]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/igb/igb_main.c
igb: support for VF configuration tools
[mv-sheeva.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "2.1.0-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79         /* required last entry */
80         {0, }
81 };
82
83 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
84
85 void igb_reset(struct igb_adapter *);
86 static int igb_setup_all_tx_resources(struct igb_adapter *);
87 static int igb_setup_all_rx_resources(struct igb_adapter *);
88 static void igb_free_all_tx_resources(struct igb_adapter *);
89 static void igb_free_all_rx_resources(struct igb_adapter *);
90 static void igb_setup_mrqc(struct igb_adapter *);
91 void igb_update_stats(struct igb_adapter *);
92 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93 static void __devexit igb_remove(struct pci_dev *pdev);
94 static int igb_sw_init(struct igb_adapter *);
95 static int igb_open(struct net_device *);
96 static int igb_close(struct net_device *);
97 static void igb_configure_tx(struct igb_adapter *);
98 static void igb_configure_rx(struct igb_adapter *);
99 static void igb_clean_all_tx_rings(struct igb_adapter *);
100 static void igb_clean_all_rx_rings(struct igb_adapter *);
101 static void igb_clean_tx_ring(struct igb_ring *);
102 static void igb_clean_rx_ring(struct igb_ring *);
103 static void igb_set_rx_mode(struct net_device *);
104 static void igb_update_phy_info(unsigned long);
105 static void igb_watchdog(unsigned long);
106 static void igb_watchdog_task(struct work_struct *);
107 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static void igb_vmm_control(struct igb_adapter *);
134 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
137 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
138                                int vf, u16 vlan, u8 qos);
139 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
140 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
141                                  struct ifla_vf_info *ivi);
142
143 #ifdef CONFIG_PM
144 static int igb_suspend(struct pci_dev *, pm_message_t);
145 static int igb_resume(struct pci_dev *);
146 #endif
147 static void igb_shutdown(struct pci_dev *);
148 #ifdef CONFIG_IGB_DCA
149 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
150 static struct notifier_block dca_notifier = {
151         .notifier_call  = igb_notify_dca,
152         .next           = NULL,
153         .priority       = 0
154 };
155 #endif
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void igb_netpoll(struct net_device *);
159 #endif
160 #ifdef CONFIG_PCI_IOV
161 static unsigned int max_vfs = 0;
162 module_param(max_vfs, uint, 0);
163 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
164                  "per physical function");
165 #endif /* CONFIG_PCI_IOV */
166
167 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
168                      pci_channel_state_t);
169 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
170 static void igb_io_resume(struct pci_dev *);
171
172 static struct pci_error_handlers igb_err_handler = {
173         .error_detected = igb_io_error_detected,
174         .slot_reset = igb_io_slot_reset,
175         .resume = igb_io_resume,
176 };
177
178
179 static struct pci_driver igb_driver = {
180         .name     = igb_driver_name,
181         .id_table = igb_pci_tbl,
182         .probe    = igb_probe,
183         .remove   = __devexit_p(igb_remove),
184 #ifdef CONFIG_PM
185         /* Power Managment Hooks */
186         .suspend  = igb_suspend,
187         .resume   = igb_resume,
188 #endif
189         .shutdown = igb_shutdown,
190         .err_handler = &igb_err_handler
191 };
192
193 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
194 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
195 MODULE_LICENSE("GPL");
196 MODULE_VERSION(DRV_VERSION);
197
198 /**
199  * igb_read_clock - read raw cycle counter (to be used by time counter)
200  */
201 static cycle_t igb_read_clock(const struct cyclecounter *tc)
202 {
203         struct igb_adapter *adapter =
204                 container_of(tc, struct igb_adapter, cycles);
205         struct e1000_hw *hw = &adapter->hw;
206         u64 stamp = 0;
207         int shift = 0;
208
209         /*
210          * The timestamp latches on lowest register read. For the 82580
211          * the lowest register is SYSTIMR instead of SYSTIML.  However we never
212          * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
213          */
214         if (hw->mac.type == e1000_82580) {
215                 stamp = rd32(E1000_SYSTIMR) >> 8;
216                 shift = IGB_82580_TSYNC_SHIFT;
217         }
218
219         stamp |= (u64)rd32(E1000_SYSTIML) << shift;
220         stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
221         return stamp;
222 }
223
224 #ifdef DEBUG
225 /**
226  * igb_get_hw_dev_name - return device name string
227  * used by hardware layer to print debugging information
228  **/
229 char *igb_get_hw_dev_name(struct e1000_hw *hw)
230 {
231         struct igb_adapter *adapter = hw->back;
232         return adapter->netdev->name;
233 }
234
235 /**
236  * igb_get_time_str - format current NIC and system time as string
237  */
238 static char *igb_get_time_str(struct igb_adapter *adapter,
239                               char buffer[160])
240 {
241         cycle_t hw = adapter->cycles.read(&adapter->cycles);
242         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
243         struct timespec sys;
244         struct timespec delta;
245         getnstimeofday(&sys);
246
247         delta = timespec_sub(nic, sys);
248
249         sprintf(buffer,
250                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
251                 hw,
252                 (long)nic.tv_sec, nic.tv_nsec,
253                 (long)sys.tv_sec, sys.tv_nsec,
254                 (long)delta.tv_sec, delta.tv_nsec);
255
256         return buffer;
257 }
258 #endif
259
260 /**
261  * igb_init_module - Driver Registration Routine
262  *
263  * igb_init_module is the first routine called when the driver is
264  * loaded. All it does is register with the PCI subsystem.
265  **/
266 static int __init igb_init_module(void)
267 {
268         int ret;
269         printk(KERN_INFO "%s - version %s\n",
270                igb_driver_string, igb_driver_version);
271
272         printk(KERN_INFO "%s\n", igb_copyright);
273
274 #ifdef CONFIG_IGB_DCA
275         dca_register_notify(&dca_notifier);
276 #endif
277         ret = pci_register_driver(&igb_driver);
278         return ret;
279 }
280
281 module_init(igb_init_module);
282
283 /**
284  * igb_exit_module - Driver Exit Cleanup Routine
285  *
286  * igb_exit_module is called just before the driver is removed
287  * from memory.
288  **/
289 static void __exit igb_exit_module(void)
290 {
291 #ifdef CONFIG_IGB_DCA
292         dca_unregister_notify(&dca_notifier);
293 #endif
294         pci_unregister_driver(&igb_driver);
295 }
296
297 module_exit(igb_exit_module);
298
299 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
300 /**
301  * igb_cache_ring_register - Descriptor ring to register mapping
302  * @adapter: board private structure to initialize
303  *
304  * Once we know the feature-set enabled for the device, we'll cache
305  * the register offset the descriptor ring is assigned to.
306  **/
307 static void igb_cache_ring_register(struct igb_adapter *adapter)
308 {
309         int i = 0, j = 0;
310         u32 rbase_offset = adapter->vfs_allocated_count;
311
312         switch (adapter->hw.mac.type) {
313         case e1000_82576:
314                 /* The queues are allocated for virtualization such that VF 0
315                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
316                  * In order to avoid collision we start at the first free queue
317                  * and continue consuming queues in the same sequence
318                  */
319                 if (adapter->vfs_allocated_count) {
320                         for (; i < adapter->rss_queues; i++)
321                                 adapter->rx_ring[i].reg_idx = rbase_offset +
322                                                               Q_IDX_82576(i);
323                         for (; j < adapter->rss_queues; j++)
324                                 adapter->tx_ring[j].reg_idx = rbase_offset +
325                                                               Q_IDX_82576(j);
326                 }
327         case e1000_82575:
328         case e1000_82580:
329         default:
330                 for (; i < adapter->num_rx_queues; i++)
331                         adapter->rx_ring[i].reg_idx = rbase_offset + i;
332                 for (; j < adapter->num_tx_queues; j++)
333                         adapter->tx_ring[j].reg_idx = rbase_offset + j;
334                 break;
335         }
336 }
337
338 static void igb_free_queues(struct igb_adapter *adapter)
339 {
340         kfree(adapter->tx_ring);
341         kfree(adapter->rx_ring);
342
343         adapter->tx_ring = NULL;
344         adapter->rx_ring = NULL;
345
346         adapter->num_rx_queues = 0;
347         adapter->num_tx_queues = 0;
348 }
349
350 /**
351  * igb_alloc_queues - Allocate memory for all rings
352  * @adapter: board private structure to initialize
353  *
354  * We allocate one ring per queue at run-time since we don't know the
355  * number of queues at compile-time.
356  **/
357 static int igb_alloc_queues(struct igb_adapter *adapter)
358 {
359         int i;
360
361         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
362                                    sizeof(struct igb_ring), GFP_KERNEL);
363         if (!adapter->tx_ring)
364                 goto err;
365
366         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
367                                    sizeof(struct igb_ring), GFP_KERNEL);
368         if (!adapter->rx_ring)
369                 goto err;
370
371         for (i = 0; i < adapter->num_tx_queues; i++) {
372                 struct igb_ring *ring = &(adapter->tx_ring[i]);
373                 ring->count = adapter->tx_ring_count;
374                 ring->queue_index = i;
375                 ring->pdev = adapter->pdev;
376                 ring->netdev = adapter->netdev;
377                 /* For 82575, context index must be unique per ring. */
378                 if (adapter->hw.mac.type == e1000_82575)
379                         ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
380         }
381
382         for (i = 0; i < adapter->num_rx_queues; i++) {
383                 struct igb_ring *ring = &(adapter->rx_ring[i]);
384                 ring->count = adapter->rx_ring_count;
385                 ring->queue_index = i;
386                 ring->pdev = adapter->pdev;
387                 ring->netdev = adapter->netdev;
388                 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
389                 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
390                 /* set flag indicating ring supports SCTP checksum offload */
391                 if (adapter->hw.mac.type >= e1000_82576)
392                         ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
393         }
394
395         igb_cache_ring_register(adapter);
396
397         return 0;
398
399 err:
400         igb_free_queues(adapter);
401
402         return -ENOMEM;
403 }
404
405 #define IGB_N0_QUEUE -1
406 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
407 {
408         u32 msixbm = 0;
409         struct igb_adapter *adapter = q_vector->adapter;
410         struct e1000_hw *hw = &adapter->hw;
411         u32 ivar, index;
412         int rx_queue = IGB_N0_QUEUE;
413         int tx_queue = IGB_N0_QUEUE;
414
415         if (q_vector->rx_ring)
416                 rx_queue = q_vector->rx_ring->reg_idx;
417         if (q_vector->tx_ring)
418                 tx_queue = q_vector->tx_ring->reg_idx;
419
420         switch (hw->mac.type) {
421         case e1000_82575:
422                 /* The 82575 assigns vectors using a bitmask, which matches the
423                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
424                    or more queues to a vector, we write the appropriate bits
425                    into the MSIXBM register for that vector. */
426                 if (rx_queue > IGB_N0_QUEUE)
427                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
428                 if (tx_queue > IGB_N0_QUEUE)
429                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
430                 if (!adapter->msix_entries && msix_vector == 0)
431                         msixbm |= E1000_EIMS_OTHER;
432                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
433                 q_vector->eims_value = msixbm;
434                 break;
435         case e1000_82576:
436                 /* 82576 uses a table-based method for assigning vectors.
437                    Each queue has a single entry in the table to which we write
438                    a vector number along with a "valid" bit.  Sadly, the layout
439                    of the table is somewhat counterintuitive. */
440                 if (rx_queue > IGB_N0_QUEUE) {
441                         index = (rx_queue & 0x7);
442                         ivar = array_rd32(E1000_IVAR0, index);
443                         if (rx_queue < 8) {
444                                 /* vector goes into low byte of register */
445                                 ivar = ivar & 0xFFFFFF00;
446                                 ivar |= msix_vector | E1000_IVAR_VALID;
447                         } else {
448                                 /* vector goes into third byte of register */
449                                 ivar = ivar & 0xFF00FFFF;
450                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
451                         }
452                         array_wr32(E1000_IVAR0, index, ivar);
453                 }
454                 if (tx_queue > IGB_N0_QUEUE) {
455                         index = (tx_queue & 0x7);
456                         ivar = array_rd32(E1000_IVAR0, index);
457                         if (tx_queue < 8) {
458                                 /* vector goes into second byte of register */
459                                 ivar = ivar & 0xFFFF00FF;
460                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
461                         } else {
462                                 /* vector goes into high byte of register */
463                                 ivar = ivar & 0x00FFFFFF;
464                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
465                         }
466                         array_wr32(E1000_IVAR0, index, ivar);
467                 }
468                 q_vector->eims_value = 1 << msix_vector;
469                 break;
470         case e1000_82580:
471                 /* 82580 uses the same table-based approach as 82576 but has fewer
472                    entries as a result we carry over for queues greater than 4. */
473                 if (rx_queue > IGB_N0_QUEUE) {
474                         index = (rx_queue >> 1);
475                         ivar = array_rd32(E1000_IVAR0, index);
476                         if (rx_queue & 0x1) {
477                                 /* vector goes into third byte of register */
478                                 ivar = ivar & 0xFF00FFFF;
479                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
480                         } else {
481                                 /* vector goes into low byte of register */
482                                 ivar = ivar & 0xFFFFFF00;
483                                 ivar |= msix_vector | E1000_IVAR_VALID;
484                         }
485                         array_wr32(E1000_IVAR0, index, ivar);
486                 }
487                 if (tx_queue > IGB_N0_QUEUE) {
488                         index = (tx_queue >> 1);
489                         ivar = array_rd32(E1000_IVAR0, index);
490                         if (tx_queue & 0x1) {
491                                 /* vector goes into high byte of register */
492                                 ivar = ivar & 0x00FFFFFF;
493                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
494                         } else {
495                                 /* vector goes into second byte of register */
496                                 ivar = ivar & 0xFFFF00FF;
497                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
498                         }
499                         array_wr32(E1000_IVAR0, index, ivar);
500                 }
501                 q_vector->eims_value = 1 << msix_vector;
502                 break;
503         default:
504                 BUG();
505                 break;
506         }
507 }
508
509 /**
510  * igb_configure_msix - Configure MSI-X hardware
511  *
512  * igb_configure_msix sets up the hardware to properly
513  * generate MSI-X interrupts.
514  **/
515 static void igb_configure_msix(struct igb_adapter *adapter)
516 {
517         u32 tmp;
518         int i, vector = 0;
519         struct e1000_hw *hw = &adapter->hw;
520
521         adapter->eims_enable_mask = 0;
522
523         /* set vector for other causes, i.e. link changes */
524         switch (hw->mac.type) {
525         case e1000_82575:
526                 tmp = rd32(E1000_CTRL_EXT);
527                 /* enable MSI-X PBA support*/
528                 tmp |= E1000_CTRL_EXT_PBA_CLR;
529
530                 /* Auto-Mask interrupts upon ICR read. */
531                 tmp |= E1000_CTRL_EXT_EIAME;
532                 tmp |= E1000_CTRL_EXT_IRCA;
533
534                 wr32(E1000_CTRL_EXT, tmp);
535
536                 /* enable msix_other interrupt */
537                 array_wr32(E1000_MSIXBM(0), vector++,
538                                       E1000_EIMS_OTHER);
539                 adapter->eims_other = E1000_EIMS_OTHER;
540
541                 break;
542
543         case e1000_82576:
544         case e1000_82580:
545                 /* Turn on MSI-X capability first, or our settings
546                  * won't stick.  And it will take days to debug. */
547                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
548                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
549                                 E1000_GPIE_NSICR);
550
551                 /* enable msix_other interrupt */
552                 adapter->eims_other = 1 << vector;
553                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
554
555                 wr32(E1000_IVAR_MISC, tmp);
556                 break;
557         default:
558                 /* do nothing, since nothing else supports MSI-X */
559                 break;
560         } /* switch (hw->mac.type) */
561
562         adapter->eims_enable_mask |= adapter->eims_other;
563
564         for (i = 0; i < adapter->num_q_vectors; i++) {
565                 struct igb_q_vector *q_vector = adapter->q_vector[i];
566                 igb_assign_vector(q_vector, vector++);
567                 adapter->eims_enable_mask |= q_vector->eims_value;
568         }
569
570         wrfl();
571 }
572
573 /**
574  * igb_request_msix - Initialize MSI-X interrupts
575  *
576  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
577  * kernel.
578  **/
579 static int igb_request_msix(struct igb_adapter *adapter)
580 {
581         struct net_device *netdev = adapter->netdev;
582         struct e1000_hw *hw = &adapter->hw;
583         int i, err = 0, vector = 0;
584
585         err = request_irq(adapter->msix_entries[vector].vector,
586                           igb_msix_other, 0, netdev->name, adapter);
587         if (err)
588                 goto out;
589         vector++;
590
591         for (i = 0; i < adapter->num_q_vectors; i++) {
592                 struct igb_q_vector *q_vector = adapter->q_vector[i];
593
594                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
595
596                 if (q_vector->rx_ring && q_vector->tx_ring)
597                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
598                                 q_vector->rx_ring->queue_index);
599                 else if (q_vector->tx_ring)
600                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
601                                 q_vector->tx_ring->queue_index);
602                 else if (q_vector->rx_ring)
603                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
604                                 q_vector->rx_ring->queue_index);
605                 else
606                         sprintf(q_vector->name, "%s-unused", netdev->name);
607
608                 err = request_irq(adapter->msix_entries[vector].vector,
609                                   igb_msix_ring, 0, q_vector->name,
610                                   q_vector);
611                 if (err)
612                         goto out;
613                 vector++;
614         }
615
616         igb_configure_msix(adapter);
617         return 0;
618 out:
619         return err;
620 }
621
622 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
623 {
624         if (adapter->msix_entries) {
625                 pci_disable_msix(adapter->pdev);
626                 kfree(adapter->msix_entries);
627                 adapter->msix_entries = NULL;
628         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
629                 pci_disable_msi(adapter->pdev);
630         }
631 }
632
633 /**
634  * igb_free_q_vectors - Free memory allocated for interrupt vectors
635  * @adapter: board private structure to initialize
636  *
637  * This function frees the memory allocated to the q_vectors.  In addition if
638  * NAPI is enabled it will delete any references to the NAPI struct prior
639  * to freeing the q_vector.
640  **/
641 static void igb_free_q_vectors(struct igb_adapter *adapter)
642 {
643         int v_idx;
644
645         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
646                 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
647                 adapter->q_vector[v_idx] = NULL;
648                 netif_napi_del(&q_vector->napi);
649                 kfree(q_vector);
650         }
651         adapter->num_q_vectors = 0;
652 }
653
654 /**
655  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
656  *
657  * This function resets the device so that it has 0 rx queues, tx queues, and
658  * MSI-X interrupts allocated.
659  */
660 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
661 {
662         igb_free_queues(adapter);
663         igb_free_q_vectors(adapter);
664         igb_reset_interrupt_capability(adapter);
665 }
666
667 /**
668  * igb_set_interrupt_capability - set MSI or MSI-X if supported
669  *
670  * Attempt to configure interrupts using the best available
671  * capabilities of the hardware and kernel.
672  **/
673 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
674 {
675         int err;
676         int numvecs, i;
677
678         /* Number of supported queues. */
679         adapter->num_rx_queues = adapter->rss_queues;
680         adapter->num_tx_queues = adapter->rss_queues;
681
682         /* start with one vector for every rx queue */
683         numvecs = adapter->num_rx_queues;
684
685         /* if tx handler is seperate add 1 for every tx queue */
686         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
687                 numvecs += adapter->num_tx_queues;
688
689         /* store the number of vectors reserved for queues */
690         adapter->num_q_vectors = numvecs;
691
692         /* add 1 vector for link status interrupts */
693         numvecs++;
694         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
695                                         GFP_KERNEL);
696         if (!adapter->msix_entries)
697                 goto msi_only;
698
699         for (i = 0; i < numvecs; i++)
700                 adapter->msix_entries[i].entry = i;
701
702         err = pci_enable_msix(adapter->pdev,
703                               adapter->msix_entries,
704                               numvecs);
705         if (err == 0)
706                 goto out;
707
708         igb_reset_interrupt_capability(adapter);
709
710         /* If we can't do MSI-X, try MSI */
711 msi_only:
712 #ifdef CONFIG_PCI_IOV
713         /* disable SR-IOV for non MSI-X configurations */
714         if (adapter->vf_data) {
715                 struct e1000_hw *hw = &adapter->hw;
716                 /* disable iov and allow time for transactions to clear */
717                 pci_disable_sriov(adapter->pdev);
718                 msleep(500);
719
720                 kfree(adapter->vf_data);
721                 adapter->vf_data = NULL;
722                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
723                 msleep(100);
724                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
725         }
726 #endif
727         adapter->vfs_allocated_count = 0;
728         adapter->rss_queues = 1;
729         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
730         adapter->num_rx_queues = 1;
731         adapter->num_tx_queues = 1;
732         adapter->num_q_vectors = 1;
733         if (!pci_enable_msi(adapter->pdev))
734                 adapter->flags |= IGB_FLAG_HAS_MSI;
735 out:
736         /* Notify the stack of the (possibly) reduced Tx Queue count. */
737         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
738         return;
739 }
740
741 /**
742  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
743  * @adapter: board private structure to initialize
744  *
745  * We allocate one q_vector per queue interrupt.  If allocation fails we
746  * return -ENOMEM.
747  **/
748 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
749 {
750         struct igb_q_vector *q_vector;
751         struct e1000_hw *hw = &adapter->hw;
752         int v_idx;
753
754         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
755                 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
756                 if (!q_vector)
757                         goto err_out;
758                 q_vector->adapter = adapter;
759                 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
760                 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
761                 q_vector->itr_val = IGB_START_ITR;
762                 q_vector->set_itr = 1;
763                 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
764                 adapter->q_vector[v_idx] = q_vector;
765         }
766         return 0;
767
768 err_out:
769         while (v_idx) {
770                 v_idx--;
771                 q_vector = adapter->q_vector[v_idx];
772                 netif_napi_del(&q_vector->napi);
773                 kfree(q_vector);
774                 adapter->q_vector[v_idx] = NULL;
775         }
776         return -ENOMEM;
777 }
778
779 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
780                                       int ring_idx, int v_idx)
781 {
782         struct igb_q_vector *q_vector;
783
784         q_vector = adapter->q_vector[v_idx];
785         q_vector->rx_ring = &adapter->rx_ring[ring_idx];
786         q_vector->rx_ring->q_vector = q_vector;
787         q_vector->itr_val = adapter->rx_itr_setting;
788         if (q_vector->itr_val && q_vector->itr_val <= 3)
789                 q_vector->itr_val = IGB_START_ITR;
790 }
791
792 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
793                                       int ring_idx, int v_idx)
794 {
795         struct igb_q_vector *q_vector;
796
797         q_vector = adapter->q_vector[v_idx];
798         q_vector->tx_ring = &adapter->tx_ring[ring_idx];
799         q_vector->tx_ring->q_vector = q_vector;
800         q_vector->itr_val = adapter->tx_itr_setting;
801         if (q_vector->itr_val && q_vector->itr_val <= 3)
802                 q_vector->itr_val = IGB_START_ITR;
803 }
804
805 /**
806  * igb_map_ring_to_vector - maps allocated queues to vectors
807  *
808  * This function maps the recently allocated queues to vectors.
809  **/
810 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
811 {
812         int i;
813         int v_idx = 0;
814
815         if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
816             (adapter->num_q_vectors < adapter->num_tx_queues))
817                 return -ENOMEM;
818
819         if (adapter->num_q_vectors >=
820             (adapter->num_rx_queues + adapter->num_tx_queues)) {
821                 for (i = 0; i < adapter->num_rx_queues; i++)
822                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
823                 for (i = 0; i < adapter->num_tx_queues; i++)
824                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
825         } else {
826                 for (i = 0; i < adapter->num_rx_queues; i++) {
827                         if (i < adapter->num_tx_queues)
828                                 igb_map_tx_ring_to_vector(adapter, i, v_idx);
829                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
830                 }
831                 for (; i < adapter->num_tx_queues; i++)
832                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
833         }
834         return 0;
835 }
836
837 /**
838  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
839  *
840  * This function initializes the interrupts and allocates all of the queues.
841  **/
842 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
843 {
844         struct pci_dev *pdev = adapter->pdev;
845         int err;
846
847         igb_set_interrupt_capability(adapter);
848
849         err = igb_alloc_q_vectors(adapter);
850         if (err) {
851                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
852                 goto err_alloc_q_vectors;
853         }
854
855         err = igb_alloc_queues(adapter);
856         if (err) {
857                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
858                 goto err_alloc_queues;
859         }
860
861         err = igb_map_ring_to_vector(adapter);
862         if (err) {
863                 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
864                 goto err_map_queues;
865         }
866
867
868         return 0;
869 err_map_queues:
870         igb_free_queues(adapter);
871 err_alloc_queues:
872         igb_free_q_vectors(adapter);
873 err_alloc_q_vectors:
874         igb_reset_interrupt_capability(adapter);
875         return err;
876 }
877
878 /**
879  * igb_request_irq - initialize interrupts
880  *
881  * Attempts to configure interrupts using the best available
882  * capabilities of the hardware and kernel.
883  **/
884 static int igb_request_irq(struct igb_adapter *adapter)
885 {
886         struct net_device *netdev = adapter->netdev;
887         struct pci_dev *pdev = adapter->pdev;
888         int err = 0;
889
890         if (adapter->msix_entries) {
891                 err = igb_request_msix(adapter);
892                 if (!err)
893                         goto request_done;
894                 /* fall back to MSI */
895                 igb_clear_interrupt_scheme(adapter);
896                 if (!pci_enable_msi(adapter->pdev))
897                         adapter->flags |= IGB_FLAG_HAS_MSI;
898                 igb_free_all_tx_resources(adapter);
899                 igb_free_all_rx_resources(adapter);
900                 adapter->num_tx_queues = 1;
901                 adapter->num_rx_queues = 1;
902                 adapter->num_q_vectors = 1;
903                 err = igb_alloc_q_vectors(adapter);
904                 if (err) {
905                         dev_err(&pdev->dev,
906                                 "Unable to allocate memory for vectors\n");
907                         goto request_done;
908                 }
909                 err = igb_alloc_queues(adapter);
910                 if (err) {
911                         dev_err(&pdev->dev,
912                                 "Unable to allocate memory for queues\n");
913                         igb_free_q_vectors(adapter);
914                         goto request_done;
915                 }
916                 igb_setup_all_tx_resources(adapter);
917                 igb_setup_all_rx_resources(adapter);
918         } else {
919                 igb_assign_vector(adapter->q_vector[0], 0);
920         }
921
922         if (adapter->flags & IGB_FLAG_HAS_MSI) {
923                 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
924                                   netdev->name, adapter);
925                 if (!err)
926                         goto request_done;
927
928                 /* fall back to legacy interrupts */
929                 igb_reset_interrupt_capability(adapter);
930                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
931         }
932
933         err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
934                           netdev->name, adapter);
935
936         if (err)
937                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
938                         err);
939
940 request_done:
941         return err;
942 }
943
944 static void igb_free_irq(struct igb_adapter *adapter)
945 {
946         if (adapter->msix_entries) {
947                 int vector = 0, i;
948
949                 free_irq(adapter->msix_entries[vector++].vector, adapter);
950
951                 for (i = 0; i < adapter->num_q_vectors; i++) {
952                         struct igb_q_vector *q_vector = adapter->q_vector[i];
953                         free_irq(adapter->msix_entries[vector++].vector,
954                                  q_vector);
955                 }
956         } else {
957                 free_irq(adapter->pdev->irq, adapter);
958         }
959 }
960
961 /**
962  * igb_irq_disable - Mask off interrupt generation on the NIC
963  * @adapter: board private structure
964  **/
965 static void igb_irq_disable(struct igb_adapter *adapter)
966 {
967         struct e1000_hw *hw = &adapter->hw;
968
969         /*
970          * we need to be careful when disabling interrupts.  The VFs are also
971          * mapped into these registers and so clearing the bits can cause
972          * issues on the VF drivers so we only need to clear what we set
973          */
974         if (adapter->msix_entries) {
975                 u32 regval = rd32(E1000_EIAM);
976                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
977                 wr32(E1000_EIMC, adapter->eims_enable_mask);
978                 regval = rd32(E1000_EIAC);
979                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
980         }
981
982         wr32(E1000_IAM, 0);
983         wr32(E1000_IMC, ~0);
984         wrfl();
985         synchronize_irq(adapter->pdev->irq);
986 }
987
988 /**
989  * igb_irq_enable - Enable default interrupt generation settings
990  * @adapter: board private structure
991  **/
992 static void igb_irq_enable(struct igb_adapter *adapter)
993 {
994         struct e1000_hw *hw = &adapter->hw;
995
996         if (adapter->msix_entries) {
997                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
998                 u32 regval = rd32(E1000_EIAC);
999                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1000                 regval = rd32(E1000_EIAM);
1001                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1002                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1003                 if (adapter->vfs_allocated_count) {
1004                         wr32(E1000_MBVFIMR, 0xFF);
1005                         ims |= E1000_IMS_VMMB;
1006                 }
1007                 if (adapter->hw.mac.type == e1000_82580)
1008                         ims |= E1000_IMS_DRSTA;
1009
1010                 wr32(E1000_IMS, ims);
1011         } else {
1012                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1013                                 E1000_IMS_DRSTA);
1014                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1015                                 E1000_IMS_DRSTA);
1016         }
1017 }
1018
1019 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1020 {
1021         struct e1000_hw *hw = &adapter->hw;
1022         u16 vid = adapter->hw.mng_cookie.vlan_id;
1023         u16 old_vid = adapter->mng_vlan_id;
1024
1025         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1026                 /* add VID to filter table */
1027                 igb_vfta_set(hw, vid, true);
1028                 adapter->mng_vlan_id = vid;
1029         } else {
1030                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1031         }
1032
1033         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1034             (vid != old_vid) &&
1035             !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1036                 /* remove VID from filter table */
1037                 igb_vfta_set(hw, old_vid, false);
1038         }
1039 }
1040
1041 /**
1042  * igb_release_hw_control - release control of the h/w to f/w
1043  * @adapter: address of board private structure
1044  *
1045  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1046  * For ASF and Pass Through versions of f/w this means that the
1047  * driver is no longer loaded.
1048  *
1049  **/
1050 static void igb_release_hw_control(struct igb_adapter *adapter)
1051 {
1052         struct e1000_hw *hw = &adapter->hw;
1053         u32 ctrl_ext;
1054
1055         /* Let firmware take over control of h/w */
1056         ctrl_ext = rd32(E1000_CTRL_EXT);
1057         wr32(E1000_CTRL_EXT,
1058                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1059 }
1060
1061 /**
1062  * igb_get_hw_control - get control of the h/w from f/w
1063  * @adapter: address of board private structure
1064  *
1065  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1066  * For ASF and Pass Through versions of f/w this means that
1067  * the driver is loaded.
1068  *
1069  **/
1070 static void igb_get_hw_control(struct igb_adapter *adapter)
1071 {
1072         struct e1000_hw *hw = &adapter->hw;
1073         u32 ctrl_ext;
1074
1075         /* Let firmware know the driver has taken over */
1076         ctrl_ext = rd32(E1000_CTRL_EXT);
1077         wr32(E1000_CTRL_EXT,
1078                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1079 }
1080
1081 /**
1082  * igb_configure - configure the hardware for RX and TX
1083  * @adapter: private board structure
1084  **/
1085 static void igb_configure(struct igb_adapter *adapter)
1086 {
1087         struct net_device *netdev = adapter->netdev;
1088         int i;
1089
1090         igb_get_hw_control(adapter);
1091         igb_set_rx_mode(netdev);
1092
1093         igb_restore_vlan(adapter);
1094
1095         igb_setup_tctl(adapter);
1096         igb_setup_mrqc(adapter);
1097         igb_setup_rctl(adapter);
1098
1099         igb_configure_tx(adapter);
1100         igb_configure_rx(adapter);
1101
1102         igb_rx_fifo_flush_82575(&adapter->hw);
1103
1104         /* call igb_desc_unused which always leaves
1105          * at least 1 descriptor unused to make sure
1106          * next_to_use != next_to_clean */
1107         for (i = 0; i < adapter->num_rx_queues; i++) {
1108                 struct igb_ring *ring = &adapter->rx_ring[i];
1109                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1110         }
1111
1112
1113         adapter->tx_queue_len = netdev->tx_queue_len;
1114 }
1115
1116
1117 /**
1118  * igb_up - Open the interface and prepare it to handle traffic
1119  * @adapter: board private structure
1120  **/
1121 int igb_up(struct igb_adapter *adapter)
1122 {
1123         struct e1000_hw *hw = &adapter->hw;
1124         int i;
1125
1126         /* hardware has been reset, we need to reload some things */
1127         igb_configure(adapter);
1128
1129         clear_bit(__IGB_DOWN, &adapter->state);
1130
1131         for (i = 0; i < adapter->num_q_vectors; i++) {
1132                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1133                 napi_enable(&q_vector->napi);
1134         }
1135         if (adapter->msix_entries)
1136                 igb_configure_msix(adapter);
1137         else
1138                 igb_assign_vector(adapter->q_vector[0], 0);
1139
1140         /* Clear any pending interrupts. */
1141         rd32(E1000_ICR);
1142         igb_irq_enable(adapter);
1143
1144         /* notify VFs that reset has been completed */
1145         if (adapter->vfs_allocated_count) {
1146                 u32 reg_data = rd32(E1000_CTRL_EXT);
1147                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1148                 wr32(E1000_CTRL_EXT, reg_data);
1149         }
1150
1151         netif_tx_start_all_queues(adapter->netdev);
1152
1153         /* start the watchdog. */
1154         hw->mac.get_link_status = 1;
1155         schedule_work(&adapter->watchdog_task);
1156
1157         return 0;
1158 }
1159
1160 void igb_down(struct igb_adapter *adapter)
1161 {
1162         struct net_device *netdev = adapter->netdev;
1163         struct e1000_hw *hw = &adapter->hw;
1164         u32 tctl, rctl;
1165         int i;
1166
1167         /* signal that we're down so the interrupt handler does not
1168          * reschedule our watchdog timer */
1169         set_bit(__IGB_DOWN, &adapter->state);
1170
1171         /* disable receives in the hardware */
1172         rctl = rd32(E1000_RCTL);
1173         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1174         /* flush and sleep below */
1175
1176         netif_tx_stop_all_queues(netdev);
1177
1178         /* disable transmits in the hardware */
1179         tctl = rd32(E1000_TCTL);
1180         tctl &= ~E1000_TCTL_EN;
1181         wr32(E1000_TCTL, tctl);
1182         /* flush both disables and wait for them to finish */
1183         wrfl();
1184         msleep(10);
1185
1186         for (i = 0; i < adapter->num_q_vectors; i++) {
1187                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1188                 napi_disable(&q_vector->napi);
1189         }
1190
1191         igb_irq_disable(adapter);
1192
1193         del_timer_sync(&adapter->watchdog_timer);
1194         del_timer_sync(&adapter->phy_info_timer);
1195
1196         netdev->tx_queue_len = adapter->tx_queue_len;
1197         netif_carrier_off(netdev);
1198
1199         /* record the stats before reset*/
1200         igb_update_stats(adapter);
1201
1202         adapter->link_speed = 0;
1203         adapter->link_duplex = 0;
1204
1205         if (!pci_channel_offline(adapter->pdev))
1206                 igb_reset(adapter);
1207         igb_clean_all_tx_rings(adapter);
1208         igb_clean_all_rx_rings(adapter);
1209 #ifdef CONFIG_IGB_DCA
1210
1211         /* since we reset the hardware DCA settings were cleared */
1212         igb_setup_dca(adapter);
1213 #endif
1214 }
1215
1216 void igb_reinit_locked(struct igb_adapter *adapter)
1217 {
1218         WARN_ON(in_interrupt());
1219         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1220                 msleep(1);
1221         igb_down(adapter);
1222         igb_up(adapter);
1223         clear_bit(__IGB_RESETTING, &adapter->state);
1224 }
1225
1226 void igb_reset(struct igb_adapter *adapter)
1227 {
1228         struct pci_dev *pdev = adapter->pdev;
1229         struct e1000_hw *hw = &adapter->hw;
1230         struct e1000_mac_info *mac = &hw->mac;
1231         struct e1000_fc_info *fc = &hw->fc;
1232         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1233         u16 hwm;
1234
1235         /* Repartition Pba for greater than 9k mtu
1236          * To take effect CTRL.RST is required.
1237          */
1238         switch (mac->type) {
1239         case e1000_82580:
1240                 pba = rd32(E1000_RXPBS);
1241                 pba = igb_rxpbs_adjust_82580(pba);
1242                 break;
1243         case e1000_82576:
1244                 pba = rd32(E1000_RXPBS);
1245                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1246                 break;
1247         case e1000_82575:
1248         default:
1249                 pba = E1000_PBA_34K;
1250                 break;
1251         }
1252
1253         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1254             (mac->type < e1000_82576)) {
1255                 /* adjust PBA for jumbo frames */
1256                 wr32(E1000_PBA, pba);
1257
1258                 /* To maintain wire speed transmits, the Tx FIFO should be
1259                  * large enough to accommodate two full transmit packets,
1260                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1261                  * the Rx FIFO should be large enough to accommodate at least
1262                  * one full receive packet and is similarly rounded up and
1263                  * expressed in KB. */
1264                 pba = rd32(E1000_PBA);
1265                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1266                 tx_space = pba >> 16;
1267                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1268                 pba &= 0xffff;
1269                 /* the tx fifo also stores 16 bytes of information about the tx
1270                  * but don't include ethernet FCS because hardware appends it */
1271                 min_tx_space = (adapter->max_frame_size +
1272                                 sizeof(union e1000_adv_tx_desc) -
1273                                 ETH_FCS_LEN) * 2;
1274                 min_tx_space = ALIGN(min_tx_space, 1024);
1275                 min_tx_space >>= 10;
1276                 /* software strips receive CRC, so leave room for it */
1277                 min_rx_space = adapter->max_frame_size;
1278                 min_rx_space = ALIGN(min_rx_space, 1024);
1279                 min_rx_space >>= 10;
1280
1281                 /* If current Tx allocation is less than the min Tx FIFO size,
1282                  * and the min Tx FIFO size is less than the current Rx FIFO
1283                  * allocation, take space away from current Rx allocation */
1284                 if (tx_space < min_tx_space &&
1285                     ((min_tx_space - tx_space) < pba)) {
1286                         pba = pba - (min_tx_space - tx_space);
1287
1288                         /* if short on rx space, rx wins and must trump tx
1289                          * adjustment */
1290                         if (pba < min_rx_space)
1291                                 pba = min_rx_space;
1292                 }
1293                 wr32(E1000_PBA, pba);
1294         }
1295
1296         /* flow control settings */
1297         /* The high water mark must be low enough to fit one full frame
1298          * (or the size used for early receive) above it in the Rx FIFO.
1299          * Set it to the lower of:
1300          * - 90% of the Rx FIFO size, or
1301          * - the full Rx FIFO size minus one full frame */
1302         hwm = min(((pba << 10) * 9 / 10),
1303                         ((pba << 10) - 2 * adapter->max_frame_size));
1304
1305         fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1306         fc->low_water = fc->high_water - 16;
1307         fc->pause_time = 0xFFFF;
1308         fc->send_xon = 1;
1309         fc->current_mode = fc->requested_mode;
1310
1311         /* disable receive for all VFs and wait one second */
1312         if (adapter->vfs_allocated_count) {
1313                 int i;
1314                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1315                         adapter->vf_data[i].flags = 0;
1316
1317                 /* ping all the active vfs to let them know we are going down */
1318                 igb_ping_all_vfs(adapter);
1319
1320                 /* disable transmits and receives */
1321                 wr32(E1000_VFRE, 0);
1322                 wr32(E1000_VFTE, 0);
1323         }
1324
1325         /* Allow time for pending master requests to run */
1326         hw->mac.ops.reset_hw(hw);
1327         wr32(E1000_WUC, 0);
1328
1329         if (hw->mac.ops.init_hw(hw))
1330                 dev_err(&pdev->dev, "Hardware Error\n");
1331
1332         if (hw->mac.type == e1000_82580) {
1333                 u32 reg = rd32(E1000_PCIEMISC);
1334                 wr32(E1000_PCIEMISC,
1335                                 reg & ~E1000_PCIEMISC_LX_DECISION);
1336         }
1337         igb_update_mng_vlan(adapter);
1338
1339         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1340         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1341
1342         igb_reset_adaptive(hw);
1343         igb_get_phy_info(hw);
1344 }
1345
1346 static const struct net_device_ops igb_netdev_ops = {
1347         .ndo_open               = igb_open,
1348         .ndo_stop               = igb_close,
1349         .ndo_start_xmit         = igb_xmit_frame_adv,
1350         .ndo_get_stats          = igb_get_stats,
1351         .ndo_set_rx_mode        = igb_set_rx_mode,
1352         .ndo_set_multicast_list = igb_set_rx_mode,
1353         .ndo_set_mac_address    = igb_set_mac,
1354         .ndo_change_mtu         = igb_change_mtu,
1355         .ndo_do_ioctl           = igb_ioctl,
1356         .ndo_tx_timeout         = igb_tx_timeout,
1357         .ndo_validate_addr      = eth_validate_addr,
1358         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1359         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1360         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1361         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1362         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1363         .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1364         .ndo_get_vf_config      = igb_ndo_get_vf_config,
1365 #ifdef CONFIG_NET_POLL_CONTROLLER
1366         .ndo_poll_controller    = igb_netpoll,
1367 #endif
1368 };
1369
1370 /**
1371  * igb_probe - Device Initialization Routine
1372  * @pdev: PCI device information struct
1373  * @ent: entry in igb_pci_tbl
1374  *
1375  * Returns 0 on success, negative on failure
1376  *
1377  * igb_probe initializes an adapter identified by a pci_dev structure.
1378  * The OS initialization, configuring of the adapter private structure,
1379  * and a hardware reset occur.
1380  **/
1381 static int __devinit igb_probe(struct pci_dev *pdev,
1382                                const struct pci_device_id *ent)
1383 {
1384         struct net_device *netdev;
1385         struct igb_adapter *adapter;
1386         struct e1000_hw *hw;
1387         u16 eeprom_data = 0;
1388         static int global_quad_port_a; /* global quad port a indication */
1389         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1390         unsigned long mmio_start, mmio_len;
1391         int err, pci_using_dac;
1392         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1393         u32 part_num;
1394
1395         err = pci_enable_device_mem(pdev);
1396         if (err)
1397                 return err;
1398
1399         pci_using_dac = 0;
1400         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1401         if (!err) {
1402                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1403                 if (!err)
1404                         pci_using_dac = 1;
1405         } else {
1406                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1407                 if (err) {
1408                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1409                         if (err) {
1410                                 dev_err(&pdev->dev, "No usable DMA "
1411                                         "configuration, aborting\n");
1412                                 goto err_dma;
1413                         }
1414                 }
1415         }
1416
1417         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1418                                            IORESOURCE_MEM),
1419                                            igb_driver_name);
1420         if (err)
1421                 goto err_pci_reg;
1422
1423         pci_enable_pcie_error_reporting(pdev);
1424
1425         pci_set_master(pdev);
1426         pci_save_state(pdev);
1427
1428         err = -ENOMEM;
1429         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1430                                    IGB_ABS_MAX_TX_QUEUES);
1431         if (!netdev)
1432                 goto err_alloc_etherdev;
1433
1434         SET_NETDEV_DEV(netdev, &pdev->dev);
1435
1436         pci_set_drvdata(pdev, netdev);
1437         adapter = netdev_priv(netdev);
1438         adapter->netdev = netdev;
1439         adapter->pdev = pdev;
1440         hw = &adapter->hw;
1441         hw->back = adapter;
1442         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1443
1444         mmio_start = pci_resource_start(pdev, 0);
1445         mmio_len = pci_resource_len(pdev, 0);
1446
1447         err = -EIO;
1448         hw->hw_addr = ioremap(mmio_start, mmio_len);
1449         if (!hw->hw_addr)
1450                 goto err_ioremap;
1451
1452         netdev->netdev_ops = &igb_netdev_ops;
1453         igb_set_ethtool_ops(netdev);
1454         netdev->watchdog_timeo = 5 * HZ;
1455
1456         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1457
1458         netdev->mem_start = mmio_start;
1459         netdev->mem_end = mmio_start + mmio_len;
1460
1461         /* PCI config space info */
1462         hw->vendor_id = pdev->vendor;
1463         hw->device_id = pdev->device;
1464         hw->revision_id = pdev->revision;
1465         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1466         hw->subsystem_device_id = pdev->subsystem_device;
1467
1468         /* Copy the default MAC, PHY and NVM function pointers */
1469         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1470         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1471         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1472         /* Initialize skew-specific constants */
1473         err = ei->get_invariants(hw);
1474         if (err)
1475                 goto err_sw_init;
1476
1477         /* setup the private structure */
1478         err = igb_sw_init(adapter);
1479         if (err)
1480                 goto err_sw_init;
1481
1482         igb_get_bus_info_pcie(hw);
1483
1484         hw->phy.autoneg_wait_to_complete = false;
1485         hw->mac.adaptive_ifs = true;
1486
1487         /* Copper options */
1488         if (hw->phy.media_type == e1000_media_type_copper) {
1489                 hw->phy.mdix = AUTO_ALL_MODES;
1490                 hw->phy.disable_polarity_correction = false;
1491                 hw->phy.ms_type = e1000_ms_hw_default;
1492         }
1493
1494         if (igb_check_reset_block(hw))
1495                 dev_info(&pdev->dev,
1496                         "PHY reset is blocked due to SOL/IDER session.\n");
1497
1498         netdev->features = NETIF_F_SG |
1499                            NETIF_F_IP_CSUM |
1500                            NETIF_F_HW_VLAN_TX |
1501                            NETIF_F_HW_VLAN_RX |
1502                            NETIF_F_HW_VLAN_FILTER;
1503
1504         netdev->features |= NETIF_F_IPV6_CSUM;
1505         netdev->features |= NETIF_F_TSO;
1506         netdev->features |= NETIF_F_TSO6;
1507         netdev->features |= NETIF_F_GRO;
1508
1509         netdev->vlan_features |= NETIF_F_TSO;
1510         netdev->vlan_features |= NETIF_F_TSO6;
1511         netdev->vlan_features |= NETIF_F_IP_CSUM;
1512         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1513         netdev->vlan_features |= NETIF_F_SG;
1514
1515         if (pci_using_dac)
1516                 netdev->features |= NETIF_F_HIGHDMA;
1517
1518         if (hw->mac.type >= e1000_82576)
1519                 netdev->features |= NETIF_F_SCTP_CSUM;
1520
1521         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1522
1523         /* before reading the NVM, reset the controller to put the device in a
1524          * known good starting state */
1525         hw->mac.ops.reset_hw(hw);
1526
1527         /* make sure the NVM is good */
1528         if (igb_validate_nvm_checksum(hw) < 0) {
1529                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1530                 err = -EIO;
1531                 goto err_eeprom;
1532         }
1533
1534         /* copy the MAC address out of the NVM */
1535         if (hw->mac.ops.read_mac_addr(hw))
1536                 dev_err(&pdev->dev, "NVM Read Error\n");
1537
1538         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1539         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1540
1541         if (!is_valid_ether_addr(netdev->perm_addr)) {
1542                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1543                 err = -EIO;
1544                 goto err_eeprom;
1545         }
1546
1547         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1548                     (unsigned long) adapter);
1549         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1550                     (unsigned long) adapter);
1551
1552         INIT_WORK(&adapter->reset_task, igb_reset_task);
1553         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1554
1555         /* Initialize link properties that are user-changeable */
1556         adapter->fc_autoneg = true;
1557         hw->mac.autoneg = true;
1558         hw->phy.autoneg_advertised = 0x2f;
1559
1560         hw->fc.requested_mode = e1000_fc_default;
1561         hw->fc.current_mode = e1000_fc_default;
1562
1563         igb_validate_mdi_setting(hw);
1564
1565         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1566          * enable the ACPI Magic Packet filter
1567          */
1568
1569         if (hw->bus.func == 0)
1570                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1571         else if (hw->mac.type == e1000_82580)
1572                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1573                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1574                                  &eeprom_data);
1575         else if (hw->bus.func == 1)
1576                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1577
1578         if (eeprom_data & eeprom_apme_mask)
1579                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1580
1581         /* now that we have the eeprom settings, apply the special cases where
1582          * the eeprom may be wrong or the board simply won't support wake on
1583          * lan on a particular port */
1584         switch (pdev->device) {
1585         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1586                 adapter->eeprom_wol = 0;
1587                 break;
1588         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1589         case E1000_DEV_ID_82576_FIBER:
1590         case E1000_DEV_ID_82576_SERDES:
1591                 /* Wake events only supported on port A for dual fiber
1592                  * regardless of eeprom setting */
1593                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1594                         adapter->eeprom_wol = 0;
1595                 break;
1596         case E1000_DEV_ID_82576_QUAD_COPPER:
1597                 /* if quad port adapter, disable WoL on all but port A */
1598                 if (global_quad_port_a != 0)
1599                         adapter->eeprom_wol = 0;
1600                 else
1601                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1602                 /* Reset for multiple quad port adapters */
1603                 if (++global_quad_port_a == 4)
1604                         global_quad_port_a = 0;
1605                 break;
1606         }
1607
1608         /* initialize the wol settings based on the eeprom settings */
1609         adapter->wol = adapter->eeprom_wol;
1610         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1611
1612         /* reset the hardware with the new settings */
1613         igb_reset(adapter);
1614
1615         /* let the f/w know that the h/w is now under the control of the
1616          * driver. */
1617         igb_get_hw_control(adapter);
1618
1619         strcpy(netdev->name, "eth%d");
1620         err = register_netdev(netdev);
1621         if (err)
1622                 goto err_register;
1623
1624         /* carrier off reporting is important to ethtool even BEFORE open */
1625         netif_carrier_off(netdev);
1626
1627 #ifdef CONFIG_IGB_DCA
1628         if (dca_add_requester(&pdev->dev) == 0) {
1629                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1630                 dev_info(&pdev->dev, "DCA enabled\n");
1631                 igb_setup_dca(adapter);
1632         }
1633
1634 #endif
1635         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1636         /* print bus type/speed/width info */
1637         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1638                  netdev->name,
1639                  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1640                                                             "unknown"),
1641                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1642                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1643                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1644                    "unknown"),
1645                  netdev->dev_addr);
1646
1647         igb_read_part_num(hw, &part_num);
1648         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1649                 (part_num >> 8), (part_num & 0xff));
1650
1651         dev_info(&pdev->dev,
1652                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1653                 adapter->msix_entries ? "MSI-X" :
1654                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1655                 adapter->num_rx_queues, adapter->num_tx_queues);
1656
1657         return 0;
1658
1659 err_register:
1660         igb_release_hw_control(adapter);
1661 err_eeprom:
1662         if (!igb_check_reset_block(hw))
1663                 igb_reset_phy(hw);
1664
1665         if (hw->flash_address)
1666                 iounmap(hw->flash_address);
1667 err_sw_init:
1668         igb_clear_interrupt_scheme(adapter);
1669         iounmap(hw->hw_addr);
1670 err_ioremap:
1671         free_netdev(netdev);
1672 err_alloc_etherdev:
1673         pci_release_selected_regions(pdev,
1674                                      pci_select_bars(pdev, IORESOURCE_MEM));
1675 err_pci_reg:
1676 err_dma:
1677         pci_disable_device(pdev);
1678         return err;
1679 }
1680
1681 /**
1682  * igb_remove - Device Removal Routine
1683  * @pdev: PCI device information struct
1684  *
1685  * igb_remove is called by the PCI subsystem to alert the driver
1686  * that it should release a PCI device.  The could be caused by a
1687  * Hot-Plug event, or because the driver is going to be removed from
1688  * memory.
1689  **/
1690 static void __devexit igb_remove(struct pci_dev *pdev)
1691 {
1692         struct net_device *netdev = pci_get_drvdata(pdev);
1693         struct igb_adapter *adapter = netdev_priv(netdev);
1694         struct e1000_hw *hw = &adapter->hw;
1695
1696         /* flush_scheduled work may reschedule our watchdog task, so
1697          * explicitly disable watchdog tasks from being rescheduled  */
1698         set_bit(__IGB_DOWN, &adapter->state);
1699         del_timer_sync(&adapter->watchdog_timer);
1700         del_timer_sync(&adapter->phy_info_timer);
1701
1702         flush_scheduled_work();
1703
1704 #ifdef CONFIG_IGB_DCA
1705         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1706                 dev_info(&pdev->dev, "DCA disabled\n");
1707                 dca_remove_requester(&pdev->dev);
1708                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1709                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1710         }
1711 #endif
1712
1713         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1714          * would have already happened in close and is redundant. */
1715         igb_release_hw_control(adapter);
1716
1717         unregister_netdev(netdev);
1718
1719         if (!igb_check_reset_block(hw))
1720                 igb_reset_phy(hw);
1721
1722         igb_clear_interrupt_scheme(adapter);
1723
1724 #ifdef CONFIG_PCI_IOV
1725         /* reclaim resources allocated to VFs */
1726         if (adapter->vf_data) {
1727                 /* disable iov and allow time for transactions to clear */
1728                 pci_disable_sriov(pdev);
1729                 msleep(500);
1730
1731                 kfree(adapter->vf_data);
1732                 adapter->vf_data = NULL;
1733                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1734                 msleep(100);
1735                 dev_info(&pdev->dev, "IOV Disabled\n");
1736         }
1737 #endif
1738
1739         iounmap(hw->hw_addr);
1740         if (hw->flash_address)
1741                 iounmap(hw->flash_address);
1742         pci_release_selected_regions(pdev,
1743                                      pci_select_bars(pdev, IORESOURCE_MEM));
1744
1745         free_netdev(netdev);
1746
1747         pci_disable_pcie_error_reporting(pdev);
1748
1749         pci_disable_device(pdev);
1750 }
1751
1752 /**
1753  * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1754  * @adapter: board private structure to initialize
1755  *
1756  * This function initializes the vf specific data storage and then attempts to
1757  * allocate the VFs.  The reason for ordering it this way is because it is much
1758  * mor expensive time wise to disable SR-IOV than it is to allocate and free
1759  * the memory for the VFs.
1760  **/
1761 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1762 {
1763 #ifdef CONFIG_PCI_IOV
1764         struct pci_dev *pdev = adapter->pdev;
1765
1766         if (adapter->vfs_allocated_count > 7)
1767                 adapter->vfs_allocated_count = 7;
1768
1769         if (adapter->vfs_allocated_count) {
1770                 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1771                                            sizeof(struct vf_data_storage),
1772                                            GFP_KERNEL);
1773                 /* if allocation failed then we do not support SR-IOV */
1774                 if (!adapter->vf_data) {
1775                         adapter->vfs_allocated_count = 0;
1776                         dev_err(&pdev->dev, "Unable to allocate memory for VF "
1777                                 "Data Storage\n");
1778                 }
1779         }
1780
1781         if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1782                 kfree(adapter->vf_data);
1783                 adapter->vf_data = NULL;
1784 #endif /* CONFIG_PCI_IOV */
1785                 adapter->vfs_allocated_count = 0;
1786 #ifdef CONFIG_PCI_IOV
1787         } else {
1788                 unsigned char mac_addr[ETH_ALEN];
1789                 int i;
1790                 dev_info(&pdev->dev, "%d vfs allocated\n",
1791                          adapter->vfs_allocated_count);
1792                 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1793                         random_ether_addr(mac_addr);
1794                         igb_set_vf_mac(adapter, i, mac_addr);
1795                 }
1796         }
1797 #endif /* CONFIG_PCI_IOV */
1798 }
1799
1800
1801 /**
1802  * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1803  * @adapter: board private structure to initialize
1804  *
1805  * igb_init_hw_timer initializes the function pointer and values for the hw
1806  * timer found in hardware.
1807  **/
1808 static void igb_init_hw_timer(struct igb_adapter *adapter)
1809 {
1810         struct e1000_hw *hw = &adapter->hw;
1811
1812         switch (hw->mac.type) {
1813         case e1000_82580:
1814                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1815                 adapter->cycles.read = igb_read_clock;
1816                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1817                 adapter->cycles.mult = 1;
1818                 /*
1819                  * The 82580 timesync updates the system timer every 8ns by 8ns
1820                  * and the value cannot be shifted.  Instead we need to shift
1821                  * the registers to generate a 64bit timer value.  As a result
1822                  * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1823                  * 24 in order to generate a larger value for synchronization.
1824                  */
1825                 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1826                 /* disable system timer temporarily by setting bit 31 */
1827                 wr32(E1000_TSAUXC, 0x80000000);
1828                 wrfl();
1829
1830                 /* Set registers so that rollover occurs soon to test this. */
1831                 wr32(E1000_SYSTIMR, 0x00000000);
1832                 wr32(E1000_SYSTIML, 0x80000000);
1833                 wr32(E1000_SYSTIMH, 0x000000FF);
1834                 wrfl();
1835
1836                 /* enable system timer by clearing bit 31 */
1837                 wr32(E1000_TSAUXC, 0x0);
1838                 wrfl();
1839
1840                 timecounter_init(&adapter->clock,
1841                                  &adapter->cycles,
1842                                  ktime_to_ns(ktime_get_real()));
1843                 /*
1844                  * Synchronize our NIC clock against system wall clock. NIC
1845                  * time stamp reading requires ~3us per sample, each sample
1846                  * was pretty stable even under load => only require 10
1847                  * samples for each offset comparison.
1848                  */
1849                 memset(&adapter->compare, 0, sizeof(adapter->compare));
1850                 adapter->compare.source = &adapter->clock;
1851                 adapter->compare.target = ktime_get_real;
1852                 adapter->compare.num_samples = 10;
1853                 timecompare_update(&adapter->compare, 0);
1854                 break;
1855         case e1000_82576:
1856                 /*
1857                  * Initialize hardware timer: we keep it running just in case
1858                  * that some program needs it later on.
1859                  */
1860                 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1861                 adapter->cycles.read = igb_read_clock;
1862                 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1863                 adapter->cycles.mult = 1;
1864                 /**
1865                  * Scale the NIC clock cycle by a large factor so that
1866                  * relatively small clock corrections can be added or
1867                  * substracted at each clock tick. The drawbacks of a large
1868                  * factor are a) that the clock register overflows more quickly
1869                  * (not such a big deal) and b) that the increment per tick has
1870                  * to fit into 24 bits.  As a result we need to use a shift of
1871                  * 19 so we can fit a value of 16 into the TIMINCA register.
1872                  */
1873                 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1874                 wr32(E1000_TIMINCA,
1875                                 (1 << E1000_TIMINCA_16NS_SHIFT) |
1876                                 (16 << IGB_82576_TSYNC_SHIFT));
1877
1878                 /* Set registers so that rollover occurs soon to test this. */
1879                 wr32(E1000_SYSTIML, 0x00000000);
1880                 wr32(E1000_SYSTIMH, 0xFF800000);
1881                 wrfl();
1882
1883                 timecounter_init(&adapter->clock,
1884                                  &adapter->cycles,
1885                                  ktime_to_ns(ktime_get_real()));
1886                 /*
1887                  * Synchronize our NIC clock against system wall clock. NIC
1888                  * time stamp reading requires ~3us per sample, each sample
1889                  * was pretty stable even under load => only require 10
1890                  * samples for each offset comparison.
1891                  */
1892                 memset(&adapter->compare, 0, sizeof(adapter->compare));
1893                 adapter->compare.source = &adapter->clock;
1894                 adapter->compare.target = ktime_get_real;
1895                 adapter->compare.num_samples = 10;
1896                 timecompare_update(&adapter->compare, 0);
1897                 break;
1898         case e1000_82575:
1899                 /* 82575 does not support timesync */
1900         default:
1901                 break;
1902         }
1903
1904 }
1905
1906 /**
1907  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1908  * @adapter: board private structure to initialize
1909  *
1910  * igb_sw_init initializes the Adapter private data structure.
1911  * Fields are initialized based on PCI device information and
1912  * OS network device settings (MTU size).
1913  **/
1914 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1915 {
1916         struct e1000_hw *hw = &adapter->hw;
1917         struct net_device *netdev = adapter->netdev;
1918         struct pci_dev *pdev = adapter->pdev;
1919
1920         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1921
1922         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1923         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1924         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1925         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1926
1927         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1928         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1929
1930 #ifdef CONFIG_PCI_IOV
1931         if (hw->mac.type == e1000_82576)
1932                 adapter->vfs_allocated_count = max_vfs;
1933
1934 #endif /* CONFIG_PCI_IOV */
1935         adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1936
1937         /*
1938          * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1939          * then we should combine the queues into a queue pair in order to
1940          * conserve interrupts due to limited supply
1941          */
1942         if ((adapter->rss_queues > 4) ||
1943             ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1944                 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1945
1946         /* This call may decrease the number of queues */
1947         if (igb_init_interrupt_scheme(adapter)) {
1948                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1949                 return -ENOMEM;
1950         }
1951
1952         igb_init_hw_timer(adapter);
1953         igb_probe_vfs(adapter);
1954
1955         /* Explicitly disable IRQ since the NIC can be in any state. */
1956         igb_irq_disable(adapter);
1957
1958         set_bit(__IGB_DOWN, &adapter->state);
1959         return 0;
1960 }
1961
1962 /**
1963  * igb_open - Called when a network interface is made active
1964  * @netdev: network interface device structure
1965  *
1966  * Returns 0 on success, negative value on failure
1967  *
1968  * The open entry point is called when a network interface is made
1969  * active by the system (IFF_UP).  At this point all resources needed
1970  * for transmit and receive operations are allocated, the interrupt
1971  * handler is registered with the OS, the watchdog timer is started,
1972  * and the stack is notified that the interface is ready.
1973  **/
1974 static int igb_open(struct net_device *netdev)
1975 {
1976         struct igb_adapter *adapter = netdev_priv(netdev);
1977         struct e1000_hw *hw = &adapter->hw;
1978         int err;
1979         int i;
1980
1981         /* disallow open during test */
1982         if (test_bit(__IGB_TESTING, &adapter->state))
1983                 return -EBUSY;
1984
1985         netif_carrier_off(netdev);
1986
1987         /* allocate transmit descriptors */
1988         err = igb_setup_all_tx_resources(adapter);
1989         if (err)
1990                 goto err_setup_tx;
1991
1992         /* allocate receive descriptors */
1993         err = igb_setup_all_rx_resources(adapter);
1994         if (err)
1995                 goto err_setup_rx;
1996
1997         /* e1000_power_up_phy(adapter); */
1998
1999         /* before we allocate an interrupt, we must be ready to handle it.
2000          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2001          * as soon as we call pci_request_irq, so we have to setup our
2002          * clean_rx handler before we do so.  */
2003         igb_configure(adapter);
2004
2005         err = igb_request_irq(adapter);
2006         if (err)
2007                 goto err_req_irq;
2008
2009         /* From here on the code is the same as igb_up() */
2010         clear_bit(__IGB_DOWN, &adapter->state);
2011
2012         for (i = 0; i < adapter->num_q_vectors; i++) {
2013                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2014                 napi_enable(&q_vector->napi);
2015         }
2016
2017         /* Clear any pending interrupts. */
2018         rd32(E1000_ICR);
2019
2020         igb_irq_enable(adapter);
2021
2022         /* notify VFs that reset has been completed */
2023         if (adapter->vfs_allocated_count) {
2024                 u32 reg_data = rd32(E1000_CTRL_EXT);
2025                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2026                 wr32(E1000_CTRL_EXT, reg_data);
2027         }
2028
2029         netif_tx_start_all_queues(netdev);
2030
2031         /* start the watchdog. */
2032         hw->mac.get_link_status = 1;
2033         schedule_work(&adapter->watchdog_task);
2034
2035         return 0;
2036
2037 err_req_irq:
2038         igb_release_hw_control(adapter);
2039         /* e1000_power_down_phy(adapter); */
2040         igb_free_all_rx_resources(adapter);
2041 err_setup_rx:
2042         igb_free_all_tx_resources(adapter);
2043 err_setup_tx:
2044         igb_reset(adapter);
2045
2046         return err;
2047 }
2048
2049 /**
2050  * igb_close - Disables a network interface
2051  * @netdev: network interface device structure
2052  *
2053  * Returns 0, this is not allowed to fail
2054  *
2055  * The close entry point is called when an interface is de-activated
2056  * by the OS.  The hardware is still under the driver's control, but
2057  * needs to be disabled.  A global MAC reset is issued to stop the
2058  * hardware, and all transmit and receive resources are freed.
2059  **/
2060 static int igb_close(struct net_device *netdev)
2061 {
2062         struct igb_adapter *adapter = netdev_priv(netdev);
2063
2064         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2065         igb_down(adapter);
2066
2067         igb_free_irq(adapter);
2068
2069         igb_free_all_tx_resources(adapter);
2070         igb_free_all_rx_resources(adapter);
2071
2072         return 0;
2073 }
2074
2075 /**
2076  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2077  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2078  *
2079  * Return 0 on success, negative on failure
2080  **/
2081 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2082 {
2083         struct pci_dev *pdev = tx_ring->pdev;
2084         int size;
2085
2086         size = sizeof(struct igb_buffer) * tx_ring->count;
2087         tx_ring->buffer_info = vmalloc(size);
2088         if (!tx_ring->buffer_info)
2089                 goto err;
2090         memset(tx_ring->buffer_info, 0, size);
2091
2092         /* round up to nearest 4K */
2093         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2094         tx_ring->size = ALIGN(tx_ring->size, 4096);
2095
2096         tx_ring->desc = pci_alloc_consistent(pdev,
2097                                              tx_ring->size,
2098                                              &tx_ring->dma);
2099
2100         if (!tx_ring->desc)
2101                 goto err;
2102
2103         tx_ring->next_to_use = 0;
2104         tx_ring->next_to_clean = 0;
2105         return 0;
2106
2107 err:
2108         vfree(tx_ring->buffer_info);
2109         dev_err(&pdev->dev,
2110                 "Unable to allocate memory for the transmit descriptor ring\n");
2111         return -ENOMEM;
2112 }
2113
2114 /**
2115  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2116  *                                (Descriptors) for all queues
2117  * @adapter: board private structure
2118  *
2119  * Return 0 on success, negative on failure
2120  **/
2121 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2122 {
2123         struct pci_dev *pdev = adapter->pdev;
2124         int i, err = 0;
2125
2126         for (i = 0; i < adapter->num_tx_queues; i++) {
2127                 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2128                 if (err) {
2129                         dev_err(&pdev->dev,
2130                                 "Allocation for Tx Queue %u failed\n", i);
2131                         for (i--; i >= 0; i--)
2132                                 igb_free_tx_resources(&adapter->tx_ring[i]);
2133                         break;
2134                 }
2135         }
2136
2137         for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2138                 int r_idx = i % adapter->num_tx_queues;
2139                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2140         }
2141         return err;
2142 }
2143
2144 /**
2145  * igb_setup_tctl - configure the transmit control registers
2146  * @adapter: Board private structure
2147  **/
2148 void igb_setup_tctl(struct igb_adapter *adapter)
2149 {
2150         struct e1000_hw *hw = &adapter->hw;
2151         u32 tctl;
2152
2153         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2154         wr32(E1000_TXDCTL(0), 0);
2155
2156         /* Program the Transmit Control Register */
2157         tctl = rd32(E1000_TCTL);
2158         tctl &= ~E1000_TCTL_CT;
2159         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2160                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2161
2162         igb_config_collision_dist(hw);
2163
2164         /* Enable transmits */
2165         tctl |= E1000_TCTL_EN;
2166
2167         wr32(E1000_TCTL, tctl);
2168 }
2169
2170 /**
2171  * igb_configure_tx_ring - Configure transmit ring after Reset
2172  * @adapter: board private structure
2173  * @ring: tx ring to configure
2174  *
2175  * Configure a transmit ring after a reset.
2176  **/
2177 void igb_configure_tx_ring(struct igb_adapter *adapter,
2178                            struct igb_ring *ring)
2179 {
2180         struct e1000_hw *hw = &adapter->hw;
2181         u32 txdctl;
2182         u64 tdba = ring->dma;
2183         int reg_idx = ring->reg_idx;
2184
2185         /* disable the queue */
2186         txdctl = rd32(E1000_TXDCTL(reg_idx));
2187         wr32(E1000_TXDCTL(reg_idx),
2188                         txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2189         wrfl();
2190         mdelay(10);
2191
2192         wr32(E1000_TDLEN(reg_idx),
2193                         ring->count * sizeof(union e1000_adv_tx_desc));
2194         wr32(E1000_TDBAL(reg_idx),
2195                         tdba & 0x00000000ffffffffULL);
2196         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2197
2198         ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2199         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2200         writel(0, ring->head);
2201         writel(0, ring->tail);
2202
2203         txdctl |= IGB_TX_PTHRESH;
2204         txdctl |= IGB_TX_HTHRESH << 8;
2205         txdctl |= IGB_TX_WTHRESH << 16;
2206
2207         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2208         wr32(E1000_TXDCTL(reg_idx), txdctl);
2209 }
2210
2211 /**
2212  * igb_configure_tx - Configure transmit Unit after Reset
2213  * @adapter: board private structure
2214  *
2215  * Configure the Tx unit of the MAC after a reset.
2216  **/
2217 static void igb_configure_tx(struct igb_adapter *adapter)
2218 {
2219         int i;
2220
2221         for (i = 0; i < adapter->num_tx_queues; i++)
2222                 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2223 }
2224
2225 /**
2226  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2227  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2228  *
2229  * Returns 0 on success, negative on failure
2230  **/
2231 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2232 {
2233         struct pci_dev *pdev = rx_ring->pdev;
2234         int size, desc_len;
2235
2236         size = sizeof(struct igb_buffer) * rx_ring->count;
2237         rx_ring->buffer_info = vmalloc(size);
2238         if (!rx_ring->buffer_info)
2239                 goto err;
2240         memset(rx_ring->buffer_info, 0, size);
2241
2242         desc_len = sizeof(union e1000_adv_rx_desc);
2243
2244         /* Round up to nearest 4K */
2245         rx_ring->size = rx_ring->count * desc_len;
2246         rx_ring->size = ALIGN(rx_ring->size, 4096);
2247
2248         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2249                                              &rx_ring->dma);
2250
2251         if (!rx_ring->desc)
2252                 goto err;
2253
2254         rx_ring->next_to_clean = 0;
2255         rx_ring->next_to_use = 0;
2256
2257         return 0;
2258
2259 err:
2260         vfree(rx_ring->buffer_info);
2261         rx_ring->buffer_info = NULL;
2262         dev_err(&pdev->dev, "Unable to allocate memory for "
2263                 "the receive descriptor ring\n");
2264         return -ENOMEM;
2265 }
2266
2267 /**
2268  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2269  *                                (Descriptors) for all queues
2270  * @adapter: board private structure
2271  *
2272  * Return 0 on success, negative on failure
2273  **/
2274 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2275 {
2276         struct pci_dev *pdev = adapter->pdev;
2277         int i, err = 0;
2278
2279         for (i = 0; i < adapter->num_rx_queues; i++) {
2280                 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2281                 if (err) {
2282                         dev_err(&pdev->dev,
2283                                 "Allocation for Rx Queue %u failed\n", i);
2284                         for (i--; i >= 0; i--)
2285                                 igb_free_rx_resources(&adapter->rx_ring[i]);
2286                         break;
2287                 }
2288         }
2289
2290         return err;
2291 }
2292
2293 /**
2294  * igb_setup_mrqc - configure the multiple receive queue control registers
2295  * @adapter: Board private structure
2296  **/
2297 static void igb_setup_mrqc(struct igb_adapter *adapter)
2298 {
2299         struct e1000_hw *hw = &adapter->hw;
2300         u32 mrqc, rxcsum;
2301         u32 j, num_rx_queues, shift = 0, shift2 = 0;
2302         union e1000_reta {
2303                 u32 dword;
2304                 u8  bytes[4];
2305         } reta;
2306         static const u8 rsshash[40] = {
2307                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2308                 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2309                 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2310                 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2311
2312         /* Fill out hash function seeds */
2313         for (j = 0; j < 10; j++) {
2314                 u32 rsskey = rsshash[(j * 4)];
2315                 rsskey |= rsshash[(j * 4) + 1] << 8;
2316                 rsskey |= rsshash[(j * 4) + 2] << 16;
2317                 rsskey |= rsshash[(j * 4) + 3] << 24;
2318                 array_wr32(E1000_RSSRK(0), j, rsskey);
2319         }
2320
2321         num_rx_queues = adapter->rss_queues;
2322
2323         if (adapter->vfs_allocated_count) {
2324                 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2325                 switch (hw->mac.type) {
2326                 case e1000_82580:
2327                         num_rx_queues = 1;
2328                         shift = 0;
2329                         break;
2330                 case e1000_82576:
2331                         shift = 3;
2332                         num_rx_queues = 2;
2333                         break;
2334                 case e1000_82575:
2335                         shift = 2;
2336                         shift2 = 6;
2337                 default:
2338                         break;
2339                 }
2340         } else {
2341                 if (hw->mac.type == e1000_82575)
2342                         shift = 6;
2343         }
2344
2345         for (j = 0; j < (32 * 4); j++) {
2346                 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2347                 if (shift2)
2348                         reta.bytes[j & 3] |= num_rx_queues << shift2;
2349                 if ((j & 3) == 3)
2350                         wr32(E1000_RETA(j >> 2), reta.dword);
2351         }
2352
2353         /*
2354          * Disable raw packet checksumming so that RSS hash is placed in
2355          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
2356          * offloads as they are enabled by default
2357          */
2358         rxcsum = rd32(E1000_RXCSUM);
2359         rxcsum |= E1000_RXCSUM_PCSD;
2360
2361         if (adapter->hw.mac.type >= e1000_82576)
2362                 /* Enable Receive Checksum Offload for SCTP */
2363                 rxcsum |= E1000_RXCSUM_CRCOFL;
2364
2365         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2366         wr32(E1000_RXCSUM, rxcsum);
2367
2368         /* If VMDq is enabled then we set the appropriate mode for that, else
2369          * we default to RSS so that an RSS hash is calculated per packet even
2370          * if we are only using one queue */
2371         if (adapter->vfs_allocated_count) {
2372                 if (hw->mac.type > e1000_82575) {
2373                         /* Set the default pool for the PF's first queue */
2374                         u32 vtctl = rd32(E1000_VT_CTL);
2375                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2376                                    E1000_VT_CTL_DISABLE_DEF_POOL);
2377                         vtctl |= adapter->vfs_allocated_count <<
2378                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2379                         wr32(E1000_VT_CTL, vtctl);
2380                 }
2381                 if (adapter->rss_queues > 1)
2382                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2383                 else
2384                         mrqc = E1000_MRQC_ENABLE_VMDQ;
2385         } else {
2386                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2387         }
2388         igb_vmm_control(adapter);
2389
2390         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2391                  E1000_MRQC_RSS_FIELD_IPV4_TCP);
2392         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2393                  E1000_MRQC_RSS_FIELD_IPV6_TCP);
2394         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2395                  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2396         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2397                  E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2398
2399         wr32(E1000_MRQC, mrqc);
2400 }
2401
2402 /**
2403  * igb_setup_rctl - configure the receive control registers
2404  * @adapter: Board private structure
2405  **/
2406 void igb_setup_rctl(struct igb_adapter *adapter)
2407 {
2408         struct e1000_hw *hw = &adapter->hw;
2409         u32 rctl;
2410
2411         rctl = rd32(E1000_RCTL);
2412
2413         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2414         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2415
2416         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2417                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2418
2419         /*
2420          * enable stripping of CRC. It's unlikely this will break BMC
2421          * redirection as it did with e1000. Newer features require
2422          * that the HW strips the CRC.
2423          */
2424         rctl |= E1000_RCTL_SECRC;
2425
2426         /* disable store bad packets and clear size bits. */
2427         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2428
2429         /* enable LPE to prevent packets larger than max_frame_size */
2430         rctl |= E1000_RCTL_LPE;
2431
2432         /* disable queue 0 to prevent tail write w/o re-config */
2433         wr32(E1000_RXDCTL(0), 0);
2434
2435         /* Attention!!!  For SR-IOV PF driver operations you must enable
2436          * queue drop for all VF and PF queues to prevent head of line blocking
2437          * if an un-trusted VF does not provide descriptors to hardware.
2438          */
2439         if (adapter->vfs_allocated_count) {
2440                 /* set all queue drop enable bits */
2441                 wr32(E1000_QDE, ALL_QUEUES);
2442         }
2443
2444         wr32(E1000_RCTL, rctl);
2445 }
2446
2447 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2448                                    int vfn)
2449 {
2450         struct e1000_hw *hw = &adapter->hw;
2451         u32 vmolr;
2452
2453         /* if it isn't the PF check to see if VFs are enabled and
2454          * increase the size to support vlan tags */
2455         if (vfn < adapter->vfs_allocated_count &&
2456             adapter->vf_data[vfn].vlans_enabled)
2457                 size += VLAN_TAG_SIZE;
2458
2459         vmolr = rd32(E1000_VMOLR(vfn));
2460         vmolr &= ~E1000_VMOLR_RLPML_MASK;
2461         vmolr |= size | E1000_VMOLR_LPE;
2462         wr32(E1000_VMOLR(vfn), vmolr);
2463
2464         return 0;
2465 }
2466
2467 /**
2468  * igb_rlpml_set - set maximum receive packet size
2469  * @adapter: board private structure
2470  *
2471  * Configure maximum receivable packet size.
2472  **/
2473 static void igb_rlpml_set(struct igb_adapter *adapter)
2474 {
2475         u32 max_frame_size = adapter->max_frame_size;
2476         struct e1000_hw *hw = &adapter->hw;
2477         u16 pf_id = adapter->vfs_allocated_count;
2478
2479         if (adapter->vlgrp)
2480                 max_frame_size += VLAN_TAG_SIZE;
2481
2482         /* if vfs are enabled we set RLPML to the largest possible request
2483          * size and set the VMOLR RLPML to the size we need */
2484         if (pf_id) {
2485                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2486                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2487         }
2488
2489         wr32(E1000_RLPML, max_frame_size);
2490 }
2491
2492 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2493                                  int vfn, bool aupe)
2494 {
2495         struct e1000_hw *hw = &adapter->hw;
2496         u32 vmolr;
2497
2498         /*
2499          * This register exists only on 82576 and newer so if we are older then
2500          * we should exit and do nothing
2501          */
2502         if (hw->mac.type < e1000_82576)
2503                 return;
2504
2505         vmolr = rd32(E1000_VMOLR(vfn));
2506         vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
2507         if (aupe)
2508                 vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
2509         else
2510                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2511
2512         /* clear all bits that might not be set */
2513         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2514
2515         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2516                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2517         /*
2518          * for VMDq only allow the VFs and pool 0 to accept broadcast and
2519          * multicast packets
2520          */
2521         if (vfn <= adapter->vfs_allocated_count)
2522                 vmolr |= E1000_VMOLR_BAM;          /* Accept broadcast */
2523
2524         wr32(E1000_VMOLR(vfn), vmolr);
2525 }
2526
2527 /**
2528  * igb_configure_rx_ring - Configure a receive ring after Reset
2529  * @adapter: board private structure
2530  * @ring: receive ring to be configured
2531  *
2532  * Configure the Rx unit of the MAC after a reset.
2533  **/
2534 void igb_configure_rx_ring(struct igb_adapter *adapter,
2535                            struct igb_ring *ring)
2536 {
2537         struct e1000_hw *hw = &adapter->hw;
2538         u64 rdba = ring->dma;
2539         int reg_idx = ring->reg_idx;
2540         u32 srrctl, rxdctl;
2541
2542         /* disable the queue */
2543         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2544         wr32(E1000_RXDCTL(reg_idx),
2545                         rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2546
2547         /* Set DMA base address registers */
2548         wr32(E1000_RDBAL(reg_idx),
2549              rdba & 0x00000000ffffffffULL);
2550         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2551         wr32(E1000_RDLEN(reg_idx),
2552                        ring->count * sizeof(union e1000_adv_rx_desc));
2553
2554         /* initialize head and tail */
2555         ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2556         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2557         writel(0, ring->head);
2558         writel(0, ring->tail);
2559
2560         /* set descriptor configuration */
2561         if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2562                 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2563                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2564 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2565                 srrctl |= IGB_RXBUFFER_16384 >>
2566                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2567 #else
2568                 srrctl |= (PAGE_SIZE / 2) >>
2569                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2570 #endif
2571                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2572         } else {
2573                 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2574                          E1000_SRRCTL_BSIZEPKT_SHIFT;
2575                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2576         }
2577
2578         wr32(E1000_SRRCTL(reg_idx), srrctl);
2579
2580         /* set filtering for VMDQ pools */
2581         igb_set_vmolr(adapter, reg_idx & 0x7, true);
2582
2583         /* enable receive descriptor fetching */
2584         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2585         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2586         rxdctl &= 0xFFF00000;
2587         rxdctl |= IGB_RX_PTHRESH;
2588         rxdctl |= IGB_RX_HTHRESH << 8;
2589         rxdctl |= IGB_RX_WTHRESH << 16;
2590         wr32(E1000_RXDCTL(reg_idx), rxdctl);
2591 }
2592
2593 /**
2594  * igb_configure_rx - Configure receive Unit after Reset
2595  * @adapter: board private structure
2596  *
2597  * Configure the Rx unit of the MAC after a reset.
2598  **/
2599 static void igb_configure_rx(struct igb_adapter *adapter)
2600 {
2601         int i;
2602
2603         /* set UTA to appropriate mode */
2604         igb_set_uta(adapter);
2605
2606         /* set the correct pool for the PF default MAC address in entry 0 */
2607         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2608                          adapter->vfs_allocated_count);
2609
2610         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2611          * the Base and Length of the Rx Descriptor Ring */
2612         for (i = 0; i < adapter->num_rx_queues; i++)
2613                 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2614 }
2615
2616 /**
2617  * igb_free_tx_resources - Free Tx Resources per Queue
2618  * @tx_ring: Tx descriptor ring for a specific queue
2619  *
2620  * Free all transmit software resources
2621  **/
2622 void igb_free_tx_resources(struct igb_ring *tx_ring)
2623 {
2624         igb_clean_tx_ring(tx_ring);
2625
2626         vfree(tx_ring->buffer_info);
2627         tx_ring->buffer_info = NULL;
2628
2629         /* if not set, then don't free */
2630         if (!tx_ring->desc)
2631                 return;
2632
2633         pci_free_consistent(tx_ring->pdev, tx_ring->size,
2634                             tx_ring->desc, tx_ring->dma);
2635
2636         tx_ring->desc = NULL;
2637 }
2638
2639 /**
2640  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2641  * @adapter: board private structure
2642  *
2643  * Free all transmit software resources
2644  **/
2645 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2646 {
2647         int i;
2648
2649         for (i = 0; i < adapter->num_tx_queues; i++)
2650                 igb_free_tx_resources(&adapter->tx_ring[i]);
2651 }
2652
2653 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2654                                     struct igb_buffer *buffer_info)
2655 {
2656         if (buffer_info->dma) {
2657                 if (buffer_info->mapped_as_page)
2658                         pci_unmap_page(tx_ring->pdev,
2659                                         buffer_info->dma,
2660                                         buffer_info->length,
2661                                         PCI_DMA_TODEVICE);
2662                 else
2663                         pci_unmap_single(tx_ring->pdev,
2664                                         buffer_info->dma,
2665                                         buffer_info->length,
2666                                         PCI_DMA_TODEVICE);
2667                 buffer_info->dma = 0;
2668         }
2669         if (buffer_info->skb) {
2670                 dev_kfree_skb_any(buffer_info->skb);
2671                 buffer_info->skb = NULL;
2672         }
2673         buffer_info->time_stamp = 0;
2674         buffer_info->length = 0;
2675         buffer_info->next_to_watch = 0;
2676         buffer_info->mapped_as_page = false;
2677 }
2678
2679 /**
2680  * igb_clean_tx_ring - Free Tx Buffers
2681  * @tx_ring: ring to be cleaned
2682  **/
2683 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2684 {
2685         struct igb_buffer *buffer_info;
2686         unsigned long size;
2687         unsigned int i;
2688
2689         if (!tx_ring->buffer_info)
2690                 return;
2691         /* Free all the Tx ring sk_buffs */
2692
2693         for (i = 0; i < tx_ring->count; i++) {
2694                 buffer_info = &tx_ring->buffer_info[i];
2695                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2696         }
2697
2698         size = sizeof(struct igb_buffer) * tx_ring->count;
2699         memset(tx_ring->buffer_info, 0, size);
2700
2701         /* Zero out the descriptor ring */
2702         memset(tx_ring->desc, 0, tx_ring->size);
2703
2704         tx_ring->next_to_use = 0;
2705         tx_ring->next_to_clean = 0;
2706 }
2707
2708 /**
2709  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2710  * @adapter: board private structure
2711  **/
2712 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2713 {
2714         int i;
2715
2716         for (i = 0; i < adapter->num_tx_queues; i++)
2717                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2718 }
2719
2720 /**
2721  * igb_free_rx_resources - Free Rx Resources
2722  * @rx_ring: ring to clean the resources from
2723  *
2724  * Free all receive software resources
2725  **/
2726 void igb_free_rx_resources(struct igb_ring *rx_ring)
2727 {
2728         igb_clean_rx_ring(rx_ring);
2729
2730         vfree(rx_ring->buffer_info);
2731         rx_ring->buffer_info = NULL;
2732
2733         /* if not set, then don't free */
2734         if (!rx_ring->desc)
2735                 return;
2736
2737         pci_free_consistent(rx_ring->pdev, rx_ring->size,
2738                             rx_ring->desc, rx_ring->dma);
2739
2740         rx_ring->desc = NULL;
2741 }
2742
2743 /**
2744  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2745  * @adapter: board private structure
2746  *
2747  * Free all receive software resources
2748  **/
2749 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2750 {
2751         int i;
2752
2753         for (i = 0; i < adapter->num_rx_queues; i++)
2754                 igb_free_rx_resources(&adapter->rx_ring[i]);
2755 }
2756
2757 /**
2758  * igb_clean_rx_ring - Free Rx Buffers per Queue
2759  * @rx_ring: ring to free buffers from
2760  **/
2761 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2762 {
2763         struct igb_buffer *buffer_info;
2764         unsigned long size;
2765         unsigned int i;
2766
2767         if (!rx_ring->buffer_info)
2768                 return;
2769
2770         /* Free all the Rx ring sk_buffs */
2771         for (i = 0; i < rx_ring->count; i++) {
2772                 buffer_info = &rx_ring->buffer_info[i];
2773                 if (buffer_info->dma) {
2774                         pci_unmap_single(rx_ring->pdev,
2775                                          buffer_info->dma,
2776                                          rx_ring->rx_buffer_len,
2777                                          PCI_DMA_FROMDEVICE);
2778                         buffer_info->dma = 0;
2779                 }
2780
2781                 if (buffer_info->skb) {
2782                         dev_kfree_skb(buffer_info->skb);
2783                         buffer_info->skb = NULL;
2784                 }
2785                 if (buffer_info->page_dma) {
2786                         pci_unmap_page(rx_ring->pdev,
2787                                        buffer_info->page_dma,
2788                                        PAGE_SIZE / 2,
2789                                        PCI_DMA_FROMDEVICE);
2790                         buffer_info->page_dma = 0;
2791                 }
2792                 if (buffer_info->page) {
2793                         put_page(buffer_info->page);
2794                         buffer_info->page = NULL;
2795                         buffer_info->page_offset = 0;
2796                 }
2797         }
2798
2799         size = sizeof(struct igb_buffer) * rx_ring->count;
2800         memset(rx_ring->buffer_info, 0, size);
2801
2802         /* Zero out the descriptor ring */
2803         memset(rx_ring->desc, 0, rx_ring->size);
2804
2805         rx_ring->next_to_clean = 0;
2806         rx_ring->next_to_use = 0;
2807 }
2808
2809 /**
2810  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2811  * @adapter: board private structure
2812  **/
2813 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2814 {
2815         int i;
2816
2817         for (i = 0; i < adapter->num_rx_queues; i++)
2818                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2819 }
2820
2821 /**
2822  * igb_set_mac - Change the Ethernet Address of the NIC
2823  * @netdev: network interface device structure
2824  * @p: pointer to an address structure
2825  *
2826  * Returns 0 on success, negative on failure
2827  **/
2828 static int igb_set_mac(struct net_device *netdev, void *p)
2829 {
2830         struct igb_adapter *adapter = netdev_priv(netdev);
2831         struct e1000_hw *hw = &adapter->hw;
2832         struct sockaddr *addr = p;
2833
2834         if (!is_valid_ether_addr(addr->sa_data))
2835                 return -EADDRNOTAVAIL;
2836
2837         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2838         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2839
2840         /* set the correct pool for the new PF MAC address in entry 0 */
2841         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2842                          adapter->vfs_allocated_count);
2843
2844         return 0;
2845 }
2846
2847 /**
2848  * igb_write_mc_addr_list - write multicast addresses to MTA
2849  * @netdev: network interface device structure
2850  *
2851  * Writes multicast address list to the MTA hash table.
2852  * Returns: -ENOMEM on failure
2853  *                0 on no addresses written
2854  *                X on writing X addresses to MTA
2855  **/
2856 static int igb_write_mc_addr_list(struct net_device *netdev)
2857 {
2858         struct igb_adapter *adapter = netdev_priv(netdev);
2859         struct e1000_hw *hw = &adapter->hw;
2860         struct dev_mc_list *mc_ptr = netdev->mc_list;
2861         u8  *mta_list;
2862         u32 vmolr = 0;
2863         int i;
2864
2865         if (netdev_mc_empty(netdev)) {
2866                 /* nothing to program, so clear mc list */
2867                 igb_update_mc_addr_list(hw, NULL, 0);
2868                 igb_restore_vf_multicasts(adapter);
2869                 return 0;
2870         }
2871
2872         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2873         if (!mta_list)
2874                 return -ENOMEM;
2875
2876         /* set vmolr receive overflow multicast bit */
2877         vmolr |= E1000_VMOLR_ROMPE;
2878
2879         /* The shared function expects a packed array of only addresses. */
2880         mc_ptr = netdev->mc_list;
2881
2882         for (i = 0; i < netdev_mc_count(netdev); i++) {
2883                 if (!mc_ptr)
2884                         break;
2885                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2886                 mc_ptr = mc_ptr->next;
2887         }
2888         igb_update_mc_addr_list(hw, mta_list, i);
2889         kfree(mta_list);
2890
2891         return netdev_mc_count(netdev);
2892 }
2893
2894 /**
2895  * igb_write_uc_addr_list - write unicast addresses to RAR table
2896  * @netdev: network interface device structure
2897  *
2898  * Writes unicast address list to the RAR table.
2899  * Returns: -ENOMEM on failure/insufficient address space
2900  *                0 on no addresses written
2901  *                X on writing X addresses to the RAR table
2902  **/
2903 static int igb_write_uc_addr_list(struct net_device *netdev)
2904 {
2905         struct igb_adapter *adapter = netdev_priv(netdev);
2906         struct e1000_hw *hw = &adapter->hw;
2907         unsigned int vfn = adapter->vfs_allocated_count;
2908         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2909         int count = 0;
2910
2911         /* return ENOMEM indicating insufficient memory for addresses */
2912         if (netdev_uc_count(netdev) > rar_entries)
2913                 return -ENOMEM;
2914
2915         if (!netdev_uc_empty(netdev) && rar_entries) {
2916                 struct netdev_hw_addr *ha;
2917
2918                 netdev_for_each_uc_addr(ha, netdev) {
2919                         if (!rar_entries)
2920                                 break;
2921                         igb_rar_set_qsel(adapter, ha->addr,
2922                                          rar_entries--,
2923                                          vfn);
2924                         count++;
2925                 }
2926         }
2927         /* write the addresses in reverse order to avoid write combining */
2928         for (; rar_entries > 0 ; rar_entries--) {
2929                 wr32(E1000_RAH(rar_entries), 0);
2930                 wr32(E1000_RAL(rar_entries), 0);
2931         }
2932         wrfl();
2933
2934         return count;
2935 }
2936
2937 /**
2938  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2939  * @netdev: network interface device structure
2940  *
2941  * The set_rx_mode entry point is called whenever the unicast or multicast
2942  * address lists or the network interface flags are updated.  This routine is
2943  * responsible for configuring the hardware for proper unicast, multicast,
2944  * promiscuous mode, and all-multi behavior.
2945  **/
2946 static void igb_set_rx_mode(struct net_device *netdev)
2947 {
2948         struct igb_adapter *adapter = netdev_priv(netdev);
2949         struct e1000_hw *hw = &adapter->hw;
2950         unsigned int vfn = adapter->vfs_allocated_count;
2951         u32 rctl, vmolr = 0;
2952         int count;
2953
2954         /* Check for Promiscuous and All Multicast modes */
2955         rctl = rd32(E1000_RCTL);
2956
2957         /* clear the effected bits */
2958         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2959
2960         if (netdev->flags & IFF_PROMISC) {
2961                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2962                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2963         } else {
2964                 if (netdev->flags & IFF_ALLMULTI) {
2965                         rctl |= E1000_RCTL_MPE;
2966                         vmolr |= E1000_VMOLR_MPME;
2967                 } else {
2968                         /*
2969                          * Write addresses to the MTA, if the attempt fails
2970                          * then we should just turn on promiscous mode so
2971                          * that we can at least receive multicast traffic
2972                          */
2973                         count = igb_write_mc_addr_list(netdev);
2974                         if (count < 0) {
2975                                 rctl |= E1000_RCTL_MPE;
2976                                 vmolr |= E1000_VMOLR_MPME;
2977                         } else if (count) {
2978                                 vmolr |= E1000_VMOLR_ROMPE;
2979                         }
2980                 }
2981                 /*
2982                  * Write addresses to available RAR registers, if there is not
2983                  * sufficient space to store all the addresses then enable
2984                  * unicast promiscous mode
2985                  */
2986                 count = igb_write_uc_addr_list(netdev);
2987                 if (count < 0) {
2988                         rctl |= E1000_RCTL_UPE;
2989                         vmolr |= E1000_VMOLR_ROPE;
2990                 }
2991                 rctl |= E1000_RCTL_VFE;
2992         }
2993         wr32(E1000_RCTL, rctl);
2994
2995         /*
2996          * In order to support SR-IOV and eventually VMDq it is necessary to set
2997          * the VMOLR to enable the appropriate modes.  Without this workaround
2998          * we will have issues with VLAN tag stripping not being done for frames
2999          * that are only arriving because we are the default pool
3000          */
3001         if (hw->mac.type < e1000_82576)
3002                 return;
3003
3004         vmolr |= rd32(E1000_VMOLR(vfn)) &
3005                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3006         wr32(E1000_VMOLR(vfn), vmolr);
3007         igb_restore_vf_multicasts(adapter);
3008 }
3009
3010 /* Need to wait a few seconds after link up to get diagnostic information from
3011  * the phy */
3012 static void igb_update_phy_info(unsigned long data)
3013 {
3014         struct igb_adapter *adapter = (struct igb_adapter *) data;
3015         igb_get_phy_info(&adapter->hw);
3016 }
3017
3018 /**
3019  * igb_has_link - check shared code for link and determine up/down
3020  * @adapter: pointer to driver private info
3021  **/
3022 static bool igb_has_link(struct igb_adapter *adapter)
3023 {
3024         struct e1000_hw *hw = &adapter->hw;
3025         bool link_active = false;
3026         s32 ret_val = 0;
3027
3028         /* get_link_status is set on LSC (link status) interrupt or
3029          * rx sequence error interrupt.  get_link_status will stay
3030          * false until the e1000_check_for_link establishes link
3031          * for copper adapters ONLY
3032          */
3033         switch (hw->phy.media_type) {
3034         case e1000_media_type_copper:
3035                 if (hw->mac.get_link_status) {
3036                         ret_val = hw->mac.ops.check_for_link(hw);
3037                         link_active = !hw->mac.get_link_status;
3038                 } else {
3039                         link_active = true;
3040                 }
3041                 break;
3042         case e1000_media_type_internal_serdes:
3043                 ret_val = hw->mac.ops.check_for_link(hw);
3044                 link_active = hw->mac.serdes_has_link;
3045                 break;
3046         default:
3047         case e1000_media_type_unknown:
3048                 break;
3049         }
3050
3051         return link_active;
3052 }
3053
3054 /**
3055  * igb_watchdog - Timer Call-back
3056  * @data: pointer to adapter cast into an unsigned long
3057  **/
3058 static void igb_watchdog(unsigned long data)
3059 {
3060         struct igb_adapter *adapter = (struct igb_adapter *)data;
3061         /* Do the rest outside of interrupt context */
3062         schedule_work(&adapter->watchdog_task);
3063 }
3064
3065 static void igb_watchdog_task(struct work_struct *work)
3066 {
3067         struct igb_adapter *adapter = container_of(work,
3068                                                    struct igb_adapter,
3069                                                    watchdog_task);
3070         struct e1000_hw *hw = &adapter->hw;
3071         struct net_device *netdev = adapter->netdev;
3072         u32 link;
3073         int i;
3074
3075         link = igb_has_link(adapter);
3076         if (link) {
3077                 if (!netif_carrier_ok(netdev)) {
3078                         u32 ctrl;
3079                         hw->mac.ops.get_speed_and_duplex(hw,
3080                                                          &adapter->link_speed,
3081                                                          &adapter->link_duplex);
3082
3083                         ctrl = rd32(E1000_CTRL);
3084                         /* Links status message must follow this format */
3085                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3086                                  "Flow Control: %s\n",
3087                                netdev->name,
3088                                adapter->link_speed,
3089                                adapter->link_duplex == FULL_DUPLEX ?
3090                                  "Full Duplex" : "Half Duplex",
3091                                ((ctrl & E1000_CTRL_TFCE) &&
3092                                 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3093                                ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
3094                                ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3095
3096                         /* tweak tx_queue_len according to speed/duplex and
3097                          * adjust the timeout factor */
3098                         netdev->tx_queue_len = adapter->tx_queue_len;
3099                         adapter->tx_timeout_factor = 1;
3100                         switch (adapter->link_speed) {
3101                         case SPEED_10:
3102                                 netdev->tx_queue_len = 10;
3103                                 adapter->tx_timeout_factor = 14;
3104                                 break;
3105                         case SPEED_100:
3106                                 netdev->tx_queue_len = 100;
3107                                 /* maybe add some timeout factor ? */
3108                                 break;
3109                         }
3110
3111                         netif_carrier_on(netdev);
3112
3113                         igb_ping_all_vfs(adapter);
3114
3115                         /* link state has changed, schedule phy info update */
3116                         if (!test_bit(__IGB_DOWN, &adapter->state))
3117                                 mod_timer(&adapter->phy_info_timer,
3118                                           round_jiffies(jiffies + 2 * HZ));
3119                 }
3120         } else {
3121                 if (netif_carrier_ok(netdev)) {
3122                         adapter->link_speed = 0;
3123                         adapter->link_duplex = 0;
3124                         /* Links status message must follow this format */
3125                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
3126                                netdev->name);
3127                         netif_carrier_off(netdev);
3128
3129                         igb_ping_all_vfs(adapter);
3130
3131                         /* link state has changed, schedule phy info update */
3132                         if (!test_bit(__IGB_DOWN, &adapter->state))
3133                                 mod_timer(&adapter->phy_info_timer,
3134                                           round_jiffies(jiffies + 2 * HZ));
3135                 }
3136         }
3137
3138         igb_update_stats(adapter);
3139         igb_update_adaptive(hw);
3140
3141         for (i = 0; i < adapter->num_tx_queues; i++) {
3142                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3143                 if (!netif_carrier_ok(netdev)) {
3144                         /* We've lost link, so the controller stops DMA,
3145                          * but we've got queued Tx work that's never going
3146                          * to get done, so reset controller to flush Tx.
3147                          * (Do the reset outside of interrupt context). */
3148                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3149                                 adapter->tx_timeout_count++;
3150                                 schedule_work(&adapter->reset_task);
3151                                 /* return immediately since reset is imminent */
3152                                 return;
3153                         }
3154                 }
3155
3156                 /* Force detection of hung controller every watchdog period */
3157                 tx_ring->detect_tx_hung = true;
3158         }
3159
3160         /* Cause software interrupt to ensure rx ring is cleaned */
3161         if (adapter->msix_entries) {
3162                 u32 eics = 0;
3163                 for (i = 0; i < adapter->num_q_vectors; i++) {
3164                         struct igb_q_vector *q_vector = adapter->q_vector[i];
3165                         eics |= q_vector->eims_value;
3166                 }
3167                 wr32(E1000_EICS, eics);
3168         } else {
3169                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3170         }
3171
3172         /* Reset the timer */
3173         if (!test_bit(__IGB_DOWN, &adapter->state))
3174                 mod_timer(&adapter->watchdog_timer,
3175                           round_jiffies(jiffies + 2 * HZ));
3176 }
3177
3178 enum latency_range {
3179         lowest_latency = 0,
3180         low_latency = 1,
3181         bulk_latency = 2,
3182         latency_invalid = 255
3183 };
3184
3185 /**
3186  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3187  *
3188  *      Stores a new ITR value based on strictly on packet size.  This
3189  *      algorithm is less sophisticated than that used in igb_update_itr,
3190  *      due to the difficulty of synchronizing statistics across multiple
3191  *      receive rings.  The divisors and thresholds used by this fuction
3192  *      were determined based on theoretical maximum wire speed and testing
3193  *      data, in order to minimize response time while increasing bulk
3194  *      throughput.
3195  *      This functionality is controlled by the InterruptThrottleRate module
3196  *      parameter (see igb_param.c)
3197  *      NOTE:  This function is called only when operating in a multiqueue
3198  *             receive environment.
3199  * @q_vector: pointer to q_vector
3200  **/
3201 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3202 {
3203         int new_val = q_vector->itr_val;
3204         int avg_wire_size = 0;
3205         struct igb_adapter *adapter = q_vector->adapter;
3206
3207         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3208          * ints/sec - ITR timer value of 120 ticks.
3209          */
3210         if (adapter->link_speed != SPEED_1000) {
3211                 new_val = 976;
3212                 goto set_itr_val;
3213         }
3214
3215         if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3216                 struct igb_ring *ring = q_vector->rx_ring;
3217                 avg_wire_size = ring->total_bytes / ring->total_packets;
3218         }
3219
3220         if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3221                 struct igb_ring *ring = q_vector->tx_ring;
3222                 avg_wire_size = max_t(u32, avg_wire_size,
3223                                       (ring->total_bytes /
3224                                        ring->total_packets));
3225         }
3226
3227         /* if avg_wire_size isn't set no work was done */
3228         if (!avg_wire_size)
3229                 goto clear_counts;
3230
3231         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3232         avg_wire_size += 24;
3233
3234         /* Don't starve jumbo frames */
3235         avg_wire_size = min(avg_wire_size, 3000);
3236
3237         /* Give a little boost to mid-size frames */
3238         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3239                 new_val = avg_wire_size / 3;
3240         else
3241                 new_val = avg_wire_size / 2;
3242
3243 set_itr_val:
3244         if (new_val != q_vector->itr_val) {
3245                 q_vector->itr_val = new_val;
3246                 q_vector->set_itr = 1;
3247         }
3248 clear_counts:
3249         if (q_vector->rx_ring) {
3250                 q_vector->rx_ring->total_bytes = 0;
3251                 q_vector->rx_ring->total_packets = 0;
3252         }
3253         if (q_vector->tx_ring) {
3254                 q_vector->tx_ring->total_bytes = 0;
3255                 q_vector->tx_ring->total_packets = 0;
3256         }
3257 }
3258
3259 /**
3260  * igb_update_itr - update the dynamic ITR value based on statistics
3261  *      Stores a new ITR value based on packets and byte
3262  *      counts during the last interrupt.  The advantage of per interrupt
3263  *      computation is faster updates and more accurate ITR for the current
3264  *      traffic pattern.  Constants in this function were computed
3265  *      based on theoretical maximum wire speed and thresholds were set based
3266  *      on testing data as well as attempting to minimize response time
3267  *      while increasing bulk throughput.
3268  *      this functionality is controlled by the InterruptThrottleRate module
3269  *      parameter (see igb_param.c)
3270  *      NOTE:  These calculations are only valid when operating in a single-
3271  *             queue environment.
3272  * @adapter: pointer to adapter
3273  * @itr_setting: current q_vector->itr_val
3274  * @packets: the number of packets during this measurement interval
3275  * @bytes: the number of bytes during this measurement interval
3276  **/
3277 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3278                                    int packets, int bytes)
3279 {
3280         unsigned int retval = itr_setting;
3281
3282         if (packets == 0)
3283                 goto update_itr_done;
3284
3285         switch (itr_setting) {
3286         case lowest_latency:
3287                 /* handle TSO and jumbo frames */
3288                 if (bytes/packets > 8000)
3289                         retval = bulk_latency;
3290                 else if ((packets < 5) && (bytes > 512))
3291                         retval = low_latency;
3292                 break;
3293         case low_latency:  /* 50 usec aka 20000 ints/s */
3294                 if (bytes > 10000) {
3295                         /* this if handles the TSO accounting */
3296                         if (bytes/packets > 8000) {
3297                                 retval = bulk_latency;
3298                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3299                                 retval = bulk_latency;
3300                         } else if ((packets > 35)) {
3301                                 retval = lowest_latency;
3302                         }
3303                 } else if (bytes/packets > 2000) {
3304                         retval = bulk_latency;
3305                 } else if (packets <= 2 && bytes < 512) {
3306                         retval = lowest_latency;
3307                 }
3308                 break;
3309         case bulk_latency: /* 250 usec aka 4000 ints/s */
3310                 if (bytes > 25000) {
3311                         if (packets > 35)
3312                                 retval = low_latency;
3313                 } else if (bytes < 1500) {
3314                         retval = low_latency;
3315                 }
3316                 break;
3317         }
3318
3319 update_itr_done:
3320         return retval;
3321 }
3322
3323 static void igb_set_itr(struct igb_adapter *adapter)
3324 {
3325         struct igb_q_vector *q_vector = adapter->q_vector[0];
3326         u16 current_itr;
3327         u32 new_itr = q_vector->itr_val;
3328
3329         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3330         if (adapter->link_speed != SPEED_1000) {
3331                 current_itr = 0;
3332                 new_itr = 4000;
3333                 goto set_itr_now;
3334         }
3335
3336         adapter->rx_itr = igb_update_itr(adapter,
3337                                     adapter->rx_itr,
3338                                     adapter->rx_ring->total_packets,
3339                                     adapter->rx_ring->total_bytes);
3340
3341         adapter->tx_itr = igb_update_itr(adapter,
3342                                     adapter->tx_itr,
3343                                     adapter->tx_ring->total_packets,
3344                                     adapter->tx_ring->total_bytes);
3345         current_itr = max(adapter->rx_itr, adapter->tx_itr);
3346
3347         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3348         if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3349                 current_itr = low_latency;
3350
3351         switch (current_itr) {
3352         /* counts and packets in update_itr are dependent on these numbers */
3353         case lowest_latency:
3354                 new_itr = 56;  /* aka 70,000 ints/sec */
3355                 break;
3356         case low_latency:
3357                 new_itr = 196; /* aka 20,000 ints/sec */
3358                 break;
3359         case bulk_latency:
3360                 new_itr = 980; /* aka 4,000 ints/sec */
3361                 break;
3362         default:
3363                 break;
3364         }
3365
3366 set_itr_now:
3367         adapter->rx_ring->total_bytes = 0;
3368         adapter->rx_ring->total_packets = 0;
3369         adapter->tx_ring->total_bytes = 0;
3370         adapter->tx_ring->total_packets = 0;
3371
3372         if (new_itr != q_vector->itr_val) {
3373                 /* this attempts to bias the interrupt rate towards Bulk
3374                  * by adding intermediate steps when interrupt rate is
3375                  * increasing */
3376                 new_itr = new_itr > q_vector->itr_val ?
3377                              max((new_itr * q_vector->itr_val) /
3378                                  (new_itr + (q_vector->itr_val >> 2)),
3379                                  new_itr) :
3380                              new_itr;
3381                 /* Don't write the value here; it resets the adapter's
3382                  * internal timer, and causes us to delay far longer than
3383                  * we should between interrupts.  Instead, we write the ITR
3384                  * value at the beginning of the next interrupt so the timing
3385                  * ends up being correct.
3386                  */
3387                 q_vector->itr_val = new_itr;
3388                 q_vector->set_itr = 1;
3389         }
3390
3391         return;
3392 }
3393
3394 #define IGB_TX_FLAGS_CSUM               0x00000001
3395 #define IGB_TX_FLAGS_VLAN               0x00000002
3396 #define IGB_TX_FLAGS_TSO                0x00000004
3397 #define IGB_TX_FLAGS_IPV4               0x00000008
3398 #define IGB_TX_FLAGS_TSTAMP             0x00000010
3399 #define IGB_TX_FLAGS_VLAN_MASK          0xffff0000
3400 #define IGB_TX_FLAGS_VLAN_SHIFT                 16
3401
3402 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3403                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3404 {
3405         struct e1000_adv_tx_context_desc *context_desc;
3406         unsigned int i;
3407         int err;
3408         struct igb_buffer *buffer_info;
3409         u32 info = 0, tu_cmd = 0;
3410         u32 mss_l4len_idx, l4len;
3411         *hdr_len = 0;
3412
3413         if (skb_header_cloned(skb)) {
3414                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3415                 if (err)
3416                         return err;
3417         }
3418
3419         l4len = tcp_hdrlen(skb);
3420         *hdr_len += l4len;
3421
3422         if (skb->protocol == htons(ETH_P_IP)) {
3423                 struct iphdr *iph = ip_hdr(skb);
3424                 iph->tot_len = 0;
3425                 iph->check = 0;
3426                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3427                                                          iph->daddr, 0,
3428                                                          IPPROTO_TCP,
3429                                                          0);
3430         } else if (skb_is_gso_v6(skb)) {
3431                 ipv6_hdr(skb)->payload_len = 0;
3432                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3433                                                        &ipv6_hdr(skb)->daddr,
3434                                                        0, IPPROTO_TCP, 0);
3435         }
3436
3437         i = tx_ring->next_to_use;
3438
3439         buffer_info = &tx_ring->buffer_info[i];
3440         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3441         /* VLAN MACLEN IPLEN */
3442         if (tx_flags & IGB_TX_FLAGS_VLAN)
3443                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3444         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3445         *hdr_len += skb_network_offset(skb);
3446         info |= skb_network_header_len(skb);
3447         *hdr_len += skb_network_header_len(skb);
3448         context_desc->vlan_macip_lens = cpu_to_le32(info);
3449
3450         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3451         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3452
3453         if (skb->protocol == htons(ETH_P_IP))
3454                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3455         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3456
3457         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3458
3459         /* MSS L4LEN IDX */
3460         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3461         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3462
3463         /* For 82575, context index must be unique per ring. */
3464         if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3465                 mss_l4len_idx |= tx_ring->reg_idx << 4;
3466
3467         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3468         context_desc->seqnum_seed = 0;
3469
3470         buffer_info->time_stamp = jiffies;
3471         buffer_info->next_to_watch = i;
3472         buffer_info->dma = 0;
3473         i++;
3474         if (i == tx_ring->count)
3475                 i = 0;
3476
3477         tx_ring->next_to_use = i;
3478
3479         return true;
3480 }
3481
3482 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3483                                    struct sk_buff *skb, u32 tx_flags)
3484 {
3485         struct e1000_adv_tx_context_desc *context_desc;
3486         struct pci_dev *pdev = tx_ring->pdev;
3487         struct igb_buffer *buffer_info;
3488         u32 info = 0, tu_cmd = 0;
3489         unsigned int i;
3490
3491         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3492             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3493                 i = tx_ring->next_to_use;
3494                 buffer_info = &tx_ring->buffer_info[i];
3495                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3496
3497                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3498                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3499
3500                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3501                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3502                         info |= skb_network_header_len(skb);
3503
3504                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3505
3506                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3507
3508                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3509                         __be16 protocol;
3510
3511                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3512                                 const struct vlan_ethhdr *vhdr =
3513                                           (const struct vlan_ethhdr*)skb->data;
3514
3515                                 protocol = vhdr->h_vlan_encapsulated_proto;
3516                         } else {
3517                                 protocol = skb->protocol;
3518                         }
3519
3520                         switch (protocol) {
3521                         case cpu_to_be16(ETH_P_IP):
3522                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3523                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3524                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3525                                 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3526                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3527                                 break;
3528                         case cpu_to_be16(ETH_P_IPV6):
3529                                 /* XXX what about other V6 headers?? */
3530                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3531                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3532                                 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3533                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3534                                 break;
3535                         default:
3536                                 if (unlikely(net_ratelimit()))
3537                                         dev_warn(&pdev->dev,
3538                                             "partial checksum but proto=%x!\n",
3539                                             skb->protocol);
3540                                 break;
3541                         }
3542                 }
3543
3544                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3545                 context_desc->seqnum_seed = 0;
3546                 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3547                         context_desc->mss_l4len_idx =
3548                                 cpu_to_le32(tx_ring->reg_idx << 4);
3549
3550                 buffer_info->time_stamp = jiffies;
3551                 buffer_info->next_to_watch = i;
3552                 buffer_info->dma = 0;
3553
3554                 i++;
3555                 if (i == tx_ring->count)
3556                         i = 0;
3557                 tx_ring->next_to_use = i;
3558
3559                 return true;
3560         }
3561         return false;
3562 }
3563
3564 #define IGB_MAX_TXD_PWR 16
3565 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3566
3567 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3568                                  unsigned int first)
3569 {
3570         struct igb_buffer *buffer_info;
3571         struct pci_dev *pdev = tx_ring->pdev;
3572         unsigned int len = skb_headlen(skb);
3573         unsigned int count = 0, i;
3574         unsigned int f;
3575
3576         i = tx_ring->next_to_use;
3577
3578         buffer_info = &tx_ring->buffer_info[i];
3579         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3580         buffer_info->length = len;
3581         /* set time_stamp *before* dma to help avoid a possible race */
3582         buffer_info->time_stamp = jiffies;
3583         buffer_info->next_to_watch = i;
3584         buffer_info->dma = pci_map_single(pdev, skb->data, len,
3585                                           PCI_DMA_TODEVICE);
3586         if (pci_dma_mapping_error(pdev, buffer_info->dma))
3587                 goto dma_error;
3588
3589         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3590                 struct skb_frag_struct *frag;
3591
3592                 count++;
3593                 i++;
3594                 if (i == tx_ring->count)
3595                         i = 0;
3596
3597                 frag = &skb_shinfo(skb)->frags[f];
3598                 len = frag->size;
3599
3600                 buffer_info = &tx_ring->buffer_info[i];
3601                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3602                 buffer_info->length = len;
3603                 buffer_info->time_stamp = jiffies;
3604                 buffer_info->next_to_watch = i;
3605                 buffer_info->mapped_as_page = true;
3606                 buffer_info->dma = pci_map_page(pdev,
3607                                                 frag->page,
3608                                                 frag->page_offset,
3609                                                 len,
3610                                                 PCI_DMA_TODEVICE);
3611                 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3612                         goto dma_error;
3613
3614         }
3615
3616         tx_ring->buffer_info[i].skb = skb;
3617         tx_ring->buffer_info[first].next_to_watch = i;
3618
3619         return ++count;
3620
3621 dma_error:
3622         dev_err(&pdev->dev, "TX DMA map failed\n");
3623
3624         /* clear timestamp and dma mappings for failed buffer_info mapping */
3625         buffer_info->dma = 0;
3626         buffer_info->time_stamp = 0;
3627         buffer_info->length = 0;
3628         buffer_info->next_to_watch = 0;
3629         buffer_info->mapped_as_page = false;
3630         count--;
3631
3632         /* clear timestamp and dma mappings for remaining portion of packet */
3633         while (count >= 0) {
3634                 count--;
3635                 i--;
3636                 if (i < 0)
3637                         i += tx_ring->count;
3638                 buffer_info = &tx_ring->buffer_info[i];
3639                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3640         }
3641
3642         return 0;
3643 }
3644
3645 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3646                                     int tx_flags, int count, u32 paylen,
3647                                     u8 hdr_len)
3648 {
3649         union e1000_adv_tx_desc *tx_desc;
3650         struct igb_buffer *buffer_info;
3651         u32 olinfo_status = 0, cmd_type_len;
3652         unsigned int i = tx_ring->next_to_use;
3653
3654         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3655                         E1000_ADVTXD_DCMD_DEXT);
3656
3657         if (tx_flags & IGB_TX_FLAGS_VLAN)
3658                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3659
3660         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3661                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3662
3663         if (tx_flags & IGB_TX_FLAGS_TSO) {
3664                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3665
3666                 /* insert tcp checksum */
3667                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3668
3669                 /* insert ip checksum */
3670                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3671                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3672
3673         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3674                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3675         }
3676
3677         if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3678             (tx_flags & (IGB_TX_FLAGS_CSUM |
3679                          IGB_TX_FLAGS_TSO |
3680                          IGB_TX_FLAGS_VLAN)))
3681                 olinfo_status |= tx_ring->reg_idx << 4;
3682
3683         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3684
3685         do {
3686                 buffer_info = &tx_ring->buffer_info[i];
3687                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3688                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3689                 tx_desc->read.cmd_type_len =
3690                         cpu_to_le32(cmd_type_len | buffer_info->length);
3691                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3692                 count--;
3693                 i++;
3694                 if (i == tx_ring->count)
3695                         i = 0;
3696         } while (count > 0);
3697
3698         tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3699         /* Force memory writes to complete before letting h/w
3700          * know there are new descriptors to fetch.  (Only
3701          * applicable for weak-ordered memory model archs,
3702          * such as IA-64). */
3703         wmb();
3704
3705         tx_ring->next_to_use = i;
3706         writel(i, tx_ring->tail);
3707         /* we need this if more than one processor can write to our tail
3708          * at a time, it syncronizes IO on IA64/Altix systems */
3709         mmiowb();
3710 }
3711
3712 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3713 {
3714         struct net_device *netdev = tx_ring->netdev;
3715
3716         netif_stop_subqueue(netdev, tx_ring->queue_index);
3717
3718         /* Herbert's original patch had:
3719          *  smp_mb__after_netif_stop_queue();
3720          * but since that doesn't exist yet, just open code it. */
3721         smp_mb();
3722
3723         /* We need to check again in a case another CPU has just
3724          * made room available. */
3725         if (igb_desc_unused(tx_ring) < size)
3726                 return -EBUSY;
3727
3728         /* A reprieve! */
3729         netif_wake_subqueue(netdev, tx_ring->queue_index);
3730         tx_ring->tx_stats.restart_queue++;
3731         return 0;
3732 }
3733
3734 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3735 {
3736         if (igb_desc_unused(tx_ring) >= size)
3737                 return 0;
3738         return __igb_maybe_stop_tx(tx_ring, size);
3739 }
3740
3741 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3742                                     struct igb_ring *tx_ring)
3743 {
3744         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3745         unsigned int first;
3746         unsigned int tx_flags = 0;
3747         u8 hdr_len = 0;
3748         int tso = 0, count;
3749         union skb_shared_tx *shtx = skb_tx(skb);
3750
3751         /* need: 1 descriptor per page,
3752          *       + 2 desc gap to keep tail from touching head,
3753          *       + 1 desc for skb->data,
3754          *       + 1 desc for context descriptor,
3755          * otherwise try next time */
3756         if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3757                 /* this is a hard error */
3758                 return NETDEV_TX_BUSY;
3759         }
3760
3761         if (unlikely(shtx->hardware)) {
3762                 shtx->in_progress = 1;
3763                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3764         }
3765
3766         if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3767                 tx_flags |= IGB_TX_FLAGS_VLAN;
3768                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3769         }
3770
3771         if (skb->protocol == htons(ETH_P_IP))
3772                 tx_flags |= IGB_TX_FLAGS_IPV4;
3773
3774         first = tx_ring->next_to_use;
3775         if (skb_is_gso(skb)) {
3776                 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3777
3778                 if (tso < 0) {
3779                         dev_kfree_skb_any(skb);
3780                         return NETDEV_TX_OK;
3781                 }
3782         }
3783
3784         if (tso)
3785                 tx_flags |= IGB_TX_FLAGS_TSO;
3786         else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3787                  (skb->ip_summed == CHECKSUM_PARTIAL))
3788                 tx_flags |= IGB_TX_FLAGS_CSUM;
3789
3790         /*
3791          * count reflects descriptors mapped, if 0 or less then mapping error
3792          * has occured and we need to rewind the descriptor queue
3793          */
3794         count = igb_tx_map_adv(tx_ring, skb, first);
3795         if (!count) {
3796                 dev_kfree_skb_any(skb);
3797                 tx_ring->buffer_info[first].time_stamp = 0;
3798                 tx_ring->next_to_use = first;
3799                 return NETDEV_TX_OK;
3800         }
3801
3802         igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3803
3804         /* Make sure there is space in the ring for the next send. */
3805         igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3806
3807         return NETDEV_TX_OK;
3808 }
3809
3810 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3811                                       struct net_device *netdev)
3812 {
3813         struct igb_adapter *adapter = netdev_priv(netdev);
3814         struct igb_ring *tx_ring;
3815         int r_idx = 0;
3816
3817         if (test_bit(__IGB_DOWN, &adapter->state)) {
3818                 dev_kfree_skb_any(skb);
3819                 return NETDEV_TX_OK;
3820         }
3821
3822         if (skb->len <= 0) {
3823                 dev_kfree_skb_any(skb);
3824                 return NETDEV_TX_OK;
3825         }
3826
3827         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3828         tx_ring = adapter->multi_tx_table[r_idx];
3829
3830         /* This goes back to the question of how to logically map a tx queue
3831          * to a flow.  Right now, performance is impacted slightly negatively
3832          * if using multiple tx queues.  If the stack breaks away from a
3833          * single qdisc implementation, we can look at this again. */
3834         return igb_xmit_frame_ring_adv(skb, tx_ring);
3835 }
3836
3837 /**
3838  * igb_tx_timeout - Respond to a Tx Hang
3839  * @netdev: network interface device structure
3840  **/
3841 static void igb_tx_timeout(struct net_device *netdev)
3842 {
3843         struct igb_adapter *adapter = netdev_priv(netdev);
3844         struct e1000_hw *hw = &adapter->hw;
3845
3846         /* Do the reset outside of interrupt context */
3847         adapter->tx_timeout_count++;
3848
3849         if (hw->mac.type == e1000_82580)
3850                 hw->dev_spec._82575.global_device_reset = true;
3851
3852         schedule_work(&adapter->reset_task);
3853         wr32(E1000_EICS,
3854              (adapter->eims_enable_mask & ~adapter->eims_other));
3855 }
3856
3857 static void igb_reset_task(struct work_struct *work)
3858 {
3859         struct igb_adapter *adapter;
3860         adapter = container_of(work, struct igb_adapter, reset_task);
3861
3862         igb_reinit_locked(adapter);
3863 }
3864
3865 /**
3866  * igb_get_stats - Get System Network Statistics
3867  * @netdev: network interface device structure
3868  *
3869  * Returns the address of the device statistics structure.
3870  * The statistics are actually updated from the timer callback.
3871  **/
3872 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3873 {
3874         /* only return the current stats */
3875         return &netdev->stats;
3876 }
3877
3878 /**
3879  * igb_change_mtu - Change the Maximum Transfer Unit
3880  * @netdev: network interface device structure
3881  * @new_mtu: new value for maximum frame size
3882  *
3883  * Returns 0 on success, negative on failure
3884  **/
3885 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3886 {
3887         struct igb_adapter *adapter = netdev_priv(netdev);
3888         struct pci_dev *pdev = adapter->pdev;
3889         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3890         u32 rx_buffer_len, i;
3891
3892         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3893                 dev_err(&pdev->dev, "Invalid MTU setting\n");
3894                 return -EINVAL;
3895         }
3896
3897         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3898                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3899                 return -EINVAL;
3900         }
3901
3902         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3903                 msleep(1);
3904
3905         /* igb_down has a dependency on max_frame_size */
3906         adapter->max_frame_size = max_frame;
3907
3908         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3909          * means we reserve 2 more, this pushes us to allocate from the next
3910          * larger slab size.
3911          * i.e. RXBUFFER_2048 --> size-4096 slab
3912          */
3913
3914         if (max_frame <= IGB_RXBUFFER_1024)
3915                 rx_buffer_len = IGB_RXBUFFER_1024;
3916         else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3917                 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3918         else
3919                 rx_buffer_len = IGB_RXBUFFER_128;
3920
3921         if (netif_running(netdev))
3922                 igb_down(adapter);
3923
3924         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3925                  netdev->mtu, new_mtu);
3926         netdev->mtu = new_mtu;
3927
3928         for (i = 0; i < adapter->num_rx_queues; i++)
3929                 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3930
3931         if (netif_running(netdev))
3932                 igb_up(adapter);
3933         else
3934                 igb_reset(adapter);
3935
3936         clear_bit(__IGB_RESETTING, &adapter->state);
3937
3938         return 0;
3939 }
3940
3941 /**
3942  * igb_update_stats - Update the board statistics counters
3943  * @adapter: board private structure
3944  **/
3945
3946 void igb_update_stats(struct igb_adapter *adapter)
3947 {
3948         struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3949         struct e1000_hw *hw = &adapter->hw;
3950         struct pci_dev *pdev = adapter->pdev;
3951         u32 rnbc;
3952         u16 phy_tmp;
3953         int i;
3954         u64 bytes, packets;
3955
3956 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3957
3958         /*
3959          * Prevent stats update while adapter is being reset, or if the pci
3960          * connection is down.
3961          */
3962         if (adapter->link_speed == 0)
3963                 return;
3964         if (pci_channel_offline(pdev))
3965                 return;
3966
3967         bytes = 0;
3968         packets = 0;
3969         for (i = 0; i < adapter->num_rx_queues; i++) {
3970                 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3971                 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3972                 net_stats->rx_fifo_errors += rqdpc_tmp;
3973                 bytes += adapter->rx_ring[i].rx_stats.bytes;
3974                 packets += adapter->rx_ring[i].rx_stats.packets;
3975         }
3976
3977         net_stats->rx_bytes = bytes;
3978         net_stats->rx_packets = packets;
3979
3980         bytes = 0;
3981         packets = 0;
3982         for (i = 0; i < adapter->num_tx_queues; i++) {
3983                 bytes += adapter->tx_ring[i].tx_stats.bytes;
3984                 packets += adapter->tx_ring[i].tx_stats.packets;
3985         }
3986         net_stats->tx_bytes = bytes;
3987         net_stats->tx_packets = packets;
3988
3989         /* read stats registers */
3990         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3991         adapter->stats.gprc += rd32(E1000_GPRC);
3992         adapter->stats.gorc += rd32(E1000_GORCL);
3993         rd32(E1000_GORCH); /* clear GORCL */
3994         adapter->stats.bprc += rd32(E1000_BPRC);
3995         adapter->stats.mprc += rd32(E1000_MPRC);
3996         adapter->stats.roc += rd32(E1000_ROC);
3997
3998         adapter->stats.prc64 += rd32(E1000_PRC64);
3999         adapter->stats.prc127 += rd32(E1000_PRC127);
4000         adapter->stats.prc255 += rd32(E1000_PRC255);
4001         adapter->stats.prc511 += rd32(E1000_PRC511);
4002         adapter->stats.prc1023 += rd32(E1000_PRC1023);
4003         adapter->stats.prc1522 += rd32(E1000_PRC1522);
4004         adapter->stats.symerrs += rd32(E1000_SYMERRS);
4005         adapter->stats.sec += rd32(E1000_SEC);
4006
4007         adapter->stats.mpc += rd32(E1000_MPC);
4008         adapter->stats.scc += rd32(E1000_SCC);
4009         adapter->stats.ecol += rd32(E1000_ECOL);
4010         adapter->stats.mcc += rd32(E1000_MCC);
4011         adapter->stats.latecol += rd32(E1000_LATECOL);
4012         adapter->stats.dc += rd32(E1000_DC);
4013         adapter->stats.rlec += rd32(E1000_RLEC);
4014         adapter->stats.xonrxc += rd32(E1000_XONRXC);
4015         adapter->stats.xontxc += rd32(E1000_XONTXC);
4016         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4017         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4018         adapter->stats.fcruc += rd32(E1000_FCRUC);
4019         adapter->stats.gptc += rd32(E1000_GPTC);
4020         adapter->stats.gotc += rd32(E1000_GOTCL);
4021         rd32(E1000_GOTCH); /* clear GOTCL */
4022         rnbc = rd32(E1000_RNBC);
4023         adapter->stats.rnbc += rnbc;
4024         net_stats->rx_fifo_errors += rnbc;
4025         adapter->stats.ruc += rd32(E1000_RUC);
4026         adapter->stats.rfc += rd32(E1000_RFC);
4027         adapter->stats.rjc += rd32(E1000_RJC);
4028         adapter->stats.tor += rd32(E1000_TORH);
4029         adapter->stats.tot += rd32(E1000_TOTH);
4030         adapter->stats.tpr += rd32(E1000_TPR);
4031
4032         adapter->stats.ptc64 += rd32(E1000_PTC64);
4033         adapter->stats.ptc127 += rd32(E1000_PTC127);
4034         adapter->stats.ptc255 += rd32(E1000_PTC255);
4035         adapter->stats.ptc511 += rd32(E1000_PTC511);
4036         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4037         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4038
4039         adapter->stats.mptc += rd32(E1000_MPTC);
4040         adapter->stats.bptc += rd32(E1000_BPTC);
4041
4042         /* used for adaptive IFS */
4043         hw->mac.tx_packet_delta = rd32(E1000_TPT);
4044         adapter->stats.tpt += hw->mac.tx_packet_delta;
4045         hw->mac.collision_delta = rd32(E1000_COLC);
4046         adapter->stats.colc += hw->mac.collision_delta;
4047
4048         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4049         adapter->stats.rxerrc += rd32(E1000_RXERRC);
4050         adapter->stats.tncrs += rd32(E1000_TNCRS);
4051         adapter->stats.tsctc += rd32(E1000_TSCTC);
4052         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4053
4054         adapter->stats.iac += rd32(E1000_IAC);
4055         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4056         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4057         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4058         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4059         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4060         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4061         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4062         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4063
4064         /* Fill out the OS statistics structure */
4065         net_stats->multicast = adapter->stats.mprc;
4066         net_stats->collisions = adapter->stats.colc;
4067
4068         /* Rx Errors */
4069
4070         /* RLEC on some newer hardware can be incorrect so build
4071          * our own version based on RUC and ROC */
4072         net_stats->rx_errors = adapter->stats.rxerrc +
4073                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4074                 adapter->stats.ruc + adapter->stats.roc +
4075                 adapter->stats.cexterr;
4076         net_stats->rx_length_errors = adapter->stats.ruc +
4077                                       adapter->stats.roc;
4078         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4079         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4080         net_stats->rx_missed_errors = adapter->stats.mpc;
4081
4082         /* Tx Errors */
4083         net_stats->tx_errors = adapter->stats.ecol +
4084                                adapter->stats.latecol;
4085         net_stats->tx_aborted_errors = adapter->stats.ecol;
4086         net_stats->tx_window_errors = adapter->stats.latecol;
4087         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4088
4089         /* Tx Dropped needs to be maintained elsewhere */
4090
4091         /* Phy Stats */
4092         if (hw->phy.media_type == e1000_media_type_copper) {
4093                 if ((adapter->link_speed == SPEED_1000) &&
4094                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4095                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4096                         adapter->phy_stats.idle_errors += phy_tmp;
4097                 }
4098         }
4099
4100         /* Management Stats */
4101         adapter->stats.mgptc += rd32(E1000_MGTPTC);
4102         adapter->stats.mgprc += rd32(E1000_MGTPRC);
4103         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4104 }
4105
4106 static irqreturn_t igb_msix_other(int irq, void *data)
4107 {
4108         struct igb_adapter *adapter = data;
4109         struct e1000_hw *hw = &adapter->hw;
4110         u32 icr = rd32(E1000_ICR);
4111         /* reading ICR causes bit 31 of EICR to be cleared */
4112
4113         if (icr & E1000_ICR_DRSTA)
4114                 schedule_work(&adapter->reset_task);
4115
4116         if (icr & E1000_ICR_DOUTSYNC) {
4117                 /* HW is reporting DMA is out of sync */
4118                 adapter->stats.doosync++;
4119         }
4120
4121         /* Check for a mailbox event */
4122         if (icr & E1000_ICR_VMMB)
4123                 igb_msg_task(adapter);
4124
4125         if (icr & E1000_ICR_LSC) {
4126                 hw->mac.get_link_status = 1;
4127                 /* guard against interrupt when we're going down */
4128                 if (!test_bit(__IGB_DOWN, &adapter->state))
4129                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4130         }
4131
4132         if (adapter->vfs_allocated_count)
4133                 wr32(E1000_IMS, E1000_IMS_LSC |
4134                                 E1000_IMS_VMMB |
4135                                 E1000_IMS_DOUTSYNC);
4136         else
4137                 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4138         wr32(E1000_EIMS, adapter->eims_other);
4139
4140         return IRQ_HANDLED;
4141 }
4142
4143 static void igb_write_itr(struct igb_q_vector *q_vector)
4144 {
4145         u32 itr_val = q_vector->itr_val & 0x7FFC;
4146
4147         if (!q_vector->set_itr)
4148                 return;
4149
4150         if (!itr_val)
4151                 itr_val = 0x4;
4152
4153         if (q_vector->itr_shift)
4154                 itr_val |= itr_val << q_vector->itr_shift;
4155         else
4156                 itr_val |= 0x8000000;
4157
4158         writel(itr_val, q_vector->itr_register);
4159         q_vector->set_itr = 0;
4160 }
4161
4162 static irqreturn_t igb_msix_ring(int irq, void *data)
4163 {
4164         struct igb_q_vector *q_vector = data;
4165
4166         /* Write the ITR value calculated from the previous interrupt. */
4167         igb_write_itr(q_vector);
4168
4169         napi_schedule(&q_vector->napi);
4170
4171         return IRQ_HANDLED;
4172 }
4173
4174 #ifdef CONFIG_IGB_DCA
4175 static void igb_update_dca(struct igb_q_vector *q_vector)
4176 {
4177         struct igb_adapter *adapter = q_vector->adapter;
4178         struct e1000_hw *hw = &adapter->hw;
4179         int cpu = get_cpu();
4180
4181         if (q_vector->cpu == cpu)
4182                 goto out_no_update;
4183
4184         if (q_vector->tx_ring) {
4185                 int q = q_vector->tx_ring->reg_idx;
4186                 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4187                 if (hw->mac.type == e1000_82575) {
4188                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4189                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4190                 } else {
4191                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4192                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4193                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
4194                 }
4195                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4196                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4197         }
4198         if (q_vector->rx_ring) {
4199                 int q = q_vector->rx_ring->reg_idx;
4200                 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4201                 if (hw->mac.type == e1000_82575) {
4202                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4203                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4204                 } else {
4205                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4206                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4207                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
4208                 }
4209                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4210                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4211                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4212                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4213         }
4214         q_vector->cpu = cpu;
4215 out_no_update:
4216         put_cpu();
4217 }
4218
4219 static void igb_setup_dca(struct igb_adapter *adapter)
4220 {
4221         struct e1000_hw *hw = &adapter->hw;
4222         int i;
4223
4224         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4225                 return;
4226
4227         /* Always use CB2 mode, difference is masked in the CB driver. */
4228         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4229
4230         for (i = 0; i < adapter->num_q_vectors; i++) {
4231                 struct igb_q_vector *q_vector = adapter->q_vector[i];
4232                 q_vector->cpu = -1;
4233                 igb_update_dca(q_vector);
4234         }
4235 }
4236
4237 static int __igb_notify_dca(struct device *dev, void *data)
4238 {
4239         struct net_device *netdev = dev_get_drvdata(dev);
4240         struct igb_adapter *adapter = netdev_priv(netdev);
4241         struct pci_dev *pdev = adapter->pdev;
4242         struct e1000_hw *hw = &adapter->hw;
4243         unsigned long event = *(unsigned long *)data;
4244
4245         switch (event) {
4246         case DCA_PROVIDER_ADD:
4247                 /* if already enabled, don't do it again */
4248                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4249                         break;
4250                 if (dca_add_requester(dev) == 0) {
4251                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4252                         dev_info(&pdev->dev, "DCA enabled\n");
4253                         igb_setup_dca(adapter);
4254                         break;
4255                 }
4256                 /* Fall Through since DCA is disabled. */
4257         case DCA_PROVIDER_REMOVE:
4258                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4259                         /* without this a class_device is left
4260                          * hanging around in the sysfs model */
4261                         dca_remove_requester(dev);
4262                         dev_info(&pdev->dev, "DCA disabled\n");
4263                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4264                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4265                 }
4266                 break;
4267         }
4268
4269         return 0;
4270 }
4271
4272 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4273                           void *p)
4274 {
4275         int ret_val;
4276
4277         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4278                                          __igb_notify_dca);
4279
4280         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4281 }
4282 #endif /* CONFIG_IGB_DCA */
4283
4284 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4285 {
4286         struct e1000_hw *hw = &adapter->hw;
4287         u32 ping;
4288         int i;
4289
4290         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4291                 ping = E1000_PF_CONTROL_MSG;
4292                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4293                         ping |= E1000_VT_MSGTYPE_CTS;
4294                 igb_write_mbx(hw, &ping, 1, i);
4295         }
4296 }
4297
4298 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4299 {
4300         struct e1000_hw *hw = &adapter->hw;
4301         u32 vmolr = rd32(E1000_VMOLR(vf));
4302         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4303
4304         vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4305                             IGB_VF_FLAG_MULTI_PROMISC);
4306         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4307
4308         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4309                 vmolr |= E1000_VMOLR_MPME;
4310                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4311         } else {
4312                 /*
4313                  * if we have hashes and we are clearing a multicast promisc
4314                  * flag we need to write the hashes to the MTA as this step
4315                  * was previously skipped
4316                  */
4317                 if (vf_data->num_vf_mc_hashes > 30) {
4318                         vmolr |= E1000_VMOLR_MPME;
4319                 } else if (vf_data->num_vf_mc_hashes) {
4320                         int j;
4321                         vmolr |= E1000_VMOLR_ROMPE;
4322                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4323                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4324                 }
4325         }
4326
4327         wr32(E1000_VMOLR(vf), vmolr);
4328
4329         /* there are flags left unprocessed, likely not supported */
4330         if (*msgbuf & E1000_VT_MSGINFO_MASK)
4331                 return -EINVAL;
4332
4333         return 0;
4334
4335 }
4336
4337 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4338                                   u32 *msgbuf, u32 vf)
4339 {
4340         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4341         u16 *hash_list = (u16 *)&msgbuf[1];
4342         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4343         int i;
4344
4345         /* salt away the number of multicast addresses assigned
4346          * to this VF for later use to restore when the PF multi cast
4347          * list changes
4348          */
4349         vf_data->num_vf_mc_hashes = n;
4350
4351         /* only up to 30 hash values supported */
4352         if (n > 30)
4353                 n = 30;
4354
4355         /* store the hashes for later use */
4356         for (i = 0; i < n; i++)
4357                 vf_data->vf_mc_hashes[i] = hash_list[i];
4358
4359         /* Flush and reset the mta with the new values */
4360         igb_set_rx_mode(adapter->netdev);
4361
4362         return 0;
4363 }
4364
4365 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4366 {
4367         struct e1000_hw *hw = &adapter->hw;
4368         struct vf_data_storage *vf_data;
4369         int i, j;
4370
4371         for (i = 0; i < adapter->vfs_allocated_count; i++) {
4372                 u32 vmolr = rd32(E1000_VMOLR(i));
4373                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4374
4375                 vf_data = &adapter->vf_data[i];
4376
4377                 if ((vf_data->num_vf_mc_hashes > 30) ||
4378                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4379                         vmolr |= E1000_VMOLR_MPME;
4380                 } else if (vf_data->num_vf_mc_hashes) {
4381                         vmolr |= E1000_VMOLR_ROMPE;
4382                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4383                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4384                 }
4385                 wr32(E1000_VMOLR(i), vmolr);
4386         }
4387 }
4388
4389 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4390 {
4391         struct e1000_hw *hw = &adapter->hw;
4392         u32 pool_mask, reg, vid;
4393         int i;
4394
4395         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4396
4397         /* Find the vlan filter for this id */
4398         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4399                 reg = rd32(E1000_VLVF(i));
4400
4401                 /* remove the vf from the pool */
4402                 reg &= ~pool_mask;
4403
4404                 /* if pool is empty then remove entry from vfta */
4405                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4406                     (reg & E1000_VLVF_VLANID_ENABLE)) {
4407                         reg = 0;
4408                         vid = reg & E1000_VLVF_VLANID_MASK;
4409                         igb_vfta_set(hw, vid, false);
4410                 }
4411
4412                 wr32(E1000_VLVF(i), reg);
4413         }
4414
4415         adapter->vf_data[vf].vlans_enabled = 0;
4416 }
4417
4418 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4419 {
4420         struct e1000_hw *hw = &adapter->hw;
4421         u32 reg, i;
4422
4423         /* The vlvf table only exists on 82576 hardware and newer */
4424         if (hw->mac.type < e1000_82576)
4425                 return -1;
4426
4427         /* we only need to do this if VMDq is enabled */
4428         if (!adapter->vfs_allocated_count)
4429                 return -1;
4430
4431         /* Find the vlan filter for this id */
4432         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4433                 reg = rd32(E1000_VLVF(i));
4434                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4435                     vid == (reg & E1000_VLVF_VLANID_MASK))
4436                         break;
4437         }
4438
4439         if (add) {
4440                 if (i == E1000_VLVF_ARRAY_SIZE) {
4441                         /* Did not find a matching VLAN ID entry that was
4442                          * enabled.  Search for a free filter entry, i.e.
4443                          * one without the enable bit set
4444                          */
4445                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4446                                 reg = rd32(E1000_VLVF(i));
4447                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4448                                         break;
4449                         }
4450                 }
4451                 if (i < E1000_VLVF_ARRAY_SIZE) {
4452                         /* Found an enabled/available entry */
4453                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4454
4455                         /* if !enabled we need to set this up in vfta */
4456                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4457                                 /* add VID to filter table */
4458                                 igb_vfta_set(hw, vid, true);
4459                                 reg |= E1000_VLVF_VLANID_ENABLE;
4460                         }
4461                         reg &= ~E1000_VLVF_VLANID_MASK;
4462                         reg |= vid;
4463                         wr32(E1000_VLVF(i), reg);
4464
4465                         /* do not modify RLPML for PF devices */
4466                         if (vf >= adapter->vfs_allocated_count)
4467                                 return 0;
4468
4469                         if (!adapter->vf_data[vf].vlans_enabled) {
4470                                 u32 size;
4471                                 reg = rd32(E1000_VMOLR(vf));
4472                                 size = reg & E1000_VMOLR_RLPML_MASK;
4473                                 size += 4;
4474                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4475                                 reg |= size;
4476                                 wr32(E1000_VMOLR(vf), reg);
4477                         }
4478
4479                         adapter->vf_data[vf].vlans_enabled++;
4480                         return 0;
4481                 }
4482         } else {
4483                 if (i < E1000_VLVF_ARRAY_SIZE) {
4484                         /* remove vf from the pool */
4485                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4486                         /* if pool is empty then remove entry from vfta */
4487                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4488                                 reg = 0;
4489                                 igb_vfta_set(hw, vid, false);
4490                         }
4491                         wr32(E1000_VLVF(i), reg);
4492
4493                         /* do not modify RLPML for PF devices */
4494                         if (vf >= adapter->vfs_allocated_count)
4495                                 return 0;
4496
4497                         adapter->vf_data[vf].vlans_enabled--;
4498                         if (!adapter->vf_data[vf].vlans_enabled) {
4499                                 u32 size;
4500                                 reg = rd32(E1000_VMOLR(vf));
4501                                 size = reg & E1000_VMOLR_RLPML_MASK;
4502                                 size -= 4;
4503                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4504                                 reg |= size;
4505                                 wr32(E1000_VMOLR(vf), reg);
4506                         }
4507                 }
4508         }
4509         return 0;
4510 }
4511
4512 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4513 {
4514         struct e1000_hw *hw = &adapter->hw;
4515
4516         if (vid)
4517                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4518         else
4519                 wr32(E1000_VMVIR(vf), 0);
4520 }
4521
4522 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4523                                int vf, u16 vlan, u8 qos)
4524 {
4525         int err = 0;
4526         struct igb_adapter *adapter = netdev_priv(netdev);
4527
4528         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4529                 return -EINVAL;
4530         if (vlan || qos) {
4531                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4532                 if (err)
4533                         goto out;
4534                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4535                 igb_set_vmolr(adapter, vf, !vlan);
4536                 adapter->vf_data[vf].pf_vlan = vlan;
4537                 adapter->vf_data[vf].pf_qos = qos;
4538                 dev_info(&adapter->pdev->dev,
4539                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4540                 if (test_bit(__IGB_DOWN, &adapter->state)) {
4541                         dev_warn(&adapter->pdev->dev,
4542                                  "The VF VLAN has been set,"
4543                                  " but the PF device is not up.\n");
4544                         dev_warn(&adapter->pdev->dev,
4545                                  "Bring the PF device up before"
4546                                  " attempting to use the VF device.\n");
4547                 }
4548         } else {
4549                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4550                                    false, vf);
4551                 igb_set_vmvir(adapter, vlan, vf);
4552                 igb_set_vmolr(adapter, vf, true);
4553                 adapter->vf_data[vf].pf_vlan = 0;
4554                 adapter->vf_data[vf].pf_qos = 0;
4555        }
4556 out:
4557        return err;
4558 }
4559
4560 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4561 {
4562         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4563         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4564
4565         return igb_vlvf_set(adapter, vid, add, vf);
4566 }
4567
4568 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4569 {
4570         /* clear flags */
4571         adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4572         adapter->vf_data[vf].last_nack = jiffies;
4573
4574         /* reset offloads to defaults */
4575         igb_set_vmolr(adapter, vf, true);
4576
4577         /* reset vlans for device */
4578         igb_clear_vf_vfta(adapter, vf);
4579         if (adapter->vf_data[vf].pf_vlan)
4580                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4581                                     adapter->vf_data[vf].pf_vlan,
4582                                     adapter->vf_data[vf].pf_qos);
4583         else
4584                 igb_clear_vf_vfta(adapter, vf);
4585
4586         /* reset multicast table array for vf */
4587         adapter->vf_data[vf].num_vf_mc_hashes = 0;
4588
4589         /* Flush and reset the mta with the new values */
4590         igb_set_rx_mode(adapter->netdev);
4591 }
4592
4593 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4594 {
4595         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4596
4597         /* generate a new mac address as we were hotplug removed/added */
4598         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4599                 random_ether_addr(vf_mac);
4600
4601         /* process remaining reset events */
4602         igb_vf_reset(adapter, vf);
4603 }
4604
4605 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4606 {
4607         struct e1000_hw *hw = &adapter->hw;
4608         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4609         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4610         u32 reg, msgbuf[3];
4611         u8 *addr = (u8 *)(&msgbuf[1]);
4612
4613         /* process all the same items cleared in a function level reset */
4614         igb_vf_reset(adapter, vf);
4615
4616         /* set vf mac address */
4617         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4618
4619         /* enable transmit and receive for vf */
4620         reg = rd32(E1000_VFTE);
4621         wr32(E1000_VFTE, reg | (1 << vf));
4622         reg = rd32(E1000_VFRE);
4623         wr32(E1000_VFRE, reg | (1 << vf));
4624
4625         adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4626
4627         /* reply to reset with ack and vf mac address */
4628         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4629         memcpy(addr, vf_mac, 6);
4630         igb_write_mbx(hw, msgbuf, 3, vf);
4631 }
4632
4633 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4634 {
4635         unsigned char *addr = (char *)&msg[1];
4636         int err = -1;
4637
4638         if (is_valid_ether_addr(addr))
4639                 err = igb_set_vf_mac(adapter, vf, addr);
4640
4641         return err;
4642 }
4643
4644 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4645 {
4646         struct e1000_hw *hw = &adapter->hw;
4647         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4648         u32 msg = E1000_VT_MSGTYPE_NACK;
4649
4650         /* if device isn't clear to send it shouldn't be reading either */
4651         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4652             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4653                 igb_write_mbx(hw, &msg, 1, vf);
4654                 vf_data->last_nack = jiffies;
4655         }
4656 }
4657
4658 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4659 {
4660         struct pci_dev *pdev = adapter->pdev;
4661         u32 msgbuf[E1000_VFMAILBOX_SIZE];
4662         struct e1000_hw *hw = &adapter->hw;
4663         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4664         s32 retval;
4665
4666         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4667
4668         if (retval) {
4669                 /* if receive failed revoke VF CTS stats and restart init */
4670                 dev_err(&pdev->dev, "Error receiving message from VF\n");
4671                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4672                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4673                         return;
4674                 goto out;
4675         }
4676
4677         /* this is a message we already processed, do nothing */
4678         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4679                 return;
4680
4681         /*
4682          * until the vf completes a reset it should not be
4683          * allowed to start any configuration.
4684          */
4685
4686         if (msgbuf[0] == E1000_VF_RESET) {
4687                 igb_vf_reset_msg(adapter, vf);
4688                 return;
4689         }
4690
4691         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4692                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4693                         return;
4694                 retval = -1;
4695                 goto out;
4696         }
4697
4698         switch ((msgbuf[0] & 0xFFFF)) {
4699         case E1000_VF_SET_MAC_ADDR:
4700                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4701                 break;
4702         case E1000_VF_SET_PROMISC:
4703                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4704                 break;
4705         case E1000_VF_SET_MULTICAST:
4706                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4707                 break;
4708         case E1000_VF_SET_LPE:
4709                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4710                 break;
4711         case E1000_VF_SET_VLAN:
4712                 if (adapter->vf_data[vf].pf_vlan)
4713                         retval = -1;
4714                 else
4715                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4716                 break;
4717         default:
4718                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4719                 retval = -1;
4720                 break;
4721         }
4722
4723         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4724 out:
4725         /* notify the VF of the results of what it sent us */
4726         if (retval)
4727                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4728         else
4729                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4730
4731         igb_write_mbx(hw, msgbuf, 1, vf);
4732 }
4733
4734 static void igb_msg_task(struct igb_adapter *adapter)
4735 {
4736         struct e1000_hw *hw = &adapter->hw;
4737         u32 vf;
4738
4739         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4740                 /* process any reset requests */
4741                 if (!igb_check_for_rst(hw, vf))
4742                         igb_vf_reset_event(adapter, vf);
4743
4744                 /* process any messages pending */
4745                 if (!igb_check_for_msg(hw, vf))
4746                         igb_rcv_msg_from_vf(adapter, vf);
4747
4748                 /* process any acks */
4749                 if (!igb_check_for_ack(hw, vf))
4750                         igb_rcv_ack_from_vf(adapter, vf);
4751         }
4752 }
4753
4754 /**
4755  *  igb_set_uta - Set unicast filter table address
4756  *  @adapter: board private structure
4757  *
4758  *  The unicast table address is a register array of 32-bit registers.
4759  *  The table is meant to be used in a way similar to how the MTA is used
4760  *  however due to certain limitations in the hardware it is necessary to
4761  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4762  *  enable bit to allow vlan tag stripping when promiscous mode is enabled
4763  **/
4764 static void igb_set_uta(struct igb_adapter *adapter)
4765 {
4766         struct e1000_hw *hw = &adapter->hw;
4767         int i;
4768
4769         /* The UTA table only exists on 82576 hardware and newer */
4770         if (hw->mac.type < e1000_82576)
4771                 return;
4772
4773         /* we only need to do this if VMDq is enabled */
4774         if (!adapter->vfs_allocated_count)
4775                 return;
4776
4777         for (i = 0; i < hw->mac.uta_reg_count; i++)
4778                 array_wr32(E1000_UTA, i, ~0);
4779 }
4780
4781 /**
4782  * igb_intr_msi - Interrupt Handler
4783  * @irq: interrupt number
4784  * @data: pointer to a network interface device structure
4785  **/
4786 static irqreturn_t igb_intr_msi(int irq, void *data)
4787 {
4788         struct igb_adapter *adapter = data;
4789         struct igb_q_vector *q_vector = adapter->q_vector[0];
4790         struct e1000_hw *hw = &adapter->hw;
4791         /* read ICR disables interrupts using IAM */
4792         u32 icr = rd32(E1000_ICR);
4793
4794         igb_write_itr(q_vector);
4795
4796         if (icr & E1000_ICR_DRSTA)
4797                 schedule_work(&adapter->reset_task);
4798
4799         if (icr & E1000_ICR_DOUTSYNC) {
4800                 /* HW is reporting DMA is out of sync */
4801                 adapter->stats.doosync++;
4802         }
4803
4804         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4805                 hw->mac.get_link_status = 1;
4806                 if (!test_bit(__IGB_DOWN, &adapter->state))
4807                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4808         }
4809
4810         napi_schedule(&q_vector->napi);
4811
4812         return IRQ_HANDLED;
4813 }
4814
4815 /**
4816  * igb_intr - Legacy Interrupt Handler
4817  * @irq: interrupt number
4818  * @data: pointer to a network interface device structure
4819  **/
4820 static irqreturn_t igb_intr(int irq, void *data)
4821 {
4822         struct igb_adapter *adapter = data;
4823         struct igb_q_vector *q_vector = adapter->q_vector[0];
4824         struct e1000_hw *hw = &adapter->hw;
4825         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4826          * need for the IMC write */
4827         u32 icr = rd32(E1000_ICR);
4828         if (!icr)
4829                 return IRQ_NONE;  /* Not our interrupt */
4830
4831         igb_write_itr(q_vector);
4832
4833         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4834          * not set, then the adapter didn't send an interrupt */
4835         if (!(icr & E1000_ICR_INT_ASSERTED))
4836                 return IRQ_NONE;
4837
4838         if (icr & E1000_ICR_DRSTA)
4839                 schedule_work(&adapter->reset_task);
4840
4841         if (icr & E1000_ICR_DOUTSYNC) {
4842                 /* HW is reporting DMA is out of sync */
4843                 adapter->stats.doosync++;
4844         }
4845
4846         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4847                 hw->mac.get_link_status = 1;
4848                 /* guard against interrupt when we're going down */
4849                 if (!test_bit(__IGB_DOWN, &adapter->state))
4850                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4851         }
4852
4853         napi_schedule(&q_vector->napi);
4854
4855         return IRQ_HANDLED;
4856 }
4857
4858 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4859 {
4860         struct igb_adapter *adapter = q_vector->adapter;
4861         struct e1000_hw *hw = &adapter->hw;
4862
4863         if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4864             (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4865                 if (!adapter->msix_entries)
4866                         igb_set_itr(adapter);
4867                 else
4868                         igb_update_ring_itr(q_vector);
4869         }
4870
4871         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4872                 if (adapter->msix_entries)
4873                         wr32(E1000_EIMS, q_vector->eims_value);
4874                 else
4875                         igb_irq_enable(adapter);
4876         }
4877 }
4878
4879 /**
4880  * igb_poll - NAPI Rx polling callback
4881  * @napi: napi polling structure
4882  * @budget: count of how many packets we should handle
4883  **/
4884 static int igb_poll(struct napi_struct *napi, int budget)
4885 {
4886         struct igb_q_vector *q_vector = container_of(napi,
4887                                                      struct igb_q_vector,
4888                                                      napi);
4889         int tx_clean_complete = 1, work_done = 0;
4890
4891 #ifdef CONFIG_IGB_DCA
4892         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4893                 igb_update_dca(q_vector);
4894 #endif
4895         if (q_vector->tx_ring)
4896                 tx_clean_complete = igb_clean_tx_irq(q_vector);
4897
4898         if (q_vector->rx_ring)
4899                 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4900
4901         if (!tx_clean_complete)
4902                 work_done = budget;
4903
4904         /* If not enough Rx work done, exit the polling mode */
4905         if (work_done < budget) {
4906                 napi_complete(napi);
4907                 igb_ring_irq_enable(q_vector);
4908         }
4909
4910         return work_done;
4911 }
4912
4913 /**
4914  * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4915  * @adapter: board private structure
4916  * @shhwtstamps: timestamp structure to update
4917  * @regval: unsigned 64bit system time value.
4918  *
4919  * We need to convert the system time value stored in the RX/TXSTMP registers
4920  * into a hwtstamp which can be used by the upper level timestamping functions
4921  */
4922 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4923                                    struct skb_shared_hwtstamps *shhwtstamps,
4924                                    u64 regval)
4925 {
4926         u64 ns;
4927
4928         /*
4929          * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4930          * 24 to match clock shift we setup earlier.
4931          */
4932         if (adapter->hw.mac.type == e1000_82580)
4933                 regval <<= IGB_82580_TSYNC_SHIFT;
4934
4935         ns = timecounter_cyc2time(&adapter->clock, regval);
4936         timecompare_update(&adapter->compare, ns);
4937         memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4938         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4939         shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4940 }
4941
4942 /**
4943  * igb_tx_hwtstamp - utility function which checks for TX time stamp
4944  * @q_vector: pointer to q_vector containing needed info
4945  * @skb: packet that was just sent
4946  *
4947  * If we were asked to do hardware stamping and such a time stamp is
4948  * available, then it must have been for this skb here because we only
4949  * allow only one such packet into the queue.
4950  */
4951 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4952 {
4953         struct igb_adapter *adapter = q_vector->adapter;
4954         union skb_shared_tx *shtx = skb_tx(skb);
4955         struct e1000_hw *hw = &adapter->hw;
4956         struct skb_shared_hwtstamps shhwtstamps;
4957         u64 regval;
4958
4959         /* if skb does not support hw timestamp or TX stamp not valid exit */
4960         if (likely(!shtx->hardware) ||
4961             !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4962                 return;
4963
4964         regval = rd32(E1000_TXSTMPL);
4965         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4966
4967         igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4968         skb_tstamp_tx(skb, &shhwtstamps);
4969 }
4970
4971 /**
4972  * igb_clean_tx_irq - Reclaim resources after transmit completes
4973  * @q_vector: pointer to q_vector containing needed info
4974  * returns true if ring is completely cleaned
4975  **/
4976 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4977 {
4978         struct igb_adapter *adapter = q_vector->adapter;
4979         struct igb_ring *tx_ring = q_vector->tx_ring;
4980         struct net_device *netdev = tx_ring->netdev;
4981         struct e1000_hw *hw = &adapter->hw;
4982         struct igb_buffer *buffer_info;
4983         struct sk_buff *skb;
4984         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4985         unsigned int total_bytes = 0, total_packets = 0;
4986         unsigned int i, eop, count = 0;
4987         bool cleaned = false;
4988
4989         i = tx_ring->next_to_clean;
4990         eop = tx_ring->buffer_info[i].next_to_watch;
4991         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4992
4993         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4994                (count < tx_ring->count)) {
4995                 for (cleaned = false; !cleaned; count++) {
4996                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4997                         buffer_info = &tx_ring->buffer_info[i];
4998                         cleaned = (i == eop);
4999                         skb = buffer_info->skb;
5000
5001                         if (skb) {
5002                                 unsigned int segs, bytecount;
5003                                 /* gso_segs is currently only valid for tcp */
5004                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
5005                                 /* multiply data chunks by size of headers */
5006                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
5007                                             skb->len;
5008                                 total_packets += segs;
5009                                 total_bytes += bytecount;
5010
5011                                 igb_tx_hwtstamp(q_vector, skb);
5012                         }
5013
5014                         igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5015                         tx_desc->wb.status = 0;
5016
5017                         i++;
5018                         if (i == tx_ring->count)
5019                                 i = 0;
5020                 }
5021                 eop = tx_ring->buffer_info[i].next_to_watch;
5022                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5023         }
5024
5025         tx_ring->next_to_clean = i;
5026
5027         if (unlikely(count &&
5028                      netif_carrier_ok(netdev) &&
5029                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5030                 /* Make sure that anybody stopping the queue after this
5031                  * sees the new next_to_clean.
5032                  */
5033                 smp_mb();
5034                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5035                     !(test_bit(__IGB_DOWN, &adapter->state))) {
5036                         netif_wake_subqueue(netdev, tx_ring->queue_index);
5037                         tx_ring->tx_stats.restart_queue++;
5038                 }
5039         }
5040
5041         if (tx_ring->detect_tx_hung) {
5042                 /* Detect a transmit hang in hardware, this serializes the
5043                  * check with the clearing of time_stamp and movement of i */
5044                 tx_ring->detect_tx_hung = false;
5045                 if (tx_ring->buffer_info[i].time_stamp &&
5046                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5047                                (adapter->tx_timeout_factor * HZ)) &&
5048                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5049
5050                         /* detected Tx unit hang */
5051                         dev_err(&tx_ring->pdev->dev,
5052                                 "Detected Tx Unit Hang\n"
5053                                 "  Tx Queue             <%d>\n"
5054                                 "  TDH                  <%x>\n"
5055                                 "  TDT                  <%x>\n"
5056                                 "  next_to_use          <%x>\n"
5057                                 "  next_to_clean        <%x>\n"
5058                                 "buffer_info[next_to_clean]\n"
5059                                 "  time_stamp           <%lx>\n"
5060                                 "  next_to_watch        <%x>\n"
5061                                 "  jiffies              <%lx>\n"
5062                                 "  desc.status          <%x>\n",
5063                                 tx_ring->queue_index,
5064                                 readl(tx_ring->head),
5065                                 readl(tx_ring->tail),
5066                                 tx_ring->next_to_use,
5067                                 tx_ring->next_to_clean,
5068                                 tx_ring->buffer_info[eop].time_stamp,
5069                                 eop,
5070                                 jiffies,
5071                                 eop_desc->wb.status);
5072                         netif_stop_subqueue(netdev, tx_ring->queue_index);
5073                 }
5074         }
5075         tx_ring->total_bytes += total_bytes;
5076         tx_ring->total_packets += total_packets;
5077         tx_ring->tx_stats.bytes += total_bytes;
5078         tx_ring->tx_stats.packets += total_packets;
5079         return (count < tx_ring->count);
5080 }
5081
5082 /**
5083  * igb_receive_skb - helper function to handle rx indications
5084  * @q_vector: structure containing interrupt and ring information
5085  * @skb: packet to send up
5086  * @vlan_tag: vlan tag for packet
5087  **/
5088 static void igb_receive_skb(struct igb_q_vector *q_vector,
5089                             struct sk_buff *skb,
5090                             u16 vlan_tag)
5091 {
5092         struct igb_adapter *adapter = q_vector->adapter;
5093
5094         if (vlan_tag)
5095                 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5096                                  vlan_tag, skb);
5097         else
5098                 napi_gro_receive(&q_vector->napi, skb);
5099 }
5100
5101 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5102                                        u32 status_err, struct sk_buff *skb)
5103 {
5104         skb->ip_summed = CHECKSUM_NONE;
5105
5106         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5107         if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5108              (status_err & E1000_RXD_STAT_IXSM))
5109                 return;
5110
5111         /* TCP/UDP checksum error bit is set */
5112         if (status_err &
5113             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5114                 /*
5115                  * work around errata with sctp packets where the TCPE aka
5116                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5117                  * packets, (aka let the stack check the crc32c)
5118                  */
5119                 if ((skb->len == 60) &&
5120                     (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5121                         ring->rx_stats.csum_err++;
5122
5123                 /* let the stack verify checksum errors */
5124                 return;
5125         }
5126         /* It must be a TCP or UDP packet with a valid checksum */
5127         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5128                 skb->ip_summed = CHECKSUM_UNNECESSARY;
5129
5130         dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5131 }
5132
5133 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5134                                    struct sk_buff *skb)
5135 {
5136         struct igb_adapter *adapter = q_vector->adapter;
5137         struct e1000_hw *hw = &adapter->hw;
5138         u64 regval;
5139
5140         /*
5141          * If this bit is set, then the RX registers contain the time stamp. No
5142          * other packet will be time stamped until we read these registers, so
5143          * read the registers to make them available again. Because only one
5144          * packet can be time stamped at a time, we know that the register
5145          * values must belong to this one here and therefore we don't need to
5146          * compare any of the additional attributes stored for it.
5147          *
5148          * If nothing went wrong, then it should have a skb_shared_tx that we
5149          * can turn into a skb_shared_hwtstamps.
5150          */
5151         if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5152                 return;
5153         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5154                 return;
5155
5156         regval = rd32(E1000_RXSTMPL);
5157         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5158
5159         igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5160 }
5161 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5162                                union e1000_adv_rx_desc *rx_desc)
5163 {
5164         /* HW will not DMA in data larger than the given buffer, even if it
5165          * parses the (NFS, of course) header to be larger.  In that case, it
5166          * fills the header buffer and spills the rest into the page.
5167          */
5168         u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5169                    E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5170         if (hlen > rx_ring->rx_buffer_len)
5171                 hlen = rx_ring->rx_buffer_len;
5172         return hlen;
5173 }
5174
5175 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5176                                  int *work_done, int budget)
5177 {
5178         struct igb_ring *rx_ring = q_vector->rx_ring;
5179         struct net_device *netdev = rx_ring->netdev;
5180         struct pci_dev *pdev = rx_ring->pdev;
5181         union e1000_adv_rx_desc *rx_desc , *next_rxd;
5182         struct igb_buffer *buffer_info , *next_buffer;
5183         struct sk_buff *skb;
5184         bool cleaned = false;
5185         int cleaned_count = 0;
5186         int current_node = numa_node_id();
5187         unsigned int total_bytes = 0, total_packets = 0;
5188         unsigned int i;
5189         u32 staterr;
5190         u16 length;
5191         u16 vlan_tag;
5192
5193         i = rx_ring->next_to_clean;
5194         buffer_info = &rx_ring->buffer_info[i];
5195         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5196         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5197
5198         while (staterr & E1000_RXD_STAT_DD) {
5199                 if (*work_done >= budget)
5200                         break;
5201                 (*work_done)++;
5202
5203                 skb = buffer_info->skb;
5204                 prefetch(skb->data - NET_IP_ALIGN);
5205                 buffer_info->skb = NULL;
5206
5207                 i++;
5208                 if (i == rx_ring->count)
5209                         i = 0;
5210
5211                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5212                 prefetch(next_rxd);
5213                 next_buffer = &rx_ring->buffer_info[i];
5214
5215                 length = le16_to_cpu(rx_desc->wb.upper.length);
5216                 cleaned = true;
5217                 cleaned_count++;
5218
5219                 if (buffer_info->dma) {
5220                         pci_unmap_single(pdev, buffer_info->dma,
5221                                          rx_ring->rx_buffer_len,
5222                                          PCI_DMA_FROMDEVICE);
5223                         buffer_info->dma = 0;
5224                         if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5225                                 skb_put(skb, length);
5226                                 goto send_up;
5227                         }
5228                         skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5229                 }
5230
5231                 if (length) {
5232                         pci_unmap_page(pdev, buffer_info->page_dma,
5233                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5234                         buffer_info->page_dma = 0;
5235
5236                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5237                                                 buffer_info->page,
5238                                                 buffer_info->page_offset,
5239                                                 length);
5240
5241                         if ((page_count(buffer_info->page) != 1) ||
5242                             (page_to_nid(buffer_info->page) != current_node))
5243                                 buffer_info->page = NULL;
5244                         else
5245                                 get_page(buffer_info->page);
5246
5247                         skb->len += length;
5248                         skb->data_len += length;
5249                         skb->truesize += length;
5250                 }
5251
5252                 if (!(staterr & E1000_RXD_STAT_EOP)) {
5253                         buffer_info->skb = next_buffer->skb;
5254                         buffer_info->dma = next_buffer->dma;
5255                         next_buffer->skb = skb;
5256                         next_buffer->dma = 0;
5257                         goto next_desc;
5258                 }
5259 send_up:
5260                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5261                         dev_kfree_skb_irq(skb);
5262                         goto next_desc;
5263                 }
5264
5265                 igb_rx_hwtstamp(q_vector, staterr, skb);
5266                 total_bytes += skb->len;
5267                 total_packets++;
5268
5269                 igb_rx_checksum_adv(rx_ring, staterr, skb);
5270
5271                 skb->protocol = eth_type_trans(skb, netdev);
5272                 skb_record_rx_queue(skb, rx_ring->queue_index);
5273
5274                 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5275                             le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5276
5277                 igb_receive_skb(q_vector, skb, vlan_tag);
5278
5279 next_desc:
5280                 rx_desc->wb.upper.status_error = 0;
5281
5282                 /* return some buffers to hardware, one at a time is too slow */
5283                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5284                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5285                         cleaned_count = 0;
5286                 }
5287
5288                 /* use prefetched values */
5289                 rx_desc = next_rxd;
5290                 buffer_info = next_buffer;
5291                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5292         }
5293
5294         rx_ring->next_to_clean = i;
5295         cleaned_count = igb_desc_unused(rx_ring);
5296
5297         if (cleaned_count)
5298                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5299
5300         rx_ring->total_packets += total_packets;
5301         rx_ring->total_bytes += total_bytes;
5302         rx_ring->rx_stats.packets += total_packets;
5303         rx_ring->rx_stats.bytes += total_bytes;
5304         return cleaned;
5305 }
5306
5307 /**
5308  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5309  * @adapter: address of board private structure
5310  **/
5311 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5312 {
5313         struct net_device *netdev = rx_ring->netdev;
5314         union e1000_adv_rx_desc *rx_desc;
5315         struct igb_buffer *buffer_info;
5316         struct sk_buff *skb;
5317         unsigned int i;
5318         int bufsz;
5319
5320         i = rx_ring->next_to_use;
5321         buffer_info = &rx_ring->buffer_info[i];
5322
5323         bufsz = rx_ring->rx_buffer_len;
5324
5325         while (cleaned_count--) {
5326                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5327
5328                 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5329                         if (!buffer_info->page) {
5330                                 buffer_info->page = netdev_alloc_page(netdev);
5331                                 if (!buffer_info->page) {
5332                                         rx_ring->rx_stats.alloc_failed++;
5333                                         goto no_buffers;
5334                                 }
5335                                 buffer_info->page_offset = 0;
5336                         } else {
5337                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
5338                         }
5339                         buffer_info->page_dma =
5340                                 pci_map_page(rx_ring->pdev, buffer_info->page,
5341                                              buffer_info->page_offset,
5342                                              PAGE_SIZE / 2,
5343                                              PCI_DMA_FROMDEVICE);
5344                         if (pci_dma_mapping_error(rx_ring->pdev,
5345                                                   buffer_info->page_dma)) {
5346                                 buffer_info->page_dma = 0;
5347                                 rx_ring->rx_stats.alloc_failed++;
5348                                 goto no_buffers;
5349                         }
5350                 }
5351
5352                 skb = buffer_info->skb;
5353                 if (!skb) {
5354                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5355                         if (!skb) {
5356                                 rx_ring->rx_stats.alloc_failed++;
5357                                 goto no_buffers;
5358                         }
5359
5360                         buffer_info->skb = skb;
5361                 }
5362                 if (!buffer_info->dma) {
5363                         buffer_info->dma = pci_map_single(rx_ring->pdev,
5364                                                           skb->data,
5365                                                           bufsz,
5366                                                           PCI_DMA_FROMDEVICE);
5367                         if (pci_dma_mapping_error(rx_ring->pdev,
5368                                                   buffer_info->dma)) {
5369                                 buffer_info->dma = 0;
5370                                 rx_ring->rx_stats.alloc_failed++;
5371                                 goto no_buffers;
5372                         }
5373                 }
5374                 /* Refresh the desc even if buffer_addrs didn't change because
5375                  * each write-back erases this info. */
5376                 if (bufsz < IGB_RXBUFFER_1024) {
5377                         rx_desc->read.pkt_addr =
5378                              cpu_to_le64(buffer_info->page_dma);
5379                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5380                 } else {
5381                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5382                         rx_desc->read.hdr_addr = 0;
5383                 }
5384
5385                 i++;
5386                 if (i == rx_ring->count)
5387                         i = 0;
5388                 buffer_info = &rx_ring->buffer_info[i];
5389         }
5390
5391 no_buffers:
5392         if (rx_ring->next_to_use != i) {
5393                 rx_ring->next_to_use = i;
5394                 if (i == 0)
5395                         i = (rx_ring->count - 1);
5396                 else
5397                         i--;
5398
5399                 /* Force memory writes to complete before letting h/w
5400                  * know there are new descriptors to fetch.  (Only
5401                  * applicable for weak-ordered memory model archs,
5402                  * such as IA-64). */
5403                 wmb();
5404                 writel(i, rx_ring->tail);
5405         }
5406 }
5407
5408 /**
5409  * igb_mii_ioctl -
5410  * @netdev:
5411  * @ifreq:
5412  * @cmd:
5413  **/
5414 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5415 {
5416         struct igb_adapter *adapter = netdev_priv(netdev);
5417         struct mii_ioctl_data *data = if_mii(ifr);
5418
5419         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5420                 return -EOPNOTSUPP;
5421
5422         switch (cmd) {
5423         case SIOCGMIIPHY:
5424                 data->phy_id = adapter->hw.phy.addr;
5425                 break;
5426         case SIOCGMIIREG:
5427                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5428                                      &data->val_out))
5429                         return -EIO;
5430                 break;
5431         case SIOCSMIIREG:
5432         default:
5433                 return -EOPNOTSUPP;
5434         }
5435         return 0;
5436 }
5437
5438 /**
5439  * igb_hwtstamp_ioctl - control hardware time stamping
5440  * @netdev:
5441  * @ifreq:
5442  * @cmd:
5443  *
5444  * Outgoing time stamping can be enabled and disabled. Play nice and
5445  * disable it when requested, although it shouldn't case any overhead
5446  * when no packet needs it. At most one packet in the queue may be
5447  * marked for time stamping, otherwise it would be impossible to tell
5448  * for sure to which packet the hardware time stamp belongs.
5449  *
5450  * Incoming time stamping has to be configured via the hardware
5451  * filters. Not all combinations are supported, in particular event
5452  * type has to be specified. Matching the kind of event packet is
5453  * not supported, with the exception of "all V2 events regardless of
5454  * level 2 or 4".
5455  *
5456  **/
5457 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5458                               struct ifreq *ifr, int cmd)
5459 {
5460         struct igb_adapter *adapter = netdev_priv(netdev);
5461         struct e1000_hw *hw = &adapter->hw;
5462         struct hwtstamp_config config;
5463         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5464         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5465         u32 tsync_rx_cfg = 0;
5466         bool is_l4 = false;
5467         bool is_l2 = false;
5468         u32 regval;
5469
5470         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5471                 return -EFAULT;
5472
5473         /* reserved for future extensions */
5474         if (config.flags)
5475                 return -EINVAL;
5476
5477         switch (config.tx_type) {
5478         case HWTSTAMP_TX_OFF:
5479                 tsync_tx_ctl = 0;
5480         case HWTSTAMP_TX_ON:
5481                 break;
5482         default:
5483                 return -ERANGE;
5484         }
5485
5486         switch (config.rx_filter) {
5487         case HWTSTAMP_FILTER_NONE:
5488                 tsync_rx_ctl = 0;
5489                 break;
5490         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5491         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5492         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5493         case HWTSTAMP_FILTER_ALL:
5494                 /*
5495                  * register TSYNCRXCFG must be set, therefore it is not
5496                  * possible to time stamp both Sync and Delay_Req messages
5497                  * => fall back to time stamping all packets
5498                  */
5499                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5500                 config.rx_filter = HWTSTAMP_FILTER_ALL;
5501                 break;
5502         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5503                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5504                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5505                 is_l4 = true;
5506                 break;
5507         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5508                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5509                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5510                 is_l4 = true;
5511                 break;
5512         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5513         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5514                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5515                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5516                 is_l2 = true;
5517                 is_l4 = true;
5518                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5519                 break;
5520         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5521         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5522                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5523                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5524                 is_l2 = true;
5525                 is_l4 = true;
5526                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5527                 break;
5528         case HWTSTAMP_FILTER_PTP_V2_EVENT:
5529         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5530         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5531                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5532                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5533                 is_l2 = true;
5534                 break;
5535         default:
5536                 return -ERANGE;
5537         }
5538
5539         if (hw->mac.type == e1000_82575) {
5540                 if (tsync_rx_ctl | tsync_tx_ctl)
5541                         return -EINVAL;
5542                 return 0;
5543         }
5544
5545         /* enable/disable TX */
5546         regval = rd32(E1000_TSYNCTXCTL);
5547         regval &= ~E1000_TSYNCTXCTL_ENABLED;
5548         regval |= tsync_tx_ctl;
5549         wr32(E1000_TSYNCTXCTL, regval);
5550
5551         /* enable/disable RX */
5552         regval = rd32(E1000_TSYNCRXCTL);
5553         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5554         regval |= tsync_rx_ctl;
5555         wr32(E1000_TSYNCRXCTL, regval);
5556
5557         /* define which PTP packets are time stamped */
5558         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5559
5560         /* define ethertype filter for timestamped packets */
5561         if (is_l2)
5562                 wr32(E1000_ETQF(3),
5563                                 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5564                                  E1000_ETQF_1588 | /* enable timestamping */
5565                                  ETH_P_1588));     /* 1588 eth protocol type */
5566         else
5567                 wr32(E1000_ETQF(3), 0);
5568
5569 #define PTP_PORT 319
5570         /* L4 Queue Filter[3]: filter by destination port and protocol */
5571         if (is_l4) {
5572                 u32 ftqf = (IPPROTO_UDP /* UDP */
5573                         | E1000_FTQF_VF_BP /* VF not compared */
5574                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5575                         | E1000_FTQF_MASK); /* mask all inputs */
5576                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5577
5578                 wr32(E1000_IMIR(3), htons(PTP_PORT));
5579                 wr32(E1000_IMIREXT(3),
5580                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5581                 if (hw->mac.type == e1000_82576) {
5582                         /* enable source port check */
5583                         wr32(E1000_SPQF(3), htons(PTP_PORT));
5584                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5585                 }
5586                 wr32(E1000_FTQF(3), ftqf);
5587         } else {
5588                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5589         }
5590         wrfl();
5591
5592         adapter->hwtstamp_config = config;
5593
5594         /* clear TX/RX time stamp registers, just to be sure */
5595         regval = rd32(E1000_TXSTMPH);
5596         regval = rd32(E1000_RXSTMPH);
5597
5598         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5599                 -EFAULT : 0;
5600 }
5601
5602 /**
5603  * igb_ioctl -
5604  * @netdev:
5605  * @ifreq:
5606  * @cmd:
5607  **/
5608 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5609 {
5610         switch (cmd) {
5611         case SIOCGMIIPHY:
5612         case SIOCGMIIREG:
5613         case SIOCSMIIREG:
5614                 return igb_mii_ioctl(netdev, ifr, cmd);
5615         case SIOCSHWTSTAMP:
5616                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5617         default:
5618                 return -EOPNOTSUPP;
5619         }
5620 }
5621
5622 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5623 {
5624         struct igb_adapter *adapter = hw->back;
5625         u16 cap_offset;
5626
5627         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5628         if (!cap_offset)
5629                 return -E1000_ERR_CONFIG;
5630
5631         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5632
5633         return 0;
5634 }
5635
5636 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5637 {
5638         struct igb_adapter *adapter = hw->back;
5639         u16 cap_offset;
5640
5641         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5642         if (!cap_offset)
5643                 return -E1000_ERR_CONFIG;
5644
5645         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5646
5647         return 0;
5648 }
5649
5650 static void igb_vlan_rx_register(struct net_device *netdev,
5651                                  struct vlan_group *grp)
5652 {
5653         struct igb_adapter *adapter = netdev_priv(netdev);
5654         struct e1000_hw *hw = &adapter->hw;
5655         u32 ctrl, rctl;
5656
5657         igb_irq_disable(adapter);
5658         adapter->vlgrp = grp;
5659
5660         if (grp) {
5661                 /* enable VLAN tag insert/strip */
5662                 ctrl = rd32(E1000_CTRL);
5663                 ctrl |= E1000_CTRL_VME;
5664                 wr32(E1000_CTRL, ctrl);
5665
5666                 /* Disable CFI check */
5667                 rctl = rd32(E1000_RCTL);
5668                 rctl &= ~E1000_RCTL_CFIEN;
5669                 wr32(E1000_RCTL, rctl);
5670         } else {
5671                 /* disable VLAN tag insert/strip */
5672                 ctrl = rd32(E1000_CTRL);
5673                 ctrl &= ~E1000_CTRL_VME;
5674                 wr32(E1000_CTRL, ctrl);
5675         }
5676
5677         igb_rlpml_set(adapter);
5678
5679         if (!test_bit(__IGB_DOWN, &adapter->state))
5680                 igb_irq_enable(adapter);
5681 }
5682
5683 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5684 {
5685         struct igb_adapter *adapter = netdev_priv(netdev);
5686         struct e1000_hw *hw = &adapter->hw;
5687         int pf_id = adapter->vfs_allocated_count;
5688
5689         /* attempt to add filter to vlvf array */
5690         igb_vlvf_set(adapter, vid, true, pf_id);
5691
5692         /* add the filter since PF can receive vlans w/o entry in vlvf */
5693         igb_vfta_set(hw, vid, true);
5694 }
5695
5696 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5697 {
5698         struct igb_adapter *adapter = netdev_priv(netdev);
5699         struct e1000_hw *hw = &adapter->hw;
5700         int pf_id = adapter->vfs_allocated_count;
5701         s32 err;
5702
5703         igb_irq_disable(adapter);
5704         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5705
5706         if (!test_bit(__IGB_DOWN, &adapter->state))
5707                 igb_irq_enable(adapter);
5708
5709         /* remove vlan from VLVF table array */
5710         err = igb_vlvf_set(adapter, vid, false, pf_id);
5711
5712         /* if vid was not present in VLVF just remove it from table */
5713         if (err)
5714                 igb_vfta_set(hw, vid, false);
5715 }
5716
5717 static void igb_restore_vlan(struct igb_adapter *adapter)
5718 {
5719         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5720
5721         if (adapter->vlgrp) {
5722                 u16 vid;
5723                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5724                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5725                                 continue;
5726                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5727                 }
5728         }
5729 }
5730
5731 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5732 {
5733         struct pci_dev *pdev = adapter->pdev;
5734         struct e1000_mac_info *mac = &adapter->hw.mac;
5735
5736         mac->autoneg = 0;
5737
5738         switch (spddplx) {
5739         case SPEED_10 + DUPLEX_HALF:
5740                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5741                 break;
5742         case SPEED_10 + DUPLEX_FULL:
5743                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5744                 break;
5745         case SPEED_100 + DUPLEX_HALF:
5746                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5747                 break;
5748         case SPEED_100 + DUPLEX_FULL:
5749                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5750                 break;
5751         case SPEED_1000 + DUPLEX_FULL:
5752                 mac->autoneg = 1;
5753                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5754                 break;
5755         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5756         default:
5757                 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5758                 return -EINVAL;
5759         }
5760         return 0;
5761 }
5762
5763 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5764 {
5765         struct net_device *netdev = pci_get_drvdata(pdev);
5766         struct igb_adapter *adapter = netdev_priv(netdev);
5767         struct e1000_hw *hw = &adapter->hw;
5768         u32 ctrl, rctl, status;
5769         u32 wufc = adapter->wol;
5770 #ifdef CONFIG_PM
5771         int retval = 0;
5772 #endif
5773
5774         netif_device_detach(netdev);
5775
5776         if (netif_running(netdev))
5777                 igb_close(netdev);
5778
5779         igb_clear_interrupt_scheme(adapter);
5780
5781 #ifdef CONFIG_PM
5782         retval = pci_save_state(pdev);
5783         if (retval)
5784                 return retval;
5785 #endif
5786
5787         status = rd32(E1000_STATUS);
5788         if (status & E1000_STATUS_LU)
5789                 wufc &= ~E1000_WUFC_LNKC;
5790
5791         if (wufc) {
5792                 igb_setup_rctl(adapter);
5793                 igb_set_rx_mode(netdev);
5794
5795                 /* turn on all-multi mode if wake on multicast is enabled */
5796                 if (wufc & E1000_WUFC_MC) {
5797                         rctl = rd32(E1000_RCTL);
5798                         rctl |= E1000_RCTL_MPE;
5799                         wr32(E1000_RCTL, rctl);
5800                 }
5801
5802                 ctrl = rd32(E1000_CTRL);
5803                 /* advertise wake from D3Cold */
5804                 #define E1000_CTRL_ADVD3WUC 0x00100000
5805                 /* phy power management enable */
5806                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5807                 ctrl |= E1000_CTRL_ADVD3WUC;
5808                 wr32(E1000_CTRL, ctrl);
5809
5810                 /* Allow time for pending master requests to run */
5811                 igb_disable_pcie_master(hw);
5812
5813                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5814                 wr32(E1000_WUFC, wufc);
5815         } else {
5816                 wr32(E1000_WUC, 0);
5817                 wr32(E1000_WUFC, 0);
5818         }
5819
5820         *enable_wake = wufc || adapter->en_mng_pt;
5821         if (!*enable_wake)
5822                 igb_shutdown_serdes_link_82575(hw);
5823
5824         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5825          * would have already happened in close and is redundant. */
5826         igb_release_hw_control(adapter);
5827
5828         pci_disable_device(pdev);
5829
5830         return 0;
5831 }
5832
5833 #ifdef CONFIG_PM
5834 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5835 {
5836         int retval;
5837         bool wake;
5838
5839         retval = __igb_shutdown(pdev, &wake);
5840         if (retval)
5841                 return retval;
5842
5843         if (wake) {
5844                 pci_prepare_to_sleep(pdev);
5845         } else {
5846                 pci_wake_from_d3(pdev, false);
5847                 pci_set_power_state(pdev, PCI_D3hot);
5848         }
5849
5850         return 0;
5851 }
5852
5853 static int igb_resume(struct pci_dev *pdev)
5854 {
5855         struct net_device *netdev = pci_get_drvdata(pdev);
5856         struct igb_adapter *adapter = netdev_priv(netdev);
5857         struct e1000_hw *hw = &adapter->hw;
5858         u32 err;
5859
5860         pci_set_power_state(pdev, PCI_D0);
5861         pci_restore_state(pdev);
5862
5863         err = pci_enable_device_mem(pdev);
5864         if (err) {
5865                 dev_err(&pdev->dev,
5866                         "igb: Cannot enable PCI device from suspend\n");
5867                 return err;
5868         }
5869         pci_set_master(pdev);
5870
5871         pci_enable_wake(pdev, PCI_D3hot, 0);
5872         pci_enable_wake(pdev, PCI_D3cold, 0);
5873
5874         if (igb_init_interrupt_scheme(adapter)) {
5875                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5876                 return -ENOMEM;
5877         }
5878
5879         /* e1000_power_up_phy(adapter); */
5880
5881         igb_reset(adapter);
5882
5883         /* let the f/w know that the h/w is now under the control of the
5884          * driver. */
5885         igb_get_hw_control(adapter);
5886
5887         wr32(E1000_WUS, ~0);
5888
5889         if (netif_running(netdev)) {
5890                 err = igb_open(netdev);
5891                 if (err)
5892                         return err;
5893         }
5894
5895         netif_device_attach(netdev);
5896
5897         return 0;
5898 }
5899 #endif
5900
5901 static void igb_shutdown(struct pci_dev *pdev)
5902 {
5903         bool wake;
5904
5905         __igb_shutdown(pdev, &wake);
5906
5907         if (system_state == SYSTEM_POWER_OFF) {
5908                 pci_wake_from_d3(pdev, wake);
5909                 pci_set_power_state(pdev, PCI_D3hot);
5910         }
5911 }
5912
5913 #ifdef CONFIG_NET_POLL_CONTROLLER
5914 /*
5915  * Polling 'interrupt' - used by things like netconsole to send skbs
5916  * without having to re-enable interrupts. It's not called while
5917  * the interrupt routine is executing.
5918  */
5919 static void igb_netpoll(struct net_device *netdev)
5920 {
5921         struct igb_adapter *adapter = netdev_priv(netdev);
5922         struct e1000_hw *hw = &adapter->hw;
5923         int i;
5924
5925         if (!adapter->msix_entries) {
5926                 struct igb_q_vector *q_vector = adapter->q_vector[0];
5927                 igb_irq_disable(adapter);
5928                 napi_schedule(&q_vector->napi);
5929                 return;
5930         }
5931
5932         for (i = 0; i < adapter->num_q_vectors; i++) {
5933                 struct igb_q_vector *q_vector = adapter->q_vector[i];
5934                 wr32(E1000_EIMC, q_vector->eims_value);
5935                 napi_schedule(&q_vector->napi);
5936         }
5937 }
5938 #endif /* CONFIG_NET_POLL_CONTROLLER */
5939
5940 /**
5941  * igb_io_error_detected - called when PCI error is detected
5942  * @pdev: Pointer to PCI device
5943  * @state: The current pci connection state
5944  *
5945  * This function is called after a PCI bus error affecting
5946  * this device has been detected.
5947  */
5948 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5949                                               pci_channel_state_t state)
5950 {
5951         struct net_device *netdev = pci_get_drvdata(pdev);
5952         struct igb_adapter *adapter = netdev_priv(netdev);
5953
5954         netif_device_detach(netdev);
5955
5956         if (state == pci_channel_io_perm_failure)
5957                 return PCI_ERS_RESULT_DISCONNECT;
5958
5959         if (netif_running(netdev))
5960                 igb_down(adapter);
5961         pci_disable_device(pdev);
5962
5963         /* Request a slot slot reset. */
5964         return PCI_ERS_RESULT_NEED_RESET;
5965 }
5966
5967 /**
5968  * igb_io_slot_reset - called after the pci bus has been reset.
5969  * @pdev: Pointer to PCI device
5970  *
5971  * Restart the card from scratch, as if from a cold-boot. Implementation
5972  * resembles the first-half of the igb_resume routine.
5973  */
5974 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5975 {
5976         struct net_device *netdev = pci_get_drvdata(pdev);
5977         struct igb_adapter *adapter = netdev_priv(netdev);
5978         struct e1000_hw *hw = &adapter->hw;
5979         pci_ers_result_t result;
5980         int err;
5981
5982         if (pci_enable_device_mem(pdev)) {
5983                 dev_err(&pdev->dev,
5984                         "Cannot re-enable PCI device after reset.\n");
5985                 result = PCI_ERS_RESULT_DISCONNECT;
5986         } else {
5987                 pci_set_master(pdev);
5988                 pci_restore_state(pdev);
5989
5990                 pci_enable_wake(pdev, PCI_D3hot, 0);
5991                 pci_enable_wake(pdev, PCI_D3cold, 0);
5992
5993                 igb_reset(adapter);
5994                 wr32(E1000_WUS, ~0);
5995                 result = PCI_ERS_RESULT_RECOVERED;
5996         }
5997
5998         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5999         if (err) {
6000                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6001                         "failed 0x%0x\n", err);
6002                 /* non-fatal, continue */
6003         }
6004
6005         return result;
6006 }
6007
6008 /**
6009  * igb_io_resume - called when traffic can start flowing again.
6010  * @pdev: Pointer to PCI device
6011  *
6012  * This callback is called when the error recovery driver tells us that
6013  * its OK to resume normal operation. Implementation resembles the
6014  * second-half of the igb_resume routine.
6015  */
6016 static void igb_io_resume(struct pci_dev *pdev)
6017 {
6018         struct net_device *netdev = pci_get_drvdata(pdev);
6019         struct igb_adapter *adapter = netdev_priv(netdev);
6020
6021         if (netif_running(netdev)) {
6022                 if (igb_up(adapter)) {
6023                         dev_err(&pdev->dev, "igb_up failed after reset\n");
6024                         return;
6025                 }
6026         }
6027
6028         netif_device_attach(netdev);
6029
6030         /* let the f/w know that the h/w is now under the control of the
6031          * driver. */
6032         igb_get_hw_control(adapter);
6033 }
6034
6035 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6036                              u8 qsel)
6037 {
6038         u32 rar_low, rar_high;
6039         struct e1000_hw *hw = &adapter->hw;
6040
6041         /* HW expects these in little endian so we reverse the byte order
6042          * from network order (big endian) to little endian
6043          */
6044         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6045                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6046         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6047
6048         /* Indicate to hardware the Address is Valid. */
6049         rar_high |= E1000_RAH_AV;
6050
6051         if (hw->mac.type == e1000_82575)
6052                 rar_high |= E1000_RAH_POOL_1 * qsel;
6053         else
6054                 rar_high |= E1000_RAH_POOL_1 << qsel;
6055
6056         wr32(E1000_RAL(index), rar_low);
6057         wrfl();
6058         wr32(E1000_RAH(index), rar_high);
6059         wrfl();
6060 }
6061
6062 static int igb_set_vf_mac(struct igb_adapter *adapter,
6063                           int vf, unsigned char *mac_addr)
6064 {
6065         struct e1000_hw *hw = &adapter->hw;
6066         /* VF MAC addresses start at end of receive addresses and moves
6067          * torwards the first, as a result a collision should not be possible */
6068         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6069
6070         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6071
6072         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6073
6074         return 0;
6075 }
6076
6077 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6078 {
6079         struct igb_adapter *adapter = netdev_priv(netdev);
6080         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6081                 return -EINVAL;
6082         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6083         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6084         dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6085                                       " change effective.");
6086         if (test_bit(__IGB_DOWN, &adapter->state)) {
6087                 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6088                          " but the PF device is not up.\n");
6089                 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6090                          " attempting to use the VF device.\n");
6091         }
6092         return igb_set_vf_mac(adapter, vf, mac);
6093 }
6094
6095 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6096 {
6097         return -EOPNOTSUPP;
6098 }
6099
6100 static int igb_ndo_get_vf_config(struct net_device *netdev,
6101                                  int vf, struct ifla_vf_info *ivi)
6102 {
6103         struct igb_adapter *adapter = netdev_priv(netdev);
6104         if (vf >= adapter->vfs_allocated_count)
6105                 return -EINVAL;
6106         ivi->vf = vf;
6107         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6108         ivi->tx_rate = 0;
6109         ivi->vlan = adapter->vf_data[vf].pf_vlan;
6110         ivi->qos = adapter->vf_data[vf].pf_qos;
6111         return 0;
6112 }
6113
6114 static void igb_vmm_control(struct igb_adapter *adapter)
6115 {
6116         struct e1000_hw *hw = &adapter->hw;
6117         u32 reg;
6118
6119         /* replication is not supported for 82575 */
6120         if (hw->mac.type == e1000_82575)
6121                 return;
6122
6123         /* enable replication vlan tag stripping */
6124         reg = rd32(E1000_RPLOLR);
6125         reg |= E1000_RPLOLR_STRVLAN;
6126         wr32(E1000_RPLOLR, reg);
6127
6128         /* notify HW that the MAC is adding vlan tags */
6129         reg = rd32(E1000_DTXCTL);
6130         reg |= E1000_DTXCTL_VLAN_ADDED;
6131         wr32(E1000_DTXCTL, reg);
6132
6133         if (adapter->vfs_allocated_count) {
6134                 igb_vmdq_set_loopback_pf(hw, true);
6135                 igb_vmdq_set_replication_pf(hw, true);
6136         } else {
6137                 igb_vmdq_set_loopback_pf(hw, false);
6138                 igb_vmdq_set_replication_pf(hw, false);
6139         }
6140 }
6141
6142 /* igb_main.c */