3 The purpose of this driver is to provide a device that allows
4 for sharing of resources:
6 1) qdiscs/policies that are per device as opposed to system wide.
7 ifb allows for a device which can be redirected to thus providing
8 an impression of sharing.
10 2) Allows for queueing incoming traffic for shaping instead of
13 The original concept is based on what is known as the IMQ
14 driver initially written by Martin Devera, later rewritten
15 by Patrick McHardy and then maintained by Andre Correa.
17 You need the tc action mirror or redirect to feed this device
20 This program is free software; you can redistribute it and/or
21 modify it under the terms of the GNU General Public License
22 as published by the Free Software Foundation; either version
23 2 of the License, or (at your option) any later version.
25 Authors: Jamal Hadi Salim (2005)
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/moduleparam.h>
37 #include <net/pkt_sched.h>
38 #include <net/net_namespace.h>
41 struct ifb_q_private {
42 struct net_device *dev;
43 struct tasklet_struct ifb_tasklet;
46 struct sk_buff_head rq;
49 struct u64_stats_sync rsync;
51 struct u64_stats_sync tsync;
54 struct sk_buff_head tq;
55 } ____cacheline_aligned_in_smp;
57 struct ifb_dev_private {
58 struct ifb_q_private *tx_private;
61 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
62 static int ifb_open(struct net_device *dev);
63 static int ifb_close(struct net_device *dev);
65 static void ifb_ri_tasklet(unsigned long _txp)
67 struct ifb_q_private *txp = (struct ifb_q_private *)_txp;
68 struct netdev_queue *txq;
71 txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
72 skb = skb_peek(&txp->tq);
74 if (!__netif_tx_trylock(txq))
76 skb_queue_splice_tail_init(&txp->rq, &txp->tq);
77 __netif_tx_unlock(txq);
80 while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
81 skb->tc_redirected = 0;
82 skb->tc_skip_classify = 1;
84 u64_stats_update_begin(&txp->tsync);
86 txp->tx_bytes += skb->len;
87 u64_stats_update_end(&txp->tsync);
90 skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
94 txp->dev->stats.tx_dropped++;
95 if (skb_queue_len(&txp->tq) != 0)
100 skb->skb_iif = txp->dev->ifindex;
102 if (!skb->tc_from_ingress) {
105 skb_pull(skb, skb->mac_len);
106 netif_receive_skb(skb);
110 if (__netif_tx_trylock(txq)) {
111 skb = skb_peek(&txp->rq);
113 txp->tasklet_pending = 0;
114 if (netif_tx_queue_stopped(txq))
115 netif_tx_wake_queue(txq);
117 __netif_tx_unlock(txq);
120 __netif_tx_unlock(txq);
123 txp->tasklet_pending = 1;
124 tasklet_schedule(&txp->ifb_tasklet);
129 static void ifb_stats64(struct net_device *dev,
130 struct rtnl_link_stats64 *stats)
132 struct ifb_dev_private *dp = netdev_priv(dev);
133 struct ifb_q_private *txp = dp->tx_private;
138 for (i = 0; i < dev->num_tx_queues; i++,txp++) {
140 start = u64_stats_fetch_begin_irq(&txp->rsync);
141 packets = txp->rx_packets;
142 bytes = txp->rx_bytes;
143 } while (u64_stats_fetch_retry_irq(&txp->rsync, start));
144 stats->rx_packets += packets;
145 stats->rx_bytes += bytes;
148 start = u64_stats_fetch_begin_irq(&txp->tsync);
149 packets = txp->tx_packets;
150 bytes = txp->tx_bytes;
151 } while (u64_stats_fetch_retry_irq(&txp->tsync, start));
152 stats->tx_packets += packets;
153 stats->tx_bytes += bytes;
155 stats->rx_dropped = dev->stats.rx_dropped;
156 stats->tx_dropped = dev->stats.tx_dropped;
159 static int ifb_dev_init(struct net_device *dev)
161 struct ifb_dev_private *dp = netdev_priv(dev);
162 struct ifb_q_private *txp;
165 txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
168 dp->tx_private = txp;
169 for (i = 0; i < dev->num_tx_queues; i++,txp++) {
172 __skb_queue_head_init(&txp->rq);
173 __skb_queue_head_init(&txp->tq);
174 u64_stats_init(&txp->rsync);
175 u64_stats_init(&txp->tsync);
176 tasklet_init(&txp->ifb_tasklet, ifb_ri_tasklet,
178 netif_tx_start_queue(netdev_get_tx_queue(dev, i));
183 static const struct net_device_ops ifb_netdev_ops = {
184 .ndo_open = ifb_open,
185 .ndo_stop = ifb_close,
186 .ndo_get_stats64 = ifb_stats64,
187 .ndo_start_xmit = ifb_xmit,
188 .ndo_validate_addr = eth_validate_addr,
189 .ndo_init = ifb_dev_init,
192 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_FRAGLIST | \
193 NETIF_F_TSO_ECN | NETIF_F_TSO | NETIF_F_TSO6 | \
194 NETIF_F_GSO_ENCAP_ALL | \
195 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | \
196 NETIF_F_HW_VLAN_STAG_TX)
198 static void ifb_dev_free(struct net_device *dev)
200 struct ifb_dev_private *dp = netdev_priv(dev);
201 struct ifb_q_private *txp = dp->tx_private;
204 for (i = 0; i < dev->num_tx_queues; i++,txp++) {
205 tasklet_kill(&txp->ifb_tasklet);
206 __skb_queue_purge(&txp->rq);
207 __skb_queue_purge(&txp->tq);
209 kfree(dp->tx_private);
213 static void ifb_setup(struct net_device *dev)
215 /* Initialize the device structure. */
216 dev->netdev_ops = &ifb_netdev_ops;
218 /* Fill in device structure with ethernet-generic values. */
220 dev->tx_queue_len = TX_Q_LIMIT;
222 dev->features |= IFB_FEATURES;
223 dev->hw_features |= dev->features;
224 dev->hw_enc_features |= dev->features;
225 dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
226 NETIF_F_HW_VLAN_STAG_TX);
228 dev->flags |= IFF_NOARP;
229 dev->flags &= ~IFF_MULTICAST;
230 dev->priv_flags &= ~IFF_TX_SKB_SHARING;
232 eth_hw_addr_random(dev);
233 dev->destructor = ifb_dev_free;
236 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
238 struct ifb_dev_private *dp = netdev_priv(dev);
239 struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
241 u64_stats_update_begin(&txp->rsync);
243 txp->rx_bytes += skb->len;
244 u64_stats_update_end(&txp->rsync);
246 if (!skb->tc_redirected || !skb->skb_iif) {
248 dev->stats.rx_dropped++;
252 if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
253 netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
255 __skb_queue_tail(&txp->rq, skb);
256 if (!txp->tasklet_pending) {
257 txp->tasklet_pending = 1;
258 tasklet_schedule(&txp->ifb_tasklet);
264 static int ifb_close(struct net_device *dev)
266 netif_tx_stop_all_queues(dev);
270 static int ifb_open(struct net_device *dev)
272 netif_tx_start_all_queues(dev);
276 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[])
278 if (tb[IFLA_ADDRESS]) {
279 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
281 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
282 return -EADDRNOTAVAIL;
287 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
289 .priv_size = sizeof(struct ifb_dev_private),
291 .validate = ifb_validate,
294 /* Number of ifb devices to be set up by this module.
295 * Note that these legacy devices have one queue.
296 * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
298 static int numifbs = 2;
299 module_param(numifbs, int, 0);
300 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
302 static int __init ifb_init_one(int index)
304 struct net_device *dev_ifb;
307 dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
308 NET_NAME_UNKNOWN, ifb_setup);
313 dev_ifb->rtnl_link_ops = &ifb_link_ops;
314 err = register_netdevice(dev_ifb);
321 free_netdev(dev_ifb);
325 static int __init ifb_init_module(void)
330 err = __rtnl_link_register(&ifb_link_ops);
334 for (i = 0; i < numifbs && !err; i++) {
335 err = ifb_init_one(i);
339 __rtnl_link_unregister(&ifb_link_ops);
347 static void __exit ifb_cleanup_module(void)
349 rtnl_link_unregister(&ifb_link_ops);
352 module_init(ifb_init_module);
353 module_exit(ifb_cleanup_module);
354 MODULE_LICENSE("GPL");
355 MODULE_AUTHOR("Jamal Hadi Salim");
356 MODULE_ALIAS_RTNL_LINK("ifb");