]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/igbvf/netdev.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[karo-tx-linux.git] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/prefetch.h>
45
46 #include "igbvf.h"
47
48 #define DRV_VERSION "1.0.8-k0"
49 char igbvf_driver_name[] = "igbvf";
50 const char igbvf_driver_version[] = DRV_VERSION;
51 static const char igbvf_driver_string[] =
52                                 "Intel(R) Virtual Function Network Driver";
53 static const char igbvf_copyright[] =
54                                 "Copyright (c) 2009 - 2010 Intel Corporation.";
55
56 static int igbvf_poll(struct napi_struct *napi, int budget);
57 static void igbvf_reset(struct igbvf_adapter *);
58 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
59 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
60
61 static struct igbvf_info igbvf_vf_info = {
62         .mac                    = e1000_vfadapt,
63         .flags                  = 0,
64         .pba                    = 10,
65         .init_ops               = e1000_init_function_pointers_vf,
66 };
67
68 static struct igbvf_info igbvf_i350_vf_info = {
69         .mac                    = e1000_vfadapt_i350,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static const struct igbvf_info *igbvf_info_tbl[] = {
76         [board_vf]              = &igbvf_vf_info,
77         [board_i350_vf]         = &igbvf_i350_vf_info,
78 };
79
80 /**
81  * igbvf_desc_unused - calculate if we have unused descriptors
82  **/
83 static int igbvf_desc_unused(struct igbvf_ring *ring)
84 {
85         if (ring->next_to_clean > ring->next_to_use)
86                 return ring->next_to_clean - ring->next_to_use - 1;
87
88         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
89 }
90
91 /**
92  * igbvf_receive_skb - helper function to handle Rx indications
93  * @adapter: board private structure
94  * @status: descriptor status field as written by hardware
95  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
96  * @skb: pointer to sk_buff to be indicated to stack
97  **/
98 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
99                               struct net_device *netdev,
100                               struct sk_buff *skb,
101                               u32 status, u16 vlan)
102 {
103         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
104                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
105                                          le16_to_cpu(vlan) &
106                                          E1000_RXD_SPC_VLAN_MASK);
107         else
108                 netif_receive_skb(skb);
109 }
110
111 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
112                                          u32 status_err, struct sk_buff *skb)
113 {
114         skb_checksum_none_assert(skb);
115
116         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
117         if ((status_err & E1000_RXD_STAT_IXSM) ||
118             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
119                 return;
120
121         /* TCP/UDP checksum error bit is set */
122         if (status_err &
123             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
124                 /* let the stack verify checksum errors */
125                 adapter->hw_csum_err++;
126                 return;
127         }
128
129         /* It must be a TCP or UDP packet with a valid checksum */
130         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
131                 skb->ip_summed = CHECKSUM_UNNECESSARY;
132
133         adapter->hw_csum_good++;
134 }
135
136 /**
137  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
138  * @rx_ring: address of ring structure to repopulate
139  * @cleaned_count: number of buffers to repopulate
140  **/
141 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
142                                    int cleaned_count)
143 {
144         struct igbvf_adapter *adapter = rx_ring->adapter;
145         struct net_device *netdev = adapter->netdev;
146         struct pci_dev *pdev = adapter->pdev;
147         union e1000_adv_rx_desc *rx_desc;
148         struct igbvf_buffer *buffer_info;
149         struct sk_buff *skb;
150         unsigned int i;
151         int bufsz;
152
153         i = rx_ring->next_to_use;
154         buffer_info = &rx_ring->buffer_info[i];
155
156         if (adapter->rx_ps_hdr_size)
157                 bufsz = adapter->rx_ps_hdr_size;
158         else
159                 bufsz = adapter->rx_buffer_len;
160
161         while (cleaned_count--) {
162                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
163
164                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
165                         if (!buffer_info->page) {
166                                 buffer_info->page = alloc_page(GFP_ATOMIC);
167                                 if (!buffer_info->page) {
168                                         adapter->alloc_rx_buff_failed++;
169                                         goto no_buffers;
170                                 }
171                                 buffer_info->page_offset = 0;
172                         } else {
173                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
174                         }
175                         buffer_info->page_dma =
176                                 dma_map_page(&pdev->dev, buffer_info->page,
177                                              buffer_info->page_offset,
178                                              PAGE_SIZE / 2,
179                                              DMA_FROM_DEVICE);
180                 }
181
182                 if (!buffer_info->skb) {
183                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
184                         if (!skb) {
185                                 adapter->alloc_rx_buff_failed++;
186                                 goto no_buffers;
187                         }
188
189                         buffer_info->skb = skb;
190                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
191                                                           bufsz,
192                                                           DMA_FROM_DEVICE);
193                 }
194                 /* Refresh the desc even if buffer_addrs didn't change because
195                  * each write-back erases this info. */
196                 if (adapter->rx_ps_hdr_size) {
197                         rx_desc->read.pkt_addr =
198                              cpu_to_le64(buffer_info->page_dma);
199                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
200                 } else {
201                         rx_desc->read.pkt_addr =
202                              cpu_to_le64(buffer_info->dma);
203                         rx_desc->read.hdr_addr = 0;
204                 }
205
206                 i++;
207                 if (i == rx_ring->count)
208                         i = 0;
209                 buffer_info = &rx_ring->buffer_info[i];
210         }
211
212 no_buffers:
213         if (rx_ring->next_to_use != i) {
214                 rx_ring->next_to_use = i;
215                 if (i == 0)
216                         i = (rx_ring->count - 1);
217                 else
218                         i--;
219
220                 /* Force memory writes to complete before letting h/w
221                  * know there are new descriptors to fetch.  (Only
222                  * applicable for weak-ordered memory model archs,
223                  * such as IA-64). */
224                 wmb();
225                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226         }
227 }
228
229 /**
230  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
231  * @adapter: board private structure
232  *
233  * the return value indicates whether actual cleaning was done, there
234  * is no guarantee that everything was cleaned
235  **/
236 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
237                                int *work_done, int work_to_do)
238 {
239         struct igbvf_ring *rx_ring = adapter->rx_ring;
240         struct net_device *netdev = adapter->netdev;
241         struct pci_dev *pdev = adapter->pdev;
242         union e1000_adv_rx_desc *rx_desc, *next_rxd;
243         struct igbvf_buffer *buffer_info, *next_buffer;
244         struct sk_buff *skb;
245         bool cleaned = false;
246         int cleaned_count = 0;
247         unsigned int total_bytes = 0, total_packets = 0;
248         unsigned int i;
249         u32 length, hlen, staterr;
250
251         i = rx_ring->next_to_clean;
252         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
253         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
254
255         while (staterr & E1000_RXD_STAT_DD) {
256                 if (*work_done >= work_to_do)
257                         break;
258                 (*work_done)++;
259                 rmb(); /* read descriptor and rx_buffer_info after status DD */
260
261                 buffer_info = &rx_ring->buffer_info[i];
262
263                 /* HW will not DMA in data larger than the given buffer, even
264                  * if it parses the (NFS, of course) header to be larger.  In
265                  * that case, it fills the header buffer and spills the rest
266                  * into the page.
267                  */
268                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
269                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
270                 if (hlen > adapter->rx_ps_hdr_size)
271                         hlen = adapter->rx_ps_hdr_size;
272
273                 length = le16_to_cpu(rx_desc->wb.upper.length);
274                 cleaned = true;
275                 cleaned_count++;
276
277                 skb = buffer_info->skb;
278                 prefetch(skb->data - NET_IP_ALIGN);
279                 buffer_info->skb = NULL;
280                 if (!adapter->rx_ps_hdr_size) {
281                         dma_unmap_single(&pdev->dev, buffer_info->dma,
282                                          adapter->rx_buffer_len,
283                                          DMA_FROM_DEVICE);
284                         buffer_info->dma = 0;
285                         skb_put(skb, length);
286                         goto send_up;
287                 }
288
289                 if (!skb_shinfo(skb)->nr_frags) {
290                         dma_unmap_single(&pdev->dev, buffer_info->dma,
291                                          adapter->rx_ps_hdr_size,
292                                          DMA_FROM_DEVICE);
293                         skb_put(skb, hlen);
294                 }
295
296                 if (length) {
297                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
298                                        PAGE_SIZE / 2,
299                                        DMA_FROM_DEVICE);
300                         buffer_info->page_dma = 0;
301
302                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
303                                            buffer_info->page,
304                                            buffer_info->page_offset,
305                                            length);
306
307                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
308                             (page_count(buffer_info->page) != 1))
309                                 buffer_info->page = NULL;
310                         else
311                                 get_page(buffer_info->page);
312
313                         skb->len += length;
314                         skb->data_len += length;
315                         skb->truesize += length;
316                 }
317 send_up:
318                 i++;
319                 if (i == rx_ring->count)
320                         i = 0;
321                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
322                 prefetch(next_rxd);
323                 next_buffer = &rx_ring->buffer_info[i];
324
325                 if (!(staterr & E1000_RXD_STAT_EOP)) {
326                         buffer_info->skb = next_buffer->skb;
327                         buffer_info->dma = next_buffer->dma;
328                         next_buffer->skb = skb;
329                         next_buffer->dma = 0;
330                         goto next_desc;
331                 }
332
333                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
334                         dev_kfree_skb_irq(skb);
335                         goto next_desc;
336                 }
337
338                 total_bytes += skb->len;
339                 total_packets++;
340
341                 igbvf_rx_checksum_adv(adapter, staterr, skb);
342
343                 skb->protocol = eth_type_trans(skb, netdev);
344
345                 igbvf_receive_skb(adapter, netdev, skb, staterr,
346                                   rx_desc->wb.upper.vlan);
347
348 next_desc:
349                 rx_desc->wb.upper.status_error = 0;
350
351                 /* return some buffers to hardware, one at a time is too slow */
352                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
353                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
354                         cleaned_count = 0;
355                 }
356
357                 /* use prefetched values */
358                 rx_desc = next_rxd;
359                 buffer_info = next_buffer;
360
361                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
362         }
363
364         rx_ring->next_to_clean = i;
365         cleaned_count = igbvf_desc_unused(rx_ring);
366
367         if (cleaned_count)
368                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
369
370         adapter->total_rx_packets += total_packets;
371         adapter->total_rx_bytes += total_bytes;
372         adapter->net_stats.rx_bytes += total_bytes;
373         adapter->net_stats.rx_packets += total_packets;
374         return cleaned;
375 }
376
377 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
378                             struct igbvf_buffer *buffer_info)
379 {
380         if (buffer_info->dma) {
381                 if (buffer_info->mapped_as_page)
382                         dma_unmap_page(&adapter->pdev->dev,
383                                        buffer_info->dma,
384                                        buffer_info->length,
385                                        DMA_TO_DEVICE);
386                 else
387                         dma_unmap_single(&adapter->pdev->dev,
388                                          buffer_info->dma,
389                                          buffer_info->length,
390                                          DMA_TO_DEVICE);
391                 buffer_info->dma = 0;
392         }
393         if (buffer_info->skb) {
394                 dev_kfree_skb_any(buffer_info->skb);
395                 buffer_info->skb = NULL;
396         }
397         buffer_info->time_stamp = 0;
398 }
399
400 /**
401  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
402  * @adapter: board private structure
403  *
404  * Return 0 on success, negative on failure
405  **/
406 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
407                              struct igbvf_ring *tx_ring)
408 {
409         struct pci_dev *pdev = adapter->pdev;
410         int size;
411
412         size = sizeof(struct igbvf_buffer) * tx_ring->count;
413         tx_ring->buffer_info = vzalloc(size);
414         if (!tx_ring->buffer_info)
415                 goto err;
416
417         /* round up to nearest 4K */
418         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
419         tx_ring->size = ALIGN(tx_ring->size, 4096);
420
421         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
422                                            &tx_ring->dma, GFP_KERNEL);
423
424         if (!tx_ring->desc)
425                 goto err;
426
427         tx_ring->adapter = adapter;
428         tx_ring->next_to_use = 0;
429         tx_ring->next_to_clean = 0;
430
431         return 0;
432 err:
433         vfree(tx_ring->buffer_info);
434         dev_err(&adapter->pdev->dev,
435                 "Unable to allocate memory for the transmit descriptor ring\n");
436         return -ENOMEM;
437 }
438
439 /**
440  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
441  * @adapter: board private structure
442  *
443  * Returns 0 on success, negative on failure
444  **/
445 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
446                              struct igbvf_ring *rx_ring)
447 {
448         struct pci_dev *pdev = adapter->pdev;
449         int size, desc_len;
450
451         size = sizeof(struct igbvf_buffer) * rx_ring->count;
452         rx_ring->buffer_info = vzalloc(size);
453         if (!rx_ring->buffer_info)
454                 goto err;
455
456         desc_len = sizeof(union e1000_adv_rx_desc);
457
458         /* Round up to nearest 4K */
459         rx_ring->size = rx_ring->count * desc_len;
460         rx_ring->size = ALIGN(rx_ring->size, 4096);
461
462         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
463                                            &rx_ring->dma, GFP_KERNEL);
464
465         if (!rx_ring->desc)
466                 goto err;
467
468         rx_ring->next_to_clean = 0;
469         rx_ring->next_to_use = 0;
470
471         rx_ring->adapter = adapter;
472
473         return 0;
474
475 err:
476         vfree(rx_ring->buffer_info);
477         rx_ring->buffer_info = NULL;
478         dev_err(&adapter->pdev->dev,
479                 "Unable to allocate memory for the receive descriptor ring\n");
480         return -ENOMEM;
481 }
482
483 /**
484  * igbvf_clean_tx_ring - Free Tx Buffers
485  * @tx_ring: ring to be cleaned
486  **/
487 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
488 {
489         struct igbvf_adapter *adapter = tx_ring->adapter;
490         struct igbvf_buffer *buffer_info;
491         unsigned long size;
492         unsigned int i;
493
494         if (!tx_ring->buffer_info)
495                 return;
496
497         /* Free all the Tx ring sk_buffs */
498         for (i = 0; i < tx_ring->count; i++) {
499                 buffer_info = &tx_ring->buffer_info[i];
500                 igbvf_put_txbuf(adapter, buffer_info);
501         }
502
503         size = sizeof(struct igbvf_buffer) * tx_ring->count;
504         memset(tx_ring->buffer_info, 0, size);
505
506         /* Zero out the descriptor ring */
507         memset(tx_ring->desc, 0, tx_ring->size);
508
509         tx_ring->next_to_use = 0;
510         tx_ring->next_to_clean = 0;
511
512         writel(0, adapter->hw.hw_addr + tx_ring->head);
513         writel(0, adapter->hw.hw_addr + tx_ring->tail);
514 }
515
516 /**
517  * igbvf_free_tx_resources - Free Tx Resources per Queue
518  * @tx_ring: ring to free resources from
519  *
520  * Free all transmit software resources
521  **/
522 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
523 {
524         struct pci_dev *pdev = tx_ring->adapter->pdev;
525
526         igbvf_clean_tx_ring(tx_ring);
527
528         vfree(tx_ring->buffer_info);
529         tx_ring->buffer_info = NULL;
530
531         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
532                           tx_ring->dma);
533
534         tx_ring->desc = NULL;
535 }
536
537 /**
538  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
539  * @adapter: board private structure
540  **/
541 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
542 {
543         struct igbvf_adapter *adapter = rx_ring->adapter;
544         struct igbvf_buffer *buffer_info;
545         struct pci_dev *pdev = adapter->pdev;
546         unsigned long size;
547         unsigned int i;
548
549         if (!rx_ring->buffer_info)
550                 return;
551
552         /* Free all the Rx ring sk_buffs */
553         for (i = 0; i < rx_ring->count; i++) {
554                 buffer_info = &rx_ring->buffer_info[i];
555                 if (buffer_info->dma) {
556                         if (adapter->rx_ps_hdr_size){
557                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
558                                                  adapter->rx_ps_hdr_size,
559                                                  DMA_FROM_DEVICE);
560                         } else {
561                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
562                                                  adapter->rx_buffer_len,
563                                                  DMA_FROM_DEVICE);
564                         }
565                         buffer_info->dma = 0;
566                 }
567
568                 if (buffer_info->skb) {
569                         dev_kfree_skb(buffer_info->skb);
570                         buffer_info->skb = NULL;
571                 }
572
573                 if (buffer_info->page) {
574                         if (buffer_info->page_dma)
575                                 dma_unmap_page(&pdev->dev,
576                                                buffer_info->page_dma,
577                                                PAGE_SIZE / 2,
578                                                DMA_FROM_DEVICE);
579                         put_page(buffer_info->page);
580                         buffer_info->page = NULL;
581                         buffer_info->page_dma = 0;
582                         buffer_info->page_offset = 0;
583                 }
584         }
585
586         size = sizeof(struct igbvf_buffer) * rx_ring->count;
587         memset(rx_ring->buffer_info, 0, size);
588
589         /* Zero out the descriptor ring */
590         memset(rx_ring->desc, 0, rx_ring->size);
591
592         rx_ring->next_to_clean = 0;
593         rx_ring->next_to_use = 0;
594
595         writel(0, adapter->hw.hw_addr + rx_ring->head);
596         writel(0, adapter->hw.hw_addr + rx_ring->tail);
597 }
598
599 /**
600  * igbvf_free_rx_resources - Free Rx Resources
601  * @rx_ring: ring to clean the resources from
602  *
603  * Free all receive software resources
604  **/
605
606 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
607 {
608         struct pci_dev *pdev = rx_ring->adapter->pdev;
609
610         igbvf_clean_rx_ring(rx_ring);
611
612         vfree(rx_ring->buffer_info);
613         rx_ring->buffer_info = NULL;
614
615         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
616                           rx_ring->dma);
617         rx_ring->desc = NULL;
618 }
619
620 /**
621  * igbvf_update_itr - update the dynamic ITR value based on statistics
622  * @adapter: pointer to adapter
623  * @itr_setting: current adapter->itr
624  * @packets: the number of packets during this measurement interval
625  * @bytes: the number of bytes during this measurement interval
626  *
627  *      Stores a new ITR value based on packets and byte
628  *      counts during the last interrupt.  The advantage of per interrupt
629  *      computation is faster updates and more accurate ITR for the current
630  *      traffic pattern.  Constants in this function were computed
631  *      based on theoretical maximum wire speed and thresholds were set based
632  *      on testing data as well as attempting to minimize response time
633  *      while increasing bulk throughput.  This functionality is controlled
634  *      by the InterruptThrottleRate module parameter.
635  **/
636 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
637                                      u16 itr_setting, int packets,
638                                      int bytes)
639 {
640         unsigned int retval = itr_setting;
641
642         if (packets == 0)
643                 goto update_itr_done;
644
645         switch (itr_setting) {
646         case lowest_latency:
647                 /* handle TSO and jumbo frames */
648                 if (bytes/packets > 8000)
649                         retval = bulk_latency;
650                 else if ((packets < 5) && (bytes > 512))
651                         retval = low_latency;
652                 break;
653         case low_latency:  /* 50 usec aka 20000 ints/s */
654                 if (bytes > 10000) {
655                         /* this if handles the TSO accounting */
656                         if (bytes/packets > 8000)
657                                 retval = bulk_latency;
658                         else if ((packets < 10) || ((bytes/packets) > 1200))
659                                 retval = bulk_latency;
660                         else if ((packets > 35))
661                                 retval = lowest_latency;
662                 } else if (bytes/packets > 2000) {
663                         retval = bulk_latency;
664                 } else if (packets <= 2 && bytes < 512) {
665                         retval = lowest_latency;
666                 }
667                 break;
668         case bulk_latency: /* 250 usec aka 4000 ints/s */
669                 if (bytes > 25000) {
670                         if (packets > 35)
671                                 retval = low_latency;
672                 } else if (bytes < 6000) {
673                         retval = low_latency;
674                 }
675                 break;
676         }
677
678 update_itr_done:
679         return retval;
680 }
681
682 static void igbvf_set_itr(struct igbvf_adapter *adapter)
683 {
684         struct e1000_hw *hw = &adapter->hw;
685         u16 current_itr;
686         u32 new_itr = adapter->itr;
687
688         adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
689                                            adapter->total_tx_packets,
690                                            adapter->total_tx_bytes);
691         /* conservative mode (itr 3) eliminates the lowest_latency setting */
692         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
693                 adapter->tx_itr = low_latency;
694
695         adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
696                                            adapter->total_rx_packets,
697                                            adapter->total_rx_bytes);
698         /* conservative mode (itr 3) eliminates the lowest_latency setting */
699         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
700                 adapter->rx_itr = low_latency;
701
702         current_itr = max(adapter->rx_itr, adapter->tx_itr);
703
704         switch (current_itr) {
705         /* counts and packets in update_itr are dependent on these numbers */
706         case lowest_latency:
707                 new_itr = 70000;
708                 break;
709         case low_latency:
710                 new_itr = 20000; /* aka hwitr = ~200 */
711                 break;
712         case bulk_latency:
713                 new_itr = 4000;
714                 break;
715         default:
716                 break;
717         }
718
719         if (new_itr != adapter->itr) {
720                 /*
721                  * this attempts to bias the interrupt rate towards Bulk
722                  * by adding intermediate steps when interrupt rate is
723                  * increasing
724                  */
725                 new_itr = new_itr > adapter->itr ?
726                              min(adapter->itr + (new_itr >> 2), new_itr) :
727                              new_itr;
728                 adapter->itr = new_itr;
729                 adapter->rx_ring->itr_val = 1952;
730
731                 if (adapter->msix_entries)
732                         adapter->rx_ring->set_itr = 1;
733                 else
734                         ew32(ITR, 1952);
735         }
736 }
737
738 /**
739  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
740  * @adapter: board private structure
741  * returns true if ring is completely cleaned
742  **/
743 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
744 {
745         struct igbvf_adapter *adapter = tx_ring->adapter;
746         struct net_device *netdev = adapter->netdev;
747         struct igbvf_buffer *buffer_info;
748         struct sk_buff *skb;
749         union e1000_adv_tx_desc *tx_desc, *eop_desc;
750         unsigned int total_bytes = 0, total_packets = 0;
751         unsigned int i, eop, count = 0;
752         bool cleaned = false;
753
754         i = tx_ring->next_to_clean;
755         eop = tx_ring->buffer_info[i].next_to_watch;
756         eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
757
758         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
759                (count < tx_ring->count)) {
760                 rmb();  /* read buffer_info after eop_desc status */
761                 for (cleaned = false; !cleaned; count++) {
762                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
763                         buffer_info = &tx_ring->buffer_info[i];
764                         cleaned = (i == eop);
765                         skb = buffer_info->skb;
766
767                         if (skb) {
768                                 unsigned int segs, bytecount;
769
770                                 /* gso_segs is currently only valid for tcp */
771                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
772                                 /* multiply data chunks by size of headers */
773                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
774                                             skb->len;
775                                 total_packets += segs;
776                                 total_bytes += bytecount;
777                         }
778
779                         igbvf_put_txbuf(adapter, buffer_info);
780                         tx_desc->wb.status = 0;
781
782                         i++;
783                         if (i == tx_ring->count)
784                                 i = 0;
785                 }
786                 eop = tx_ring->buffer_info[i].next_to_watch;
787                 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
788         }
789
790         tx_ring->next_to_clean = i;
791
792         if (unlikely(count &&
793                      netif_carrier_ok(netdev) &&
794                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
795                 /* Make sure that anybody stopping the queue after this
796                  * sees the new next_to_clean.
797                  */
798                 smp_mb();
799                 if (netif_queue_stopped(netdev) &&
800                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
801                         netif_wake_queue(netdev);
802                         ++adapter->restart_queue;
803                 }
804         }
805
806         adapter->net_stats.tx_bytes += total_bytes;
807         adapter->net_stats.tx_packets += total_packets;
808         return count < tx_ring->count;
809 }
810
811 static irqreturn_t igbvf_msix_other(int irq, void *data)
812 {
813         struct net_device *netdev = data;
814         struct igbvf_adapter *adapter = netdev_priv(netdev);
815         struct e1000_hw *hw = &adapter->hw;
816
817         adapter->int_counter1++;
818
819         netif_carrier_off(netdev);
820         hw->mac.get_link_status = 1;
821         if (!test_bit(__IGBVF_DOWN, &adapter->state))
822                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
823
824         ew32(EIMS, adapter->eims_other);
825
826         return IRQ_HANDLED;
827 }
828
829 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
830 {
831         struct net_device *netdev = data;
832         struct igbvf_adapter *adapter = netdev_priv(netdev);
833         struct e1000_hw *hw = &adapter->hw;
834         struct igbvf_ring *tx_ring = adapter->tx_ring;
835
836
837         adapter->total_tx_bytes = 0;
838         adapter->total_tx_packets = 0;
839
840         /* auto mask will automatically reenable the interrupt when we write
841          * EICS */
842         if (!igbvf_clean_tx_irq(tx_ring))
843                 /* Ring was not completely cleaned, so fire another interrupt */
844                 ew32(EICS, tx_ring->eims_value);
845         else
846                 ew32(EIMS, tx_ring->eims_value);
847
848         return IRQ_HANDLED;
849 }
850
851 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
852 {
853         struct net_device *netdev = data;
854         struct igbvf_adapter *adapter = netdev_priv(netdev);
855
856         adapter->int_counter0++;
857
858         /* Write the ITR value calculated at the end of the
859          * previous interrupt.
860          */
861         if (adapter->rx_ring->set_itr) {
862                 writel(adapter->rx_ring->itr_val,
863                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
864                 adapter->rx_ring->set_itr = 0;
865         }
866
867         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
868                 adapter->total_rx_bytes = 0;
869                 adapter->total_rx_packets = 0;
870                 __napi_schedule(&adapter->rx_ring->napi);
871         }
872
873         return IRQ_HANDLED;
874 }
875
876 #define IGBVF_NO_QUEUE -1
877
878 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
879                                 int tx_queue, int msix_vector)
880 {
881         struct e1000_hw *hw = &adapter->hw;
882         u32 ivar, index;
883
884         /* 82576 uses a table-based method for assigning vectors.
885            Each queue has a single entry in the table to which we write
886            a vector number along with a "valid" bit.  Sadly, the layout
887            of the table is somewhat counterintuitive. */
888         if (rx_queue > IGBVF_NO_QUEUE) {
889                 index = (rx_queue >> 1);
890                 ivar = array_er32(IVAR0, index);
891                 if (rx_queue & 0x1) {
892                         /* vector goes into third byte of register */
893                         ivar = ivar & 0xFF00FFFF;
894                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
895                 } else {
896                         /* vector goes into low byte of register */
897                         ivar = ivar & 0xFFFFFF00;
898                         ivar |= msix_vector | E1000_IVAR_VALID;
899                 }
900                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
901                 array_ew32(IVAR0, index, ivar);
902         }
903         if (tx_queue > IGBVF_NO_QUEUE) {
904                 index = (tx_queue >> 1);
905                 ivar = array_er32(IVAR0, index);
906                 if (tx_queue & 0x1) {
907                         /* vector goes into high byte of register */
908                         ivar = ivar & 0x00FFFFFF;
909                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
910                 } else {
911                         /* vector goes into second byte of register */
912                         ivar = ivar & 0xFFFF00FF;
913                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
914                 }
915                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
916                 array_ew32(IVAR0, index, ivar);
917         }
918 }
919
920 /**
921  * igbvf_configure_msix - Configure MSI-X hardware
922  *
923  * igbvf_configure_msix sets up the hardware to properly
924  * generate MSI-X interrupts.
925  **/
926 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
927 {
928         u32 tmp;
929         struct e1000_hw *hw = &adapter->hw;
930         struct igbvf_ring *tx_ring = adapter->tx_ring;
931         struct igbvf_ring *rx_ring = adapter->rx_ring;
932         int vector = 0;
933
934         adapter->eims_enable_mask = 0;
935
936         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
937         adapter->eims_enable_mask |= tx_ring->eims_value;
938         if (tx_ring->itr_val)
939                 writel(tx_ring->itr_val,
940                        hw->hw_addr + tx_ring->itr_register);
941         else
942                 writel(1952, hw->hw_addr + tx_ring->itr_register);
943
944         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
945         adapter->eims_enable_mask |= rx_ring->eims_value;
946         if (rx_ring->itr_val)
947                 writel(rx_ring->itr_val,
948                        hw->hw_addr + rx_ring->itr_register);
949         else
950                 writel(1952, hw->hw_addr + rx_ring->itr_register);
951
952         /* set vector for other causes, i.e. link changes */
953
954         tmp = (vector++ | E1000_IVAR_VALID);
955
956         ew32(IVAR_MISC, tmp);
957
958         adapter->eims_enable_mask = (1 << (vector)) - 1;
959         adapter->eims_other = 1 << (vector - 1);
960         e1e_flush();
961 }
962
963 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
964 {
965         if (adapter->msix_entries) {
966                 pci_disable_msix(adapter->pdev);
967                 kfree(adapter->msix_entries);
968                 adapter->msix_entries = NULL;
969         }
970 }
971
972 /**
973  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
974  *
975  * Attempt to configure interrupts using the best available
976  * capabilities of the hardware and kernel.
977  **/
978 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
979 {
980         int err = -ENOMEM;
981         int i;
982
983         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
984         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
985                                         GFP_KERNEL);
986         if (adapter->msix_entries) {
987                 for (i = 0; i < 3; i++)
988                         adapter->msix_entries[i].entry = i;
989
990                 err = pci_enable_msix(adapter->pdev,
991                                       adapter->msix_entries, 3);
992         }
993
994         if (err) {
995                 /* MSI-X failed */
996                 dev_err(&adapter->pdev->dev,
997                         "Failed to initialize MSI-X interrupts.\n");
998                 igbvf_reset_interrupt_capability(adapter);
999         }
1000 }
1001
1002 /**
1003  * igbvf_request_msix - Initialize MSI-X interrupts
1004  *
1005  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006  * kernel.
1007  **/
1008 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009 {
1010         struct net_device *netdev = adapter->netdev;
1011         int err = 0, vector = 0;
1012
1013         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016         } else {
1017                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019         }
1020
1021         err = request_irq(adapter->msix_entries[vector].vector,
1022                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023                           netdev);
1024         if (err)
1025                 goto out;
1026
1027         adapter->tx_ring->itr_register = E1000_EITR(vector);
1028         adapter->tx_ring->itr_val = 1952;
1029         vector++;
1030
1031         err = request_irq(adapter->msix_entries[vector].vector,
1032                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033                           netdev);
1034         if (err)
1035                 goto out;
1036
1037         adapter->rx_ring->itr_register = E1000_EITR(vector);
1038         adapter->rx_ring->itr_val = 1952;
1039         vector++;
1040
1041         err = request_irq(adapter->msix_entries[vector].vector,
1042                           igbvf_msix_other, 0, netdev->name, netdev);
1043         if (err)
1044                 goto out;
1045
1046         igbvf_configure_msix(adapter);
1047         return 0;
1048 out:
1049         return err;
1050 }
1051
1052 /**
1053  * igbvf_alloc_queues - Allocate memory for all rings
1054  * @adapter: board private structure to initialize
1055  **/
1056 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057 {
1058         struct net_device *netdev = adapter->netdev;
1059
1060         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061         if (!adapter->tx_ring)
1062                 return -ENOMEM;
1063
1064         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065         if (!adapter->rx_ring) {
1066                 kfree(adapter->tx_ring);
1067                 return -ENOMEM;
1068         }
1069
1070         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072         return 0;
1073 }
1074
1075 /**
1076  * igbvf_request_irq - initialize interrupts
1077  *
1078  * Attempts to configure interrupts using the best available
1079  * capabilities of the hardware and kernel.
1080  **/
1081 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082 {
1083         int err = -1;
1084
1085         /* igbvf supports msi-x only */
1086         if (adapter->msix_entries)
1087                 err = igbvf_request_msix(adapter);
1088
1089         if (!err)
1090                 return err;
1091
1092         dev_err(&adapter->pdev->dev,
1093                 "Unable to allocate interrupt, Error: %d\n", err);
1094
1095         return err;
1096 }
1097
1098 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099 {
1100         struct net_device *netdev = adapter->netdev;
1101         int vector;
1102
1103         if (adapter->msix_entries) {
1104                 for (vector = 0; vector < 3; vector++)
1105                         free_irq(adapter->msix_entries[vector].vector, netdev);
1106         }
1107 }
1108
1109 /**
1110  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111  **/
1112 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113 {
1114         struct e1000_hw *hw = &adapter->hw;
1115
1116         ew32(EIMC, ~0);
1117
1118         if (adapter->msix_entries)
1119                 ew32(EIAC, 0);
1120 }
1121
1122 /**
1123  * igbvf_irq_enable - Enable default interrupt generation settings
1124  **/
1125 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126 {
1127         struct e1000_hw *hw = &adapter->hw;
1128
1129         ew32(EIAC, adapter->eims_enable_mask);
1130         ew32(EIAM, adapter->eims_enable_mask);
1131         ew32(EIMS, adapter->eims_enable_mask);
1132 }
1133
1134 /**
1135  * igbvf_poll - NAPI Rx polling callback
1136  * @napi: struct associated with this polling callback
1137  * @budget: amount of packets driver is allowed to process this poll
1138  **/
1139 static int igbvf_poll(struct napi_struct *napi, int budget)
1140 {
1141         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142         struct igbvf_adapter *adapter = rx_ring->adapter;
1143         struct e1000_hw *hw = &adapter->hw;
1144         int work_done = 0;
1145
1146         igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148         /* If not enough Rx work done, exit the polling mode */
1149         if (work_done < budget) {
1150                 napi_complete(napi);
1151
1152                 if (adapter->itr_setting & 3)
1153                         igbvf_set_itr(adapter);
1154
1155                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156                         ew32(EIMS, adapter->rx_ring->eims_value);
1157         }
1158
1159         return work_done;
1160 }
1161
1162 /**
1163  * igbvf_set_rlpml - set receive large packet maximum length
1164  * @adapter: board private structure
1165  *
1166  * Configure the maximum size of packets that will be received
1167  */
1168 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169 {
1170         int max_frame_size = adapter->max_frame_size;
1171         struct e1000_hw *hw = &adapter->hw;
1172
1173         if (adapter->vlgrp)
1174                 max_frame_size += VLAN_TAG_SIZE;
1175
1176         e1000_rlpml_set_vf(hw, max_frame_size);
1177 }
1178
1179 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1180 {
1181         struct igbvf_adapter *adapter = netdev_priv(netdev);
1182         struct e1000_hw *hw = &adapter->hw;
1183
1184         if (hw->mac.ops.set_vfta(hw, vid, true))
1185                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1186 }
1187
1188 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189 {
1190         struct igbvf_adapter *adapter = netdev_priv(netdev);
1191         struct e1000_hw *hw = &adapter->hw;
1192
1193         igbvf_irq_disable(adapter);
1194         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1195
1196         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1197                 igbvf_irq_enable(adapter);
1198
1199         if (hw->mac.ops.set_vfta(hw, vid, false))
1200                 dev_err(&adapter->pdev->dev,
1201                         "Failed to remove vlan id %d\n", vid);
1202 }
1203
1204 static void igbvf_vlan_rx_register(struct net_device *netdev,
1205                                    struct vlan_group *grp)
1206 {
1207         struct igbvf_adapter *adapter = netdev_priv(netdev);
1208
1209         adapter->vlgrp = grp;
1210 }
1211
1212 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1213 {
1214         u16 vid;
1215
1216         if (!adapter->vlgrp)
1217                 return;
1218
1219         for (vid = 0; vid < VLAN_N_VID; vid++) {
1220                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1221                         continue;
1222                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1223         }
1224
1225         igbvf_set_rlpml(adapter);
1226 }
1227
1228 /**
1229  * igbvf_configure_tx - Configure Transmit Unit after Reset
1230  * @adapter: board private structure
1231  *
1232  * Configure the Tx unit of the MAC after a reset.
1233  **/
1234 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1235 {
1236         struct e1000_hw *hw = &adapter->hw;
1237         struct igbvf_ring *tx_ring = adapter->tx_ring;
1238         u64 tdba;
1239         u32 txdctl, dca_txctrl;
1240
1241         /* disable transmits */
1242         txdctl = er32(TXDCTL(0));
1243         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1244         msleep(10);
1245
1246         /* Setup the HW Tx Head and Tail descriptor pointers */
1247         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1248         tdba = tx_ring->dma;
1249         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1250         ew32(TDBAH(0), (tdba >> 32));
1251         ew32(TDH(0), 0);
1252         ew32(TDT(0), 0);
1253         tx_ring->head = E1000_TDH(0);
1254         tx_ring->tail = E1000_TDT(0);
1255
1256         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1257          * MUST be delivered in order or it will completely screw up
1258          * our bookeeping.
1259          */
1260         dca_txctrl = er32(DCA_TXCTRL(0));
1261         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1262         ew32(DCA_TXCTRL(0), dca_txctrl);
1263
1264         /* enable transmits */
1265         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1266         ew32(TXDCTL(0), txdctl);
1267
1268         /* Setup Transmit Descriptor Settings for eop descriptor */
1269         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1270
1271         /* enable Report Status bit */
1272         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1273 }
1274
1275 /**
1276  * igbvf_setup_srrctl - configure the receive control registers
1277  * @adapter: Board private structure
1278  **/
1279 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1280 {
1281         struct e1000_hw *hw = &adapter->hw;
1282         u32 srrctl = 0;
1283
1284         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1285                     E1000_SRRCTL_BSIZEHDR_MASK |
1286                     E1000_SRRCTL_BSIZEPKT_MASK);
1287
1288         /* Enable queue drop to avoid head of line blocking */
1289         srrctl |= E1000_SRRCTL_DROP_EN;
1290
1291         /* Setup buffer sizes */
1292         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1293                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1294
1295         if (adapter->rx_buffer_len < 2048) {
1296                 adapter->rx_ps_hdr_size = 0;
1297                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1298         } else {
1299                 adapter->rx_ps_hdr_size = 128;
1300                 srrctl |= adapter->rx_ps_hdr_size <<
1301                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1302                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1303         }
1304
1305         ew32(SRRCTL(0), srrctl);
1306 }
1307
1308 /**
1309  * igbvf_configure_rx - Configure Receive Unit after Reset
1310  * @adapter: board private structure
1311  *
1312  * Configure the Rx unit of the MAC after a reset.
1313  **/
1314 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1315 {
1316         struct e1000_hw *hw = &adapter->hw;
1317         struct igbvf_ring *rx_ring = adapter->rx_ring;
1318         u64 rdba;
1319         u32 rdlen, rxdctl;
1320
1321         /* disable receives */
1322         rxdctl = er32(RXDCTL(0));
1323         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1324         msleep(10);
1325
1326         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1327
1328         /*
1329          * Setup the HW Rx Head and Tail Descriptor Pointers and
1330          * the Base and Length of the Rx Descriptor Ring
1331          */
1332         rdba = rx_ring->dma;
1333         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1334         ew32(RDBAH(0), (rdba >> 32));
1335         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1336         rx_ring->head = E1000_RDH(0);
1337         rx_ring->tail = E1000_RDT(0);
1338         ew32(RDH(0), 0);
1339         ew32(RDT(0), 0);
1340
1341         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1342         rxdctl &= 0xFFF00000;
1343         rxdctl |= IGBVF_RX_PTHRESH;
1344         rxdctl |= IGBVF_RX_HTHRESH << 8;
1345         rxdctl |= IGBVF_RX_WTHRESH << 16;
1346
1347         igbvf_set_rlpml(adapter);
1348
1349         /* enable receives */
1350         ew32(RXDCTL(0), rxdctl);
1351 }
1352
1353 /**
1354  * igbvf_set_multi - Multicast and Promiscuous mode set
1355  * @netdev: network interface device structure
1356  *
1357  * The set_multi entry point is called whenever the multicast address
1358  * list or the network interface flags are updated.  This routine is
1359  * responsible for configuring the hardware for proper multicast,
1360  * promiscuous mode, and all-multi behavior.
1361  **/
1362 static void igbvf_set_multi(struct net_device *netdev)
1363 {
1364         struct igbvf_adapter *adapter = netdev_priv(netdev);
1365         struct e1000_hw *hw = &adapter->hw;
1366         struct netdev_hw_addr *ha;
1367         u8  *mta_list = NULL;
1368         int i;
1369
1370         if (!netdev_mc_empty(netdev)) {
1371                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1372                 if (!mta_list) {
1373                         dev_err(&adapter->pdev->dev,
1374                                 "failed to allocate multicast filter list\n");
1375                         return;
1376                 }
1377         }
1378
1379         /* prepare a packed array of only addresses. */
1380         i = 0;
1381         netdev_for_each_mc_addr(ha, netdev)
1382                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1383
1384         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1385         kfree(mta_list);
1386 }
1387
1388 /**
1389  * igbvf_configure - configure the hardware for Rx and Tx
1390  * @adapter: private board structure
1391  **/
1392 static void igbvf_configure(struct igbvf_adapter *adapter)
1393 {
1394         igbvf_set_multi(adapter->netdev);
1395
1396         igbvf_restore_vlan(adapter);
1397
1398         igbvf_configure_tx(adapter);
1399         igbvf_setup_srrctl(adapter);
1400         igbvf_configure_rx(adapter);
1401         igbvf_alloc_rx_buffers(adapter->rx_ring,
1402                                igbvf_desc_unused(adapter->rx_ring));
1403 }
1404
1405 /* igbvf_reset - bring the hardware into a known good state
1406  *
1407  * This function boots the hardware and enables some settings that
1408  * require a configuration cycle of the hardware - those cannot be
1409  * set/changed during runtime. After reset the device needs to be
1410  * properly configured for Rx, Tx etc.
1411  */
1412 static void igbvf_reset(struct igbvf_adapter *adapter)
1413 {
1414         struct e1000_mac_info *mac = &adapter->hw.mac;
1415         struct net_device *netdev = adapter->netdev;
1416         struct e1000_hw *hw = &adapter->hw;
1417
1418         /* Allow time for pending master requests to run */
1419         if (mac->ops.reset_hw(hw))
1420                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1421
1422         mac->ops.init_hw(hw);
1423
1424         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1425                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1426                        netdev->addr_len);
1427                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1428                        netdev->addr_len);
1429         }
1430
1431         adapter->last_reset = jiffies;
1432 }
1433
1434 int igbvf_up(struct igbvf_adapter *adapter)
1435 {
1436         struct e1000_hw *hw = &adapter->hw;
1437
1438         /* hardware has been reset, we need to reload some things */
1439         igbvf_configure(adapter);
1440
1441         clear_bit(__IGBVF_DOWN, &adapter->state);
1442
1443         napi_enable(&adapter->rx_ring->napi);
1444         if (adapter->msix_entries)
1445                 igbvf_configure_msix(adapter);
1446
1447         /* Clear any pending interrupts. */
1448         er32(EICR);
1449         igbvf_irq_enable(adapter);
1450
1451         /* start the watchdog */
1452         hw->mac.get_link_status = 1;
1453         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1454
1455
1456         return 0;
1457 }
1458
1459 void igbvf_down(struct igbvf_adapter *adapter)
1460 {
1461         struct net_device *netdev = adapter->netdev;
1462         struct e1000_hw *hw = &adapter->hw;
1463         u32 rxdctl, txdctl;
1464
1465         /*
1466          * signal that we're down so the interrupt handler does not
1467          * reschedule our watchdog timer
1468          */
1469         set_bit(__IGBVF_DOWN, &adapter->state);
1470
1471         /* disable receives in the hardware */
1472         rxdctl = er32(RXDCTL(0));
1473         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1474
1475         netif_stop_queue(netdev);
1476
1477         /* disable transmits in the hardware */
1478         txdctl = er32(TXDCTL(0));
1479         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1480
1481         /* flush both disables and wait for them to finish */
1482         e1e_flush();
1483         msleep(10);
1484
1485         napi_disable(&adapter->rx_ring->napi);
1486
1487         igbvf_irq_disable(adapter);
1488
1489         del_timer_sync(&adapter->watchdog_timer);
1490
1491         netif_carrier_off(netdev);
1492
1493         /* record the stats before reset*/
1494         igbvf_update_stats(adapter);
1495
1496         adapter->link_speed = 0;
1497         adapter->link_duplex = 0;
1498
1499         igbvf_reset(adapter);
1500         igbvf_clean_tx_ring(adapter->tx_ring);
1501         igbvf_clean_rx_ring(adapter->rx_ring);
1502 }
1503
1504 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1505 {
1506         might_sleep();
1507         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1508                 msleep(1);
1509         igbvf_down(adapter);
1510         igbvf_up(adapter);
1511         clear_bit(__IGBVF_RESETTING, &adapter->state);
1512 }
1513
1514 /**
1515  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1516  * @adapter: board private structure to initialize
1517  *
1518  * igbvf_sw_init initializes the Adapter private data structure.
1519  * Fields are initialized based on PCI device information and
1520  * OS network device settings (MTU size).
1521  **/
1522 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1523 {
1524         struct net_device *netdev = adapter->netdev;
1525         s32 rc;
1526
1527         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1528         adapter->rx_ps_hdr_size = 0;
1529         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1530         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1531
1532         adapter->tx_int_delay = 8;
1533         adapter->tx_abs_int_delay = 32;
1534         adapter->rx_int_delay = 0;
1535         adapter->rx_abs_int_delay = 8;
1536         adapter->itr_setting = 3;
1537         adapter->itr = 20000;
1538
1539         /* Set various function pointers */
1540         adapter->ei->init_ops(&adapter->hw);
1541
1542         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1543         if (rc)
1544                 return rc;
1545
1546         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1547         if (rc)
1548                 return rc;
1549
1550         igbvf_set_interrupt_capability(adapter);
1551
1552         if (igbvf_alloc_queues(adapter))
1553                 return -ENOMEM;
1554
1555         spin_lock_init(&adapter->tx_queue_lock);
1556
1557         /* Explicitly disable IRQ since the NIC can be in any state. */
1558         igbvf_irq_disable(adapter);
1559
1560         spin_lock_init(&adapter->stats_lock);
1561
1562         set_bit(__IGBVF_DOWN, &adapter->state);
1563         return 0;
1564 }
1565
1566 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569
1570         adapter->stats.last_gprc = er32(VFGPRC);
1571         adapter->stats.last_gorc = er32(VFGORC);
1572         adapter->stats.last_gptc = er32(VFGPTC);
1573         adapter->stats.last_gotc = er32(VFGOTC);
1574         adapter->stats.last_mprc = er32(VFMPRC);
1575         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1576         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1577         adapter->stats.last_gorlbc = er32(VFGORLBC);
1578         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1579
1580         adapter->stats.base_gprc = er32(VFGPRC);
1581         adapter->stats.base_gorc = er32(VFGORC);
1582         adapter->stats.base_gptc = er32(VFGPTC);
1583         adapter->stats.base_gotc = er32(VFGOTC);
1584         adapter->stats.base_mprc = er32(VFMPRC);
1585         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1586         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1587         adapter->stats.base_gorlbc = er32(VFGORLBC);
1588         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1589 }
1590
1591 /**
1592  * igbvf_open - Called when a network interface is made active
1593  * @netdev: network interface device structure
1594  *
1595  * Returns 0 on success, negative value on failure
1596  *
1597  * The open entry point is called when a network interface is made
1598  * active by the system (IFF_UP).  At this point all resources needed
1599  * for transmit and receive operations are allocated, the interrupt
1600  * handler is registered with the OS, the watchdog timer is started,
1601  * and the stack is notified that the interface is ready.
1602  **/
1603 static int igbvf_open(struct net_device *netdev)
1604 {
1605         struct igbvf_adapter *adapter = netdev_priv(netdev);
1606         struct e1000_hw *hw = &adapter->hw;
1607         int err;
1608
1609         /* disallow open during test */
1610         if (test_bit(__IGBVF_TESTING, &adapter->state))
1611                 return -EBUSY;
1612
1613         /* allocate transmit descriptors */
1614         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1615         if (err)
1616                 goto err_setup_tx;
1617
1618         /* allocate receive descriptors */
1619         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1620         if (err)
1621                 goto err_setup_rx;
1622
1623         /*
1624          * before we allocate an interrupt, we must be ready to handle it.
1625          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1626          * as soon as we call pci_request_irq, so we have to setup our
1627          * clean_rx handler before we do so.
1628          */
1629         igbvf_configure(adapter);
1630
1631         err = igbvf_request_irq(adapter);
1632         if (err)
1633                 goto err_req_irq;
1634
1635         /* From here on the code is the same as igbvf_up() */
1636         clear_bit(__IGBVF_DOWN, &adapter->state);
1637
1638         napi_enable(&adapter->rx_ring->napi);
1639
1640         /* clear any pending interrupts */
1641         er32(EICR);
1642
1643         igbvf_irq_enable(adapter);
1644
1645         /* start the watchdog */
1646         hw->mac.get_link_status = 1;
1647         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1648
1649         return 0;
1650
1651 err_req_irq:
1652         igbvf_free_rx_resources(adapter->rx_ring);
1653 err_setup_rx:
1654         igbvf_free_tx_resources(adapter->tx_ring);
1655 err_setup_tx:
1656         igbvf_reset(adapter);
1657
1658         return err;
1659 }
1660
1661 /**
1662  * igbvf_close - Disables a network interface
1663  * @netdev: network interface device structure
1664  *
1665  * Returns 0, this is not allowed to fail
1666  *
1667  * The close entry point is called when an interface is de-activated
1668  * by the OS.  The hardware is still under the drivers control, but
1669  * needs to be disabled.  A global MAC reset is issued to stop the
1670  * hardware, and all transmit and receive resources are freed.
1671  **/
1672 static int igbvf_close(struct net_device *netdev)
1673 {
1674         struct igbvf_adapter *adapter = netdev_priv(netdev);
1675
1676         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1677         igbvf_down(adapter);
1678
1679         igbvf_free_irq(adapter);
1680
1681         igbvf_free_tx_resources(adapter->tx_ring);
1682         igbvf_free_rx_resources(adapter->rx_ring);
1683
1684         return 0;
1685 }
1686 /**
1687  * igbvf_set_mac - Change the Ethernet Address of the NIC
1688  * @netdev: network interface device structure
1689  * @p: pointer to an address structure
1690  *
1691  * Returns 0 on success, negative on failure
1692  **/
1693 static int igbvf_set_mac(struct net_device *netdev, void *p)
1694 {
1695         struct igbvf_adapter *adapter = netdev_priv(netdev);
1696         struct e1000_hw *hw = &adapter->hw;
1697         struct sockaddr *addr = p;
1698
1699         if (!is_valid_ether_addr(addr->sa_data))
1700                 return -EADDRNOTAVAIL;
1701
1702         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1703
1704         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1705
1706         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1707                 return -EADDRNOTAVAIL;
1708
1709         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1710
1711         return 0;
1712 }
1713
1714 #define UPDATE_VF_COUNTER(reg, name)                                    \
1715         {                                                               \
1716                 u32 current_counter = er32(reg);                        \
1717                 if (current_counter < adapter->stats.last_##name)       \
1718                         adapter->stats.name += 0x100000000LL;           \
1719                 adapter->stats.last_##name = current_counter;           \
1720                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1721                 adapter->stats.name |= current_counter;                 \
1722         }
1723
1724 /**
1725  * igbvf_update_stats - Update the board statistics counters
1726  * @adapter: board private structure
1727 **/
1728 void igbvf_update_stats(struct igbvf_adapter *adapter)
1729 {
1730         struct e1000_hw *hw = &adapter->hw;
1731         struct pci_dev *pdev = adapter->pdev;
1732
1733         /*
1734          * Prevent stats update while adapter is being reset, link is down
1735          * or if the pci connection is down.
1736          */
1737         if (adapter->link_speed == 0)
1738                 return;
1739
1740         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1741                 return;
1742
1743         if (pci_channel_offline(pdev))
1744                 return;
1745
1746         UPDATE_VF_COUNTER(VFGPRC, gprc);
1747         UPDATE_VF_COUNTER(VFGORC, gorc);
1748         UPDATE_VF_COUNTER(VFGPTC, gptc);
1749         UPDATE_VF_COUNTER(VFGOTC, gotc);
1750         UPDATE_VF_COUNTER(VFMPRC, mprc);
1751         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1752         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1753         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1754         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1755
1756         /* Fill out the OS statistics structure */
1757         adapter->net_stats.multicast = adapter->stats.mprc;
1758 }
1759
1760 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1761 {
1762         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1763                  adapter->link_speed,
1764                  ((adapter->link_duplex == FULL_DUPLEX) ?
1765                   "Full Duplex" : "Half Duplex"));
1766 }
1767
1768 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1769 {
1770         struct e1000_hw *hw = &adapter->hw;
1771         s32 ret_val = E1000_SUCCESS;
1772         bool link_active;
1773
1774         /* If interface is down, stay link down */
1775         if (test_bit(__IGBVF_DOWN, &adapter->state))
1776                 return false;
1777
1778         ret_val = hw->mac.ops.check_for_link(hw);
1779         link_active = !hw->mac.get_link_status;
1780
1781         /* if check for link returns error we will need to reset */
1782         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1783                 schedule_work(&adapter->reset_task);
1784
1785         return link_active;
1786 }
1787
1788 /**
1789  * igbvf_watchdog - Timer Call-back
1790  * @data: pointer to adapter cast into an unsigned long
1791  **/
1792 static void igbvf_watchdog(unsigned long data)
1793 {
1794         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1795
1796         /* Do the rest outside of interrupt context */
1797         schedule_work(&adapter->watchdog_task);
1798 }
1799
1800 static void igbvf_watchdog_task(struct work_struct *work)
1801 {
1802         struct igbvf_adapter *adapter = container_of(work,
1803                                                      struct igbvf_adapter,
1804                                                      watchdog_task);
1805         struct net_device *netdev = adapter->netdev;
1806         struct e1000_mac_info *mac = &adapter->hw.mac;
1807         struct igbvf_ring *tx_ring = adapter->tx_ring;
1808         struct e1000_hw *hw = &adapter->hw;
1809         u32 link;
1810         int tx_pending = 0;
1811
1812         link = igbvf_has_link(adapter);
1813
1814         if (link) {
1815                 if (!netif_carrier_ok(netdev)) {
1816                         mac->ops.get_link_up_info(&adapter->hw,
1817                                                   &adapter->link_speed,
1818                                                   &adapter->link_duplex);
1819                         igbvf_print_link_info(adapter);
1820
1821                         netif_carrier_on(netdev);
1822                         netif_wake_queue(netdev);
1823                 }
1824         } else {
1825                 if (netif_carrier_ok(netdev)) {
1826                         adapter->link_speed = 0;
1827                         adapter->link_duplex = 0;
1828                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1829                         netif_carrier_off(netdev);
1830                         netif_stop_queue(netdev);
1831                 }
1832         }
1833
1834         if (netif_carrier_ok(netdev)) {
1835                 igbvf_update_stats(adapter);
1836         } else {
1837                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1838                               tx_ring->count);
1839                 if (tx_pending) {
1840                         /*
1841                          * We've lost link, so the controller stops DMA,
1842                          * but we've got queued Tx work that's never going
1843                          * to get done, so reset controller to flush Tx.
1844                          * (Do the reset outside of interrupt context).
1845                          */
1846                         adapter->tx_timeout_count++;
1847                         schedule_work(&adapter->reset_task);
1848                 }
1849         }
1850
1851         /* Cause software interrupt to ensure Rx ring is cleaned */
1852         ew32(EICS, adapter->rx_ring->eims_value);
1853
1854         /* Reset the timer */
1855         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1856                 mod_timer(&adapter->watchdog_timer,
1857                           round_jiffies(jiffies + (2 * HZ)));
1858 }
1859
1860 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1861 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1862 #define IGBVF_TX_FLAGS_TSO              0x00000004
1863 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1864 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1865 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1866
1867 static int igbvf_tso(struct igbvf_adapter *adapter,
1868                      struct igbvf_ring *tx_ring,
1869                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1870 {
1871         struct e1000_adv_tx_context_desc *context_desc;
1872         unsigned int i;
1873         int err;
1874         struct igbvf_buffer *buffer_info;
1875         u32 info = 0, tu_cmd = 0;
1876         u32 mss_l4len_idx, l4len;
1877         *hdr_len = 0;
1878
1879         if (skb_header_cloned(skb)) {
1880                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1881                 if (err) {
1882                         dev_err(&adapter->pdev->dev,
1883                                 "igbvf_tso returning an error\n");
1884                         return err;
1885                 }
1886         }
1887
1888         l4len = tcp_hdrlen(skb);
1889         *hdr_len += l4len;
1890
1891         if (skb->protocol == htons(ETH_P_IP)) {
1892                 struct iphdr *iph = ip_hdr(skb);
1893                 iph->tot_len = 0;
1894                 iph->check = 0;
1895                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1896                                                          iph->daddr, 0,
1897                                                          IPPROTO_TCP,
1898                                                          0);
1899         } else if (skb_is_gso_v6(skb)) {
1900                 ipv6_hdr(skb)->payload_len = 0;
1901                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1902                                                        &ipv6_hdr(skb)->daddr,
1903                                                        0, IPPROTO_TCP, 0);
1904         }
1905
1906         i = tx_ring->next_to_use;
1907
1908         buffer_info = &tx_ring->buffer_info[i];
1909         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1910         /* VLAN MACLEN IPLEN */
1911         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1912                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1913         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1914         *hdr_len += skb_network_offset(skb);
1915         info |= (skb_transport_header(skb) - skb_network_header(skb));
1916         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1917         context_desc->vlan_macip_lens = cpu_to_le32(info);
1918
1919         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1920         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1921
1922         if (skb->protocol == htons(ETH_P_IP))
1923                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1924         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1925
1926         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1927
1928         /* MSS L4LEN IDX */
1929         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1930         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1931
1932         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1933         context_desc->seqnum_seed = 0;
1934
1935         buffer_info->time_stamp = jiffies;
1936         buffer_info->next_to_watch = i;
1937         buffer_info->dma = 0;
1938         i++;
1939         if (i == tx_ring->count)
1940                 i = 0;
1941
1942         tx_ring->next_to_use = i;
1943
1944         return true;
1945 }
1946
1947 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1948                                  struct igbvf_ring *tx_ring,
1949                                  struct sk_buff *skb, u32 tx_flags)
1950 {
1951         struct e1000_adv_tx_context_desc *context_desc;
1952         unsigned int i;
1953         struct igbvf_buffer *buffer_info;
1954         u32 info = 0, tu_cmd = 0;
1955
1956         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1957             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1958                 i = tx_ring->next_to_use;
1959                 buffer_info = &tx_ring->buffer_info[i];
1960                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1961
1962                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1963                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1964
1965                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1966                 if (skb->ip_summed == CHECKSUM_PARTIAL)
1967                         info |= (skb_transport_header(skb) -
1968                                  skb_network_header(skb));
1969
1970
1971                 context_desc->vlan_macip_lens = cpu_to_le32(info);
1972
1973                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1974
1975                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1976                         switch (skb->protocol) {
1977                         case __constant_htons(ETH_P_IP):
1978                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1979                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1980                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1981                                 break;
1982                         case __constant_htons(ETH_P_IPV6):
1983                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1984                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1985                                 break;
1986                         default:
1987                                 break;
1988                         }
1989                 }
1990
1991                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1992                 context_desc->seqnum_seed = 0;
1993                 context_desc->mss_l4len_idx = 0;
1994
1995                 buffer_info->time_stamp = jiffies;
1996                 buffer_info->next_to_watch = i;
1997                 buffer_info->dma = 0;
1998                 i++;
1999                 if (i == tx_ring->count)
2000                         i = 0;
2001                 tx_ring->next_to_use = i;
2002
2003                 return true;
2004         }
2005
2006         return false;
2007 }
2008
2009 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2010 {
2011         struct igbvf_adapter *adapter = netdev_priv(netdev);
2012
2013         /* there is enough descriptors then we don't need to worry  */
2014         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2015                 return 0;
2016
2017         netif_stop_queue(netdev);
2018
2019         smp_mb();
2020
2021         /* We need to check again just in case room has been made available */
2022         if (igbvf_desc_unused(adapter->tx_ring) < size)
2023                 return -EBUSY;
2024
2025         netif_wake_queue(netdev);
2026
2027         ++adapter->restart_queue;
2028         return 0;
2029 }
2030
2031 #define IGBVF_MAX_TXD_PWR       16
2032 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2033
2034 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2035                                    struct igbvf_ring *tx_ring,
2036                                    struct sk_buff *skb,
2037                                    unsigned int first)
2038 {
2039         struct igbvf_buffer *buffer_info;
2040         struct pci_dev *pdev = adapter->pdev;
2041         unsigned int len = skb_headlen(skb);
2042         unsigned int count = 0, i;
2043         unsigned int f;
2044
2045         i = tx_ring->next_to_use;
2046
2047         buffer_info = &tx_ring->buffer_info[i];
2048         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2049         buffer_info->length = len;
2050         /* set time_stamp *before* dma to help avoid a possible race */
2051         buffer_info->time_stamp = jiffies;
2052         buffer_info->next_to_watch = i;
2053         buffer_info->mapped_as_page = false;
2054         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2055                                           DMA_TO_DEVICE);
2056         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2057                 goto dma_error;
2058
2059
2060         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2061                 struct skb_frag_struct *frag;
2062
2063                 count++;
2064                 i++;
2065                 if (i == tx_ring->count)
2066                         i = 0;
2067
2068                 frag = &skb_shinfo(skb)->frags[f];
2069                 len = frag->size;
2070
2071                 buffer_info = &tx_ring->buffer_info[i];
2072                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2073                 buffer_info->length = len;
2074                 buffer_info->time_stamp = jiffies;
2075                 buffer_info->next_to_watch = i;
2076                 buffer_info->mapped_as_page = true;
2077                 buffer_info->dma = dma_map_page(&pdev->dev,
2078                                                 frag->page,
2079                                                 frag->page_offset,
2080                                                 len,
2081                                                 DMA_TO_DEVICE);
2082                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2083                         goto dma_error;
2084         }
2085
2086         tx_ring->buffer_info[i].skb = skb;
2087         tx_ring->buffer_info[first].next_to_watch = i;
2088
2089         return ++count;
2090
2091 dma_error:
2092         dev_err(&pdev->dev, "TX DMA map failed\n");
2093
2094         /* clear timestamp and dma mappings for failed buffer_info mapping */
2095         buffer_info->dma = 0;
2096         buffer_info->time_stamp = 0;
2097         buffer_info->length = 0;
2098         buffer_info->next_to_watch = 0;
2099         buffer_info->mapped_as_page = false;
2100         if (count)
2101                 count--;
2102
2103         /* clear timestamp and dma mappings for remaining portion of packet */
2104         while (count--) {
2105                 if (i==0)
2106                         i += tx_ring->count;
2107                 i--;
2108                 buffer_info = &tx_ring->buffer_info[i];
2109                 igbvf_put_txbuf(adapter, buffer_info);
2110         }
2111
2112         return 0;
2113 }
2114
2115 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2116                                       struct igbvf_ring *tx_ring,
2117                                       int tx_flags, int count, u32 paylen,
2118                                       u8 hdr_len)
2119 {
2120         union e1000_adv_tx_desc *tx_desc = NULL;
2121         struct igbvf_buffer *buffer_info;
2122         u32 olinfo_status = 0, cmd_type_len;
2123         unsigned int i;
2124
2125         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2126                         E1000_ADVTXD_DCMD_DEXT);
2127
2128         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2129                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2130
2131         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2132                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2133
2134                 /* insert tcp checksum */
2135                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2136
2137                 /* insert ip checksum */
2138                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2139                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2140
2141         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2142                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2143         }
2144
2145         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2146
2147         i = tx_ring->next_to_use;
2148         while (count--) {
2149                 buffer_info = &tx_ring->buffer_info[i];
2150                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2151                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2152                 tx_desc->read.cmd_type_len =
2153                          cpu_to_le32(cmd_type_len | buffer_info->length);
2154                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2155                 i++;
2156                 if (i == tx_ring->count)
2157                         i = 0;
2158         }
2159
2160         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2161         /* Force memory writes to complete before letting h/w
2162          * know there are new descriptors to fetch.  (Only
2163          * applicable for weak-ordered memory model archs,
2164          * such as IA-64). */
2165         wmb();
2166
2167         tx_ring->next_to_use = i;
2168         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2169         /* we need this if more than one processor can write to our tail
2170          * at a time, it syncronizes IO on IA64/Altix systems */
2171         mmiowb();
2172 }
2173
2174 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2175                                              struct net_device *netdev,
2176                                              struct igbvf_ring *tx_ring)
2177 {
2178         struct igbvf_adapter *adapter = netdev_priv(netdev);
2179         unsigned int first, tx_flags = 0;
2180         u8 hdr_len = 0;
2181         int count = 0;
2182         int tso = 0;
2183
2184         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2185                 dev_kfree_skb_any(skb);
2186                 return NETDEV_TX_OK;
2187         }
2188
2189         if (skb->len <= 0) {
2190                 dev_kfree_skb_any(skb);
2191                 return NETDEV_TX_OK;
2192         }
2193
2194         /*
2195          * need: count + 4 desc gap to keep tail from touching
2196          *       + 2 desc gap to keep tail from touching head,
2197          *       + 1 desc for skb->data,
2198          *       + 1 desc for context descriptor,
2199          * head, otherwise try next time
2200          */
2201         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2202                 /* this is a hard error */
2203                 return NETDEV_TX_BUSY;
2204         }
2205
2206         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2207                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2208                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2209         }
2210
2211         if (skb->protocol == htons(ETH_P_IP))
2212                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2213
2214         first = tx_ring->next_to_use;
2215
2216         tso = skb_is_gso(skb) ?
2217                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2218         if (unlikely(tso < 0)) {
2219                 dev_kfree_skb_any(skb);
2220                 return NETDEV_TX_OK;
2221         }
2222
2223         if (tso)
2224                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2225         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2226                  (skb->ip_summed == CHECKSUM_PARTIAL))
2227                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2228
2229         /*
2230          * count reflects descriptors mapped, if 0 then mapping error
2231          * has occurred and we need to rewind the descriptor queue
2232          */
2233         count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2234
2235         if (count) {
2236                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2237                                    skb->len, hdr_len);
2238                 /* Make sure there is space in the ring for the next send. */
2239                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2240         } else {
2241                 dev_kfree_skb_any(skb);
2242                 tx_ring->buffer_info[first].time_stamp = 0;
2243                 tx_ring->next_to_use = first;
2244         }
2245
2246         return NETDEV_TX_OK;
2247 }
2248
2249 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2250                                     struct net_device *netdev)
2251 {
2252         struct igbvf_adapter *adapter = netdev_priv(netdev);
2253         struct igbvf_ring *tx_ring;
2254
2255         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2256                 dev_kfree_skb_any(skb);
2257                 return NETDEV_TX_OK;
2258         }
2259
2260         tx_ring = &adapter->tx_ring[0];
2261
2262         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2263 }
2264
2265 /**
2266  * igbvf_tx_timeout - Respond to a Tx Hang
2267  * @netdev: network interface device structure
2268  **/
2269 static void igbvf_tx_timeout(struct net_device *netdev)
2270 {
2271         struct igbvf_adapter *adapter = netdev_priv(netdev);
2272
2273         /* Do the reset outside of interrupt context */
2274         adapter->tx_timeout_count++;
2275         schedule_work(&adapter->reset_task);
2276 }
2277
2278 static void igbvf_reset_task(struct work_struct *work)
2279 {
2280         struct igbvf_adapter *adapter;
2281         adapter = container_of(work, struct igbvf_adapter, reset_task);
2282
2283         igbvf_reinit_locked(adapter);
2284 }
2285
2286 /**
2287  * igbvf_get_stats - Get System Network Statistics
2288  * @netdev: network interface device structure
2289  *
2290  * Returns the address of the device statistics structure.
2291  * The statistics are actually updated from the timer callback.
2292  **/
2293 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2294 {
2295         struct igbvf_adapter *adapter = netdev_priv(netdev);
2296
2297         /* only return the current stats */
2298         return &adapter->net_stats;
2299 }
2300
2301 /**
2302  * igbvf_change_mtu - Change the Maximum Transfer Unit
2303  * @netdev: network interface device structure
2304  * @new_mtu: new value for maximum frame size
2305  *
2306  * Returns 0 on success, negative on failure
2307  **/
2308 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2309 {
2310         struct igbvf_adapter *adapter = netdev_priv(netdev);
2311         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2312
2313         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2314                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2315                 return -EINVAL;
2316         }
2317
2318 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2319         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2320                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2321                 return -EINVAL;
2322         }
2323
2324         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2325                 msleep(1);
2326         /* igbvf_down has a dependency on max_frame_size */
2327         adapter->max_frame_size = max_frame;
2328         if (netif_running(netdev))
2329                 igbvf_down(adapter);
2330
2331         /*
2332          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2333          * means we reserve 2 more, this pushes us to allocate from the next
2334          * larger slab size.
2335          * i.e. RXBUFFER_2048 --> size-4096 slab
2336          * However with the new *_jumbo_rx* routines, jumbo receives will use
2337          * fragmented skbs
2338          */
2339
2340         if (max_frame <= 1024)
2341                 adapter->rx_buffer_len = 1024;
2342         else if (max_frame <= 2048)
2343                 adapter->rx_buffer_len = 2048;
2344         else
2345 #if (PAGE_SIZE / 2) > 16384
2346                 adapter->rx_buffer_len = 16384;
2347 #else
2348                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2349 #endif
2350
2351
2352         /* adjust allocation if LPE protects us, and we aren't using SBP */
2353         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2354              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2355                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2356                                          ETH_FCS_LEN;
2357
2358         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2359                  netdev->mtu, new_mtu);
2360         netdev->mtu = new_mtu;
2361
2362         if (netif_running(netdev))
2363                 igbvf_up(adapter);
2364         else
2365                 igbvf_reset(adapter);
2366
2367         clear_bit(__IGBVF_RESETTING, &adapter->state);
2368
2369         return 0;
2370 }
2371
2372 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2373 {
2374         switch (cmd) {
2375         default:
2376                 return -EOPNOTSUPP;
2377         }
2378 }
2379
2380 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2381 {
2382         struct net_device *netdev = pci_get_drvdata(pdev);
2383         struct igbvf_adapter *adapter = netdev_priv(netdev);
2384 #ifdef CONFIG_PM
2385         int retval = 0;
2386 #endif
2387
2388         netif_device_detach(netdev);
2389
2390         if (netif_running(netdev)) {
2391                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2392                 igbvf_down(adapter);
2393                 igbvf_free_irq(adapter);
2394         }
2395
2396 #ifdef CONFIG_PM
2397         retval = pci_save_state(pdev);
2398         if (retval)
2399                 return retval;
2400 #endif
2401
2402         pci_disable_device(pdev);
2403
2404         return 0;
2405 }
2406
2407 #ifdef CONFIG_PM
2408 static int igbvf_resume(struct pci_dev *pdev)
2409 {
2410         struct net_device *netdev = pci_get_drvdata(pdev);
2411         struct igbvf_adapter *adapter = netdev_priv(netdev);
2412         u32 err;
2413
2414         pci_restore_state(pdev);
2415         err = pci_enable_device_mem(pdev);
2416         if (err) {
2417                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2418                 return err;
2419         }
2420
2421         pci_set_master(pdev);
2422
2423         if (netif_running(netdev)) {
2424                 err = igbvf_request_irq(adapter);
2425                 if (err)
2426                         return err;
2427         }
2428
2429         igbvf_reset(adapter);
2430
2431         if (netif_running(netdev))
2432                 igbvf_up(adapter);
2433
2434         netif_device_attach(netdev);
2435
2436         return 0;
2437 }
2438 #endif
2439
2440 static void igbvf_shutdown(struct pci_dev *pdev)
2441 {
2442         igbvf_suspend(pdev, PMSG_SUSPEND);
2443 }
2444
2445 #ifdef CONFIG_NET_POLL_CONTROLLER
2446 /*
2447  * Polling 'interrupt' - used by things like netconsole to send skbs
2448  * without having to re-enable interrupts. It's not called while
2449  * the interrupt routine is executing.
2450  */
2451 static void igbvf_netpoll(struct net_device *netdev)
2452 {
2453         struct igbvf_adapter *adapter = netdev_priv(netdev);
2454
2455         disable_irq(adapter->pdev->irq);
2456
2457         igbvf_clean_tx_irq(adapter->tx_ring);
2458
2459         enable_irq(adapter->pdev->irq);
2460 }
2461 #endif
2462
2463 /**
2464  * igbvf_io_error_detected - called when PCI error is detected
2465  * @pdev: Pointer to PCI device
2466  * @state: The current pci connection state
2467  *
2468  * This function is called after a PCI bus error affecting
2469  * this device has been detected.
2470  */
2471 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2472                                                 pci_channel_state_t state)
2473 {
2474         struct net_device *netdev = pci_get_drvdata(pdev);
2475         struct igbvf_adapter *adapter = netdev_priv(netdev);
2476
2477         netif_device_detach(netdev);
2478
2479         if (state == pci_channel_io_perm_failure)
2480                 return PCI_ERS_RESULT_DISCONNECT;
2481
2482         if (netif_running(netdev))
2483                 igbvf_down(adapter);
2484         pci_disable_device(pdev);
2485
2486         /* Request a slot slot reset. */
2487         return PCI_ERS_RESULT_NEED_RESET;
2488 }
2489
2490 /**
2491  * igbvf_io_slot_reset - called after the pci bus has been reset.
2492  * @pdev: Pointer to PCI device
2493  *
2494  * Restart the card from scratch, as if from a cold-boot. Implementation
2495  * resembles the first-half of the igbvf_resume routine.
2496  */
2497 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2498 {
2499         struct net_device *netdev = pci_get_drvdata(pdev);
2500         struct igbvf_adapter *adapter = netdev_priv(netdev);
2501
2502         if (pci_enable_device_mem(pdev)) {
2503                 dev_err(&pdev->dev,
2504                         "Cannot re-enable PCI device after reset.\n");
2505                 return PCI_ERS_RESULT_DISCONNECT;
2506         }
2507         pci_set_master(pdev);
2508
2509         igbvf_reset(adapter);
2510
2511         return PCI_ERS_RESULT_RECOVERED;
2512 }
2513
2514 /**
2515  * igbvf_io_resume - called when traffic can start flowing again.
2516  * @pdev: Pointer to PCI device
2517  *
2518  * This callback is called when the error recovery driver tells us that
2519  * its OK to resume normal operation. Implementation resembles the
2520  * second-half of the igbvf_resume routine.
2521  */
2522 static void igbvf_io_resume(struct pci_dev *pdev)
2523 {
2524         struct net_device *netdev = pci_get_drvdata(pdev);
2525         struct igbvf_adapter *adapter = netdev_priv(netdev);
2526
2527         if (netif_running(netdev)) {
2528                 if (igbvf_up(adapter)) {
2529                         dev_err(&pdev->dev,
2530                                 "can't bring device back up after reset\n");
2531                         return;
2532                 }
2533         }
2534
2535         netif_device_attach(netdev);
2536 }
2537
2538 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2539 {
2540         struct e1000_hw *hw = &adapter->hw;
2541         struct net_device *netdev = adapter->netdev;
2542         struct pci_dev *pdev = adapter->pdev;
2543
2544         dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2545         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2546         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2547 }
2548
2549 static const struct net_device_ops igbvf_netdev_ops = {
2550         .ndo_open                       = igbvf_open,
2551         .ndo_stop                       = igbvf_close,
2552         .ndo_start_xmit                 = igbvf_xmit_frame,
2553         .ndo_get_stats                  = igbvf_get_stats,
2554         .ndo_set_multicast_list         = igbvf_set_multi,
2555         .ndo_set_mac_address            = igbvf_set_mac,
2556         .ndo_change_mtu                 = igbvf_change_mtu,
2557         .ndo_do_ioctl                   = igbvf_ioctl,
2558         .ndo_tx_timeout                 = igbvf_tx_timeout,
2559         .ndo_vlan_rx_register           = igbvf_vlan_rx_register,
2560         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2561         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2562 #ifdef CONFIG_NET_POLL_CONTROLLER
2563         .ndo_poll_controller            = igbvf_netpoll,
2564 #endif
2565 };
2566
2567 /**
2568  * igbvf_probe - Device Initialization Routine
2569  * @pdev: PCI device information struct
2570  * @ent: entry in igbvf_pci_tbl
2571  *
2572  * Returns 0 on success, negative on failure
2573  *
2574  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2575  * The OS initialization, configuring of the adapter private structure,
2576  * and a hardware reset occur.
2577  **/
2578 static int __devinit igbvf_probe(struct pci_dev *pdev,
2579                                  const struct pci_device_id *ent)
2580 {
2581         struct net_device *netdev;
2582         struct igbvf_adapter *adapter;
2583         struct e1000_hw *hw;
2584         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2585
2586         static int cards_found;
2587         int err, pci_using_dac;
2588
2589         err = pci_enable_device_mem(pdev);
2590         if (err)
2591                 return err;
2592
2593         pci_using_dac = 0;
2594         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2595         if (!err) {
2596                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2597                 if (!err)
2598                         pci_using_dac = 1;
2599         } else {
2600                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2601                 if (err) {
2602                         err = dma_set_coherent_mask(&pdev->dev,
2603                                                     DMA_BIT_MASK(32));
2604                         if (err) {
2605                                 dev_err(&pdev->dev, "No usable DMA "
2606                                         "configuration, aborting\n");
2607                                 goto err_dma;
2608                         }
2609                 }
2610         }
2611
2612         err = pci_request_regions(pdev, igbvf_driver_name);
2613         if (err)
2614                 goto err_pci_reg;
2615
2616         pci_set_master(pdev);
2617
2618         err = -ENOMEM;
2619         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2620         if (!netdev)
2621                 goto err_alloc_etherdev;
2622
2623         SET_NETDEV_DEV(netdev, &pdev->dev);
2624
2625         pci_set_drvdata(pdev, netdev);
2626         adapter = netdev_priv(netdev);
2627         hw = &adapter->hw;
2628         adapter->netdev = netdev;
2629         adapter->pdev = pdev;
2630         adapter->ei = ei;
2631         adapter->pba = ei->pba;
2632         adapter->flags = ei->flags;
2633         adapter->hw.back = adapter;
2634         adapter->hw.mac.type = ei->mac;
2635         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2636
2637         /* PCI config space info */
2638
2639         hw->vendor_id = pdev->vendor;
2640         hw->device_id = pdev->device;
2641         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2642         hw->subsystem_device_id = pdev->subsystem_device;
2643         hw->revision_id = pdev->revision;
2644
2645         err = -EIO;
2646         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2647                                       pci_resource_len(pdev, 0));
2648
2649         if (!adapter->hw.hw_addr)
2650                 goto err_ioremap;
2651
2652         if (ei->get_variants) {
2653                 err = ei->get_variants(adapter);
2654                 if (err)
2655                         goto err_ioremap;
2656         }
2657
2658         /* setup adapter struct */
2659         err = igbvf_sw_init(adapter);
2660         if (err)
2661                 goto err_sw_init;
2662
2663         /* construct the net_device struct */
2664         netdev->netdev_ops = &igbvf_netdev_ops;
2665
2666         igbvf_set_ethtool_ops(netdev);
2667         netdev->watchdog_timeo = 5 * HZ;
2668         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2669
2670         adapter->bd_number = cards_found++;
2671
2672         netdev->features = NETIF_F_SG |
2673                            NETIF_F_IP_CSUM |
2674                            NETIF_F_HW_VLAN_TX |
2675                            NETIF_F_HW_VLAN_RX |
2676                            NETIF_F_HW_VLAN_FILTER;
2677
2678         netdev->features |= NETIF_F_IPV6_CSUM;
2679         netdev->features |= NETIF_F_TSO;
2680         netdev->features |= NETIF_F_TSO6;
2681
2682         if (pci_using_dac)
2683                 netdev->features |= NETIF_F_HIGHDMA;
2684
2685         netdev->vlan_features |= NETIF_F_TSO;
2686         netdev->vlan_features |= NETIF_F_TSO6;
2687         netdev->vlan_features |= NETIF_F_IP_CSUM;
2688         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2689         netdev->vlan_features |= NETIF_F_SG;
2690
2691         /*reset the controller to put the device in a known good state */
2692         err = hw->mac.ops.reset_hw(hw);
2693         if (err) {
2694                 dev_info(&pdev->dev,
2695                          "PF still in reset state, assigning new address."
2696                          " Is the PF interface up?\n");
2697                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2698         } else {
2699                 err = hw->mac.ops.read_mac_addr(hw);
2700                 if (err) {
2701                         dev_err(&pdev->dev, "Error reading MAC address\n");
2702                         goto err_hw_init;
2703                 }
2704         }
2705
2706         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2707         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2708
2709         if (!is_valid_ether_addr(netdev->perm_addr)) {
2710                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2711                         netdev->dev_addr);
2712                 err = -EIO;
2713                 goto err_hw_init;
2714         }
2715
2716         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2717                     (unsigned long) adapter);
2718
2719         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2720         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2721
2722         /* ring size defaults */
2723         adapter->rx_ring->count = 1024;
2724         adapter->tx_ring->count = 1024;
2725
2726         /* reset the hardware with the new settings */
2727         igbvf_reset(adapter);
2728
2729         strcpy(netdev->name, "eth%d");
2730         err = register_netdev(netdev);
2731         if (err)
2732                 goto err_hw_init;
2733
2734         /* tell the stack to leave us alone until igbvf_open() is called */
2735         netif_carrier_off(netdev);
2736         netif_stop_queue(netdev);
2737
2738         igbvf_print_device_info(adapter);
2739
2740         igbvf_initialize_last_counter_stats(adapter);
2741
2742         return 0;
2743
2744 err_hw_init:
2745         kfree(adapter->tx_ring);
2746         kfree(adapter->rx_ring);
2747 err_sw_init:
2748         igbvf_reset_interrupt_capability(adapter);
2749         iounmap(adapter->hw.hw_addr);
2750 err_ioremap:
2751         free_netdev(netdev);
2752 err_alloc_etherdev:
2753         pci_release_regions(pdev);
2754 err_pci_reg:
2755 err_dma:
2756         pci_disable_device(pdev);
2757         return err;
2758 }
2759
2760 /**
2761  * igbvf_remove - Device Removal Routine
2762  * @pdev: PCI device information struct
2763  *
2764  * igbvf_remove is called by the PCI subsystem to alert the driver
2765  * that it should release a PCI device.  The could be caused by a
2766  * Hot-Plug event, or because the driver is going to be removed from
2767  * memory.
2768  **/
2769 static void __devexit igbvf_remove(struct pci_dev *pdev)
2770 {
2771         struct net_device *netdev = pci_get_drvdata(pdev);
2772         struct igbvf_adapter *adapter = netdev_priv(netdev);
2773         struct e1000_hw *hw = &adapter->hw;
2774
2775         /*
2776          * The watchdog timer may be rescheduled, so explicitly
2777          * disable it from being rescheduled.
2778          */
2779         set_bit(__IGBVF_DOWN, &adapter->state);
2780         del_timer_sync(&adapter->watchdog_timer);
2781
2782         cancel_work_sync(&adapter->reset_task);
2783         cancel_work_sync(&adapter->watchdog_task);
2784
2785         unregister_netdev(netdev);
2786
2787         igbvf_reset_interrupt_capability(adapter);
2788
2789         /*
2790          * it is important to delete the napi struct prior to freeing the
2791          * rx ring so that you do not end up with null pointer refs
2792          */
2793         netif_napi_del(&adapter->rx_ring->napi);
2794         kfree(adapter->tx_ring);
2795         kfree(adapter->rx_ring);
2796
2797         iounmap(hw->hw_addr);
2798         if (hw->flash_address)
2799                 iounmap(hw->flash_address);
2800         pci_release_regions(pdev);
2801
2802         free_netdev(netdev);
2803
2804         pci_disable_device(pdev);
2805 }
2806
2807 /* PCI Error Recovery (ERS) */
2808 static struct pci_error_handlers igbvf_err_handler = {
2809         .error_detected = igbvf_io_error_detected,
2810         .slot_reset = igbvf_io_slot_reset,
2811         .resume = igbvf_io_resume,
2812 };
2813
2814 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2815         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2816         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2817         { } /* terminate list */
2818 };
2819 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2820
2821 /* PCI Device API Driver */
2822 static struct pci_driver igbvf_driver = {
2823         .name     = igbvf_driver_name,
2824         .id_table = igbvf_pci_tbl,
2825         .probe    = igbvf_probe,
2826         .remove   = __devexit_p(igbvf_remove),
2827 #ifdef CONFIG_PM
2828         /* Power Management Hooks */
2829         .suspend  = igbvf_suspend,
2830         .resume   = igbvf_resume,
2831 #endif
2832         .shutdown = igbvf_shutdown,
2833         .err_handler = &igbvf_err_handler
2834 };
2835
2836 /**
2837  * igbvf_init_module - Driver Registration Routine
2838  *
2839  * igbvf_init_module is the first routine called when the driver is
2840  * loaded. All it does is register with the PCI subsystem.
2841  **/
2842 static int __init igbvf_init_module(void)
2843 {
2844         int ret;
2845         printk(KERN_INFO "%s - version %s\n",
2846                igbvf_driver_string, igbvf_driver_version);
2847         printk(KERN_INFO "%s\n", igbvf_copyright);
2848
2849         ret = pci_register_driver(&igbvf_driver);
2850
2851         return ret;
2852 }
2853 module_init(igbvf_init_module);
2854
2855 /**
2856  * igbvf_exit_module - Driver Exit Cleanup Routine
2857  *
2858  * igbvf_exit_module is called just before the driver is removed
2859  * from memory.
2860  **/
2861 static void __exit igbvf_exit_module(void)
2862 {
2863         pci_unregister_driver(&igbvf_driver);
2864 }
2865 module_exit(igbvf_exit_module);
2866
2867
2868 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2869 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2870 MODULE_LICENSE("GPL");
2871 MODULE_VERSION(DRV_VERSION);
2872
2873 /* netdev.c */