]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/hippi/rrunner.c
Merge branch 'next/spring-cleaning' into next/cleanup
[karo-tx-linux.git] / drivers / net / hippi / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
45
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
66
67 static const struct net_device_ops rr_netdev_ops = {
68         .ndo_open               = rr_open,
69         .ndo_stop               = rr_close,
70         .ndo_do_ioctl           = rr_ioctl,
71         .ndo_start_xmit         = rr_start_xmit,
72         .ndo_change_mtu         = hippi_change_mtu,
73         .ndo_set_mac_address    = hippi_mac_addr,
74 };
75
76 /*
77  * Implementation notes:
78  *
79  * The DMA engine only allows for DMA within physical 64KB chunks of
80  * memory. The current approach of the driver (and stack) is to use
81  * linear blocks of memory for the skbuffs. However, as the data block
82  * is always the first part of the skb and skbs are 2^n aligned so we
83  * are guarantted to get the whole block within one 64KB align 64KB
84  * chunk.
85  *
86  * On the long term, relying on being able to allocate 64KB linear
87  * chunks of memory is not feasible and the skb handling code and the
88  * stack will need to know about I/O vectors or something similar.
89  */
90
91 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
92 {
93         struct net_device *dev;
94         static int version_disp;
95         u8 pci_latency;
96         struct rr_private *rrpriv;
97         void *tmpptr;
98         dma_addr_t ring_dma;
99         int ret = -ENOMEM;
100
101         dev = alloc_hippi_dev(sizeof(struct rr_private));
102         if (!dev)
103                 goto out3;
104
105         ret = pci_enable_device(pdev);
106         if (ret) {
107                 ret = -ENODEV;
108                 goto out2;
109         }
110
111         rrpriv = netdev_priv(dev);
112
113         SET_NETDEV_DEV(dev, &pdev->dev);
114
115         ret = pci_request_regions(pdev, "rrunner");
116         if (ret < 0)
117                 goto out;
118
119         pci_set_drvdata(pdev, dev);
120
121         rrpriv->pci_dev = pdev;
122
123         spin_lock_init(&rrpriv->lock);
124
125         dev->netdev_ops = &rr_netdev_ops;
126
127         /* display version info if adapter is found */
128         if (!version_disp) {
129                 /* set display flag to TRUE so that */
130                 /* we only display this string ONCE */
131                 version_disp = 1;
132                 printk(version);
133         }
134
135         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
136         if (pci_latency <= 0x58){
137                 pci_latency = 0x58;
138                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
139         }
140
141         pci_set_master(pdev);
142
143         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
144                "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
145                (unsigned long long)pci_resource_start(pdev, 0),
146                pdev->irq, pci_latency);
147
148         /*
149          * Remap the MMIO regs into kernel space.
150          */
151         rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
152         if (!rrpriv->regs) {
153                 printk(KERN_ERR "%s:  Unable to map I/O register, "
154                         "RoadRunner will be disabled.\n", dev->name);
155                 ret = -EIO;
156                 goto out;
157         }
158
159         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
160         rrpriv->tx_ring = tmpptr;
161         rrpriv->tx_ring_dma = ring_dma;
162
163         if (!tmpptr) {
164                 ret = -ENOMEM;
165                 goto out;
166         }
167
168         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
169         rrpriv->rx_ring = tmpptr;
170         rrpriv->rx_ring_dma = ring_dma;
171
172         if (!tmpptr) {
173                 ret = -ENOMEM;
174                 goto out;
175         }
176
177         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
178         rrpriv->evt_ring = tmpptr;
179         rrpriv->evt_ring_dma = ring_dma;
180
181         if (!tmpptr) {
182                 ret = -ENOMEM;
183                 goto out;
184         }
185
186         /*
187          * Don't access any register before this point!
188          */
189 #ifdef __BIG_ENDIAN
190         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
191                 &rrpriv->regs->HostCtrl);
192 #endif
193         /*
194          * Need to add a case for little-endian 64-bit hosts here.
195          */
196
197         rr_init(dev);
198
199         ret = register_netdev(dev);
200         if (ret)
201                 goto out;
202         return 0;
203
204  out:
205         if (rrpriv->evt_ring)
206                 pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
207                                     rrpriv->evt_ring_dma);
208         if (rrpriv->rx_ring)
209                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
210                                     rrpriv->rx_ring_dma);
211         if (rrpriv->tx_ring)
212                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
213                                     rrpriv->tx_ring_dma);
214         if (rrpriv->regs)
215                 pci_iounmap(pdev, rrpriv->regs);
216         if (pdev) {
217                 pci_release_regions(pdev);
218                 pci_set_drvdata(pdev, NULL);
219         }
220  out2:
221         free_netdev(dev);
222  out3:
223         return ret;
224 }
225
226 static void rr_remove_one(struct pci_dev *pdev)
227 {
228         struct net_device *dev = pci_get_drvdata(pdev);
229         struct rr_private *rr = netdev_priv(dev);
230
231         if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
232                 printk(KERN_ERR "%s: trying to unload running NIC\n",
233                        dev->name);
234                 writel(HALT_NIC, &rr->regs->HostCtrl);
235         }
236
237         unregister_netdev(dev);
238         pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
239                             rr->evt_ring_dma);
240         pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
241                             rr->rx_ring_dma);
242         pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
243                             rr->tx_ring_dma);
244         pci_iounmap(pdev, rr->regs);
245         pci_release_regions(pdev);
246         pci_disable_device(pdev);
247         pci_set_drvdata(pdev, NULL);
248         free_netdev(dev);
249 }
250
251
252 /*
253  * Commands are considered to be slow, thus there is no reason to
254  * inline this.
255  */
256 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
257 {
258         struct rr_regs __iomem *regs;
259         u32 idx;
260
261         regs = rrpriv->regs;
262         /*
263          * This is temporary - it will go away in the final version.
264          * We probably also want to make this function inline.
265          */
266         if (readl(&regs->HostCtrl) & NIC_HALTED){
267                 printk("issuing command for halted NIC, code 0x%x, "
268                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
269                 if (readl(&regs->Mode) & FATAL_ERR)
270                         printk("error codes Fail1 %02x, Fail2 %02x\n",
271                                readl(&regs->Fail1), readl(&regs->Fail2));
272         }
273
274         idx = rrpriv->info->cmd_ctrl.pi;
275
276         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
277         wmb();
278
279         idx = (idx - 1) % CMD_RING_ENTRIES;
280         rrpriv->info->cmd_ctrl.pi = idx;
281         wmb();
282
283         if (readl(&regs->Mode) & FATAL_ERR)
284                 printk("error code %02x\n", readl(&regs->Fail1));
285 }
286
287
288 /*
289  * Reset the board in a sensible manner. The NIC is already halted
290  * when we get here and a spin-lock is held.
291  */
292 static int rr_reset(struct net_device *dev)
293 {
294         struct rr_private *rrpriv;
295         struct rr_regs __iomem *regs;
296         u32 start_pc;
297         int i;
298
299         rrpriv = netdev_priv(dev);
300         regs = rrpriv->regs;
301
302         rr_load_firmware(dev);
303
304         writel(0x01000000, &regs->TX_state);
305         writel(0xff800000, &regs->RX_state);
306         writel(0, &regs->AssistState);
307         writel(CLEAR_INTA, &regs->LocalCtrl);
308         writel(0x01, &regs->BrkPt);
309         writel(0, &regs->Timer);
310         writel(0, &regs->TimerRef);
311         writel(RESET_DMA, &regs->DmaReadState);
312         writel(RESET_DMA, &regs->DmaWriteState);
313         writel(0, &regs->DmaWriteHostHi);
314         writel(0, &regs->DmaWriteHostLo);
315         writel(0, &regs->DmaReadHostHi);
316         writel(0, &regs->DmaReadHostLo);
317         writel(0, &regs->DmaReadLen);
318         writel(0, &regs->DmaWriteLen);
319         writel(0, &regs->DmaWriteLcl);
320         writel(0, &regs->DmaWriteIPchecksum);
321         writel(0, &regs->DmaReadLcl);
322         writel(0, &regs->DmaReadIPchecksum);
323         writel(0, &regs->PciState);
324 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
325         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
326 #elif (BITS_PER_LONG == 64)
327         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
328 #else
329         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
330 #endif
331
332 #if 0
333         /*
334          * Don't worry, this is just black magic.
335          */
336         writel(0xdf000, &regs->RxBase);
337         writel(0xdf000, &regs->RxPrd);
338         writel(0xdf000, &regs->RxCon);
339         writel(0xce000, &regs->TxBase);
340         writel(0xce000, &regs->TxPrd);
341         writel(0xce000, &regs->TxCon);
342         writel(0, &regs->RxIndPro);
343         writel(0, &regs->RxIndCon);
344         writel(0, &regs->RxIndRef);
345         writel(0, &regs->TxIndPro);
346         writel(0, &regs->TxIndCon);
347         writel(0, &regs->TxIndRef);
348         writel(0xcc000, &regs->pad10[0]);
349         writel(0, &regs->DrCmndPro);
350         writel(0, &regs->DrCmndCon);
351         writel(0, &regs->DwCmndPro);
352         writel(0, &regs->DwCmndCon);
353         writel(0, &regs->DwCmndRef);
354         writel(0, &regs->DrDataPro);
355         writel(0, &regs->DrDataCon);
356         writel(0, &regs->DrDataRef);
357         writel(0, &regs->DwDataPro);
358         writel(0, &regs->DwDataCon);
359         writel(0, &regs->DwDataRef);
360 #endif
361
362         writel(0xffffffff, &regs->MbEvent);
363         writel(0, &regs->Event);
364
365         writel(0, &regs->TxPi);
366         writel(0, &regs->IpRxPi);
367
368         writel(0, &regs->EvtCon);
369         writel(0, &regs->EvtPrd);
370
371         rrpriv->info->evt_ctrl.pi = 0;
372
373         for (i = 0; i < CMD_RING_ENTRIES; i++)
374                 writel(0, &regs->CmdRing[i]);
375
376 /*
377  * Why 32 ? is this not cache line size dependent?
378  */
379         writel(RBURST_64|WBURST_64, &regs->PciState);
380         wmb();
381
382         start_pc = rr_read_eeprom_word(rrpriv,
383                         offsetof(struct eeprom, rncd_info.FwStart));
384
385 #if (DEBUG > 1)
386         printk("%s: Executing firmware at address 0x%06x\n",
387                dev->name, start_pc);
388 #endif
389
390         writel(start_pc + 0x800, &regs->Pc);
391         wmb();
392         udelay(5);
393
394         writel(start_pc, &regs->Pc);
395         wmb();
396
397         return 0;
398 }
399
400
401 /*
402  * Read a string from the EEPROM.
403  */
404 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
405                                 unsigned long offset,
406                                 unsigned char *buf,
407                                 unsigned long length)
408 {
409         struct rr_regs __iomem *regs = rrpriv->regs;
410         u32 misc, io, host, i;
411
412         io = readl(&regs->ExtIo);
413         writel(0, &regs->ExtIo);
414         misc = readl(&regs->LocalCtrl);
415         writel(0, &regs->LocalCtrl);
416         host = readl(&regs->HostCtrl);
417         writel(host | HALT_NIC, &regs->HostCtrl);
418         mb();
419
420         for (i = 0; i < length; i++){
421                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
422                 mb();
423                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
424                 mb();
425         }
426
427         writel(host, &regs->HostCtrl);
428         writel(misc, &regs->LocalCtrl);
429         writel(io, &regs->ExtIo);
430         mb();
431         return i;
432 }
433
434
435 /*
436  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
437  * it to our CPU byte-order.
438  */
439 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
440                             size_t offset)
441 {
442         __be32 word;
443
444         if ((rr_read_eeprom(rrpriv, offset,
445                             (unsigned char *)&word, 4) == 4))
446                 return be32_to_cpu(word);
447         return 0;
448 }
449
450
451 /*
452  * Write a string to the EEPROM.
453  *
454  * This is only called when the firmware is not running.
455  */
456 static unsigned int write_eeprom(struct rr_private *rrpriv,
457                                  unsigned long offset,
458                                  unsigned char *buf,
459                                  unsigned long length)
460 {
461         struct rr_regs __iomem *regs = rrpriv->regs;
462         u32 misc, io, data, i, j, ready, error = 0;
463
464         io = readl(&regs->ExtIo);
465         writel(0, &regs->ExtIo);
466         misc = readl(&regs->LocalCtrl);
467         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
468         mb();
469
470         for (i = 0; i < length; i++){
471                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
472                 mb();
473                 data = buf[i] << 24;
474                 /*
475                  * Only try to write the data if it is not the same
476                  * value already.
477                  */
478                 if ((readl(&regs->WinData) & 0xff000000) != data){
479                         writel(data, &regs->WinData);
480                         ready = 0;
481                         j = 0;
482                         mb();
483                         while(!ready){
484                                 udelay(20);
485                                 if ((readl(&regs->WinData) & 0xff000000) ==
486                                     data)
487                                         ready = 1;
488                                 mb();
489                                 if (j++ > 5000){
490                                         printk("data mismatch: %08x, "
491                                                "WinData %08x\n", data,
492                                                readl(&regs->WinData));
493                                         ready = 1;
494                                         error = 1;
495                                 }
496                         }
497                 }
498         }
499
500         writel(misc, &regs->LocalCtrl);
501         writel(io, &regs->ExtIo);
502         mb();
503
504         return error;
505 }
506
507
508 static int rr_init(struct net_device *dev)
509 {
510         struct rr_private *rrpriv;
511         struct rr_regs __iomem *regs;
512         u32 sram_size, rev;
513
514         rrpriv = netdev_priv(dev);
515         regs = rrpriv->regs;
516
517         rev = readl(&regs->FwRev);
518         rrpriv->fw_rev = rev;
519         if (rev > 0x00020024)
520                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
521                        ((rev >> 8) & 0xff), (rev & 0xff));
522         else if (rev >= 0x00020000) {
523                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
524                        "later is recommended)\n", (rev >> 16),
525                        ((rev >> 8) & 0xff), (rev & 0xff));
526         }else{
527                 printk("  Firmware revision too old: %i.%i.%i, please "
528                        "upgrade to 2.0.37 or later.\n",
529                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
530         }
531
532 #if (DEBUG > 2)
533         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
534 #endif
535
536         /*
537          * Read the hardware address from the eeprom.  The HW address
538          * is not really necessary for HIPPI but awfully convenient.
539          * The pointer arithmetic to put it in dev_addr is ugly, but
540          * Donald Becker does it this way for the GigE version of this
541          * card and it's shorter and more portable than any
542          * other method I've seen.  -VAL
543          */
544
545         *(__be16 *)(dev->dev_addr) =
546           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
547         *(__be32 *)(dev->dev_addr+2) =
548           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
549
550         printk("  MAC: %pM\n", dev->dev_addr);
551
552         sram_size = rr_read_eeprom_word(rrpriv, 8);
553         printk("  SRAM size 0x%06x\n", sram_size);
554
555         return 0;
556 }
557
558
559 static int rr_init1(struct net_device *dev)
560 {
561         struct rr_private *rrpriv;
562         struct rr_regs __iomem *regs;
563         unsigned long myjif, flags;
564         struct cmd cmd;
565         u32 hostctrl;
566         int ecode = 0;
567         short i;
568
569         rrpriv = netdev_priv(dev);
570         regs = rrpriv->regs;
571
572         spin_lock_irqsave(&rrpriv->lock, flags);
573
574         hostctrl = readl(&regs->HostCtrl);
575         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
576         wmb();
577
578         if (hostctrl & PARITY_ERR){
579                 printk("%s: Parity error halting NIC - this is serious!\n",
580                        dev->name);
581                 spin_unlock_irqrestore(&rrpriv->lock, flags);
582                 ecode = -EFAULT;
583                 goto error;
584         }
585
586         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
587         set_infoaddr(regs, rrpriv->info_dma);
588
589         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
590         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
591         rrpriv->info->evt_ctrl.mode = 0;
592         rrpriv->info->evt_ctrl.pi = 0;
593         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
594
595         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
596         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
597         rrpriv->info->cmd_ctrl.mode = 0;
598         rrpriv->info->cmd_ctrl.pi = 15;
599
600         for (i = 0; i < CMD_RING_ENTRIES; i++) {
601                 writel(0, &regs->CmdRing[i]);
602         }
603
604         for (i = 0; i < TX_RING_ENTRIES; i++) {
605                 rrpriv->tx_ring[i].size = 0;
606                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
607                 rrpriv->tx_skbuff[i] = NULL;
608         }
609         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
610         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
611         rrpriv->info->tx_ctrl.mode = 0;
612         rrpriv->info->tx_ctrl.pi = 0;
613         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
614
615         /*
616          * Set dirty_tx before we start receiving interrupts, otherwise
617          * the interrupt handler might think it is supposed to process
618          * tx ints before we are up and running, which may cause a null
619          * pointer access in the int handler.
620          */
621         rrpriv->tx_full = 0;
622         rrpriv->cur_rx = 0;
623         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
624
625         rr_reset(dev);
626
627         /* Tuning values */
628         writel(0x5000, &regs->ConRetry);
629         writel(0x100, &regs->ConRetryTmr);
630         writel(0x500000, &regs->ConTmout);
631         writel(0x60, &regs->IntrTmr);
632         writel(0x500000, &regs->TxDataMvTimeout);
633         writel(0x200000, &regs->RxDataMvTimeout);
634         writel(0x80, &regs->WriteDmaThresh);
635         writel(0x80, &regs->ReadDmaThresh);
636
637         rrpriv->fw_running = 0;
638         wmb();
639
640         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
641         writel(hostctrl, &regs->HostCtrl);
642         wmb();
643
644         spin_unlock_irqrestore(&rrpriv->lock, flags);
645
646         for (i = 0; i < RX_RING_ENTRIES; i++) {
647                 struct sk_buff *skb;
648                 dma_addr_t addr;
649
650                 rrpriv->rx_ring[i].mode = 0;
651                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
652                 if (!skb) {
653                         printk(KERN_WARNING "%s: Unable to allocate memory "
654                                "for receive ring - halting NIC\n", dev->name);
655                         ecode = -ENOMEM;
656                         goto error;
657                 }
658                 rrpriv->rx_skbuff[i] = skb;
659                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
660                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
661                 /*
662                  * Sanity test to see if we conflict with the DMA
663                  * limitations of the Roadrunner.
664                  */
665                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
666                         printk("skb alloc error\n");
667
668                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
669                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
670         }
671
672         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
673         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
674         rrpriv->rx_ctrl[4].mode = 8;
675         rrpriv->rx_ctrl[4].pi = 0;
676         wmb();
677         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
678
679         udelay(1000);
680
681         /*
682          * Now start the FirmWare.
683          */
684         cmd.code = C_START_FW;
685         cmd.ring = 0;
686         cmd.index = 0;
687
688         rr_issue_cmd(rrpriv, &cmd);
689
690         /*
691          * Give the FirmWare time to chew on the `get running' command.
692          */
693         myjif = jiffies + 5 * HZ;
694         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
695                 cpu_relax();
696
697         netif_start_queue(dev);
698
699         return ecode;
700
701  error:
702         /*
703          * We might have gotten here because we are out of memory,
704          * make sure we release everything we allocated before failing
705          */
706         for (i = 0; i < RX_RING_ENTRIES; i++) {
707                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
708
709                 if (skb) {
710                         pci_unmap_single(rrpriv->pci_dev,
711                                          rrpriv->rx_ring[i].addr.addrlo,
712                                          dev->mtu + HIPPI_HLEN,
713                                          PCI_DMA_FROMDEVICE);
714                         rrpriv->rx_ring[i].size = 0;
715                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
716                         dev_kfree_skb(skb);
717                         rrpriv->rx_skbuff[i] = NULL;
718                 }
719         }
720         return ecode;
721 }
722
723
724 /*
725  * All events are considered to be slow (RX/TX ints do not generate
726  * events) and are handled here, outside the main interrupt handler,
727  * to reduce the size of the handler.
728  */
729 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
730 {
731         struct rr_private *rrpriv;
732         struct rr_regs __iomem *regs;
733         u32 tmp;
734
735         rrpriv = netdev_priv(dev);
736         regs = rrpriv->regs;
737
738         while (prodidx != eidx){
739                 switch (rrpriv->evt_ring[eidx].code){
740                 case E_NIC_UP:
741                         tmp = readl(&regs->FwRev);
742                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
743                                "up and running\n", dev->name,
744                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
745                         rrpriv->fw_running = 1;
746                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
747                         wmb();
748                         break;
749                 case E_LINK_ON:
750                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
751                         break;
752                 case E_LINK_OFF:
753                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
754                         break;
755                 case E_RX_IDLE:
756                         printk(KERN_WARNING "%s: RX data not moving\n",
757                                dev->name);
758                         goto drop;
759                 case E_WATCHDOG:
760                         printk(KERN_INFO "%s: The watchdog is here to see "
761                                "us\n", dev->name);
762                         break;
763                 case E_INTERN_ERR:
764                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
765                                dev->name);
766                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
767                                &regs->HostCtrl);
768                         wmb();
769                         break;
770                 case E_HOST_ERR:
771                         printk(KERN_ERR "%s: Host software error\n",
772                                dev->name);
773                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
774                                &regs->HostCtrl);
775                         wmb();
776                         break;
777                 /*
778                  * TX events.
779                  */
780                 case E_CON_REJ:
781                         printk(KERN_WARNING "%s: Connection rejected\n",
782                                dev->name);
783                         dev->stats.tx_aborted_errors++;
784                         break;
785                 case E_CON_TMOUT:
786                         printk(KERN_WARNING "%s: Connection timeout\n",
787                                dev->name);
788                         break;
789                 case E_DISC_ERR:
790                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
791                                dev->name);
792                         dev->stats.tx_aborted_errors++;
793                         break;
794                 case E_INT_PRTY:
795                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
796                                dev->name);
797                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
798                                &regs->HostCtrl);
799                         wmb();
800                         break;
801                 case E_TX_IDLE:
802                         printk(KERN_WARNING "%s: Transmitter idle\n",
803                                dev->name);
804                         break;
805                 case E_TX_LINK_DROP:
806                         printk(KERN_WARNING "%s: Link lost during transmit\n",
807                                dev->name);
808                         dev->stats.tx_aborted_errors++;
809                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
810                                &regs->HostCtrl);
811                         wmb();
812                         break;
813                 case E_TX_INV_RNG:
814                         printk(KERN_ERR "%s: Invalid send ring block\n",
815                                dev->name);
816                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
817                                &regs->HostCtrl);
818                         wmb();
819                         break;
820                 case E_TX_INV_BUF:
821                         printk(KERN_ERR "%s: Invalid send buffer address\n",
822                                dev->name);
823                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
824                                &regs->HostCtrl);
825                         wmb();
826                         break;
827                 case E_TX_INV_DSC:
828                         printk(KERN_ERR "%s: Invalid descriptor address\n",
829                                dev->name);
830                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
831                                &regs->HostCtrl);
832                         wmb();
833                         break;
834                 /*
835                  * RX events.
836                  */
837                 case E_RX_RNG_OUT:
838                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
839                         break;
840
841                 case E_RX_PAR_ERR:
842                         printk(KERN_WARNING "%s: Receive parity error\n",
843                                dev->name);
844                         goto drop;
845                 case E_RX_LLRC_ERR:
846                         printk(KERN_WARNING "%s: Receive LLRC error\n",
847                                dev->name);
848                         goto drop;
849                 case E_PKT_LN_ERR:
850                         printk(KERN_WARNING "%s: Receive packet length "
851                                "error\n", dev->name);
852                         goto drop;
853                 case E_DTA_CKSM_ERR:
854                         printk(KERN_WARNING "%s: Data checksum error\n",
855                                dev->name);
856                         goto drop;
857                 case E_SHT_BST:
858                         printk(KERN_WARNING "%s: Unexpected short burst "
859                                "error\n", dev->name);
860                         goto drop;
861                 case E_STATE_ERR:
862                         printk(KERN_WARNING "%s: Recv. state transition"
863                                " error\n", dev->name);
864                         goto drop;
865                 case E_UNEXP_DATA:
866                         printk(KERN_WARNING "%s: Unexpected data error\n",
867                                dev->name);
868                         goto drop;
869                 case E_LST_LNK_ERR:
870                         printk(KERN_WARNING "%s: Link lost error\n",
871                                dev->name);
872                         goto drop;
873                 case E_FRM_ERR:
874                         printk(KERN_WARNING "%s: Framming Error\n",
875                                dev->name);
876                         goto drop;
877                 case E_FLG_SYN_ERR:
878                         printk(KERN_WARNING "%s: Flag sync. lost during "
879                                "packet\n", dev->name);
880                         goto drop;
881                 case E_RX_INV_BUF:
882                         printk(KERN_ERR "%s: Invalid receive buffer "
883                                "address\n", dev->name);
884                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
885                                &regs->HostCtrl);
886                         wmb();
887                         break;
888                 case E_RX_INV_DSC:
889                         printk(KERN_ERR "%s: Invalid receive descriptor "
890                                "address\n", dev->name);
891                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
892                                &regs->HostCtrl);
893                         wmb();
894                         break;
895                 case E_RNG_BLK:
896                         printk(KERN_ERR "%s: Invalid ring block\n",
897                                dev->name);
898                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
899                                &regs->HostCtrl);
900                         wmb();
901                         break;
902                 drop:
903                         /* Label packet to be dropped.
904                          * Actual dropping occurs in rx
905                          * handling.
906                          *
907                          * The index of packet we get to drop is
908                          * the index of the packet following
909                          * the bad packet. -kbf
910                          */
911                         {
912                                 u16 index = rrpriv->evt_ring[eidx].index;
913                                 index = (index + (RX_RING_ENTRIES - 1)) %
914                                         RX_RING_ENTRIES;
915                                 rrpriv->rx_ring[index].mode |=
916                                         (PACKET_BAD | PACKET_END);
917                         }
918                         break;
919                 default:
920                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
921                                dev->name, rrpriv->evt_ring[eidx].code);
922                 }
923                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
924         }
925
926         rrpriv->info->evt_ctrl.pi = eidx;
927         wmb();
928         return eidx;
929 }
930
931
932 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
933 {
934         struct rr_private *rrpriv = netdev_priv(dev);
935         struct rr_regs __iomem *regs = rrpriv->regs;
936
937         do {
938                 struct rx_desc *desc;
939                 u32 pkt_len;
940
941                 desc = &(rrpriv->rx_ring[index]);
942                 pkt_len = desc->size;
943 #if (DEBUG > 2)
944                 printk("index %i, rxlimit %i\n", index, rxlimit);
945                 printk("len %x, mode %x\n", pkt_len, desc->mode);
946 #endif
947                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
948                         dev->stats.rx_dropped++;
949                         goto defer;
950                 }
951
952                 if (pkt_len > 0){
953                         struct sk_buff *skb, *rx_skb;
954
955                         rx_skb = rrpriv->rx_skbuff[index];
956
957                         if (pkt_len < PKT_COPY_THRESHOLD) {
958                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
959                                 if (skb == NULL){
960                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
961                                         dev->stats.rx_dropped++;
962                                         goto defer;
963                                 } else {
964                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
965                                                                     desc->addr.addrlo,
966                                                                     pkt_len,
967                                                                     PCI_DMA_FROMDEVICE);
968
969                                         memcpy(skb_put(skb, pkt_len),
970                                                rx_skb->data, pkt_len);
971
972                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
973                                                                        desc->addr.addrlo,
974                                                                        pkt_len,
975                                                                        PCI_DMA_FROMDEVICE);
976                                 }
977                         }else{
978                                 struct sk_buff *newskb;
979
980                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
981                                         GFP_ATOMIC);
982                                 if (newskb){
983                                         dma_addr_t addr;
984
985                                         pci_unmap_single(rrpriv->pci_dev,
986                                                 desc->addr.addrlo, dev->mtu +
987                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
988                                         skb = rx_skb;
989                                         skb_put(skb, pkt_len);
990                                         rrpriv->rx_skbuff[index] = newskb;
991                                         addr = pci_map_single(rrpriv->pci_dev,
992                                                 newskb->data,
993                                                 dev->mtu + HIPPI_HLEN,
994                                                 PCI_DMA_FROMDEVICE);
995                                         set_rraddr(&desc->addr, addr);
996                                 } else {
997                                         printk("%s: Out of memory, deferring "
998                                                "packet\n", dev->name);
999                                         dev->stats.rx_dropped++;
1000                                         goto defer;
1001                                 }
1002                         }
1003                         skb->protocol = hippi_type_trans(skb, dev);
1004
1005                         netif_rx(skb);          /* send it up */
1006
1007                         dev->stats.rx_packets++;
1008                         dev->stats.rx_bytes += pkt_len;
1009                 }
1010         defer:
1011                 desc->mode = 0;
1012                 desc->size = dev->mtu + HIPPI_HLEN;
1013
1014                 if ((index & 7) == 7)
1015                         writel(index, &regs->IpRxPi);
1016
1017                 index = (index + 1) % RX_RING_ENTRIES;
1018         } while(index != rxlimit);
1019
1020         rrpriv->cur_rx = index;
1021         wmb();
1022 }
1023
1024
1025 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1026 {
1027         struct rr_private *rrpriv;
1028         struct rr_regs __iomem *regs;
1029         struct net_device *dev = (struct net_device *)dev_id;
1030         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1031
1032         rrpriv = netdev_priv(dev);
1033         regs = rrpriv->regs;
1034
1035         if (!(readl(&regs->HostCtrl) & RR_INT))
1036                 return IRQ_NONE;
1037
1038         spin_lock(&rrpriv->lock);
1039
1040         prodidx = readl(&regs->EvtPrd);
1041         txcsmr = (prodidx >> 8) & 0xff;
1042         rxlimit = (prodidx >> 16) & 0xff;
1043         prodidx &= 0xff;
1044
1045 #if (DEBUG > 2)
1046         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1047                prodidx, rrpriv->info->evt_ctrl.pi);
1048 #endif
1049         /*
1050          * Order here is important.  We must handle events
1051          * before doing anything else in order to catch
1052          * such things as LLRC errors, etc -kbf
1053          */
1054
1055         eidx = rrpriv->info->evt_ctrl.pi;
1056         if (prodidx != eidx)
1057                 eidx = rr_handle_event(dev, prodidx, eidx);
1058
1059         rxindex = rrpriv->cur_rx;
1060         if (rxindex != rxlimit)
1061                 rx_int(dev, rxlimit, rxindex);
1062
1063         txcon = rrpriv->dirty_tx;
1064         if (txcsmr != txcon) {
1065                 do {
1066                         /* Due to occational firmware TX producer/consumer out
1067                          * of sync. error need to check entry in ring -kbf
1068                          */
1069                         if(rrpriv->tx_skbuff[txcon]){
1070                                 struct tx_desc *desc;
1071                                 struct sk_buff *skb;
1072
1073                                 desc = &(rrpriv->tx_ring[txcon]);
1074                                 skb = rrpriv->tx_skbuff[txcon];
1075
1076                                 dev->stats.tx_packets++;
1077                                 dev->stats.tx_bytes += skb->len;
1078
1079                                 pci_unmap_single(rrpriv->pci_dev,
1080                                                  desc->addr.addrlo, skb->len,
1081                                                  PCI_DMA_TODEVICE);
1082                                 dev_kfree_skb_irq(skb);
1083
1084                                 rrpriv->tx_skbuff[txcon] = NULL;
1085                                 desc->size = 0;
1086                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1087                                 desc->mode = 0;
1088                         }
1089                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1090                 } while (txcsmr != txcon);
1091                 wmb();
1092
1093                 rrpriv->dirty_tx = txcon;
1094                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1095                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1096                      != rrpriv->dirty_tx)){
1097                         rrpriv->tx_full = 0;
1098                         netif_wake_queue(dev);
1099                 }
1100         }
1101
1102         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1103         writel(eidx, &regs->EvtCon);
1104         wmb();
1105
1106         spin_unlock(&rrpriv->lock);
1107         return IRQ_HANDLED;
1108 }
1109
1110 static inline void rr_raz_tx(struct rr_private *rrpriv,
1111                              struct net_device *dev)
1112 {
1113         int i;
1114
1115         for (i = 0; i < TX_RING_ENTRIES; i++) {
1116                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1117
1118                 if (skb) {
1119                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1120
1121                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1122                                 skb->len, PCI_DMA_TODEVICE);
1123                         desc->size = 0;
1124                         set_rraddr(&desc->addr, 0);
1125                         dev_kfree_skb(skb);
1126                         rrpriv->tx_skbuff[i] = NULL;
1127                 }
1128         }
1129 }
1130
1131
1132 static inline void rr_raz_rx(struct rr_private *rrpriv,
1133                              struct net_device *dev)
1134 {
1135         int i;
1136
1137         for (i = 0; i < RX_RING_ENTRIES; i++) {
1138                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1139
1140                 if (skb) {
1141                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1142
1143                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1144                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1145                         desc->size = 0;
1146                         set_rraddr(&desc->addr, 0);
1147                         dev_kfree_skb(skb);
1148                         rrpriv->rx_skbuff[i] = NULL;
1149                 }
1150         }
1151 }
1152
1153 static void rr_timer(unsigned long data)
1154 {
1155         struct net_device *dev = (struct net_device *)data;
1156         struct rr_private *rrpriv = netdev_priv(dev);
1157         struct rr_regs __iomem *regs = rrpriv->regs;
1158         unsigned long flags;
1159
1160         if (readl(&regs->HostCtrl) & NIC_HALTED){
1161                 printk("%s: Restarting nic\n", dev->name);
1162                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1163                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1164                 wmb();
1165
1166                 rr_raz_tx(rrpriv, dev);
1167                 rr_raz_rx(rrpriv, dev);
1168
1169                 if (rr_init1(dev)) {
1170                         spin_lock_irqsave(&rrpriv->lock, flags);
1171                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1172                                &regs->HostCtrl);
1173                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1174                 }
1175         }
1176         rrpriv->timer.expires = RUN_AT(5*HZ);
1177         add_timer(&rrpriv->timer);
1178 }
1179
1180
1181 static int rr_open(struct net_device *dev)
1182 {
1183         struct rr_private *rrpriv = netdev_priv(dev);
1184         struct pci_dev *pdev = rrpriv->pci_dev;
1185         struct rr_regs __iomem *regs;
1186         int ecode = 0;
1187         unsigned long flags;
1188         dma_addr_t dma_addr;
1189
1190         regs = rrpriv->regs;
1191
1192         if (rrpriv->fw_rev < 0x00020000) {
1193                 printk(KERN_WARNING "%s: trying to configure device with "
1194                        "obsolete firmware\n", dev->name);
1195                 ecode = -EBUSY;
1196                 goto error;
1197         }
1198
1199         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1200                                                256 * sizeof(struct ring_ctrl),
1201                                                &dma_addr);
1202         if (!rrpriv->rx_ctrl) {
1203                 ecode = -ENOMEM;
1204                 goto error;
1205         }
1206         rrpriv->rx_ctrl_dma = dma_addr;
1207         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1208
1209         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1210                                             &dma_addr);
1211         if (!rrpriv->info) {
1212                 ecode = -ENOMEM;
1213                 goto error;
1214         }
1215         rrpriv->info_dma = dma_addr;
1216         memset(rrpriv->info, 0, sizeof(struct rr_info));
1217         wmb();
1218
1219         spin_lock_irqsave(&rrpriv->lock, flags);
1220         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1221         readl(&regs->HostCtrl);
1222         spin_unlock_irqrestore(&rrpriv->lock, flags);
1223
1224         if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226                        dev->name, pdev->irq);
1227                 ecode = -EAGAIN;
1228                 goto error;
1229         }
1230
1231         if ((ecode = rr_init1(dev)))
1232                 goto error;
1233
1234         /* Set the timer to switch to check for link beat and perhaps switch
1235            to an alternate media type. */
1236         init_timer(&rrpriv->timer);
1237         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1238         rrpriv->timer.data = (unsigned long)dev;
1239         rrpriv->timer.function = rr_timer;               /* timer handler */
1240         add_timer(&rrpriv->timer);
1241
1242         netif_start_queue(dev);
1243
1244         return ecode;
1245
1246  error:
1247         spin_lock_irqsave(&rrpriv->lock, flags);
1248         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1249         spin_unlock_irqrestore(&rrpriv->lock, flags);
1250
1251         if (rrpriv->info) {
1252                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1253                                     rrpriv->info_dma);
1254                 rrpriv->info = NULL;
1255         }
1256         if (rrpriv->rx_ctrl) {
1257                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1258                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1259                 rrpriv->rx_ctrl = NULL;
1260         }
1261
1262         netif_stop_queue(dev);
1263
1264         return ecode;
1265 }
1266
1267
1268 static void rr_dump(struct net_device *dev)
1269 {
1270         struct rr_private *rrpriv;
1271         struct rr_regs __iomem *regs;
1272         u32 index, cons;
1273         short i;
1274         int len;
1275
1276         rrpriv = netdev_priv(dev);
1277         regs = rrpriv->regs;
1278
1279         printk("%s: dumping NIC TX rings\n", dev->name);
1280
1281         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1282                readl(&regs->RxPrd), readl(&regs->TxPrd),
1283                readl(&regs->EvtPrd), readl(&regs->TxPi),
1284                rrpriv->info->tx_ctrl.pi);
1285
1286         printk("Error code 0x%x\n", readl(&regs->Fail1));
1287
1288         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1289         cons = rrpriv->dirty_tx;
1290         printk("TX ring index %i, TX consumer %i\n",
1291                index, cons);
1292
1293         if (rrpriv->tx_skbuff[index]){
1294                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1295                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1296                 for (i = 0; i < len; i++){
1297                         if (!(i & 7))
1298                                 printk("\n");
1299                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1300                 }
1301                 printk("\n");
1302         }
1303
1304         if (rrpriv->tx_skbuff[cons]){
1305                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1306                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1307                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1308                        rrpriv->tx_ring[cons].mode,
1309                        rrpriv->tx_ring[cons].size,
1310                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1311                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1312                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1313                 for (i = 0; i < len; i++){
1314                         if (!(i & 7))
1315                                 printk("\n");
1316                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1317                 }
1318                 printk("\n");
1319         }
1320
1321         printk("dumping TX ring info:\n");
1322         for (i = 0; i < TX_RING_ENTRIES; i++)
1323                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1324                        rrpriv->tx_ring[i].mode,
1325                        rrpriv->tx_ring[i].size,
1326                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1327
1328 }
1329
1330
1331 static int rr_close(struct net_device *dev)
1332 {
1333         struct rr_private *rrpriv = netdev_priv(dev);
1334         struct rr_regs __iomem *regs = rrpriv->regs;
1335         struct pci_dev *pdev = rrpriv->pci_dev;
1336         unsigned long flags;
1337         u32 tmp;
1338         short i;
1339
1340         netif_stop_queue(dev);
1341
1342
1343         /*
1344          * Lock to make sure we are not cleaning up while another CPU
1345          * is handling interrupts.
1346          */
1347         spin_lock_irqsave(&rrpriv->lock, flags);
1348
1349         tmp = readl(&regs->HostCtrl);
1350         if (tmp & NIC_HALTED){
1351                 printk("%s: NIC already halted\n", dev->name);
1352                 rr_dump(dev);
1353         }else{
1354                 tmp |= HALT_NIC | RR_CLEAR_INT;
1355                 writel(tmp, &regs->HostCtrl);
1356                 readl(&regs->HostCtrl);
1357         }
1358
1359         rrpriv->fw_running = 0;
1360
1361         del_timer_sync(&rrpriv->timer);
1362
1363         writel(0, &regs->TxPi);
1364         writel(0, &regs->IpRxPi);
1365
1366         writel(0, &regs->EvtCon);
1367         writel(0, &regs->EvtPrd);
1368
1369         for (i = 0; i < CMD_RING_ENTRIES; i++)
1370                 writel(0, &regs->CmdRing[i]);
1371
1372         rrpriv->info->tx_ctrl.entries = 0;
1373         rrpriv->info->cmd_ctrl.pi = 0;
1374         rrpriv->info->evt_ctrl.pi = 0;
1375         rrpriv->rx_ctrl[4].entries = 0;
1376
1377         rr_raz_tx(rrpriv, dev);
1378         rr_raz_rx(rrpriv, dev);
1379
1380         pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1381                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382         rrpriv->rx_ctrl = NULL;
1383
1384         pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1385                             rrpriv->info_dma);
1386         rrpriv->info = NULL;
1387
1388         free_irq(pdev->irq, dev);
1389         spin_unlock_irqrestore(&rrpriv->lock, flags);
1390
1391         return 0;
1392 }
1393
1394
1395 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396                                  struct net_device *dev)
1397 {
1398         struct rr_private *rrpriv = netdev_priv(dev);
1399         struct rr_regs __iomem *regs = rrpriv->regs;
1400         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401         struct ring_ctrl *txctrl;
1402         unsigned long flags;
1403         u32 index, len = skb->len;
1404         u32 *ifield;
1405         struct sk_buff *new_skb;
1406
1407         if (readl(&regs->Mode) & FATAL_ERR)
1408                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1409                        readl(&regs->Fail1), readl(&regs->Fail2));
1410
1411         /*
1412          * We probably need to deal with tbusy here to prevent overruns.
1413          */
1414
1415         if (skb_headroom(skb) < 8){
1416                 printk("incoming skb too small - reallocating\n");
1417                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1418                         dev_kfree_skb(skb);
1419                         netif_wake_queue(dev);
1420                         return NETDEV_TX_OK;
1421                 }
1422                 skb_reserve(new_skb, 8);
1423                 skb_put(new_skb, len);
1424                 skb_copy_from_linear_data(skb, new_skb->data, len);
1425                 dev_kfree_skb(skb);
1426                 skb = new_skb;
1427         }
1428
1429         ifield = (u32 *)skb_push(skb, 8);
1430
1431         ifield[0] = 0;
1432         ifield[1] = hcb->ifield;
1433
1434         /*
1435          * We don't need the lock before we are actually going to start
1436          * fiddling with the control blocks.
1437          */
1438         spin_lock_irqsave(&rrpriv->lock, flags);
1439
1440         txctrl = &rrpriv->info->tx_ctrl;
1441
1442         index = txctrl->pi;
1443
1444         rrpriv->tx_skbuff[index] = skb;
1445         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1446                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1447         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450         wmb();
1451         writel(txctrl->pi, &regs->TxPi);
1452
1453         if (txctrl->pi == rrpriv->dirty_tx){
1454                 rrpriv->tx_full = 1;
1455                 netif_stop_queue(dev);
1456         }
1457
1458         spin_unlock_irqrestore(&rrpriv->lock, flags);
1459
1460         return NETDEV_TX_OK;
1461 }
1462
1463
1464 /*
1465  * Read the firmware out of the EEPROM and put it into the SRAM
1466  * (or from user space - later)
1467  *
1468  * This operation requires the NIC to be halted and is performed with
1469  * interrupts disabled and with the spinlock hold.
1470  */
1471 static int rr_load_firmware(struct net_device *dev)
1472 {
1473         struct rr_private *rrpriv;
1474         struct rr_regs __iomem *regs;
1475         size_t eptr, segptr;
1476         int i, j;
1477         u32 localctrl, sptr, len, tmp;
1478         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1479
1480         rrpriv = netdev_priv(dev);
1481         regs = rrpriv->regs;
1482
1483         if (dev->flags & IFF_UP)
1484                 return -EBUSY;
1485
1486         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1487                 printk("%s: Trying to load firmware to a running NIC.\n",
1488                        dev->name);
1489                 return -EBUSY;
1490         }
1491
1492         localctrl = readl(&regs->LocalCtrl);
1493         writel(0, &regs->LocalCtrl);
1494
1495         writel(0, &regs->EvtPrd);
1496         writel(0, &regs->RxPrd);
1497         writel(0, &regs->TxPrd);
1498
1499         /*
1500          * First wipe the entire SRAM, otherwise we might run into all
1501          * kinds of trouble ... sigh, this took almost all afternoon
1502          * to track down ;-(
1503          */
1504         io = readl(&regs->ExtIo);
1505         writel(0, &regs->ExtIo);
1506         sram_size = rr_read_eeprom_word(rrpriv, 8);
1507
1508         for (i = 200; i < sram_size / 4; i++){
1509                 writel(i * 4, &regs->WinBase);
1510                 mb();
1511                 writel(0, &regs->WinData);
1512                 mb();
1513         }
1514         writel(io, &regs->ExtIo);
1515         mb();
1516
1517         eptr = rr_read_eeprom_word(rrpriv,
1518                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519         eptr = ((eptr & 0x1fffff) >> 3);
1520
1521         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522         p2len = (p2len << 2);
1523         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524         p2size = ((p2size & 0x1fffff) >> 3);
1525
1526         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527                 printk("%s: eptr is invalid\n", dev->name);
1528                 goto out;
1529         }
1530
1531         revision = rr_read_eeprom_word(rrpriv,
1532                         offsetof(struct eeprom, manf.HeaderFmt));
1533
1534         if (revision != 1){
1535                 printk("%s: invalid firmware format (%i)\n",
1536                        dev->name, revision);
1537                 goto out;
1538         }
1539
1540         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1541         eptr +=4;
1542 #if (DEBUG > 1)
1543         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544 #endif
1545
1546         for (i = 0; i < nr_seg; i++){
1547                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1548                 eptr += 4;
1549                 len = rr_read_eeprom_word(rrpriv, eptr);
1550                 eptr += 4;
1551                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1552                 segptr = ((segptr & 0x1fffff) >> 3);
1553                 eptr += 4;
1554 #if (DEBUG > 1)
1555                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556                        dev->name, i, sptr, len, segptr);
1557 #endif
1558                 for (j = 0; j < len; j++){
1559                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1560                         writel(sptr, &regs->WinBase);
1561                         mb();
1562                         writel(tmp, &regs->WinData);
1563                         mb();
1564                         segptr += 4;
1565                         sptr += 4;
1566                 }
1567         }
1568
1569 out:
1570         writel(localctrl, &regs->LocalCtrl);
1571         mb();
1572         return 0;
1573 }
1574
1575
1576 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1577 {
1578         struct rr_private *rrpriv;
1579         unsigned char *image, *oldimage;
1580         unsigned long flags;
1581         unsigned int i;
1582         int error = -EOPNOTSUPP;
1583
1584         rrpriv = netdev_priv(dev);
1585
1586         switch(cmd){
1587         case SIOCRRGFW:
1588                 if (!capable(CAP_SYS_RAWIO)){
1589                         return -EPERM;
1590                 }
1591
1592                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1593                 if (!image)
1594                         return -ENOMEM;
1595
1596                 if (rrpriv->fw_running){
1597                         printk("%s: Firmware already running\n", dev->name);
1598                         error = -EPERM;
1599                         goto gf_out;
1600                 }
1601
1602                 spin_lock_irqsave(&rrpriv->lock, flags);
1603                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1604                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1605                 if (i != EEPROM_BYTES){
1606                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1607                                dev->name);
1608                         error = -EFAULT;
1609                         goto gf_out;
1610                 }
1611                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1612                 if (error)
1613                         error = -EFAULT;
1614         gf_out:
1615                 kfree(image);
1616                 return error;
1617
1618         case SIOCRRPFW:
1619                 if (!capable(CAP_SYS_RAWIO)){
1620                         return -EPERM;
1621                 }
1622
1623                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1624                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1625                 if (!image || !oldimage) {
1626                         error = -ENOMEM;
1627                         goto wf_out;
1628                 }
1629
1630                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1631                 if (error) {
1632                         error = -EFAULT;
1633                         goto wf_out;
1634                 }
1635
1636                 if (rrpriv->fw_running){
1637                         printk("%s: Firmware already running\n", dev->name);
1638                         error = -EPERM;
1639                         goto wf_out;
1640                 }
1641
1642                 printk("%s: Updating EEPROM firmware\n", dev->name);
1643
1644                 spin_lock_irqsave(&rrpriv->lock, flags);
1645                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1646                 if (error)
1647                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1648                                dev->name);
1649
1650                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1651                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1652
1653                 if (i != EEPROM_BYTES)
1654                         printk(KERN_ERR "%s: Error reading back EEPROM "
1655                                "image\n", dev->name);
1656
1657                 error = memcmp(image, oldimage, EEPROM_BYTES);
1658                 if (error){
1659                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1660                                dev->name);
1661                         error = -EFAULT;
1662                 }
1663         wf_out:
1664                 kfree(oldimage);
1665                 kfree(image);
1666                 return error;
1667
1668         case SIOCRRID:
1669                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1670         default:
1671                 return error;
1672         }
1673 }
1674
1675 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1676         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1677                 PCI_ANY_ID, PCI_ANY_ID, },
1678         { 0,}
1679 };
1680 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1681
1682 static struct pci_driver rr_driver = {
1683         .name           = "rrunner",
1684         .id_table       = rr_pci_tbl,
1685         .probe          = rr_init_one,
1686         .remove         = rr_remove_one,
1687 };
1688
1689 static int __init rr_init_module(void)
1690 {
1691         return pci_register_driver(&rr_driver);
1692 }
1693
1694 static void __exit rr_cleanup_module(void)
1695 {
1696         pci_unregister_driver(&rr_driver);
1697 }
1698
1699 module_init(rr_init_module);
1700 module_exit(rr_cleanup_module);