]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/gianfar.c
[PATCH] gfar: fix compile error
[mv-sheeva.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under  the terms of  the GNU General  Public License as published by the
16  * Free Software Foundation;  either version 2 of the  License, or (at your
17  * option) any later version.
18  *
19  *  Gianfar:  AKA Lambda Draconis, "Dragon"
20  *  RA 11 31 24.2
21  *  Dec +69 19 52
22  *  V 3.84
23  *  B-V +1.62
24  *
25  *  Theory of operation
26  *
27  *  The driver is initialized through platform_device.  Structures which
28  *  define the configuration needed by the board are defined in a
29  *  board structure in arch/ppc/platforms (though I do not
30  *  discount the possibility that other architectures could one
31  *  day be supported.
32  *
33  *  The Gianfar Ethernet Controller uses a ring of buffer
34  *  descriptors.  The beginning is indicated by a register
35  *  pointing to the physical address of the start of the ring.
36  *  The end is determined by a "wrap" bit being set in the
37  *  last descriptor of the ring.
38  *
39  *  When a packet is received, the RXF bit in the
40  *  IEVENT register is set, triggering an interrupt when the
41  *  corresponding bit in the IMASK register is also set (if
42  *  interrupt coalescing is active, then the interrupt may not
43  *  happen immediately, but will wait until either a set number
44  *  of frames or amount of time have passed).  In NAPI, the
45  *  interrupt handler will signal there is work to be done, and
46  *  exit.  Without NAPI, the packet(s) will be handled
47  *  immediately.  Both methods will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
82 #include <linux/mm.h>
83 #include <linux/platform_device.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88
89 #include <asm/io.h>
90 #include <asm/irq.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97
98 #include "gianfar.h"
99 #include "gianfar_mii.h"
100
101 #define TX_TIMEOUT      (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
108 #else
109 #define RECEIVE(x) netif_rx(x)
110 #endif
111
112 const char gfar_driver_name[] = "Gianfar Ethernet";
113 const char gfar_driver_version[] = "1.3";
114
115 static int gfar_enet_open(struct net_device *dev);
116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
120 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *pdev);
130 static int gfar_remove(struct platform_device *pdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device *dev, int *budget);
136 #endif
137 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140                                 struct vlan_group *grp);
141 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
142 void gfar_halt(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146
147 extern struct ethtool_ops gfar_ethtool_ops;
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private *priv)
155 {
156         return (priv->vlan_enable || priv->rx_csum_enable);
157 }
158
159 /* Set up the ethernet device structure, private data,
160  * and anything else we need before we start */
161 static int gfar_probe(struct platform_device *pdev)
162 {
163         u32 tempval;
164         struct net_device *dev = NULL;
165         struct gfar_private *priv = NULL;
166         struct gianfar_platform_data *einfo;
167         struct resource *r;
168         int idx;
169         int err = 0;
170
171         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
172
173         if (NULL == einfo) {
174                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
175                        pdev->id);
176
177                 return -ENODEV;
178         }
179
180         /* Create an ethernet device instance */
181         dev = alloc_etherdev(sizeof (*priv));
182
183         if (NULL == dev)
184                 return -ENOMEM;
185
186         priv = netdev_priv(dev);
187
188         /* Set the info in the priv to the current info */
189         priv->einfo = einfo;
190
191         /* fill out IRQ fields */
192         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
193                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
194                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
195                 priv->interruptError = platform_get_irq_byname(pdev, "error");
196         } else {
197                 priv->interruptTransmit = platform_get_irq(pdev, 0);
198         }
199
200         /* get a pointer to the register memory */
201         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
202         priv->regs = (struct gfar *)
203                 ioremap(r->start, sizeof (struct gfar));
204
205         if (NULL == priv->regs) {
206                 err = -ENOMEM;
207                 goto regs_fail;
208         }
209
210         spin_lock_init(&priv->lock);
211
212         platform_set_drvdata(pdev, dev);
213
214         /* Stop the DMA engine now, in case it was running before */
215         /* (The firmware could have used it, and left it running). */
216         /* To do this, we write Graceful Receive Stop and Graceful */
217         /* Transmit Stop, and then wait until the corresponding bits */
218         /* in IEVENT indicate the stops have completed. */
219         tempval = gfar_read(&priv->regs->dmactrl);
220         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
221         gfar_write(&priv->regs->dmactrl, tempval);
222
223         tempval = gfar_read(&priv->regs->dmactrl);
224         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
225         gfar_write(&priv->regs->dmactrl, tempval);
226
227         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
228                 cpu_relax();
229
230         /* Reset MAC layer */
231         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
232
233         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
234         gfar_write(&priv->regs->maccfg1, tempval);
235
236         /* Initialize MACCFG2. */
237         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
238
239         /* Initialize ECNTRL */
240         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
241
242         /* Copy the station address into the dev structure, */
243         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
244
245         /* Set the dev->base_addr to the gfar reg region */
246         dev->base_addr = (unsigned long) (priv->regs);
247
248         SET_MODULE_OWNER(dev);
249         SET_NETDEV_DEV(dev, &pdev->dev);
250
251         /* Fill in the dev structure */
252         dev->open = gfar_enet_open;
253         dev->hard_start_xmit = gfar_start_xmit;
254         dev->tx_timeout = gfar_timeout;
255         dev->watchdog_timeo = TX_TIMEOUT;
256 #ifdef CONFIG_GFAR_NAPI
257         dev->poll = gfar_poll;
258         dev->weight = GFAR_DEV_WEIGHT;
259 #endif
260         dev->stop = gfar_close;
261         dev->get_stats = gfar_get_stats;
262         dev->change_mtu = gfar_change_mtu;
263         dev->mtu = 1500;
264         dev->set_multicast_list = gfar_set_multi;
265
266         dev->ethtool_ops = &gfar_ethtool_ops;
267
268         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
269                 priv->rx_csum_enable = 1;
270                 dev->features |= NETIF_F_IP_CSUM;
271         } else
272                 priv->rx_csum_enable = 0;
273
274         priv->vlgrp = NULL;
275
276         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
277                 dev->vlan_rx_register = gfar_vlan_rx_register;
278                 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
279
280                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
281
282                 priv->vlan_enable = 1;
283         }
284
285         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
286                 priv->extended_hash = 1;
287                 priv->hash_width = 9;
288
289                 priv->hash_regs[0] = &priv->regs->igaddr0;
290                 priv->hash_regs[1] = &priv->regs->igaddr1;
291                 priv->hash_regs[2] = &priv->regs->igaddr2;
292                 priv->hash_regs[3] = &priv->regs->igaddr3;
293                 priv->hash_regs[4] = &priv->regs->igaddr4;
294                 priv->hash_regs[5] = &priv->regs->igaddr5;
295                 priv->hash_regs[6] = &priv->regs->igaddr6;
296                 priv->hash_regs[7] = &priv->regs->igaddr7;
297                 priv->hash_regs[8] = &priv->regs->gaddr0;
298                 priv->hash_regs[9] = &priv->regs->gaddr1;
299                 priv->hash_regs[10] = &priv->regs->gaddr2;
300                 priv->hash_regs[11] = &priv->regs->gaddr3;
301                 priv->hash_regs[12] = &priv->regs->gaddr4;
302                 priv->hash_regs[13] = &priv->regs->gaddr5;
303                 priv->hash_regs[14] = &priv->regs->gaddr6;
304                 priv->hash_regs[15] = &priv->regs->gaddr7;
305
306         } else {
307                 priv->extended_hash = 0;
308                 priv->hash_width = 8;
309
310                 priv->hash_regs[0] = &priv->regs->gaddr0;
311                 priv->hash_regs[1] = &priv->regs->gaddr1;
312                 priv->hash_regs[2] = &priv->regs->gaddr2;
313                 priv->hash_regs[3] = &priv->regs->gaddr3;
314                 priv->hash_regs[4] = &priv->regs->gaddr4;
315                 priv->hash_regs[5] = &priv->regs->gaddr5;
316                 priv->hash_regs[6] = &priv->regs->gaddr6;
317                 priv->hash_regs[7] = &priv->regs->gaddr7;
318         }
319
320         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
321                 priv->padding = DEFAULT_PADDING;
322         else
323                 priv->padding = 0;
324
325         if (dev->features & NETIF_F_IP_CSUM)
326                 dev->hard_header_len += GMAC_FCB_LEN;
327
328         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
329         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
330         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
331
332         priv->txcoalescing = DEFAULT_TX_COALESCE;
333         priv->txcount = DEFAULT_TXCOUNT;
334         priv->txtime = DEFAULT_TXTIME;
335         priv->rxcoalescing = DEFAULT_RX_COALESCE;
336         priv->rxcount = DEFAULT_RXCOUNT;
337         priv->rxtime = DEFAULT_RXTIME;
338
339         /* Enable most messages by default */
340         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
341
342         err = register_netdev(dev);
343
344         if (err) {
345                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
346                                 dev->name);
347                 goto register_fail;
348         }
349
350         /* Create all the sysfs files */
351         gfar_init_sysfs(dev);
352
353         /* Print out the device info */
354         printk(KERN_INFO DEVICE_NAME, dev->name);
355         for (idx = 0; idx < 6; idx++)
356                 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
357         printk("\n");
358
359         /* Even more device info helps when determining which kernel */
360         /* provided which set of benchmarks. */
361 #ifdef CONFIG_GFAR_NAPI
362         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
363 #else
364         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
365 #endif
366         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
367                dev->name, priv->rx_ring_size, priv->tx_ring_size);
368
369         return 0;
370
371 register_fail:
372         iounmap((void *) priv->regs);
373 regs_fail:
374         free_netdev(dev);
375         return err;
376 }
377
378 static int gfar_remove(struct platform_device *pdev)
379 {
380         struct net_device *dev = platform_get_drvdata(pdev);
381         struct gfar_private *priv = netdev_priv(dev);
382
383         platform_set_drvdata(pdev, NULL);
384
385         iounmap((void *) priv->regs);
386         free_netdev(dev);
387
388         return 0;
389 }
390
391
392 /* Initializes driver's PHY state, and attaches to the PHY.
393  * Returns 0 on success.
394  */
395 static int init_phy(struct net_device *dev)
396 {
397         struct gfar_private *priv = netdev_priv(dev);
398         uint gigabit_support =
399                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
400                 SUPPORTED_1000baseT_Full : 0;
401         struct phy_device *phydev;
402
403         priv->oldlink = 0;
404         priv->oldspeed = 0;
405         priv->oldduplex = -1;
406
407         phydev = phy_connect(dev, priv->einfo->bus_id, &adjust_link, 0);
408
409         if (IS_ERR(phydev)) {
410                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
411                 return PTR_ERR(phydev);
412         }
413
414         /* Remove any features not supported by the controller */
415         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
416         phydev->advertising = phydev->supported;
417
418         priv->phydev = phydev;
419
420         return 0;
421 }
422
423 static void init_registers(struct net_device *dev)
424 {
425         struct gfar_private *priv = netdev_priv(dev);
426
427         /* Clear IEVENT */
428         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
429
430         /* Initialize IMASK */
431         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
432
433         /* Init hash registers to zero */
434         gfar_write(&priv->regs->igaddr0, 0);
435         gfar_write(&priv->regs->igaddr1, 0);
436         gfar_write(&priv->regs->igaddr2, 0);
437         gfar_write(&priv->regs->igaddr3, 0);
438         gfar_write(&priv->regs->igaddr4, 0);
439         gfar_write(&priv->regs->igaddr5, 0);
440         gfar_write(&priv->regs->igaddr6, 0);
441         gfar_write(&priv->regs->igaddr7, 0);
442
443         gfar_write(&priv->regs->gaddr0, 0);
444         gfar_write(&priv->regs->gaddr1, 0);
445         gfar_write(&priv->regs->gaddr2, 0);
446         gfar_write(&priv->regs->gaddr3, 0);
447         gfar_write(&priv->regs->gaddr4, 0);
448         gfar_write(&priv->regs->gaddr5, 0);
449         gfar_write(&priv->regs->gaddr6, 0);
450         gfar_write(&priv->regs->gaddr7, 0);
451
452         /* Zero out the rmon mib registers if it has them */
453         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
454                 memset((void *) &(priv->regs->rmon), 0,
455                        sizeof (struct rmon_mib));
456
457                 /* Mask off the CAM interrupts */
458                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
459                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
460         }
461
462         /* Initialize the max receive buffer length */
463         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
464
465         /* Initialize the Minimum Frame Length Register */
466         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
467
468         /* Assign the TBI an address which won't conflict with the PHYs */
469         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
470 }
471
472
473 /* Halt the receive and transmit queues */
474 void gfar_halt(struct net_device *dev)
475 {
476         struct gfar_private *priv = netdev_priv(dev);
477         struct gfar *regs = priv->regs;
478         u32 tempval;
479
480         /* Mask all interrupts */
481         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
482
483         /* Clear all interrupts */
484         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
485
486         /* Stop the DMA, and wait for it to stop */
487         tempval = gfar_read(&priv->regs->dmactrl);
488         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
489             != (DMACTRL_GRS | DMACTRL_GTS)) {
490                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
491                 gfar_write(&priv->regs->dmactrl, tempval);
492
493                 while (!(gfar_read(&priv->regs->ievent) &
494                          (IEVENT_GRSC | IEVENT_GTSC)))
495                         cpu_relax();
496         }
497
498         /* Disable Rx and Tx */
499         tempval = gfar_read(&regs->maccfg1);
500         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
501         gfar_write(&regs->maccfg1, tempval);
502 }
503
504 void stop_gfar(struct net_device *dev)
505 {
506         struct gfar_private *priv = netdev_priv(dev);
507         struct gfar *regs = priv->regs;
508         unsigned long flags;
509
510         phy_stop(priv->phydev);
511
512         /* Lock it down */
513         spin_lock_irqsave(&priv->lock, flags);
514
515         gfar_halt(dev);
516
517         spin_unlock_irqrestore(&priv->lock, flags);
518
519         /* Free the IRQs */
520         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
521                 free_irq(priv->interruptError, dev);
522                 free_irq(priv->interruptTransmit, dev);
523                 free_irq(priv->interruptReceive, dev);
524         } else {
525                 free_irq(priv->interruptTransmit, dev);
526         }
527
528         free_skb_resources(priv);
529
530         dma_free_coherent(NULL,
531                         sizeof(struct txbd8)*priv->tx_ring_size
532                         + sizeof(struct rxbd8)*priv->rx_ring_size,
533                         priv->tx_bd_base,
534                         gfar_read(&regs->tbase0));
535 }
536
537 /* If there are any tx skbs or rx skbs still around, free them.
538  * Then free tx_skbuff and rx_skbuff */
539 static void free_skb_resources(struct gfar_private *priv)
540 {
541         struct rxbd8 *rxbdp;
542         struct txbd8 *txbdp;
543         int i;
544
545         /* Go through all the buffer descriptors and free their data buffers */
546         txbdp = priv->tx_bd_base;
547
548         for (i = 0; i < priv->tx_ring_size; i++) {
549
550                 if (priv->tx_skbuff[i]) {
551                         dma_unmap_single(NULL, txbdp->bufPtr,
552                                         txbdp->length,
553                                         DMA_TO_DEVICE);
554                         dev_kfree_skb_any(priv->tx_skbuff[i]);
555                         priv->tx_skbuff[i] = NULL;
556                 }
557         }
558
559         kfree(priv->tx_skbuff);
560
561         rxbdp = priv->rx_bd_base;
562
563         /* rx_skbuff is not guaranteed to be allocated, so only
564          * free it and its contents if it is allocated */
565         if(priv->rx_skbuff != NULL) {
566                 for (i = 0; i < priv->rx_ring_size; i++) {
567                         if (priv->rx_skbuff[i]) {
568                                 dma_unmap_single(NULL, rxbdp->bufPtr,
569                                                 priv->rx_buffer_size,
570                                                 DMA_FROM_DEVICE);
571
572                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
573                                 priv->rx_skbuff[i] = NULL;
574                         }
575
576                         rxbdp->status = 0;
577                         rxbdp->length = 0;
578                         rxbdp->bufPtr = 0;
579
580                         rxbdp++;
581                 }
582
583                 kfree(priv->rx_skbuff);
584         }
585 }
586
587 void gfar_start(struct net_device *dev)
588 {
589         struct gfar_private *priv = netdev_priv(dev);
590         struct gfar *regs = priv->regs;
591         u32 tempval;
592
593         /* Enable Rx and Tx in MACCFG1 */
594         tempval = gfar_read(&regs->maccfg1);
595         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
596         gfar_write(&regs->maccfg1, tempval);
597
598         /* Initialize DMACTRL to have WWR and WOP */
599         tempval = gfar_read(&priv->regs->dmactrl);
600         tempval |= DMACTRL_INIT_SETTINGS;
601         gfar_write(&priv->regs->dmactrl, tempval);
602
603         /* Clear THLT, so that the DMA starts polling now */
604         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
605
606         /* Make sure we aren't stopped */
607         tempval = gfar_read(&priv->regs->dmactrl);
608         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
609         gfar_write(&priv->regs->dmactrl, tempval);
610
611         /* Unmask the interrupts we look for */
612         gfar_write(&regs->imask, IMASK_DEFAULT);
613 }
614
615 /* Bring the controller up and running */
616 int startup_gfar(struct net_device *dev)
617 {
618         struct txbd8 *txbdp;
619         struct rxbd8 *rxbdp;
620         dma_addr_t addr;
621         unsigned long vaddr;
622         int i;
623         struct gfar_private *priv = netdev_priv(dev);
624         struct gfar *regs = priv->regs;
625         int err = 0;
626         u32 rctrl = 0;
627         u32 attrs = 0;
628
629         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
630
631         /* Allocate memory for the buffer descriptors */
632         vaddr = (unsigned long) dma_alloc_coherent(NULL,
633                         sizeof (struct txbd8) * priv->tx_ring_size +
634                         sizeof (struct rxbd8) * priv->rx_ring_size,
635                         &addr, GFP_KERNEL);
636
637         if (vaddr == 0) {
638                 if (netif_msg_ifup(priv))
639                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
640                                         dev->name);
641                 return -ENOMEM;
642         }
643
644         priv->tx_bd_base = (struct txbd8 *) vaddr;
645
646         /* enet DMA only understands physical addresses */
647         gfar_write(&regs->tbase0, addr);
648
649         /* Start the rx descriptor ring where the tx ring leaves off */
650         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
651         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
652         priv->rx_bd_base = (struct rxbd8 *) vaddr;
653         gfar_write(&regs->rbase0, addr);
654
655         /* Setup the skbuff rings */
656         priv->tx_skbuff =
657             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
658                                         priv->tx_ring_size, GFP_KERNEL);
659
660         if (NULL == priv->tx_skbuff) {
661                 if (netif_msg_ifup(priv))
662                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
663                                         dev->name);
664                 err = -ENOMEM;
665                 goto tx_skb_fail;
666         }
667
668         for (i = 0; i < priv->tx_ring_size; i++)
669                 priv->tx_skbuff[i] = NULL;
670
671         priv->rx_skbuff =
672             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
673                                         priv->rx_ring_size, GFP_KERNEL);
674
675         if (NULL == priv->rx_skbuff) {
676                 if (netif_msg_ifup(priv))
677                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
678                                         dev->name);
679                 err = -ENOMEM;
680                 goto rx_skb_fail;
681         }
682
683         for (i = 0; i < priv->rx_ring_size; i++)
684                 priv->rx_skbuff[i] = NULL;
685
686         /* Initialize some variables in our dev structure */
687         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
688         priv->cur_rx = priv->rx_bd_base;
689         priv->skb_curtx = priv->skb_dirtytx = 0;
690         priv->skb_currx = 0;
691
692         /* Initialize Transmit Descriptor Ring */
693         txbdp = priv->tx_bd_base;
694         for (i = 0; i < priv->tx_ring_size; i++) {
695                 txbdp->status = 0;
696                 txbdp->length = 0;
697                 txbdp->bufPtr = 0;
698                 txbdp++;
699         }
700
701         /* Set the last descriptor in the ring to indicate wrap */
702         txbdp--;
703         txbdp->status |= TXBD_WRAP;
704
705         rxbdp = priv->rx_bd_base;
706         for (i = 0; i < priv->rx_ring_size; i++) {
707                 struct sk_buff *skb = NULL;
708
709                 rxbdp->status = 0;
710
711                 skb = gfar_new_skb(dev, rxbdp);
712
713                 priv->rx_skbuff[i] = skb;
714
715                 rxbdp++;
716         }
717
718         /* Set the last descriptor in the ring to wrap */
719         rxbdp--;
720         rxbdp->status |= RXBD_WRAP;
721
722         /* If the device has multiple interrupts, register for
723          * them.  Otherwise, only register for the one */
724         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
725                 /* Install our interrupt handlers for Error,
726                  * Transmit, and Receive */
727                 if (request_irq(priv->interruptError, gfar_error,
728                                 0, "enet_error", dev) < 0) {
729                         if (netif_msg_intr(priv))
730                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
731                                         dev->name, priv->interruptError);
732
733                         err = -1;
734                         goto err_irq_fail;
735                 }
736
737                 if (request_irq(priv->interruptTransmit, gfar_transmit,
738                                 0, "enet_tx", dev) < 0) {
739                         if (netif_msg_intr(priv))
740                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
741                                         dev->name, priv->interruptTransmit);
742
743                         err = -1;
744
745                         goto tx_irq_fail;
746                 }
747
748                 if (request_irq(priv->interruptReceive, gfar_receive,
749                                 0, "enet_rx", dev) < 0) {
750                         if (netif_msg_intr(priv))
751                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
752                                                 dev->name, priv->interruptReceive);
753
754                         err = -1;
755                         goto rx_irq_fail;
756                 }
757         } else {
758                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
759                                 0, "gfar_interrupt", dev) < 0) {
760                         if (netif_msg_intr(priv))
761                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
762                                         dev->name, priv->interruptError);
763
764                         err = -1;
765                         goto err_irq_fail;
766                 }
767         }
768
769         phy_start(priv->phydev);
770
771         /* Configure the coalescing support */
772         if (priv->txcoalescing)
773                 gfar_write(&regs->txic,
774                            mk_ic_value(priv->txcount, priv->txtime));
775         else
776                 gfar_write(&regs->txic, 0);
777
778         if (priv->rxcoalescing)
779                 gfar_write(&regs->rxic,
780                            mk_ic_value(priv->rxcount, priv->rxtime));
781         else
782                 gfar_write(&regs->rxic, 0);
783
784         if (priv->rx_csum_enable)
785                 rctrl |= RCTRL_CHECKSUMMING;
786
787         if (priv->extended_hash) {
788                 rctrl |= RCTRL_EXTHASH;
789
790                 gfar_clear_exact_match(dev);
791                 rctrl |= RCTRL_EMEN;
792         }
793
794         if (priv->vlan_enable)
795                 rctrl |= RCTRL_VLAN;
796
797         if (priv->padding) {
798                 rctrl &= ~RCTRL_PAL_MASK;
799                 rctrl |= RCTRL_PADDING(priv->padding);
800         }
801
802         /* Init rctrl based on our settings */
803         gfar_write(&priv->regs->rctrl, rctrl);
804
805         if (dev->features & NETIF_F_IP_CSUM)
806                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
807
808         /* Set the extraction length and index */
809         attrs = ATTRELI_EL(priv->rx_stash_size) |
810                 ATTRELI_EI(priv->rx_stash_index);
811
812         gfar_write(&priv->regs->attreli, attrs);
813
814         /* Start with defaults, and add stashing or locking
815          * depending on the approprate variables */
816         attrs = ATTR_INIT_SETTINGS;
817
818         if (priv->bd_stash_en)
819                 attrs |= ATTR_BDSTASH;
820
821         if (priv->rx_stash_size != 0)
822                 attrs |= ATTR_BUFSTASH;
823
824         gfar_write(&priv->regs->attr, attrs);
825
826         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
827         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
828         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
829
830         /* Start the controller */
831         gfar_start(dev);
832
833         return 0;
834
835 rx_irq_fail:
836         free_irq(priv->interruptTransmit, dev);
837 tx_irq_fail:
838         free_irq(priv->interruptError, dev);
839 err_irq_fail:
840 rx_skb_fail:
841         free_skb_resources(priv);
842 tx_skb_fail:
843         dma_free_coherent(NULL,
844                         sizeof(struct txbd8)*priv->tx_ring_size
845                         + sizeof(struct rxbd8)*priv->rx_ring_size,
846                         priv->tx_bd_base,
847                         gfar_read(&regs->tbase0));
848
849         return err;
850 }
851
852 /* Called when something needs to use the ethernet device */
853 /* Returns 0 for success. */
854 static int gfar_enet_open(struct net_device *dev)
855 {
856         int err;
857
858         /* Initialize a bunch of registers */
859         init_registers(dev);
860
861         gfar_set_mac_address(dev);
862
863         err = init_phy(dev);
864
865         if(err)
866                 return err;
867
868         err = startup_gfar(dev);
869
870         netif_start_queue(dev);
871
872         return err;
873 }
874
875 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
876 {
877         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
878
879         memset(fcb, 0, GMAC_FCB_LEN);
880
881         return fcb;
882 }
883
884 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
885 {
886         u8 flags = 0;
887
888         /* If we're here, it's a IP packet with a TCP or UDP
889          * payload.  We set it to checksum, using a pseudo-header
890          * we provide
891          */
892         flags = TXFCB_DEFAULT;
893
894         /* Tell the controller what the protocol is */
895         /* And provide the already calculated phcs */
896         if (skb->nh.iph->protocol == IPPROTO_UDP) {
897                 flags |= TXFCB_UDP;
898                 fcb->phcs = skb->h.uh->check;
899         } else
900                 fcb->phcs = skb->h.th->check;
901
902         /* l3os is the distance between the start of the
903          * frame (skb->data) and the start of the IP hdr.
904          * l4os is the distance between the start of the
905          * l3 hdr and the l4 hdr */
906         fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
907         fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
908
909         fcb->flags = flags;
910 }
911
912 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
913 {
914         fcb->flags |= TXFCB_VLN;
915         fcb->vlctl = vlan_tx_tag_get(skb);
916 }
917
918 /* This is called by the kernel when a frame is ready for transmission. */
919 /* It is pointed to by the dev->hard_start_xmit function pointer */
920 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
921 {
922         struct gfar_private *priv = netdev_priv(dev);
923         struct txfcb *fcb = NULL;
924         struct txbd8 *txbdp;
925         u16 status;
926
927         /* Update transmit stats */
928         priv->stats.tx_bytes += skb->len;
929
930         /* Lock priv now */
931         spin_lock_irq(&priv->lock);
932
933         /* Point at the first free tx descriptor */
934         txbdp = priv->cur_tx;
935
936         /* Clear all but the WRAP status flags */
937         status = txbdp->status & TXBD_WRAP;
938
939         /* Set up checksumming */
940         if (likely((dev->features & NETIF_F_IP_CSUM)
941                         && (CHECKSUM_HW == skb->ip_summed))) {
942                 fcb = gfar_add_fcb(skb, txbdp);
943                 status |= TXBD_TOE;
944                 gfar_tx_checksum(skb, fcb);
945         }
946
947         if (priv->vlan_enable &&
948                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
949                 if (unlikely(NULL == fcb)) {
950                         fcb = gfar_add_fcb(skb, txbdp);
951                         status |= TXBD_TOE;
952                 }
953
954                 gfar_tx_vlan(skb, fcb);
955         }
956
957         /* Set buffer length and pointer */
958         txbdp->length = skb->len;
959         txbdp->bufPtr = dma_map_single(NULL, skb->data,
960                         skb->len, DMA_TO_DEVICE);
961
962         /* Save the skb pointer so we can free it later */
963         priv->tx_skbuff[priv->skb_curtx] = skb;
964
965         /* Update the current skb pointer (wrapping if this was the last) */
966         priv->skb_curtx =
967             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
968
969         /* Flag the BD as interrupt-causing */
970         status |= TXBD_INTERRUPT;
971
972         /* Flag the BD as ready to go, last in frame, and  */
973         /* in need of CRC */
974         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
975
976         dev->trans_start = jiffies;
977
978         txbdp->status = status;
979
980         /* If this was the last BD in the ring, the next one */
981         /* is at the beginning of the ring */
982         if (txbdp->status & TXBD_WRAP)
983                 txbdp = priv->tx_bd_base;
984         else
985                 txbdp++;
986
987         /* If the next BD still needs to be cleaned up, then the bds
988            are full.  We need to tell the kernel to stop sending us stuff. */
989         if (txbdp == priv->dirty_tx) {
990                 netif_stop_queue(dev);
991
992                 priv->stats.tx_fifo_errors++;
993         }
994
995         /* Update the current txbd to the next one */
996         priv->cur_tx = txbdp;
997
998         /* Tell the DMA to go go go */
999         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1000
1001         /* Unlock priv */
1002         spin_unlock_irq(&priv->lock);
1003
1004         return 0;
1005 }
1006
1007 /* Stops the kernel queue, and halts the controller */
1008 static int gfar_close(struct net_device *dev)
1009 {
1010         struct gfar_private *priv = netdev_priv(dev);
1011         stop_gfar(dev);
1012
1013         /* Disconnect from the PHY */
1014         phy_disconnect(priv->phydev);
1015         priv->phydev = NULL;
1016
1017         netif_stop_queue(dev);
1018
1019         return 0;
1020 }
1021
1022 /* returns a net_device_stats structure pointer */
1023 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1024 {
1025         struct gfar_private *priv = netdev_priv(dev);
1026
1027         return &(priv->stats);
1028 }
1029
1030 /* Changes the mac address if the controller is not running. */
1031 int gfar_set_mac_address(struct net_device *dev)
1032 {
1033         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1034
1035         return 0;
1036 }
1037
1038
1039 /* Enables and disables VLAN insertion/extraction */
1040 static void gfar_vlan_rx_register(struct net_device *dev,
1041                 struct vlan_group *grp)
1042 {
1043         struct gfar_private *priv = netdev_priv(dev);
1044         unsigned long flags;
1045         u32 tempval;
1046
1047         spin_lock_irqsave(&priv->lock, flags);
1048
1049         priv->vlgrp = grp;
1050
1051         if (grp) {
1052                 /* Enable VLAN tag insertion */
1053                 tempval = gfar_read(&priv->regs->tctrl);
1054                 tempval |= TCTRL_VLINS;
1055
1056                 gfar_write(&priv->regs->tctrl, tempval);
1057                 
1058                 /* Enable VLAN tag extraction */
1059                 tempval = gfar_read(&priv->regs->rctrl);
1060                 tempval |= RCTRL_VLEX;
1061                 gfar_write(&priv->regs->rctrl, tempval);
1062         } else {
1063                 /* Disable VLAN tag insertion */
1064                 tempval = gfar_read(&priv->regs->tctrl);
1065                 tempval &= ~TCTRL_VLINS;
1066                 gfar_write(&priv->regs->tctrl, tempval);
1067
1068                 /* Disable VLAN tag extraction */
1069                 tempval = gfar_read(&priv->regs->rctrl);
1070                 tempval &= ~RCTRL_VLEX;
1071                 gfar_write(&priv->regs->rctrl, tempval);
1072         }
1073
1074         spin_unlock_irqrestore(&priv->lock, flags);
1075 }
1076
1077
1078 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1079 {
1080         struct gfar_private *priv = netdev_priv(dev);
1081         unsigned long flags;
1082
1083         spin_lock_irqsave(&priv->lock, flags);
1084
1085         if (priv->vlgrp)
1086                 priv->vlgrp->vlan_devices[vid] = NULL;
1087
1088         spin_unlock_irqrestore(&priv->lock, flags);
1089 }
1090
1091
1092 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1093 {
1094         int tempsize, tempval;
1095         struct gfar_private *priv = netdev_priv(dev);
1096         int oldsize = priv->rx_buffer_size;
1097         int frame_size = new_mtu + ETH_HLEN;
1098
1099         if (priv->vlan_enable)
1100                 frame_size += VLAN_ETH_HLEN;
1101
1102         if (gfar_uses_fcb(priv))
1103                 frame_size += GMAC_FCB_LEN;
1104
1105         frame_size += priv->padding;
1106
1107         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1108                 if (netif_msg_drv(priv))
1109                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1110                                         dev->name);
1111                 return -EINVAL;
1112         }
1113
1114         tempsize =
1115             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1116             INCREMENTAL_BUFFER_SIZE;
1117
1118         /* Only stop and start the controller if it isn't already
1119          * stopped, and we changed something */
1120         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1121                 stop_gfar(dev);
1122
1123         priv->rx_buffer_size = tempsize;
1124
1125         dev->mtu = new_mtu;
1126
1127         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1128         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1129
1130         /* If the mtu is larger than the max size for standard
1131          * ethernet frames (ie, a jumbo frame), then set maccfg2
1132          * to allow huge frames, and to check the length */
1133         tempval = gfar_read(&priv->regs->maccfg2);
1134
1135         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1136                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1137         else
1138                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1139
1140         gfar_write(&priv->regs->maccfg2, tempval);
1141
1142         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1143                 startup_gfar(dev);
1144
1145         return 0;
1146 }
1147
1148 /* gfar_timeout gets called when a packet has not been
1149  * transmitted after a set amount of time.
1150  * For now, assume that clearing out all the structures, and
1151  * starting over will fix the problem. */
1152 static void gfar_timeout(struct net_device *dev)
1153 {
1154         struct gfar_private *priv = netdev_priv(dev);
1155
1156         priv->stats.tx_errors++;
1157
1158         if (dev->flags & IFF_UP) {
1159                 stop_gfar(dev);
1160                 startup_gfar(dev);
1161         }
1162
1163         netif_schedule(dev);
1164 }
1165
1166 /* Interrupt Handler for Transmit complete */
1167 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1168 {
1169         struct net_device *dev = (struct net_device *) dev_id;
1170         struct gfar_private *priv = netdev_priv(dev);
1171         struct txbd8 *bdp;
1172
1173         /* Clear IEVENT */
1174         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1175
1176         /* Lock priv */
1177         spin_lock(&priv->lock);
1178         bdp = priv->dirty_tx;
1179         while ((bdp->status & TXBD_READY) == 0) {
1180                 /* If dirty_tx and cur_tx are the same, then either the */
1181                 /* ring is empty or full now (it could only be full in the beginning, */
1182                 /* obviously).  If it is empty, we are done. */
1183                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1184                         break;
1185
1186                 priv->stats.tx_packets++;
1187
1188                 /* Deferred means some collisions occurred during transmit, */
1189                 /* but we eventually sent the packet. */
1190                 if (bdp->status & TXBD_DEF)
1191                         priv->stats.collisions++;
1192
1193                 /* Free the sk buffer associated with this TxBD */
1194                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1195                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1196                 priv->skb_dirtytx =
1197                     (priv->skb_dirtytx +
1198                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1199
1200                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1201                 if (bdp->status & TXBD_WRAP)
1202                         bdp = priv->tx_bd_base;
1203                 else
1204                         bdp++;
1205
1206                 /* Move dirty_tx to be the next bd */
1207                 priv->dirty_tx = bdp;
1208
1209                 /* We freed a buffer, so now we can restart transmission */
1210                 if (netif_queue_stopped(dev))
1211                         netif_wake_queue(dev);
1212         } /* while ((bdp->status & TXBD_READY) == 0) */
1213
1214         /* If we are coalescing the interrupts, reset the timer */
1215         /* Otherwise, clear it */
1216         if (priv->txcoalescing)
1217                 gfar_write(&priv->regs->txic,
1218                            mk_ic_value(priv->txcount, priv->txtime));
1219         else
1220                 gfar_write(&priv->regs->txic, 0);
1221
1222         spin_unlock(&priv->lock);
1223
1224         return IRQ_HANDLED;
1225 }
1226
1227 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1228 {
1229         unsigned int alignamount;
1230         struct gfar_private *priv = netdev_priv(dev);
1231         struct sk_buff *skb = NULL;
1232         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1233
1234         /* We have to allocate the skb, so keep trying till we succeed */
1235         while ((!skb) && timeout--)
1236                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1237
1238         if (NULL == skb)
1239                 return NULL;
1240
1241         alignamount = RXBUF_ALIGNMENT -
1242                 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1243
1244         /* We need the data buffer to be aligned properly.  We will reserve
1245          * as many bytes as needed to align the data properly
1246          */
1247         skb_reserve(skb, alignamount);
1248
1249         skb->dev = dev;
1250
1251         bdp->bufPtr = dma_map_single(NULL, skb->data,
1252                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1253
1254         bdp->length = 0;
1255
1256         /* Mark the buffer empty */
1257         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1258
1259         return skb;
1260 }
1261
1262 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1263 {
1264         struct net_device_stats *stats = &priv->stats;
1265         struct gfar_extra_stats *estats = &priv->extra_stats;
1266
1267         /* If the packet was truncated, none of the other errors
1268          * matter */
1269         if (status & RXBD_TRUNCATED) {
1270                 stats->rx_length_errors++;
1271
1272                 estats->rx_trunc++;
1273
1274                 return;
1275         }
1276         /* Count the errors, if there were any */
1277         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1278                 stats->rx_length_errors++;
1279
1280                 if (status & RXBD_LARGE)
1281                         estats->rx_large++;
1282                 else
1283                         estats->rx_short++;
1284         }
1285         if (status & RXBD_NONOCTET) {
1286                 stats->rx_frame_errors++;
1287                 estats->rx_nonoctet++;
1288         }
1289         if (status & RXBD_CRCERR) {
1290                 estats->rx_crcerr++;
1291                 stats->rx_crc_errors++;
1292         }
1293         if (status & RXBD_OVERRUN) {
1294                 estats->rx_overrun++;
1295                 stats->rx_crc_errors++;
1296         }
1297 }
1298
1299 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1300 {
1301         struct net_device *dev = (struct net_device *) dev_id;
1302         struct gfar_private *priv = netdev_priv(dev);
1303
1304 #ifdef CONFIG_GFAR_NAPI
1305         u32 tempval;
1306 #endif
1307
1308         /* Clear IEVENT, so rx interrupt isn't called again
1309          * because of this interrupt */
1310         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1311
1312         /* support NAPI */
1313 #ifdef CONFIG_GFAR_NAPI
1314         if (netif_rx_schedule_prep(dev)) {
1315                 tempval = gfar_read(&priv->regs->imask);
1316                 tempval &= IMASK_RX_DISABLED;
1317                 gfar_write(&priv->regs->imask, tempval);
1318
1319                 __netif_rx_schedule(dev);
1320         } else {
1321                 if (netif_msg_rx_err(priv))
1322                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1323                                 dev->name, gfar_read(&priv->regs->ievent),
1324                                 gfar_read(&priv->regs->imask));
1325         }
1326 #else
1327
1328         spin_lock(&priv->lock);
1329         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1330
1331         /* If we are coalescing interrupts, update the timer */
1332         /* Otherwise, clear it */
1333         if (priv->rxcoalescing)
1334                 gfar_write(&priv->regs->rxic,
1335                            mk_ic_value(priv->rxcount, priv->rxtime));
1336         else
1337                 gfar_write(&priv->regs->rxic, 0);
1338
1339         spin_unlock(&priv->lock);
1340 #endif
1341
1342         return IRQ_HANDLED;
1343 }
1344
1345 static inline int gfar_rx_vlan(struct sk_buff *skb,
1346                 struct vlan_group *vlgrp, unsigned short vlctl)
1347 {
1348 #ifdef CONFIG_GFAR_NAPI
1349         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1350 #else
1351         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1352 #endif
1353 }
1354
1355 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1356 {
1357         /* If valid headers were found, and valid sums
1358          * were verified, then we tell the kernel that no
1359          * checksumming is necessary.  Otherwise, it is */
1360         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1361                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1362         else
1363                 skb->ip_summed = CHECKSUM_NONE;
1364 }
1365
1366
1367 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1368 {
1369         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1370
1371         /* Remove the FCB from the skb */
1372         skb_pull(skb, GMAC_FCB_LEN);
1373
1374         return fcb;
1375 }
1376
1377 /* gfar_process_frame() -- handle one incoming packet if skb
1378  * isn't NULL.  */
1379 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1380                 int length)
1381 {
1382         struct gfar_private *priv = netdev_priv(dev);
1383         struct rxfcb *fcb = NULL;
1384
1385         if (NULL == skb) {
1386                 if (netif_msg_rx_err(priv))
1387                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1388                 priv->stats.rx_dropped++;
1389                 priv->extra_stats.rx_skbmissing++;
1390         } else {
1391                 int ret;
1392
1393                 /* Prep the skb for the packet */
1394                 skb_put(skb, length);
1395
1396                 /* Grab the FCB if there is one */
1397                 if (gfar_uses_fcb(priv))
1398                         fcb = gfar_get_fcb(skb);
1399
1400                 /* Remove the padded bytes, if there are any */
1401                 if (priv->padding)
1402                         skb_pull(skb, priv->padding);
1403
1404                 if (priv->rx_csum_enable)
1405                         gfar_rx_checksum(skb, fcb);
1406
1407                 /* Tell the skb what kind of packet this is */
1408                 skb->protocol = eth_type_trans(skb, dev);
1409
1410                 /* Send the packet up the stack */
1411                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1412                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1413                 else
1414                         ret = RECEIVE(skb);
1415
1416                 if (NET_RX_DROP == ret)
1417                         priv->extra_stats.kernel_dropped++;
1418         }
1419
1420         return 0;
1421 }
1422
1423 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1424  *   until the budget/quota has been reached. Returns the number
1425  *   of frames handled
1426  */
1427 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1428 {
1429         struct rxbd8 *bdp;
1430         struct sk_buff *skb;
1431         u16 pkt_len;
1432         int howmany = 0;
1433         struct gfar_private *priv = netdev_priv(dev);
1434
1435         /* Get the first full descriptor */
1436         bdp = priv->cur_rx;
1437
1438         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1439                 skb = priv->rx_skbuff[priv->skb_currx];
1440
1441                 if (!(bdp->status &
1442                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1443                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1444                         /* Increment the number of packets */
1445                         priv->stats.rx_packets++;
1446                         howmany++;
1447
1448                         /* Remove the FCS from the packet length */
1449                         pkt_len = bdp->length - 4;
1450
1451                         gfar_process_frame(dev, skb, pkt_len);
1452
1453                         priv->stats.rx_bytes += pkt_len;
1454                 } else {
1455                         count_errors(bdp->status, priv);
1456
1457                         if (skb)
1458                                 dev_kfree_skb_any(skb);
1459
1460                         priv->rx_skbuff[priv->skb_currx] = NULL;
1461                 }
1462
1463                 dev->last_rx = jiffies;
1464
1465                 /* Clear the status flags for this buffer */
1466                 bdp->status &= ~RXBD_STATS;
1467
1468                 /* Add another skb for the future */
1469                 skb = gfar_new_skb(dev, bdp);
1470                 priv->rx_skbuff[priv->skb_currx] = skb;
1471
1472                 /* Update to the next pointer */
1473                 if (bdp->status & RXBD_WRAP)
1474                         bdp = priv->rx_bd_base;
1475                 else
1476                         bdp++;
1477
1478                 /* update to point at the next skb */
1479                 priv->skb_currx =
1480                     (priv->skb_currx +
1481                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1482
1483         }
1484
1485         /* Update the current rxbd pointer to be the next one */
1486         priv->cur_rx = bdp;
1487
1488         /* If no packets have arrived since the
1489          * last one we processed, clear the IEVENT RX and
1490          * BSY bits so that another interrupt won't be
1491          * generated when we set IMASK */
1492         if (bdp->status & RXBD_EMPTY)
1493                 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1494
1495         return howmany;
1496 }
1497
1498 #ifdef CONFIG_GFAR_NAPI
1499 static int gfar_poll(struct net_device *dev, int *budget)
1500 {
1501         int howmany;
1502         struct gfar_private *priv = netdev_priv(dev);
1503         int rx_work_limit = *budget;
1504
1505         if (rx_work_limit > dev->quota)
1506                 rx_work_limit = dev->quota;
1507
1508         howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1509
1510         dev->quota -= howmany;
1511         rx_work_limit -= howmany;
1512         *budget -= howmany;
1513
1514         if (rx_work_limit >= 0) {
1515                 netif_rx_complete(dev);
1516
1517                 /* Clear the halt bit in RSTAT */
1518                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1519
1520                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1521
1522                 /* If we are coalescing interrupts, update the timer */
1523                 /* Otherwise, clear it */
1524                 if (priv->rxcoalescing)
1525                         gfar_write(&priv->regs->rxic,
1526                                    mk_ic_value(priv->rxcount, priv->rxtime));
1527                 else
1528                         gfar_write(&priv->regs->rxic, 0);
1529         }
1530
1531         return (rx_work_limit < 0) ? 1 : 0;
1532 }
1533 #endif
1534
1535 /* The interrupt handler for devices with one interrupt */
1536 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1537 {
1538         struct net_device *dev = dev_id;
1539         struct gfar_private *priv = netdev_priv(dev);
1540
1541         /* Save ievent for future reference */
1542         u32 events = gfar_read(&priv->regs->ievent);
1543
1544         /* Clear IEVENT */
1545         gfar_write(&priv->regs->ievent, events);
1546
1547         /* Check for reception */
1548         if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1549                 gfar_receive(irq, dev_id, regs);
1550
1551         /* Check for transmit completion */
1552         if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1553                 gfar_transmit(irq, dev_id, regs);
1554
1555         /* Update error statistics */
1556         if (events & IEVENT_TXE) {
1557                 priv->stats.tx_errors++;
1558
1559                 if (events & IEVENT_LC)
1560                         priv->stats.tx_window_errors++;
1561                 if (events & IEVENT_CRL)
1562                         priv->stats.tx_aborted_errors++;
1563                 if (events & IEVENT_XFUN) {
1564                         if (netif_msg_tx_err(priv))
1565                                 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1566                         priv->stats.tx_dropped++;
1567                         priv->extra_stats.tx_underrun++;
1568
1569                         /* Reactivate the Tx Queues */
1570                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1571                 }
1572         }
1573         if (events & IEVENT_BSY) {
1574                 priv->stats.rx_errors++;
1575                 priv->extra_stats.rx_bsy++;
1576
1577                 gfar_receive(irq, dev_id, regs);
1578
1579 #ifndef CONFIG_GFAR_NAPI
1580                 /* Clear the halt bit in RSTAT */
1581                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1582 #endif
1583
1584                 if (netif_msg_rx_err(priv))
1585                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1586                                         dev->name,
1587                                         gfar_read(&priv->regs->rstat));
1588         }
1589         if (events & IEVENT_BABR) {
1590                 priv->stats.rx_errors++;
1591                 priv->extra_stats.rx_babr++;
1592
1593                 if (netif_msg_rx_err(priv))
1594                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1595         }
1596         if (events & IEVENT_EBERR) {
1597                 priv->extra_stats.eberr++;
1598                 if (netif_msg_rx_err(priv))
1599                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1600         }
1601         if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1602                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1603
1604         if (events & IEVENT_BABT) {
1605                 priv->extra_stats.tx_babt++;
1606                 if (netif_msg_rx_err(priv))
1607                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1608         }
1609
1610         return IRQ_HANDLED;
1611 }
1612
1613 /* Called every time the controller might need to be made
1614  * aware of new link state.  The PHY code conveys this
1615  * information through variables in the phydev structure, and this
1616  * function converts those variables into the appropriate
1617  * register values, and can bring down the device if needed.
1618  */
1619 static void adjust_link(struct net_device *dev)
1620 {
1621         struct gfar_private *priv = netdev_priv(dev);
1622         struct gfar *regs = priv->regs;
1623         unsigned long flags;
1624         struct phy_device *phydev = priv->phydev;
1625         int new_state = 0;
1626
1627         spin_lock_irqsave(&priv->lock, flags);
1628         if (phydev->link) {
1629                 u32 tempval = gfar_read(&regs->maccfg2);
1630                 u32 ecntrl = gfar_read(&regs->ecntrl);
1631
1632                 /* Now we make sure that we can be in full duplex mode.
1633                  * If not, we operate in half-duplex mode. */
1634                 if (phydev->duplex != priv->oldduplex) {
1635                         new_state = 1;
1636                         if (!(phydev->duplex))
1637                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1638                         else
1639                                 tempval |= MACCFG2_FULL_DUPLEX;
1640
1641                         priv->oldduplex = phydev->duplex;
1642                 }
1643
1644                 if (phydev->speed != priv->oldspeed) {
1645                         new_state = 1;
1646                         switch (phydev->speed) {
1647                         case 1000:
1648                                 tempval =
1649                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1650                                 break;
1651                         case 100:
1652                         case 10:
1653                                 tempval =
1654                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1655
1656                                 /* Reduced mode distinguishes
1657                                  * between 10 and 100 */
1658                                 if (phydev->speed == SPEED_100)
1659                                         ecntrl |= ECNTRL_R100;
1660                                 else
1661                                         ecntrl &= ~(ECNTRL_R100);
1662                                 break;
1663                         default:
1664                                 if (netif_msg_link(priv))
1665                                         printk(KERN_WARNING
1666                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1667                                                 dev->name, phydev->speed);
1668                                 break;
1669                         }
1670
1671                         priv->oldspeed = phydev->speed;
1672                 }
1673
1674                 gfar_write(&regs->maccfg2, tempval);
1675                 gfar_write(&regs->ecntrl, ecntrl);
1676
1677                 if (!priv->oldlink) {
1678                         new_state = 1;
1679                         priv->oldlink = 1;
1680                         netif_schedule(dev);
1681                 }
1682         } else if (priv->oldlink) {
1683                 new_state = 1;
1684                 priv->oldlink = 0;
1685                 priv->oldspeed = 0;
1686                 priv->oldduplex = -1;
1687         }
1688
1689         if (new_state && netif_msg_link(priv))
1690                 phy_print_status(phydev);
1691
1692         spin_unlock_irqrestore(&priv->lock, flags);
1693 }
1694
1695 /* Update the hash table based on the current list of multicast
1696  * addresses we subscribe to.  Also, change the promiscuity of
1697  * the device based on the flags (this function is called
1698  * whenever dev->flags is changed */
1699 static void gfar_set_multi(struct net_device *dev)
1700 {
1701         struct dev_mc_list *mc_ptr;
1702         struct gfar_private *priv = netdev_priv(dev);
1703         struct gfar *regs = priv->regs;
1704         u32 tempval;
1705
1706         if(dev->flags & IFF_PROMISC) {
1707                 if (netif_msg_drv(priv))
1708                         printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1709                                         dev->name);
1710                 /* Set RCTRL to PROM */
1711                 tempval = gfar_read(&regs->rctrl);
1712                 tempval |= RCTRL_PROM;
1713                 gfar_write(&regs->rctrl, tempval);
1714         } else {
1715                 /* Set RCTRL to not PROM */
1716                 tempval = gfar_read(&regs->rctrl);
1717                 tempval &= ~(RCTRL_PROM);
1718                 gfar_write(&regs->rctrl, tempval);
1719         }
1720         
1721         if(dev->flags & IFF_ALLMULTI) {
1722                 /* Set the hash to rx all multicast frames */
1723                 gfar_write(&regs->igaddr0, 0xffffffff);
1724                 gfar_write(&regs->igaddr1, 0xffffffff);
1725                 gfar_write(&regs->igaddr2, 0xffffffff);
1726                 gfar_write(&regs->igaddr3, 0xffffffff);
1727                 gfar_write(&regs->igaddr4, 0xffffffff);
1728                 gfar_write(&regs->igaddr5, 0xffffffff);
1729                 gfar_write(&regs->igaddr6, 0xffffffff);
1730                 gfar_write(&regs->igaddr7, 0xffffffff);
1731                 gfar_write(&regs->gaddr0, 0xffffffff);
1732                 gfar_write(&regs->gaddr1, 0xffffffff);
1733                 gfar_write(&regs->gaddr2, 0xffffffff);
1734                 gfar_write(&regs->gaddr3, 0xffffffff);
1735                 gfar_write(&regs->gaddr4, 0xffffffff);
1736                 gfar_write(&regs->gaddr5, 0xffffffff);
1737                 gfar_write(&regs->gaddr6, 0xffffffff);
1738                 gfar_write(&regs->gaddr7, 0xffffffff);
1739         } else {
1740                 int em_num;
1741                 int idx;
1742
1743                 /* zero out the hash */
1744                 gfar_write(&regs->igaddr0, 0x0);
1745                 gfar_write(&regs->igaddr1, 0x0);
1746                 gfar_write(&regs->igaddr2, 0x0);
1747                 gfar_write(&regs->igaddr3, 0x0);
1748                 gfar_write(&regs->igaddr4, 0x0);
1749                 gfar_write(&regs->igaddr5, 0x0);
1750                 gfar_write(&regs->igaddr6, 0x0);
1751                 gfar_write(&regs->igaddr7, 0x0);
1752                 gfar_write(&regs->gaddr0, 0x0);
1753                 gfar_write(&regs->gaddr1, 0x0);
1754                 gfar_write(&regs->gaddr2, 0x0);
1755                 gfar_write(&regs->gaddr3, 0x0);
1756                 gfar_write(&regs->gaddr4, 0x0);
1757                 gfar_write(&regs->gaddr5, 0x0);
1758                 gfar_write(&regs->gaddr6, 0x0);
1759                 gfar_write(&regs->gaddr7, 0x0);
1760
1761                 /* If we have extended hash tables, we need to
1762                  * clear the exact match registers to prepare for
1763                  * setting them */
1764                 if (priv->extended_hash) {
1765                         em_num = GFAR_EM_NUM + 1;
1766                         gfar_clear_exact_match(dev);
1767                         idx = 1;
1768                 } else {
1769                         idx = 0;
1770                         em_num = 0;
1771                 }
1772
1773                 if(dev->mc_count == 0)
1774                         return;
1775
1776                 /* Parse the list, and set the appropriate bits */
1777                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1778                         if (idx < em_num) {
1779                                 gfar_set_mac_for_addr(dev, idx,
1780                                                 mc_ptr->dmi_addr);
1781                                 idx++;
1782                         } else
1783                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1784                 }
1785         }
1786
1787         return;
1788 }
1789
1790
1791 /* Clears each of the exact match registers to zero, so they
1792  * don't interfere with normal reception */
1793 static void gfar_clear_exact_match(struct net_device *dev)
1794 {
1795         int idx;
1796         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1797
1798         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1799                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1800 }
1801
1802 /* Set the appropriate hash bit for the given addr */
1803 /* The algorithm works like so:
1804  * 1) Take the Destination Address (ie the multicast address), and
1805  * do a CRC on it (little endian), and reverse the bits of the
1806  * result.
1807  * 2) Use the 8 most significant bits as a hash into a 256-entry
1808  * table.  The table is controlled through 8 32-bit registers:
1809  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1810  * gaddr7.  This means that the 3 most significant bits in the
1811  * hash index which gaddr register to use, and the 5 other bits
1812  * indicate which bit (assuming an IBM numbering scheme, which
1813  * for PowerPC (tm) is usually the case) in the register holds
1814  * the entry. */
1815 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1816 {
1817         u32 tempval;
1818         struct gfar_private *priv = netdev_priv(dev);
1819         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1820         int width = priv->hash_width;
1821         u8 whichbit = (result >> (32 - width)) & 0x1f;
1822         u8 whichreg = result >> (32 - width + 5);
1823         u32 value = (1 << (31-whichbit));
1824
1825         tempval = gfar_read(priv->hash_regs[whichreg]);
1826         tempval |= value;
1827         gfar_write(priv->hash_regs[whichreg], tempval);
1828
1829         return;
1830 }
1831
1832
1833 /* There are multiple MAC Address register pairs on some controllers
1834  * This function sets the numth pair to a given address
1835  */
1836 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1837 {
1838         struct gfar_private *priv = netdev_priv(dev);
1839         int idx;
1840         char tmpbuf[MAC_ADDR_LEN];
1841         u32 tempval;
1842         u32 *macptr = &priv->regs->macstnaddr1;
1843
1844         macptr += num*2;
1845
1846         /* Now copy it into the mac registers backwards, cuz */
1847         /* little endian is silly */
1848         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1849                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1850
1851         gfar_write(macptr, *((u32 *) (tmpbuf)));
1852
1853         tempval = *((u32 *) (tmpbuf + 4));
1854
1855         gfar_write(macptr+1, tempval);
1856 }
1857
1858 /* GFAR error interrupt handler */
1859 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1860 {
1861         struct net_device *dev = dev_id;
1862         struct gfar_private *priv = netdev_priv(dev);
1863
1864         /* Save ievent for future reference */
1865         u32 events = gfar_read(&priv->regs->ievent);
1866
1867         /* Clear IEVENT */
1868         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1869
1870         /* Hmm... */
1871         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1872                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1873                                 dev->name, events, gfar_read(&priv->regs->imask));
1874
1875         /* Update the error counters */
1876         if (events & IEVENT_TXE) {
1877                 priv->stats.tx_errors++;
1878
1879                 if (events & IEVENT_LC)
1880                         priv->stats.tx_window_errors++;
1881                 if (events & IEVENT_CRL)
1882                         priv->stats.tx_aborted_errors++;
1883                 if (events & IEVENT_XFUN) {
1884                         if (netif_msg_tx_err(priv))
1885                                 printk(KERN_DEBUG "%s: underrun.  packet dropped.\n",
1886                                                 dev->name);
1887                         priv->stats.tx_dropped++;
1888                         priv->extra_stats.tx_underrun++;
1889
1890                         /* Reactivate the Tx Queues */
1891                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1892                 }
1893                 if (netif_msg_tx_err(priv))
1894                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1895         }
1896         if (events & IEVENT_BSY) {
1897                 priv->stats.rx_errors++;
1898                 priv->extra_stats.rx_bsy++;
1899
1900                 gfar_receive(irq, dev_id, regs);
1901
1902 #ifndef CONFIG_GFAR_NAPI
1903                 /* Clear the halt bit in RSTAT */
1904                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1905 #endif
1906
1907                 if (netif_msg_rx_err(priv))
1908                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1909                                         dev->name,
1910                                         gfar_read(&priv->regs->rstat));
1911         }
1912         if (events & IEVENT_BABR) {
1913                 priv->stats.rx_errors++;
1914                 priv->extra_stats.rx_babr++;
1915
1916                 if (netif_msg_rx_err(priv))
1917                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1918         }
1919         if (events & IEVENT_EBERR) {
1920                 priv->extra_stats.eberr++;
1921                 if (netif_msg_rx_err(priv))
1922                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1923         }
1924         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1925                 if (netif_msg_rx_status(priv))
1926                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1927
1928         if (events & IEVENT_BABT) {
1929                 priv->extra_stats.tx_babt++;
1930                 if (netif_msg_tx_err(priv))
1931                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1932         }
1933         return IRQ_HANDLED;
1934 }
1935
1936 /* Structure for a device driver */
1937 static struct platform_driver gfar_driver = {
1938         .probe = gfar_probe,
1939         .remove = gfar_remove,
1940         .driver = {
1941                 .name = "fsl-gianfar",
1942         },
1943 };
1944
1945 static int __init gfar_init(void)
1946 {
1947         int err = gfar_mdio_init();
1948
1949         if (err)
1950                 return err;
1951
1952         err = platform_driver_register(&gfar_driver);
1953
1954         if (err)
1955                 gfar_mdio_exit();
1956         
1957         return err;
1958 }
1959
1960 static void __exit gfar_exit(void)
1961 {
1962         platform_driver_unregister(&gfar_driver);
1963         gfar_mdio_exit();
1964 }
1965
1966 module_init(gfar_init);
1967 module_exit(gfar_exit);
1968