                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1792                 newdup = 0;
1793                 retval = 0;
1794                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1795                 goto set_speed;
1796         }
1797
1798         retval = 1;
1799         if (np->gigabit == PHY_GIGABIT) {
1800                 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1801                 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1802
1803                 if ((control_1000 & ADVERTISE_1000FULL) &&
1804                         (status_1000 & LPA_1000FULL)) {
1805                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1806                                 dev->name);
1807                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1808                         newdup = 1;
1809                         goto set_speed;
1810                 }
1811         }
1812
1813         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1814         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1815         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1816                                 dev->name, adv, lpa);
1817
1818         /* FIXME: handle parallel detection properly */
1819         lpa = lpa & adv;
1820         if (lpa & LPA_100FULL) {
1821                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1822                 newdup = 1;
1823         } else if (lpa & LPA_100HALF) {
1824                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1825                 newdup = 0;
1826         } else if (lpa & LPA_10FULL) {
1827                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1828                 newdup = 1;
1829         } else if (lpa & LPA_10HALF) {
1830                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1831                 newdup = 0;
1832         } else {
1833                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1834                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1835                 newdup = 0;
1836         }
1837
1838 set_speed:
1839         if (np->duplex == newdup && np->linkspeed == newls)
1840                 return retval;
1841
1842         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1843                         dev->name, np->linkspeed, np->duplex, newls, newdup);
1844
1845         np->duplex = newdup;
1846         np->linkspeed = newls;
1847
1848         if (np->gigabit == PHY_GIGABIT) {
1849                 phyreg = readl(base + NvRegRandomSeed);
1850                 phyreg &= ~(0x3FF00);
1851                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1852                         phyreg |= NVREG_RNDSEED_FORCE3;
1853                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1854                         phyreg |= NVREG_RNDSEED_FORCE2;
1855                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1856                         phyreg |= NVREG_RNDSEED_FORCE;
1857                 writel(phyreg, base + NvRegRandomSeed);
1858         }
1859
1860         phyreg = readl(base + NvRegPhyInterface);
1861         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1862         if (np->duplex == 0)
1863                 phyreg |= PHY_HALF;
1864         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1865                 phyreg |= PHY_100;
1866         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1867                 phyreg |= PHY_1000;
1868         writel(phyreg, base + NvRegPhyInterface);
1869
1870         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1871                 base + NvRegMisc1);
1872         pci_push(base);
1873         writel(np->linkspeed, base + NvRegLinkSpeed);
1874         pci_push(base);
1875
1876         return retval;
1877 }
1878
1879 static void nv_linkchange(struct net_device *dev)
1880 {
1881         if (nv_update_linkspeed(dev)) {
1882                 if (!netif_carrier_ok(dev)) {
1883                         netif_carrier_on(dev);
1884                         printk(KERN_INFO "%s: link up.\n", dev->name);
1885                         nv_start_rx(dev);
1886                 }
1887         } else {
1888                 if (netif_carrier_ok(dev)) {
1889                         netif_carrier_off(dev);
1890                         printk(KERN_INFO "%s: link down.\n", dev->name);
1891                         nv_stop_rx(dev);
1892                 }
1893         }
1894 }
1895
1896 static void nv_link_irq(struct net_device *dev)
1897 {
1898         u8 __iomem *base = get_hwbase(dev);
1899         u32 miistat;
1900
1901         miistat = readl(base + NvRegMIIStatus);
1902         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1903         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1904
1905         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1906                 nv_linkchange(dev);
1907         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1908 }
1909
1910 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1911 {
1912         struct net_device *dev = (struct net_device *) data;
1913         struct fe_priv *np = netdev_priv(dev);
1914         u8 __iomem *base = get_hwbase(dev);
1915         u32 events;
1916         int i;
1917
1918         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1919
1920         for (i=0; ; i++) {
1921                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1922                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1923                 pci_push(base);
1924                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
1925                 if (!(events & np->irqmask))
1926                         break;
1927
1928                 spin_lock(&np->lock);
1929                 nv_tx_done(dev);
1930                 spin_unlock(&np->lock);
1931                 
1932                 nv_rx_process(dev);
1933                 if (nv_alloc_rx(dev)) {
1934                         spin_lock(&np->lock);
1935                         if (!np->in_shutdown)
1936                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1937                         spin_unlock(&np->lock);
1938                 }
1939                 
1940                 if (events & NVREG_IRQ_LINK) {
1941                         spin_lock(&np->lock);
1942                         nv_link_irq(dev);
1943                         spin_unlock(&np->lock);
1944                 }
1945                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
1946                         spin_lock(&np->lock);
1947                         nv_linkchange(dev);
1948                         spin_unlock(&np->lock);
1949                         np->link_timeout = jiffies + LINK_TIMEOUT;
1950                 }
1951                 if (events & (NVREG_IRQ_TX_ERR)) {
1952                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
1953                                                 dev->name, events);
1954                 }
1955                 if (events & (NVREG_IRQ_UNKNOWN)) {
1956                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
1957                                                 dev->name, events);
1958                 }
1959                 if (i > max_interrupt_work) {
1960                         spin_lock(&np->lock);
1961                         /* disable interrupts on the nic */
1962                         writel(0, base + NvRegIrqMask);
1963                         pci_push(base);
1964
1965                         if (!np->in_shutdown)
1966                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
1967                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
1968                         spin_unlock(&np->lock);
1969                         break;
1970                 }
1971
1972         }
1973         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
1974
1975         return IRQ_RETVAL(i);
1976 }
1977
1978 static void nv_do_nic_poll(unsigned long data)
1979 {
1980         struct net_device *dev = (struct net_device *) data;
1981         struct fe_priv *np = netdev_priv(dev);
1982         u8 __iomem *base = get_hwbase(dev);
1983
1984         disable_irq(dev->irq);
1985         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
1986         /*
1987          * reenable interrupts on the nic, we have to do this before calling
1988          * nv_nic_irq because that may decide to do otherwise
1989          */
1990         writel(np->irqmask, base + NvRegIrqMask);
1991         pci_push(base);
1992         nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
1993         enable_irq(dev->irq);
1994 }
1995
1996 #ifdef CONFIG_NET_POLL_CONTROLLER
1997 static void nv_poll_controller(struct net_device *dev)
1998 {
1999         nv_do_nic_poll((unsigned long) dev);
2000 }
2001 #endif
2002
2003 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2004 {
2005         struct fe_priv *np = netdev_priv(dev);
2006         strcpy(info->driver, "forcedeth");
2007         strcpy(info->version, FORCEDETH_VERSION);
2008         strcpy(info->bus_info, pci_name(np->pci_dev));
2009 }
2010
2011 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2012 {
2013         struct fe_priv *np = netdev_priv(dev);
2014         wolinfo->supported = WAKE_MAGIC;
2015
2016         spin_lock_irq(&np->lock);
2017         if (np->wolenabled)
2018                 wolinfo->wolopts = WAKE_MAGIC;
2019         spin_unlock_irq(&np->lock);
2020 }
2021
2022 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2023 {
2024         struct fe_priv *np = netdev_priv(dev);
2025         u8 __iomem *base = get_hwbase(dev);
2026
2027         spin_lock_irq(&np->lock);
2028         if (wolinfo->wolopts == 0) {
2029                 writel(0, base + NvRegWakeUpFlags);
2030                 np->wolenabled = 0;
2031         }
2032         if (wolinfo->wolopts & WAKE_MAGIC) {
2033                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
2034                 np->wolenabled = 1;
2035         }
2036         spin_unlock_irq(&np->lock);
2037         return 0;
2038 }
2039
2040 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2041 {
2042         struct fe_priv *np = netdev_priv(dev);
2043         int adv;
2044
2045         spin_lock_irq(&np->lock);
2046         ecmd->port = PORT_MII;
2047         if (!netif_running(dev)) {
2048                 /* We do not track link speed / duplex setting if the
2049                  * interface is disabled. Force a link check */
2050                 nv_update_linkspeed(dev);
2051         }
2052         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2053                 case NVREG_LINKSPEED_10:
2054                         ecmd->speed = SPEED_10;
2055                         break;
2056                 case NVREG_LINKSPEED_100:
2057                         ecmd->speed = SPEED_100;
2058                         break;
2059                 case NVREG_LINKSPEED_1000:
2060                         ecmd->speed = SPEED_1000;
2061                         break;
2062         }
2063         ecmd->duplex = DUPLEX_HALF;
2064         if (np->duplex)
2065                 ecmd->duplex = DUPLEX_FULL;
2066
2067         ecmd->autoneg = np->autoneg;
2068
2069         ecmd->advertising = ADVERTISED_MII;
2070         if (np->autoneg) {
2071                 ecmd->advertising |= ADVERTISED_Autoneg;
2072                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2073         } else {
2074                 adv = np->fixed_mode;
2075         }
2076         if (adv & ADVERTISE_10HALF)
2077                 ecmd->advertising |= ADVERTISED_10baseT_Half;
2078         if (adv & ADVERTISE_10FULL)
2079                 ecmd->advertising |= ADVERTISED_10baseT_Full;
2080         if (adv & ADVERTISE_100HALF)
2081                 ecmd->advertising |= ADVERTISED_100baseT_Half;
2082         if (adv & ADVERTISE_100FULL)
2083                 ecmd->advertising |= ADVERTISED_100baseT_Full;
2084         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2085                 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2086                 if (adv & ADVERTISE_1000FULL)
2087                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
2088         }
2089
2090         ecmd->supported = (SUPPORTED_Autoneg |
2091                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2092                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2093                 SUPPORTED_MII);
2094         if (np->gigabit == PHY_GIGABIT)
2095                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2096
2097         ecmd->phy_address = np->phyaddr;
2098         ecmd->transceiver = XCVR_EXTERNAL;
2099
2100         /* ignore maxtxpkt, maxrxpkt for now */
2101         spin_unlock_irq(&np->lock);
2102         return 0;
2103 }
2104
2105 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2106 {
2107         struct fe_priv *np = netdev_priv(dev);
2108
2109         if (ecmd->port != PORT_MII)
2110                 return -EINVAL;
2111         if (ecmd->transceiver != XCVR_EXTERNAL)
2112                 return -EINVAL;
2113         if (ecmd->phy_address != np->phyaddr) {
2114                 /* TODO: support switching between multiple phys. Should be
2115                  * trivial, but not enabled due to lack of test hardware. */
2116                 return -EINVAL;
2117         }
2118         if (ecmd->autoneg == AUTONEG_ENABLE) {
2119                 u32 mask;
2120
2121                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2122                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2123                 if (np->gigabit == PHY_GIGABIT)
2124                         mask |= ADVERTISED_1000baseT_Full;
2125
2126                 if ((ecmd->advertising & mask) == 0)
2127                         return -EINVAL;
2128
2129         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2130                 /* Note: autonegotiation disable, speed 1000 intentionally
2131                  * forbidden - noone should need that. */
2132
2133                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2134                         return -EINVAL;
2135                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2136                         return -EINVAL;
2137         } else {
2138                 return -EINVAL;
2139         }
2140
2141         spin_lock_irq(&np->lock);
2142         if (ecmd->autoneg == AUTONEG_ENABLE) {
2143                 int adv, bmcr;
2144
2145                 np->autoneg = 1;
2146
2147                 /* advertise only what has been requested */
2148                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2149                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2150                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2151                         adv |= ADVERTISE_10HALF;
2152                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2153                         adv |= ADVERTISE_10FULL;
2154                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2155                         adv |= ADVERTISE_100HALF;
2156                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2157                         adv |= ADVERTISE_100FULL;
2158                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2159
2160                 if (np->gigabit == PHY_GIGABIT) {
2161                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2162                         adv &= ~ADVERTISE_1000FULL;
2163                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2164                                 adv |= ADVERTISE_1000FULL;
2165                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2166                 }
2167
2168                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2169                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2170                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2171
2172         } else {
2173                 int adv, bmcr;
2174
2175                 np->autoneg = 0;
2176
2177                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2178                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2179                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2180                         adv |= ADVERTISE_10HALF;
2181                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2182                         adv |= ADVERTISE_10FULL;
2183                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2184                         adv |= ADVERTISE_100HALF;
2185                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2186                         adv |= ADVERTISE_100FULL;
2187                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2188                 np->fixed_mode = adv;
2189
2190                 if (np->gigabit == PHY_GIGABIT) {
2191                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2192                         adv &= ~ADVERTISE_1000FULL;
2193                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2194                 }
2195
2196                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2197                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2198                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2199                         bmcr |= BMCR_FULLDPLX;
2200                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2201                         bmcr |= BMCR_SPEED100;
2202                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2203
2204                 if (netif_running(dev)) {
2205                         /* Wait a bit and then reconfigure the nic. */
2206                         udelay(10);
2207                         nv_linkchange(dev);
2208                 }
2209         }
2210         spin_unlock_irq(&np->lock);
2211
2212         return 0;
2213 }
2214
2215 #define FORCEDETH_REGS_VER      1
2216 #define FORCEDETH_REGS_SIZE     0x400 /* 256 32-bit registers */
2217
2218 static int nv_get_regs_len(struct net_device *dev)
2219 {
2220         return FORCEDETH_REGS_SIZE;
2221 }
2222
2223 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2224 {
2225         struct fe_priv *np = netdev_priv(dev);
2226         u8 __iomem *base = get_hwbase(dev);
2227         u32 *rbuf = buf;
2228         int i;
2229
2230         regs->version = FORCEDETH_REGS_VER;
2231         spin_lock_irq(&np->lock);
2232         for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2233                 rbuf[i] = readl(base + i*sizeof(u32));
2234         spin_unlock_irq(&np->lock);
2235 }
2236
2237 static int nv_nway_reset(struct net_device *dev)
2238 {
2239         struct fe_priv *np = netdev_priv(dev);
2240         int ret;
2241
2242         spin_lock_irq(&np->lock);
2243         if (np->autoneg) {
2244                 int bmcr;
2245
2246                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2247                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2248                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2249
2250                 ret = 0;
2251         } else {
2252                 ret = -EINVAL;
2253         }
2254         spin_unlock_irq(&np->lock);
2255
2256         return ret;
2257 }
2258
2259 static struct ethtool_ops ops = {
2260         .get_drvinfo = nv_get_drvinfo,
2261         .get_link = ethtool_op_get_link,
2262         .get_wol = nv_get_wol,
2263         .set_wol = nv_set_wol,
2264         .get_settings = nv_get_settings,
2265         .set_settings = nv_set_settings,
2266         .get_regs_len = nv_get_regs_len,
2267         .get_regs = nv_get_regs,
2268         .nway_reset = nv_nway_reset,
2269         .get_perm_addr = ethtool_op_get_perm_addr,
2270 };
2271
2272 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2273 {
2274         struct fe_priv *np = get_nvpriv(dev);
2275
2276         spin_lock_irq(&np->lock);
2277
2278         /* save vlan group */
2279         np->vlangrp = grp;
2280
2281         if (grp) {
2282                 /* enable vlan on MAC */
2283                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
2284         } else {
2285                 /* disable vlan on MAC */
2286                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
2287                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
2288         }
2289
2290         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2291
2292         spin_unlock_irq(&np->lock);
2293 };
2294
2295 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2296 {
2297         /* nothing to do */
2298 };
2299
2300 static int nv_open(struct net_device *dev)
2301 {
2302         struct fe_priv *np = netdev_priv(dev);
2303         u8 __iomem *base = get_hwbase(dev);
2304         int ret, oom, i;
2305
2306         dprintk(KERN_DEBUG "nv_open: begin\n");
2307
2308         /* 1) erase previous misconfiguration */
2309         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2310         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2311         writel(0, base + NvRegMulticastAddrB);
2312         writel(0, base + NvRegMulticastMaskA);
2313         writel(0, base + NvRegMulticastMaskB);
2314         writel(0, base + NvRegPacketFilterFlags);
2315
2316         writel(0, base + NvRegTransmitterControl);
2317         writel(0, base + NvRegReceiverControl);
2318
2319         writel(0, base + NvRegAdapterControl);
2320
2321         /* 2) initialize descriptor rings */
2322         set_bufsize(dev);
2323         oom = nv_init_ring(dev);
2324
2325         writel(0, base + NvRegLinkSpeed);
2326         writel(0, base + NvRegUnknownTransmitterReg);
2327         nv_txrx_reset(dev);
2328         writel(0, base + NvRegUnknownSetupReg6);
2329
2330         np->in_shutdown = 0;
2331
2332         /* 3) set mac address */
2333         nv_copy_mac_to_hw(dev);
2334
2335         /* 4) give hw rings */
2336         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2337         writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2338                 base + NvRegRingSizes);
2339
2340         /* 5) continue setup */
2341         writel(np->linkspeed, base + NvRegLinkSpeed);
2342         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2343         writel(np->txrxctl_bits, base + NvRegTxRxControl);
2344         writel(np->vlanctl_bits, base + NvRegVlanControl);
2345         pci_push(base);
2346         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2347         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2348                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2349                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2350
2351         writel(0, base + NvRegUnknownSetupReg4);
2352         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2353         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2354
2355         /* 6) continue setup */
2356         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2357         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2358         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2359         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2360
2361         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2362         get_random_bytes(&i, sizeof(i));
2363         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2364         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2365         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2366         if (poll_interval == -1) {
2367                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2368                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2369                 else
2370                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2371         }
2372         else
2373                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2374         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2375         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2376                         base + NvRegAdapterControl);
2377         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2378         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2379         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2380
2381         i = readl(base + NvRegPowerState);
2382         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2383                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2384
2385         pci_push(base);
2386         udelay(10);
2387         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2388
2389         writel(0, base + NvRegIrqMask);
2390         pci_push(base);
2391         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2392         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2393         pci_push(base);
2394
2395         ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
2396         if (ret)
2397                 goto out_drain;
2398
2399         /* ask for interrupts */
2400         writel(np->irqmask, base + NvRegIrqMask);
2401
2402         spin_lock_irq(&np->lock);
2403         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2404         writel(0, base + NvRegMulticastAddrB);
2405         writel(0, base + NvRegMulticastMaskA);
2406         writel(0, base + NvRegMulticastMaskB);
2407         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2408         /* One manual link speed update: Interrupts are enabled, future link
2409          * speed changes cause interrupts and are handled by nv_link_irq().
2410          */
2411         {
2412                 u32 miistat;
2413                 miistat = readl(base + NvRegMIIStatus);
2414                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2415                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2416         }
2417         /* set linkspeed to invalid value, thus force nv_update_linkspeed
2418          * to init hw */
2419         np->linkspeed = 0;
2420         ret = nv_update_linkspeed(dev);
2421         nv_start_rx(dev);
2422         nv_start_tx(dev);
2423         netif_start_queue(dev);
2424         if (ret) {
2425                 netif_carrier_on(dev);
2426         } else {
2427                 printk("%s: no link during initialization.\n", dev->name);
2428                 netif_carrier_off(dev);
2429         }
2430         if (oom)
2431                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2432         spin_unlock_irq(&np->lock);
2433
2434         return 0;
2435 out_drain:
2436         drain_ring(dev);
2437         return ret;
2438 }
2439
2440 static int nv_close(struct net_device *dev)
2441 {
2442         struct fe_priv *np = netdev_priv(dev);
2443         u8 __iomem *base;
2444
2445         spin_lock_irq(&np->lock);
2446         np->in_shutdown = 1;
2447         spin_unlock_irq(&np->lock);
2448         synchronize_irq(dev->irq);
2449
2450         del_timer_sync(&np->oom_kick);
2451         del_timer_sync(&np->nic_poll);
2452
2453         netif_stop_queue(dev);
2454         spin_lock_irq(&np->lock);
2455         nv_stop_tx(dev);
2456         nv_stop_rx(dev);
2457         nv_txrx_reset(dev);
2458
2459         /* disable interrupts on the nic or we will lock up */
2460         base = get_hwbase(dev);
2461         writel(0, base + NvRegIrqMask);
2462         pci_push(base);
2463         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2464
2465         spin_unlock_irq(&np->lock);
2466
2467         free_irq(dev->irq, dev);
2468
2469         drain_ring(dev);
2470
2471         if (np->wolenabled)
2472                 nv_start_rx(dev);
2473
2474         /* special op: write back the misordered MAC address - otherwise
2475          * the next nv_probe would see a wrong address.
2476          */
2477         writel(np->orig_mac[0], base + NvRegMacAddrA);
2478         writel(np->orig_mac[1], base + NvRegMacAddrB);
2479
2480         /* FIXME: power down nic */
2481
2482         return 0;
2483 }
2484
2485 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2486 {
2487         struct net_device *dev;
2488         struct fe_priv *np;
2489         unsigned long addr;
2490         u8 __iomem *base;
2491         int err, i;
2492
2493         dev = alloc_etherdev(sizeof(struct fe_priv));
2494         err = -ENOMEM;
2495         if (!dev)
2496                 goto out;
2497
2498         np = netdev_priv(dev);
2499         np->pci_dev = pci_dev;
2500         spin_lock_init(&np->lock);
2501         SET_MODULE_OWNER(dev);
2502         SET_NETDEV_DEV(dev, &pci_dev->dev);
2503
2504         init_timer(&np->oom_kick);
2505         np->oom_kick.data = (unsigned long) dev;
2506         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
2507         init_timer(&np->nic_poll);
2508         np->nic_poll.data = (unsigned long) dev;
2509         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
2510
2511         err = pci_enable_device(pci_dev);
2512         if (err) {
2513                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2514                                 err, pci_name(pci_dev));
2515                 goto out_free;
2516         }
2517
2518         pci_set_master(pci_dev);
2519
2520         err = pci_request_regions(pci_dev, DRV_NAME);
2521         if (err < 0)
2522                 goto out_disable;
2523
2524         err = -EINVAL;
2525         addr = 0;
2526         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2527                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2528                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2529                                 pci_resource_len(pci_dev, i),
2530                                 pci_resource_flags(pci_dev, i));
2531                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2532                                 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2533                         addr = pci_resource_start(pci_dev, i);
2534                         break;
2535                 }
2536         }
2537         if (i == DEVICE_COUNT_RESOURCE) {
2538                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2539                                         pci_name(pci_dev));
2540                 goto out_relreg;
2541         }
2542
2543         /* handle different descriptor versions */
2544         if (id->driver_data & DEV_HAS_HIGH_DMA) {
2545                 /* packet format 3: supports 40-bit addressing */
2546                 np->desc_ver = DESC_VER_3;
2547                 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2548                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2549                                         pci_name(pci_dev));
2550                 } else {
2551                         if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2552                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
2553                                         pci_name(pci_dev));
2554                                 goto out_relreg;
2555                         } else {
2556                                 dev->features |= NETIF_F_HIGHDMA;
2557                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
2558                         }
2559                 }
2560                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2561         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2562                 /* packet format 2: supports jumbo frames */
2563                 np->desc_ver = DESC_VER_2;
2564                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2565         } else {
2566                 /* original packet format */
2567                 np->desc_ver = DESC_VER_1;
2568                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
2569         }
2570
2571         np->pkt_limit = NV_PKTLIMIT_1;
2572         if (id->driver_data & DEV_HAS_LARGEDESC)
2573                 np->pkt_limit = NV_PKTLIMIT_2;
2574
2575         if (id->driver_data & DEV_HAS_CHECKSUM) {
2576                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
2577                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
2578 #ifdef NETIF_F_TSO
2579                 dev->features |= NETIF_F_TSO;
2580 #endif
2581         }
2582
2583         np->vlanctl_bits = 0;
2584         if (id->driver_data & DEV_HAS_VLAN) {
2585                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
2586                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
2587                 dev->vlan_rx_register = nv_vlan_rx_register;
2588                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
2589         }
2590
2591         err = -ENOMEM;
2592         np->base = ioremap(addr, NV_PCI_REGSZ);
2593         if (!np->base)
2594                 goto out_relreg;
2595         dev->base_addr = (unsigned long)np->base;
2596
2597         dev->irq = pci_dev->irq;
2598
2599         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2600                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2601                                         sizeof(struct ring_desc) * (RX_RING + TX_RING),
2602                                         &np->ring_addr);
2603                 if (!np->rx_ring.orig)
2604                         goto out_unmap;
2605                 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
2606         } else {
2607                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
2608                                         sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2609                                         &np->ring_addr);
2610                 if (!np->rx_ring.ex)
2611                         goto out_unmap;
2612                 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
2613         }
2614
2615         dev->open = nv_open;
2616         dev->stop = nv_close;
2617         dev->hard_start_xmit = nv_start_xmit;
2618         dev->get_stats = nv_get_stats;
2619         dev->change_mtu = nv_change_mtu;
2620         dev->set_mac_address = nv_set_mac_address;
2621         dev->set_multicast_list = nv_set_multicast;
2622 #ifdef CONFIG_NET_POLL_CONTROLLER
2623         dev->poll_controller = nv_poll_controller;
2624 #endif
2625         SET_ETHTOOL_OPS(dev, &ops);
2626         dev->tx_timeout = nv_tx_timeout;
2627         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
2628
2629         pci_set_drvdata(pci_dev, dev);
2630
2631         /* read the mac address */
2632         base = get_hwbase(dev);
2633         np->orig_mac[0] = readl(base + NvRegMacAddrA);
2634         np->orig_mac[1] = readl(base + NvRegMacAddrB);
2635
2636         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
2637         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
2638         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
2639         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
2640         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
2641         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
2642         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
2643
2644         if (!is_valid_ether_addr(dev->perm_addr)) {
2645                 /*
2646                  * Bad mac address. At least one bios sets the mac address
2647                  * to 01:23:45:67:89:ab
2648                  */
2649                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
2650                         pci_name(pci_dev),
2651                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2652                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2653                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
2654                 dev->dev_addr[0] = 0x00;
2655                 dev->dev_addr[1] = 0x00;
2656                 dev->dev_addr[2] = 0x6c;
2657                 get_random_bytes(&dev->dev_addr[3], 3);
2658         }
2659
2660         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
2661                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2662                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2663
2664         /* disable WOL */
2665         writel(0, base + NvRegWakeUpFlags);
2666         np->wolenabled = 0;
2667
2668         if (np->desc_ver == DESC_VER_1) {
2669                 np->tx_flags = NV_TX_VALID;
2670         } else {
2671                 np->tx_flags = NV_TX2_VALID;
2672         }
2673         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2674                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
2675         else
2676                 np->irqmask = NVREG_IRQMASK_CPU;
2677
2678         if (id->driver_data & DEV_NEED_TIMERIRQ)
2679                 np->irqmask |= NVREG_IRQ_TIMER;
2680         if (id->driver_data & DEV_NEED_LINKTIMER) {
2681                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
2682                 np->need_linktimer = 1;
2683                 np->link_timeout = jiffies + LINK_TIMEOUT;
2684         } else {
2685                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
2686                 np->need_linktimer = 0;
2687         }
2688
2689         /* find a suitable phy */
2690         for (i = 1; i <= 32; i++) {
2691                 int id1, id2;
2692                 int phyaddr = i & 0x1F;
2693
2694                 spin_lock_irq(&np->lock);
2695                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
2696                 spin_unlock_irq(&np->lock);
2697                 if (id1 < 0 || id1 == 0xffff)
2698                         continue;
2699                 spin_lock_irq(&np->lock);
2700                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
2701                 spin_unlock_irq(&np->lock);
2702                 if (id2 < 0 || id2 == 0xffff)
2703                         continue;
2704
2705                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
2706                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
2707                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
2708                         pci_name(pci_dev), id1, id2, phyaddr);
2709                 np->phyaddr = phyaddr;
2710                 np->phy_oui = id1 | id2;
2711                 break;
2712         }
2713         if (i == 33) {
2714                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
2715                        pci_name(pci_dev));
2716                 goto out_freering;
2717         }
2718         
2719         /* reset it */
2720         phy_init(dev);
2721
2722         /* set default link speed settings */
2723         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2724         np->duplex = 0;
2725         np->autoneg = 1;
2726
2727         err = register_netdev(dev);
2728         if (err) {
2729                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
2730                 goto out_freering;
2731         }
2732         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
2733                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
2734                         pci_name(pci_dev));
2735
2736         return 0;
2737
2738 out_freering:
2739         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2740                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
2741                                     np->rx_ring.orig, np->ring_addr);
2742         else
2743                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2744                                     np->rx_ring.ex, np->ring_addr);
2745         pci_set_drvdata(pci_dev, NULL);
2746 out_unmap:
2747         iounmap(get_hwbase(dev));
2748 out_relreg:
2749         pci_release_regions(pci_dev);
2750 out_disable:
2751         pci_disable_device(pci_dev);
2752 out_free:
2753         free_netdev(dev);
2754 out:
2755         return err;
2756 }
2757
2758 static void __devexit nv_remove(struct pci_dev *pci_dev)
2759 {
2760         struct net_device *dev = pci_get_drvdata(pci_dev);
2761         struct fe_priv *np = netdev_priv(dev);
2762
2763         unregister_netdev(dev);
2764
2765         /* free all structures */
2766         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2767                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
2768         else
2769                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
2770         iounmap(get_hwbase(dev));
2771         pci_release_regions(pci_dev);
2772         pci_disable_device(pci_dev);
2773         free_netdev(dev);
2774         pci_set_drvdata(pci_dev, NULL);
2775 }
2776
2777 static struct pci_device_id pci_tbl[] = {
2778         {       /* nForce Ethernet Controller */
2779                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
2780                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2781         },
2782         {       /* nForce2 Ethernet Controller */
2783                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
2784                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2785         },
2786         {       /* nForce3 Ethernet Controller */
2787                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
2788                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2789         },
2790         {       /* nForce3 Ethernet Controller */
2791                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
2792                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2793         },
2794         {       /* nForce3 Ethernet Controller */
2795                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
2796                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2797         },
2798         {       /* nForce3 Ethernet Controller */
2799                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
2800                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2801         },
2802         {       /* nForce3 Ethernet Controller */
2803                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
2804                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2805         },
2806         {       /* CK804 Ethernet Controller */
2807                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
2808                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2809         },
2810         {       /* CK804 Ethernet Controller */
2811                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
2812                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2813         },
2814         {       /* MCP04 Ethernet Controller */
2815                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
2816                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2817         },
2818         {       /* MCP04 Ethernet Controller */
2819                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
2820                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2821         },
2822         {       /* MCP51 Ethernet Controller */
2823                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
2824                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2825         },
2826         {       /* MCP51 Ethernet Controller */
2827                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
2828                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2829         },
2830         {       /* MCP55 Ethernet Controller */
2831                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
2832                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN,
2833         },
2834         {       /* MCP55 Ethernet Controller */
2835                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
2836                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN,
2837         },
2838         {0,},
2839 };
2840
2841 static struct pci_driver driver = {
2842         .name = "forcedeth",
2843         .id_table = pci_tbl,
2844         .probe = nv_probe,
2845         .remove = __devexit_p(nv_remove),
2846 };
2847
2848
2849 static int __init init_nic(void)
2850 {
2851         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
2852         return pci_module_init(&driver);
2853 }
2854
2855 static void __exit exit_nic(void)
2856 {
2857         pci_unregister_driver(&driver);
2858 }
2859
2860 module_param(max_interrupt_work, int, 0);
2861 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
2862 module_param(optimization_mode, int, 0);
2863 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
2864 module_param(poll_interval, int, 0);
2865 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
2866
2867 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
2868 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
2869 MODULE_LICENSE("GPL");
2870
2871 MODULE_DEVICE_TABLE(pci, pci_tbl);
2872
2873 module_init(init_nic);
2874 module_exit(exit_nic);