]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/s2io.c
b4c4cf467dc638934e88c9feb03e22420fef05e6
[mv-sheeva.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
69
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.15.2"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90 {
91         int ret;
92
93         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96         return ret;
97 }
98
99 /*
100  * Cards with following subsystem_id have a link state indication
101  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102  * macro below identifies these cards given the subsystem_id.
103  */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105         (dev_type == XFRAME_I_DEVICE) ?                 \
106                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC   1
113 #define LOW     2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 {
116         mac_info_t *mac_control;
117
118         mac_control = &sp->mac_control;
119         if (rxb_size <= rxd_count[sp->rxd_mode])
120                 return PANIC;
121         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122                 return  LOW;
123         return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"},
230         {"rmac_ttl_1519_4095_frms"},
231         {"rmac_ttl_4096_8191_frms"},
232         {"rmac_ttl_8192_max_frms"},
233         {"rmac_ttl_gt_max_frms"},
234         {"rmac_osized_alt_frms"},
235         {"rmac_jabber_alt_frms"},
236         {"rmac_gt_max_alt_frms"},
237         {"rmac_vlan_frms"},
238         {"rmac_len_discard"},
239         {"rmac_fcs_discard"},
240         {"rmac_pf_discard"},
241         {"rmac_da_discard"},
242         {"rmac_red_discard"},
243         {"rmac_rts_discard"},
244         {"rmac_ingm_full_discard"},
245         {"link_fault_cnt"},
246         {"\n DRIVER STATISTICS"},
247         {"single_bit_ecc_errs"},
248         {"double_bit_ecc_errs"},
249         {"parity_err_cnt"},
250         {"serious_err_cnt"},
251         {"soft_reset_cnt"},
252         {"fifo_full_cnt"},
253         {"ring_full_cnt"},
254         ("alarm_transceiver_temp_high"),
255         ("alarm_transceiver_temp_low"),
256         ("alarm_laser_bias_current_high"),
257         ("alarm_laser_bias_current_low"),
258         ("alarm_laser_output_power_high"),
259         ("alarm_laser_output_power_low"),
260         ("warn_transceiver_temp_high"),
261         ("warn_transceiver_temp_low"),
262         ("warn_laser_bias_current_high"),
263         ("warn_laser_bias_current_low"),
264         ("warn_laser_output_power_high"),
265         ("warn_laser_output_power_low"),
266         ("lro_aggregated_pkts"),
267         ("lro_flush_both_count"),
268         ("lro_out_of_sequence_pkts"),
269         ("lro_flush_due_to_max_pkts"),
270         ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
280                         init_timer(&timer);                     \
281                         timer.function = handle;                \
282                         timer.data = (unsigned long) arg;       \
283                         mod_timer(&timer, (jiffies + exp))      \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287                                         struct vlan_group *grp)
288 {
289         nic_t *nic = dev->priv;
290         unsigned long flags;
291
292         spin_lock_irqsave(&nic->tx_lock, flags);
293         nic->vlgrp = grp;
294         spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300         nic_t *nic = dev->priv;
301         unsigned long flags;
302
303         spin_lock_irqsave(&nic->tx_lock, flags);
304         if (nic->vlgrp)
305                 nic->vlgrp->vlan_devices[vid] = NULL;
306         spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310  * Constants to be programmed into the Xena's registers, to configure
311  * the XAUI.
312  */
313
314 #define END_SIGN        0x0
315 static const u64 herc_act_dtx_cfg[] = {
316         /* Set address */
317         0x8000051536750000ULL, 0x80000515367500E0ULL,
318         /* Write data */
319         0x8000051536750004ULL, 0x80000515367500E4ULL,
320         /* Set address */
321         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322         /* Write data */
323         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324         /* Set address */
325         0x801205150D440000ULL, 0x801205150D4400E0ULL,
326         /* Write data */
327         0x801205150D440004ULL, 0x801205150D4400E4ULL,
328         /* Set address */
329         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330         /* Write data */
331         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332         /* Done */
333         END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337         /* Set address */
338         0x8000051500000000ULL, 0x80000515000000E0ULL,
339         /* Write data */
340         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341         /* Set address */
342         0x8001051500000000ULL, 0x80010515000000E0ULL,
343         /* Write data */
344         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345         /* Set address */
346         0x8002051500000000ULL, 0x80020515000000E0ULL,
347         /* Write data */
348         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349         END_SIGN
350 };
351
352 /*
353  * Constants for Fixing the MacAddress problem seen mostly on
354  * Alpha machines.
355  */
356 static const u64 fix_mac[] = {
357         0x0060000000000000ULL, 0x0060600000000000ULL,
358         0x0040600000000000ULL, 0x0000600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0060600000000000ULL,
369         0x0020600000000000ULL, 0x0000600000000000ULL,
370         0x0040600000000000ULL, 0x0060600000000000ULL,
371         END_SIGN
372 };
373
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
377
378
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
382
383
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401  * aggregation happens until we hit max IP pkt size(64K)
402  */
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 S2IO_PARM_INT(indicate_max_pkts, 0);
405
406 S2IO_PARM_INT(napi, 1);
407 S2IO_PARM_INT(ufo, 0);
408
409 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
410     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
411 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
412     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
413 static unsigned int rts_frm_len[MAX_RX_RINGS] =
414     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415
416 module_param_array(tx_fifo_len, uint, NULL, 0);
417 module_param_array(rx_ring_sz, uint, NULL, 0);
418 module_param_array(rts_frm_len, uint, NULL, 0);
419
420 /*
421  * S2IO device table.
422  * This table lists all the devices that this driver supports.
423  */
424 static struct pci_device_id s2io_tbl[] __devinitdata = {
425         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
426          PCI_ANY_ID, PCI_ANY_ID},
427         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
428          PCI_ANY_ID, PCI_ANY_ID},
429         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
430          PCI_ANY_ID, PCI_ANY_ID},
431         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
432          PCI_ANY_ID, PCI_ANY_ID},
433         {0,}
434 };
435
436 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437
438 static struct pci_driver s2io_driver = {
439       .name = "S2IO",
440       .id_table = s2io_tbl,
441       .probe = s2io_init_nic,
442       .remove = __devexit_p(s2io_rem_nic),
443 };
444
445 /* A simplifier macro used both by init and free shared_mem Fns(). */
446 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
447
448 /**
449  * init_shared_mem - Allocation and Initialization of Memory
450  * @nic: Device private variable.
451  * Description: The function allocates all the memory areas shared
452  * between the NIC and the driver. This includes Tx descriptors,
453  * Rx descriptors and the statistics block.
454  */
455
456 static int init_shared_mem(struct s2io_nic *nic)
457 {
458         u32 size;
459         void *tmp_v_addr, *tmp_v_addr_next;
460         dma_addr_t tmp_p_addr, tmp_p_addr_next;
461         RxD_block_t *pre_rxd_blk = NULL;
462         int i, j, blk_cnt;
463         int lst_size, lst_per_page;
464         struct net_device *dev = nic->dev;
465         unsigned long tmp;
466         buffAdd_t *ba;
467
468         mac_info_t *mac_control;
469         struct config_param *config;
470
471         mac_control = &nic->mac_control;
472         config = &nic->config;
473
474
475         /* Allocation and initialization of TXDLs in FIOFs */
476         size = 0;
477         for (i = 0; i < config->tx_fifo_num; i++) {
478                 size += config->tx_cfg[i].fifo_len;
479         }
480         if (size > MAX_AVAILABLE_TXDS) {
481                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
482                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
483                 return -EINVAL;
484         }
485
486         lst_size = (sizeof(TxD_t) * config->max_txds);
487         lst_per_page = PAGE_SIZE / lst_size;
488
489         for (i = 0; i < config->tx_fifo_num; i++) {
490                 int fifo_len = config->tx_cfg[i].fifo_len;
491                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
492                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
493                                                           GFP_KERNEL);
494                 if (!mac_control->fifos[i].list_info) {
495                         DBG_PRINT(ERR_DBG,
496                                   "Malloc failed for list_info\n");
497                         return -ENOMEM;
498                 }
499                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
500         }
501         for (i = 0; i < config->tx_fifo_num; i++) {
502                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
503                                                 lst_per_page);
504                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506                     config->tx_cfg[i].fifo_len - 1;
507                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509                     config->tx_cfg[i].fifo_len - 1;
510                 mac_control->fifos[i].fifo_no = i;
511                 mac_control->fifos[i].nic = nic;
512                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
513
514                 for (j = 0; j < page_num; j++) {
515                         int k = 0;
516                         dma_addr_t tmp_p;
517                         void *tmp_v;
518                         tmp_v = pci_alloc_consistent(nic->pdev,
519                                                      PAGE_SIZE, &tmp_p);
520                         if (!tmp_v) {
521                                 DBG_PRINT(ERR_DBG,
522                                           "pci_alloc_consistent ");
523                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
524                                 return -ENOMEM;
525                         }
526                         /* If we got a zero DMA address(can happen on
527                          * certain platforms like PPC), reallocate.
528                          * Store virtual address of page we don't want,
529                          * to be freed later.
530                          */
531                         if (!tmp_p) {
532                                 mac_control->zerodma_virt_addr = tmp_v;
533                                 DBG_PRINT(INIT_DBG,
534                                 "%s: Zero DMA address for TxDL. ", dev->name);
535                                 DBG_PRINT(INIT_DBG,
536                                 "Virtual address %p\n", tmp_v);
537                                 tmp_v = pci_alloc_consistent(nic->pdev,
538                                                      PAGE_SIZE, &tmp_p);
539                                 if (!tmp_v) {
540                                         DBG_PRINT(ERR_DBG,
541                                           "pci_alloc_consistent ");
542                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
543                                         return -ENOMEM;
544                                 }
545                         }
546                         while (k < lst_per_page) {
547                                 int l = (j * lst_per_page) + k;
548                                 if (l == config->tx_cfg[i].fifo_len)
549                                         break;
550                                 mac_control->fifos[i].list_info[l].list_virt_addr =
551                                     tmp_v + (k * lst_size);
552                                 mac_control->fifos[i].list_info[l].list_phy_addr =
553                                     tmp_p + (k * lst_size);
554                                 k++;
555                         }
556                 }
557         }
558
559         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
560         if (!nic->ufo_in_band_v)
561                 return -ENOMEM;
562
563         /* Allocation and initialization of RXDs in Rings */
564         size = 0;
565         for (i = 0; i < config->rx_ring_num; i++) {
566                 if (config->rx_cfg[i].num_rxd %
567                     (rxd_count[nic->rxd_mode] + 1)) {
568                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
569                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
570                                   i);
571                         DBG_PRINT(ERR_DBG, "RxDs per Block");
572                         return FAILURE;
573                 }
574                 size += config->rx_cfg[i].num_rxd;
575                 mac_control->rings[i].block_count =
576                         config->rx_cfg[i].num_rxd /
577                         (rxd_count[nic->rxd_mode] + 1 );
578                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
579                         mac_control->rings[i].block_count;
580         }
581         if (nic->rxd_mode == RXD_MODE_1)
582                 size = (size * (sizeof(RxD1_t)));
583         else
584                 size = (size * (sizeof(RxD3_t)));
585
586         for (i = 0; i < config->rx_ring_num; i++) {
587                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
588                 mac_control->rings[i].rx_curr_get_info.offset = 0;
589                 mac_control->rings[i].rx_curr_get_info.ring_len =
590                     config->rx_cfg[i].num_rxd - 1;
591                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
592                 mac_control->rings[i].rx_curr_put_info.offset = 0;
593                 mac_control->rings[i].rx_curr_put_info.ring_len =
594                     config->rx_cfg[i].num_rxd - 1;
595                 mac_control->rings[i].nic = nic;
596                 mac_control->rings[i].ring_no = i;
597
598                 blk_cnt = config->rx_cfg[i].num_rxd /
599                                 (rxd_count[nic->rxd_mode] + 1);
600                 /*  Allocating all the Rx blocks */
601                 for (j = 0; j < blk_cnt; j++) {
602                         rx_block_info_t *rx_blocks;
603                         int l;
604
605                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
606                         size = SIZE_OF_BLOCK; //size is always page size
607                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
608                                                           &tmp_p_addr);
609                         if (tmp_v_addr == NULL) {
610                                 /*
611                                  * In case of failure, free_shared_mem()
612                                  * is called, which should free any
613                                  * memory that was alloced till the
614                                  * failure happened.
615                                  */
616                                 rx_blocks->block_virt_addr = tmp_v_addr;
617                                 return -ENOMEM;
618                         }
619                         memset(tmp_v_addr, 0, size);
620                         rx_blocks->block_virt_addr = tmp_v_addr;
621                         rx_blocks->block_dma_addr = tmp_p_addr;
622                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
623                                                   rxd_count[nic->rxd_mode],
624                                                   GFP_KERNEL);
625                         if (!rx_blocks->rxds)
626                                 return -ENOMEM;
627                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628                                 rx_blocks->rxds[l].virt_addr =
629                                         rx_blocks->block_virt_addr +
630                                         (rxd_size[nic->rxd_mode] * l);
631                                 rx_blocks->rxds[l].dma_addr =
632                                         rx_blocks->block_dma_addr +
633                                         (rxd_size[nic->rxd_mode] * l);
634                         }
635                 }
636                 /* Interlinking all Rx Blocks */
637                 for (j = 0; j < blk_cnt; j++) {
638                         tmp_v_addr =
639                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
640                         tmp_v_addr_next =
641                                 mac_control->rings[i].rx_blocks[(j + 1) %
642                                               blk_cnt].block_virt_addr;
643                         tmp_p_addr =
644                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
645                         tmp_p_addr_next =
646                                 mac_control->rings[i].rx_blocks[(j + 1) %
647                                               blk_cnt].block_dma_addr;
648
649                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
650                         pre_rxd_blk->reserved_2_pNext_RxD_block =
651                             (unsigned long) tmp_v_addr_next;
652                         pre_rxd_blk->pNext_RxD_Blk_physical =
653                             (u64) tmp_p_addr_next;
654                 }
655         }
656         if (nic->rxd_mode >= RXD_MODE_3A) {
657                 /*
658                  * Allocation of Storages for buffer addresses in 2BUFF mode
659                  * and the buffers as well.
660                  */
661                 for (i = 0; i < config->rx_ring_num; i++) {
662                         blk_cnt = config->rx_cfg[i].num_rxd /
663                            (rxd_count[nic->rxd_mode]+ 1);
664                         mac_control->rings[i].ba =
665                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
666                                      GFP_KERNEL);
667                         if (!mac_control->rings[i].ba)
668                                 return -ENOMEM;
669                         for (j = 0; j < blk_cnt; j++) {
670                                 int k = 0;
671                                 mac_control->rings[i].ba[j] =
672                                         kmalloc((sizeof(buffAdd_t) *
673                                                 (rxd_count[nic->rxd_mode] + 1)),
674                                                 GFP_KERNEL);
675                                 if (!mac_control->rings[i].ba[j])
676                                         return -ENOMEM;
677                                 while (k != rxd_count[nic->rxd_mode]) {
678                                         ba = &mac_control->rings[i].ba[j][k];
679
680                                         ba->ba_0_org = (void *) kmalloc
681                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682                                         if (!ba->ba_0_org)
683                                                 return -ENOMEM;
684                                         tmp = (unsigned long)ba->ba_0_org;
685                                         tmp += ALIGN_SIZE;
686                                         tmp &= ~((unsigned long) ALIGN_SIZE);
687                                         ba->ba_0 = (void *) tmp;
688
689                                         ba->ba_1_org = (void *) kmalloc
690                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691                                         if (!ba->ba_1_org)
692                                                 return -ENOMEM;
693                                         tmp = (unsigned long) ba->ba_1_org;
694                                         tmp += ALIGN_SIZE;
695                                         tmp &= ~((unsigned long) ALIGN_SIZE);
696                                         ba->ba_1 = (void *) tmp;
697                                         k++;
698                                 }
699                         }
700                 }
701         }
702
703         /* Allocation and initialization of Statistics block */
704         size = sizeof(StatInfo_t);
705         mac_control->stats_mem = pci_alloc_consistent
706             (nic->pdev, size, &mac_control->stats_mem_phy);
707
708         if (!mac_control->stats_mem) {
709                 /*
710                  * In case of failure, free_shared_mem() is called, which
711                  * should free any memory that was alloced till the
712                  * failure happened.
713                  */
714                 return -ENOMEM;
715         }
716         mac_control->stats_mem_sz = size;
717
718         tmp_v_addr = mac_control->stats_mem;
719         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
720         memset(tmp_v_addr, 0, size);
721         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722                   (unsigned long long) tmp_p_addr);
723
724         return SUCCESS;
725 }
726
727 /**
728  * free_shared_mem - Free the allocated Memory
729  * @nic:  Device private variable.
730  * Description: This function is to free all memory locations allocated by
731  * the init_shared_mem() function and return it to the kernel.
732  */
733
734 static void free_shared_mem(struct s2io_nic *nic)
735 {
736         int i, j, blk_cnt, size;
737         void *tmp_v_addr;
738         dma_addr_t tmp_p_addr;
739         mac_info_t *mac_control;
740         struct config_param *config;
741         int lst_size, lst_per_page;
742         struct net_device *dev = nic->dev;
743
744         if (!nic)
745                 return;
746
747         mac_control = &nic->mac_control;
748         config = &nic->config;
749
750         lst_size = (sizeof(TxD_t) * config->max_txds);
751         lst_per_page = PAGE_SIZE / lst_size;
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755                                                 lst_per_page);
756                 for (j = 0; j < page_num; j++) {
757                         int mem_blks = (j * lst_per_page);
758                         if (!mac_control->fifos[i].list_info)
759                                 return;
760                         if (!mac_control->fifos[i].list_info[mem_blks].
761                                  list_virt_addr)
762                                 break;
763                         pci_free_consistent(nic->pdev, PAGE_SIZE,
764                                             mac_control->fifos[i].
765                                             list_info[mem_blks].
766                                             list_virt_addr,
767                                             mac_control->fifos[i].
768                                             list_info[mem_blks].
769                                             list_phy_addr);
770                 }
771                 /* If we got a zero DMA address during allocation,
772                  * free the page now
773                  */
774                 if (mac_control->zerodma_virt_addr) {
775                         pci_free_consistent(nic->pdev, PAGE_SIZE,
776                                             mac_control->zerodma_virt_addr,
777                                             (dma_addr_t)0);
778                         DBG_PRINT(INIT_DBG,
779                                 "%s: Freeing TxDL with zero DMA addr. ",
780                                 dev->name);
781                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782                                 mac_control->zerodma_virt_addr);
783                 }
784                 kfree(mac_control->fifos[i].list_info);
785         }
786
787         size = SIZE_OF_BLOCK;
788         for (i = 0; i < config->rx_ring_num; i++) {
789                 blk_cnt = mac_control->rings[i].block_count;
790                 for (j = 0; j < blk_cnt; j++) {
791                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792                                 block_virt_addr;
793                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794                                 block_dma_addr;
795                         if (tmp_v_addr == NULL)
796                                 break;
797                         pci_free_consistent(nic->pdev, size,
798                                             tmp_v_addr, tmp_p_addr);
799                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
800                 }
801         }
802
803         if (nic->rxd_mode >= RXD_MODE_3A) {
804                 /* Freeing buffer storage addresses in 2BUFF mode. */
805                 for (i = 0; i < config->rx_ring_num; i++) {
806                         blk_cnt = config->rx_cfg[i].num_rxd /
807                             (rxd_count[nic->rxd_mode] + 1);
808                         for (j = 0; j < blk_cnt; j++) {
809                                 int k = 0;
810                                 if (!mac_control->rings[i].ba[j])
811                                         continue;
812                                 while (k != rxd_count[nic->rxd_mode]) {
813                                         buffAdd_t *ba =
814                                                 &mac_control->rings[i].ba[j][k];
815                                         kfree(ba->ba_0_org);
816                                         kfree(ba->ba_1_org);
817                                         k++;
818                                 }
819                                 kfree(mac_control->rings[i].ba[j]);
820                         }
821                         kfree(mac_control->rings[i].ba);
822                 }
823         }
824
825         if (mac_control->stats_mem) {
826                 pci_free_consistent(nic->pdev,
827                                     mac_control->stats_mem_sz,
828                                     mac_control->stats_mem,
829                                     mac_control->stats_mem_phy);
830         }
831         if (nic->ufo_in_band_v)
832                 kfree(nic->ufo_in_band_v);
833 }
834
835 /**
836  * s2io_verify_pci_mode -
837  */
838
839 static int s2io_verify_pci_mode(nic_t *nic)
840 {
841         XENA_dev_config_t __iomem *bar0 = nic->bar0;
842         register u64 val64 = 0;
843         int     mode;
844
845         val64 = readq(&bar0->pci_mode);
846         mode = (u8)GET_PCI_MODE(val64);
847
848         if ( val64 & PCI_MODE_UNKNOWN_MODE)
849                 return -1;      /* Unknown PCI mode */
850         return mode;
851 }
852
853 #define NEC_VENID   0x1033
854 #define NEC_DEVID   0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
856 {
857         struct pci_dev *tdev = NULL;
858         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860                         if (tdev->bus == s2io_pdev->bus->parent)
861                                 pci_dev_put(tdev);
862                                 return 1;
863                 }
864         }
865         return 0;
866 }
867
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 /**
870  * s2io_print_pci_mode -
871  */
872 static int s2io_print_pci_mode(nic_t *nic)
873 {
874         XENA_dev_config_t __iomem *bar0 = nic->bar0;
875         register u64 val64 = 0;
876         int     mode;
877         struct config_param *config = &nic->config;
878
879         val64 = readq(&bar0->pci_mode);
880         mode = (u8)GET_PCI_MODE(val64);
881
882         if ( val64 & PCI_MODE_UNKNOWN_MODE)
883                 return -1;      /* Unknown PCI mode */
884
885         config->bus_speed = bus_speed[mode];
886
887         if (s2io_on_nec_bridge(nic->pdev)) {
888                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
889                                                         nic->dev->name);
890                 return mode;
891         }
892
893         if (val64 & PCI_MODE_32_BITS) {
894                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
895         } else {
896                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
897         }
898
899         switch(mode) {
900                 case PCI_MODE_PCI_33:
901                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
902                         break;
903                 case PCI_MODE_PCI_66:
904                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
905                         break;
906                 case PCI_MODE_PCIX_M1_66:
907                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
908                         break;
909                 case PCI_MODE_PCIX_M1_100:
910                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
911                         break;
912                 case PCI_MODE_PCIX_M1_133:
913                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
914                         break;
915                 case PCI_MODE_PCIX_M2_66:
916                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
917                         break;
918                 case PCI_MODE_PCIX_M2_100:
919                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
920                         break;
921                 case PCI_MODE_PCIX_M2_133:
922                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
923                         break;
924                 default:
925                         return -1;      /* Unsupported bus speed */
926         }
927
928         return mode;
929 }
930
931 /**
932  *  init_nic - Initialization of hardware
933  *  @nic: device peivate variable
934  *  Description: The function sequentially configures every block
935  *  of the H/W from their reset values.
936  *  Return Value:  SUCCESS on success and
937  *  '-1' on failure (endian settings incorrect).
938  */
939
940 static int init_nic(struct s2io_nic *nic)
941 {
942         XENA_dev_config_t __iomem *bar0 = nic->bar0;
943         struct net_device *dev = nic->dev;
944         register u64 val64 = 0;
945         void __iomem *add;
946         u32 time;
947         int i, j;
948         mac_info_t *mac_control;
949         struct config_param *config;
950         int dtx_cnt = 0;
951         unsigned long long mem_share;
952         int mem_size;
953
954         mac_control = &nic->mac_control;
955         config = &nic->config;
956
957         /* to set the swapper controle on the card */
958         if(s2io_set_swapper(nic)) {
959                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
960                 return -1;
961         }
962
963         /*
964          * Herc requires EOI to be removed from reset before XGXS, so..
965          */
966         if (nic->device_type & XFRAME_II_DEVICE) {
967                 val64 = 0xA500000000ULL;
968                 writeq(val64, &bar0->sw_reset);
969                 msleep(500);
970                 val64 = readq(&bar0->sw_reset);
971         }
972
973         /* Remove XGXS from reset state */
974         val64 = 0;
975         writeq(val64, &bar0->sw_reset);
976         msleep(500);
977         val64 = readq(&bar0->sw_reset);
978
979         /*  Enable Receiving broadcasts */
980         add = &bar0->mac_cfg;
981         val64 = readq(&bar0->mac_cfg);
982         val64 |= MAC_RMAC_BCAST_ENABLE;
983         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984         writel((u32) val64, add);
985         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986         writel((u32) (val64 >> 32), (add + 4));
987
988         /* Read registers in all blocks */
989         val64 = readq(&bar0->mac_int_mask);
990         val64 = readq(&bar0->mc_int_mask);
991         val64 = readq(&bar0->xgxs_int_mask);
992
993         /*  Set MTU */
994         val64 = dev->mtu;
995         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996
997         if (nic->device_type & XFRAME_II_DEVICE) {
998                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000                                           &bar0->dtx_control, UF);
1001                         if (dtx_cnt & 0x1)
1002                                 msleep(1); /* Necessary!! */
1003                         dtx_cnt++;
1004                 }
1005         } else {
1006                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008                                           &bar0->dtx_control, UF);
1009                         val64 = readq(&bar0->dtx_control);
1010                         dtx_cnt++;
1011                 }
1012         }
1013
1014         /*  Tx DMA Initialization */
1015         val64 = 0;
1016         writeq(val64, &bar0->tx_fifo_partition_0);
1017         writeq(val64, &bar0->tx_fifo_partition_1);
1018         writeq(val64, &bar0->tx_fifo_partition_2);
1019         writeq(val64, &bar0->tx_fifo_partition_3);
1020
1021
1022         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1023                 val64 |=
1024                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1026                                     ((i * 32) + 5), 3);
1027
1028                 if (i == (config->tx_fifo_num - 1)) {
1029                         if (i % 2 == 0)
1030                                 i++;
1031                 }
1032
1033                 switch (i) {
1034                 case 1:
1035                         writeq(val64, &bar0->tx_fifo_partition_0);
1036                         val64 = 0;
1037                         break;
1038                 case 3:
1039                         writeq(val64, &bar0->tx_fifo_partition_1);
1040                         val64 = 0;
1041                         break;
1042                 case 5:
1043                         writeq(val64, &bar0->tx_fifo_partition_2);
1044                         val64 = 0;
1045                         break;
1046                 case 7:
1047                         writeq(val64, &bar0->tx_fifo_partition_3);
1048                         break;
1049                 }
1050         }
1051
1052         /*
1053          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055          */
1056         if ((nic->device_type == XFRAME_I_DEVICE) &&
1057                 (get_xena_rev_id(nic->pdev) < 4))
1058                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059
1060         val64 = readq(&bar0->tx_fifo_partition_0);
1061         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1063
1064         /*
1065          * Initialization of Tx_PA_CONFIG register to ignore packet
1066          * integrity checking.
1067          */
1068         val64 = readq(&bar0->tx_pa_cfg);
1069         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071         writeq(val64, &bar0->tx_pa_cfg);
1072
1073         /* Rx DMA intialization. */
1074         val64 = 0;
1075         for (i = 0; i < config->rx_ring_num; i++) {
1076                 val64 |=
1077                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1078                          3);
1079         }
1080         writeq(val64, &bar0->rx_queue_priority);
1081
1082         /*
1083          * Allocating equal share of memory to all the
1084          * configured Rings.
1085          */
1086         val64 = 0;
1087         if (nic->device_type & XFRAME_II_DEVICE)
1088                 mem_size = 32;
1089         else
1090                 mem_size = 64;
1091
1092         for (i = 0; i < config->rx_ring_num; i++) {
1093                 switch (i) {
1094                 case 0:
1095                         mem_share = (mem_size / config->rx_ring_num +
1096                                      mem_size % config->rx_ring_num);
1097                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1098                         continue;
1099                 case 1:
1100                         mem_share = (mem_size / config->rx_ring_num);
1101                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1102                         continue;
1103                 case 2:
1104                         mem_share = (mem_size / config->rx_ring_num);
1105                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1106                         continue;
1107                 case 3:
1108                         mem_share = (mem_size / config->rx_ring_num);
1109                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1110                         continue;
1111                 case 4:
1112                         mem_share = (mem_size / config->rx_ring_num);
1113                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1114                         continue;
1115                 case 5:
1116                         mem_share = (mem_size / config->rx_ring_num);
1117                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1118                         continue;
1119                 case 6:
1120                         mem_share = (mem_size / config->rx_ring_num);
1121                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1122                         continue;
1123                 case 7:
1124                         mem_share = (mem_size / config->rx_ring_num);
1125                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1126                         continue;
1127                 }
1128         }
1129         writeq(val64, &bar0->rx_queue_cfg);
1130
1131         /*
1132          * Filling Tx round robin registers
1133          * as per the number of FIFOs
1134          */
1135         switch (config->tx_fifo_num) {
1136         case 1:
1137                 val64 = 0x0000000000000000ULL;
1138                 writeq(val64, &bar0->tx_w_round_robin_0);
1139                 writeq(val64, &bar0->tx_w_round_robin_1);
1140                 writeq(val64, &bar0->tx_w_round_robin_2);
1141                 writeq(val64, &bar0->tx_w_round_robin_3);
1142                 writeq(val64, &bar0->tx_w_round_robin_4);
1143                 break;
1144         case 2:
1145                 val64 = 0x0000010000010000ULL;
1146                 writeq(val64, &bar0->tx_w_round_robin_0);
1147                 val64 = 0x0100000100000100ULL;
1148                 writeq(val64, &bar0->tx_w_round_robin_1);
1149                 val64 = 0x0001000001000001ULL;
1150                 writeq(val64, &bar0->tx_w_round_robin_2);
1151                 val64 = 0x0000010000010000ULL;
1152                 writeq(val64, &bar0->tx_w_round_robin_3);
1153                 val64 = 0x0100000000000000ULL;
1154                 writeq(val64, &bar0->tx_w_round_robin_4);
1155                 break;
1156         case 3:
1157                 val64 = 0x0001000102000001ULL;
1158                 writeq(val64, &bar0->tx_w_round_robin_0);
1159                 val64 = 0x0001020000010001ULL;
1160                 writeq(val64, &bar0->tx_w_round_robin_1);
1161                 val64 = 0x0200000100010200ULL;
1162                 writeq(val64, &bar0->tx_w_round_robin_2);
1163                 val64 = 0x0001000102000001ULL;
1164                 writeq(val64, &bar0->tx_w_round_robin_3);
1165                 val64 = 0x0001020000000000ULL;
1166                 writeq(val64, &bar0->tx_w_round_robin_4);
1167                 break;
1168         case 4:
1169                 val64 = 0x0001020300010200ULL;
1170                 writeq(val64, &bar0->tx_w_round_robin_0);
1171                 val64 = 0x0100000102030001ULL;
1172                 writeq(val64, &bar0->tx_w_round_robin_1);
1173                 val64 = 0x0200010000010203ULL;
1174                 writeq(val64, &bar0->tx_w_round_robin_2);
1175                 val64 = 0x0001020001000001ULL;
1176                 writeq(val64, &bar0->tx_w_round_robin_3);
1177                 val64 = 0x0203000100000000ULL;
1178                 writeq(val64, &bar0->tx_w_round_robin_4);
1179                 break;
1180         case 5:
1181                 val64 = 0x0001000203000102ULL;
1182                 writeq(val64, &bar0->tx_w_round_robin_0);
1183                 val64 = 0x0001020001030004ULL;
1184                 writeq(val64, &bar0->tx_w_round_robin_1);
1185                 val64 = 0x0001000203000102ULL;
1186                 writeq(val64, &bar0->tx_w_round_robin_2);
1187                 val64 = 0x0001020001030004ULL;
1188                 writeq(val64, &bar0->tx_w_round_robin_3);
1189                 val64 = 0x0001000000000000ULL;
1190                 writeq(val64, &bar0->tx_w_round_robin_4);
1191                 break;
1192         case 6:
1193                 val64 = 0x0001020304000102ULL;
1194                 writeq(val64, &bar0->tx_w_round_robin_0);
1195                 val64 = 0x0304050001020001ULL;
1196                 writeq(val64, &bar0->tx_w_round_robin_1);
1197                 val64 = 0x0203000100000102ULL;
1198                 writeq(val64, &bar0->tx_w_round_robin_2);
1199                 val64 = 0x0304000102030405ULL;
1200                 writeq(val64, &bar0->tx_w_round_robin_3);
1201                 val64 = 0x0001000200000000ULL;
1202                 writeq(val64, &bar0->tx_w_round_robin_4);
1203                 break;
1204         case 7:
1205                 val64 = 0x0001020001020300ULL;
1206                 writeq(val64, &bar0->tx_w_round_robin_0);
1207                 val64 = 0x0102030400010203ULL;
1208                 writeq(val64, &bar0->tx_w_round_robin_1);
1209                 val64 = 0x0405060001020001ULL;
1210                 writeq(val64, &bar0->tx_w_round_robin_2);
1211                 val64 = 0x0304050000010200ULL;
1212                 writeq(val64, &bar0->tx_w_round_robin_3);
1213                 val64 = 0x0102030000000000ULL;
1214                 writeq(val64, &bar0->tx_w_round_robin_4);
1215                 break;
1216         case 8:
1217                 val64 = 0x0001020300040105ULL;
1218                 writeq(val64, &bar0->tx_w_round_robin_0);
1219                 val64 = 0x0200030106000204ULL;
1220                 writeq(val64, &bar0->tx_w_round_robin_1);
1221                 val64 = 0x0103000502010007ULL;
1222                 writeq(val64, &bar0->tx_w_round_robin_2);
1223                 val64 = 0x0304010002060500ULL;
1224                 writeq(val64, &bar0->tx_w_round_robin_3);
1225                 val64 = 0x0103020400000000ULL;
1226                 writeq(val64, &bar0->tx_w_round_robin_4);
1227                 break;
1228         }
1229
1230         /* Enable all configured Tx FIFO partitions */
1231         val64 = readq(&bar0->tx_fifo_partition_0);
1232         val64 |= (TX_FIFO_PARTITION_EN);
1233         writeq(val64, &bar0->tx_fifo_partition_0);
1234
1235         /* Filling the Rx round robin registers as per the
1236          * number of Rings and steering based on QoS.
1237          */
1238         switch (config->rx_ring_num) {
1239         case 1:
1240                 val64 = 0x8080808080808080ULL;
1241                 writeq(val64, &bar0->rts_qos_steering);
1242                 break;
1243         case 2:
1244                 val64 = 0x0000010000010000ULL;
1245                 writeq(val64, &bar0->rx_w_round_robin_0);
1246                 val64 = 0x0100000100000100ULL;
1247                 writeq(val64, &bar0->rx_w_round_robin_1);
1248                 val64 = 0x0001000001000001ULL;
1249                 writeq(val64, &bar0->rx_w_round_robin_2);
1250                 val64 = 0x0000010000010000ULL;
1251                 writeq(val64, &bar0->rx_w_round_robin_3);
1252                 val64 = 0x0100000000000000ULL;
1253                 writeq(val64, &bar0->rx_w_round_robin_4);
1254
1255                 val64 = 0x8080808040404040ULL;
1256                 writeq(val64, &bar0->rts_qos_steering);
1257                 break;
1258         case 3:
1259                 val64 = 0x0001000102000001ULL;
1260                 writeq(val64, &bar0->rx_w_round_robin_0);
1261                 val64 = 0x0001020000010001ULL;
1262                 writeq(val64, &bar0->rx_w_round_robin_1);
1263                 val64 = 0x0200000100010200ULL;
1264                 writeq(val64, &bar0->rx_w_round_robin_2);
1265                 val64 = 0x0001000102000001ULL;
1266                 writeq(val64, &bar0->rx_w_round_robin_3);
1267                 val64 = 0x0001020000000000ULL;
1268                 writeq(val64, &bar0->rx_w_round_robin_4);
1269
1270                 val64 = 0x8080804040402020ULL;
1271                 writeq(val64, &bar0->rts_qos_steering);
1272                 break;
1273         case 4:
1274                 val64 = 0x0001020300010200ULL;
1275                 writeq(val64, &bar0->rx_w_round_robin_0);
1276                 val64 = 0x0100000102030001ULL;
1277                 writeq(val64, &bar0->rx_w_round_robin_1);
1278                 val64 = 0x0200010000010203ULL;
1279                 writeq(val64, &bar0->rx_w_round_robin_2);
1280                 val64 = 0x0001020001000001ULL;
1281                 writeq(val64, &bar0->rx_w_round_robin_3);
1282                 val64 = 0x0203000100000000ULL;
1283                 writeq(val64, &bar0->rx_w_round_robin_4);
1284
1285                 val64 = 0x8080404020201010ULL;
1286                 writeq(val64, &bar0->rts_qos_steering);
1287                 break;
1288         case 5:
1289                 val64 = 0x0001000203000102ULL;
1290                 writeq(val64, &bar0->rx_w_round_robin_0);
1291                 val64 = 0x0001020001030004ULL;
1292                 writeq(val64, &bar0->rx_w_round_robin_1);
1293                 val64 = 0x0001000203000102ULL;
1294                 writeq(val64, &bar0->rx_w_round_robin_2);
1295                 val64 = 0x0001020001030004ULL;
1296                 writeq(val64, &bar0->rx_w_round_robin_3);
1297                 val64 = 0x0001000000000000ULL;
1298                 writeq(val64, &bar0->rx_w_round_robin_4);
1299
1300                 val64 = 0x8080404020201008ULL;
1301                 writeq(val64, &bar0->rts_qos_steering);
1302                 break;
1303         case 6:
1304                 val64 = 0x0001020304000102ULL;
1305                 writeq(val64, &bar0->rx_w_round_robin_0);
1306                 val64 = 0x0304050001020001ULL;
1307                 writeq(val64, &bar0->rx_w_round_robin_1);
1308                 val64 = 0x0203000100000102ULL;
1309                 writeq(val64, &bar0->rx_w_round_robin_2);
1310                 val64 = 0x0304000102030405ULL;
1311                 writeq(val64, &bar0->rx_w_round_robin_3);
1312                 val64 = 0x0001000200000000ULL;
1313                 writeq(val64, &bar0->rx_w_round_robin_4);
1314
1315                 val64 = 0x8080404020100804ULL;
1316                 writeq(val64, &bar0->rts_qos_steering);
1317                 break;
1318         case 7:
1319                 val64 = 0x0001020001020300ULL;
1320                 writeq(val64, &bar0->rx_w_round_robin_0);
1321                 val64 = 0x0102030400010203ULL;
1322                 writeq(val64, &bar0->rx_w_round_robin_1);
1323                 val64 = 0x0405060001020001ULL;
1324                 writeq(val64, &bar0->rx_w_round_robin_2);
1325                 val64 = 0x0304050000010200ULL;
1326                 writeq(val64, &bar0->rx_w_round_robin_3);
1327                 val64 = 0x0102030000000000ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_4);
1329
1330                 val64 = 0x8080402010080402ULL;
1331                 writeq(val64, &bar0->rts_qos_steering);
1332                 break;
1333         case 8:
1334                 val64 = 0x0001020300040105ULL;
1335                 writeq(val64, &bar0->rx_w_round_robin_0);
1336                 val64 = 0x0200030106000204ULL;
1337                 writeq(val64, &bar0->rx_w_round_robin_1);
1338                 val64 = 0x0103000502010007ULL;
1339                 writeq(val64, &bar0->rx_w_round_robin_2);
1340                 val64 = 0x0304010002060500ULL;
1341                 writeq(val64, &bar0->rx_w_round_robin_3);
1342                 val64 = 0x0103020400000000ULL;
1343                 writeq(val64, &bar0->rx_w_round_robin_4);
1344
1345                 val64 = 0x8040201008040201ULL;
1346                 writeq(val64, &bar0->rts_qos_steering);
1347                 break;
1348         }
1349
1350         /* UDP Fix */
1351         val64 = 0;
1352         for (i = 0; i < 8; i++)
1353                 writeq(val64, &bar0->rts_frm_len_n[i]);
1354
1355         /* Set the default rts frame length for the rings configured */
1356         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357         for (i = 0 ; i < config->rx_ring_num ; i++)
1358                 writeq(val64, &bar0->rts_frm_len_n[i]);
1359
1360         /* Set the frame length for the configured rings
1361          * desired by the user
1362          */
1363         for (i = 0; i < config->rx_ring_num; i++) {
1364                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365                  * specified frame length steering.
1366                  * If the user provides the frame length then program
1367                  * the rts_frm_len register for those values or else
1368                  * leave it as it is.
1369                  */
1370                 if (rts_frm_len[i] != 0) {
1371                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372                                 &bar0->rts_frm_len_n[i]);
1373                 }
1374         }
1375
1376         /* Program statistics memory */
1377         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1378
1379         if (nic->device_type == XFRAME_II_DEVICE) {
1380                 val64 = STAT_BC(0x320);
1381                 writeq(val64, &bar0->stat_byte_cnt);
1382         }
1383
1384         /*
1385          * Initializing the sampling rate for the device to calculate the
1386          * bandwidth utilization.
1387          */
1388         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390         writeq(val64, &bar0->mac_link_util);
1391
1392
1393         /*
1394          * Initializing the Transmit and Receive Traffic Interrupt
1395          * Scheme.
1396          */
1397         /*
1398          * TTI Initialization. Default Tx timer gets us about
1399          * 250 interrupts per sec. Continuous interrupts are enabled
1400          * by default.
1401          */
1402         if (nic->device_type == XFRAME_II_DEVICE) {
1403                 int count = (nic->config.bus_speed * 125)/2;
1404                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1405         } else {
1406
1407                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408         }
1409         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412                 if (use_continuous_tx_intrs)
1413                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414         writeq(val64, &bar0->tti_data1_mem);
1415
1416         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419         writeq(val64, &bar0->tti_data2_mem);
1420
1421         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422         writeq(val64, &bar0->tti_command_mem);
1423
1424         /*
1425          * Once the operation completes, the Strobe bit of the command
1426          * register will be reset. We poll for this particular condition
1427          * We wait for a maximum of 500ms for the operation to complete,
1428          * if it's not complete by then we return error.
1429          */
1430         time = 0;
1431         while (TRUE) {
1432                 val64 = readq(&bar0->tti_command_mem);
1433                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1434                         break;
1435                 }
1436                 if (time > 10) {
1437                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1438                                   dev->name);
1439                         return -1;
1440                 }
1441                 msleep(50);
1442                 time++;
1443         }
1444
1445         if (nic->config.bimodal) {
1446                 int k = 0;
1447                 for (k = 0; k < config->rx_ring_num; k++) {
1448                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450                         writeq(val64, &bar0->tti_command_mem);
1451
1452                 /*
1453                  * Once the operation completes, the Strobe bit of the command
1454                  * register will be reset. We poll for this particular condition
1455                  * We wait for a maximum of 500ms for the operation to complete,
1456                  * if it's not complete by then we return error.
1457                 */
1458                         time = 0;
1459                         while (TRUE) {
1460                                 val64 = readq(&bar0->tti_command_mem);
1461                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1462                                         break;
1463                                 }
1464                                 if (time > 10) {
1465                                         DBG_PRINT(ERR_DBG,
1466                                                 "%s: TTI init Failed\n",
1467                                         dev->name);
1468                                         return -1;
1469                                 }
1470                                 time++;
1471                                 msleep(50);
1472                         }
1473                 }
1474         } else {
1475
1476                 /* RTI Initialization */
1477                 if (nic->device_type == XFRAME_II_DEVICE) {
1478                         /*
1479                          * Programmed to generate Apprx 500 Intrs per
1480                          * second
1481                          */
1482                         int count = (nic->config.bus_speed * 125)/4;
1483                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1484                 } else {
1485                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486                 }
1487                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1490
1491                 writeq(val64, &bar0->rti_data1_mem);
1492
1493                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495                 if (nic->intr_type == MSI_X)
1496                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498                 else
1499                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501                 writeq(val64, &bar0->rti_data2_mem);
1502
1503                 for (i = 0; i < config->rx_ring_num; i++) {
1504                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505                                         | RTI_CMD_MEM_OFFSET(i);
1506                         writeq(val64, &bar0->rti_command_mem);
1507
1508                         /*
1509                          * Once the operation completes, the Strobe bit of the
1510                          * command register will be reset. We poll for this
1511                          * particular condition. We wait for a maximum of 500ms
1512                          * for the operation to complete, if it's not complete
1513                          * by then we return error.
1514                          */
1515                         time = 0;
1516                         while (TRUE) {
1517                                 val64 = readq(&bar0->rti_command_mem);
1518                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1519                                         break;
1520                                 }
1521                                 if (time > 10) {
1522                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1523                                                   dev->name);
1524                                         return -1;
1525                                 }
1526                                 time++;
1527                                 msleep(50);
1528                         }
1529                 }
1530         }
1531
1532         /*
1533          * Initializing proper values as Pause threshold into all
1534          * the 8 Queues on Rx side.
1535          */
1536         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538
1539         /* Disable RMAC PAD STRIPPING */
1540         add = &bar0->mac_cfg;
1541         val64 = readq(&bar0->mac_cfg);
1542         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544         writel((u32) (val64), add);
1545         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546         writel((u32) (val64 >> 32), (add + 4));
1547         val64 = readq(&bar0->mac_cfg);
1548
1549         /* Enable FCS stripping by adapter */
1550         add = &bar0->mac_cfg;
1551         val64 = readq(&bar0->mac_cfg);
1552         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553         if (nic->device_type == XFRAME_II_DEVICE)
1554                 writeq(val64, &bar0->mac_cfg);
1555         else {
1556                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557                 writel((u32) (val64), add);
1558                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559                 writel((u32) (val64 >> 32), (add + 4));
1560         }
1561
1562         /*
1563          * Set the time value to be inserted in the pause frame
1564          * generated by xena.
1565          */
1566         val64 = readq(&bar0->rmac_pause_cfg);
1567         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569         writeq(val64, &bar0->rmac_pause_cfg);
1570
1571         /*
1572          * Set the Threshold Limit for Generating the pause frame
1573          * If the amount of data in any Queue exceeds ratio of
1574          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575          * pause frame is generated
1576          */
1577         val64 = 0;
1578         for (i = 0; i < 4; i++) {
1579                 val64 |=
1580                     (((u64) 0xFF00 | nic->mac_control.
1581                       mc_pause_threshold_q0q3)
1582                      << (i * 2 * 8));
1583         }
1584         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585
1586         val64 = 0;
1587         for (i = 0; i < 4; i++) {
1588                 val64 |=
1589                     (((u64) 0xFF00 | nic->mac_control.
1590                       mc_pause_threshold_q4q7)
1591                      << (i * 2 * 8));
1592         }
1593         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1594
1595         /*
1596          * TxDMA will stop Read request if the number of read split has
1597          * exceeded the limit pointed by shared_splits
1598          */
1599         val64 = readq(&bar0->pic_control);
1600         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601         writeq(val64, &bar0->pic_control);
1602
1603         if (nic->config.bus_speed == 266) {
1604                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605                 writeq(0x0, &bar0->read_retry_delay);
1606                 writeq(0x0, &bar0->write_retry_delay);
1607         }
1608
1609         /*
1610          * Programming the Herc to split every write transaction
1611          * that does not start on an ADB to reduce disconnects.
1612          */
1613         if (nic->device_type == XFRAME_II_DEVICE) {
1614                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1615                         MISC_LINK_STABILITY_PRD(3);
1616                 writeq(val64, &bar0->misc_control);
1617                 val64 = readq(&bar0->pic_control2);
1618                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1619                 writeq(val64, &bar0->pic_control2);
1620         }
1621         if (strstr(nic->product_name, "CX4")) {
1622                 val64 = TMAC_AVG_IPG(0x17);
1623                 writeq(val64, &bar0->tmac_avg_ipg);
1624         }
1625
1626         return SUCCESS;
1627 }
1628 #define LINK_UP_DOWN_INTERRUPT          1
1629 #define MAC_RMAC_ERR_TIMER              2
1630
1631 static int s2io_link_fault_indication(nic_t *nic)
1632 {
1633         if (nic->intr_type != INTA)
1634                 return MAC_RMAC_ERR_TIMER;
1635         if (nic->device_type == XFRAME_II_DEVICE)
1636                 return LINK_UP_DOWN_INTERRUPT;
1637         else
1638                 return MAC_RMAC_ERR_TIMER;
1639 }
1640
1641 /**
1642  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1643  *  @nic: device private variable,
1644  *  @mask: A mask indicating which Intr block must be modified and,
1645  *  @flag: A flag indicating whether to enable or disable the Intrs.
1646  *  Description: This function will either disable or enable the interrupts
1647  *  depending on the flag argument. The mask argument can be used to
1648  *  enable/disable any Intr block.
1649  *  Return Value: NONE.
1650  */
1651
1652 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653 {
1654         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1655         register u64 val64 = 0, temp64 = 0;
1656
1657         /*  Top level interrupt classification */
1658         /*  PIC Interrupts */
1659         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1660                 /*  Enable PIC Intrs in the general intr mask register */
1661                 val64 = TXPIC_INT_M;
1662                 if (flag == ENABLE_INTRS) {
1663                         temp64 = readq(&bar0->general_int_mask);
1664                         temp64 &= ~((u64) val64);
1665                         writeq(temp64, &bar0->general_int_mask);
1666                         /*
1667                          * If Hercules adapter enable GPIO otherwise
1668                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1669                          * interrupts for now.
1670                          * TODO
1671                          */
1672                         if (s2io_link_fault_indication(nic) ==
1673                                         LINK_UP_DOWN_INTERRUPT ) {
1674                                 temp64 = readq(&bar0->pic_int_mask);
1675                                 temp64 &= ~((u64) PIC_INT_GPIO);
1676                                 writeq(temp64, &bar0->pic_int_mask);
1677                                 temp64 = readq(&bar0->gpio_int_mask);
1678                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1679                                 writeq(temp64, &bar0->gpio_int_mask);
1680                         } else {
1681                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1682                         }
1683                         /*
1684                          * No MSI Support is available presently, so TTI and
1685                          * RTI interrupts are also disabled.
1686                          */
1687                 } else if (flag == DISABLE_INTRS) {
1688                         /*
1689                          * Disable PIC Intrs in the general
1690                          * intr mask register
1691                          */
1692                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1693                         temp64 = readq(&bar0->general_int_mask);
1694                         val64 |= temp64;
1695                         writeq(val64, &bar0->general_int_mask);
1696                 }
1697         }
1698
1699         /*  MAC Interrupts */
1700         /*  Enabling/Disabling MAC interrupts */
1701         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1702                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1703                 if (flag == ENABLE_INTRS) {
1704                         temp64 = readq(&bar0->general_int_mask);
1705                         temp64 &= ~((u64) val64);
1706                         writeq(temp64, &bar0->general_int_mask);
1707                         /*
1708                          * All MAC block error interrupts are disabled for now
1709                          * TODO
1710                          */
1711                 } else if (flag == DISABLE_INTRS) {
1712                         /*
1713                          * Disable MAC Intrs in the general intr mask register
1714                          */
1715                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1716                         writeq(DISABLE_ALL_INTRS,
1717                                &bar0->mac_rmac_err_mask);
1718
1719                         temp64 = readq(&bar0->general_int_mask);
1720                         val64 |= temp64;
1721                         writeq(val64, &bar0->general_int_mask);
1722                 }
1723         }
1724
1725         /*  Tx traffic interrupts */
1726         if (mask & TX_TRAFFIC_INTR) {
1727                 val64 = TXTRAFFIC_INT_M;
1728                 if (flag == ENABLE_INTRS) {
1729                         temp64 = readq(&bar0->general_int_mask);
1730                         temp64 &= ~((u64) val64);
1731                         writeq(temp64, &bar0->general_int_mask);
1732                         /*
1733                          * Enable all the Tx side interrupts
1734                          * writing 0 Enables all 64 TX interrupt levels
1735                          */
1736                         writeq(0x0, &bar0->tx_traffic_mask);
1737                 } else if (flag == DISABLE_INTRS) {
1738                         /*
1739                          * Disable Tx Traffic Intrs in the general intr mask
1740                          * register.
1741                          */
1742                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1743                         temp64 = readq(&bar0->general_int_mask);
1744                         val64 |= temp64;
1745                         writeq(val64, &bar0->general_int_mask);
1746                 }
1747         }
1748
1749         /*  Rx traffic interrupts */
1750         if (mask & RX_TRAFFIC_INTR) {
1751                 val64 = RXTRAFFIC_INT_M;
1752                 if (flag == ENABLE_INTRS) {
1753                         temp64 = readq(&bar0->general_int_mask);
1754                         temp64 &= ~((u64) val64);
1755                         writeq(temp64, &bar0->general_int_mask);
1756                         /* writing 0 Enables all 8 RX interrupt levels */
1757                         writeq(0x0, &bar0->rx_traffic_mask);
1758                 } else if (flag == DISABLE_INTRS) {
1759                         /*
1760                          * Disable Rx Traffic Intrs in the general intr mask
1761                          * register.
1762                          */
1763                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1764                         temp64 = readq(&bar0->general_int_mask);
1765                         val64 |= temp64;
1766                         writeq(val64, &bar0->general_int_mask);
1767                 }
1768         }
1769 }
1770
1771 /**
1772  *  verify_pcc_quiescent- Checks for PCC quiescent state
1773  *  Return: 1 If PCC is quiescence
1774  *          0 If PCC is not quiescence
1775  */
1776 static int verify_pcc_quiescent(nic_t *sp, int flag)
1777 {
1778         int ret = 0, herc;
1779         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1780         u64 val64 = readq(&bar0->adapter_status);
1781         
1782         herc = (sp->device_type == XFRAME_II_DEVICE);
1783
1784         if (flag == FALSE) {
1785                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1786                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1787                                 ret = 1;
1788                 } else {
1789                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1790                                 ret = 1;
1791                 }
1792         } else {
1793                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1794                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1795                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1796                                 ret = 1;
1797                 } else {
1798                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1799                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1800                                 ret = 1;
1801                 }
1802         }
1803
1804         return ret;
1805 }
1806 /**
1807  *  verify_xena_quiescence - Checks whether the H/W is ready
1808  *  Description: Returns whether the H/W is ready to go or not. Depending
1809  *  on whether adapter enable bit was written or not the comparison
1810  *  differs and the calling function passes the input argument flag to
1811  *  indicate this.
1812  *  Return: 1 If xena is quiescence
1813  *          0 If Xena is not quiescence
1814  */
1815
1816 static int verify_xena_quiescence(nic_t *sp)
1817 {
1818         int  mode;
1819         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1820         u64 val64 = readq(&bar0->adapter_status);
1821         mode = s2io_verify_pci_mode(sp);
1822
1823         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1824                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1825                 return 0;
1826         }
1827         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1828         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1829                 return 0;
1830         }
1831         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1832                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1833                 return 0;
1834         }
1835         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1836                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1837                 return 0;
1838         }
1839         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1840                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1841                 return 0;
1842         }
1843         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1844                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1845                 return 0;
1846         }
1847         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1848                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1849                 return 0;
1850         }
1851         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1852                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1853                 return 0;
1854         }
1855
1856         /*
1857          * In PCI 33 mode, the P_PLL is not used, and therefore,
1858          * the the P_PLL_LOCK bit in the adapter_status register will
1859          * not be asserted.
1860          */
1861         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1862                 sp->device_type == XFRAME_II_DEVICE && mode !=
1863                 PCI_MODE_PCI_33) {
1864                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1865                 return 0;
1866         }
1867         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1868                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1869                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1870                 return 0;
1871         }
1872         return 1;
1873 }
1874
1875 /**
1876  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1877  * @sp: Pointer to device specifc structure
1878  * Description :
1879  * New procedure to clear mac address reading  problems on Alpha platforms
1880  *
1881  */
1882
1883 static void fix_mac_address(nic_t * sp)
1884 {
1885         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1886         u64 val64;
1887         int i = 0;
1888
1889         while (fix_mac[i] != END_SIGN) {
1890                 writeq(fix_mac[i++], &bar0->gpio_control);
1891                 udelay(10);
1892                 val64 = readq(&bar0->gpio_control);
1893         }
1894 }
1895
1896 /**
1897  *  start_nic - Turns the device on
1898  *  @nic : device private variable.
1899  *  Description:
1900  *  This function actually turns the device on. Before this  function is
1901  *  called,all Registers are configured from their reset states
1902  *  and shared memory is allocated but the NIC is still quiescent. On
1903  *  calling this function, the device interrupts are cleared and the NIC is
1904  *  literally switched on by writing into the adapter control register.
1905  *  Return Value:
1906  *  SUCCESS on success and -1 on failure.
1907  */
1908
1909 static int start_nic(struct s2io_nic *nic)
1910 {
1911         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1912         struct net_device *dev = nic->dev;
1913         register u64 val64 = 0;
1914         u16 subid, i;
1915         mac_info_t *mac_control;
1916         struct config_param *config;
1917
1918         mac_control = &nic->mac_control;
1919         config = &nic->config;
1920
1921         /*  PRC Initialization and configuration */
1922         for (i = 0; i < config->rx_ring_num; i++) {
1923                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1924                        &bar0->prc_rxd0_n[i]);
1925
1926                 val64 = readq(&bar0->prc_ctrl_n[i]);
1927                 if (nic->config.bimodal)
1928                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1929                 if (nic->rxd_mode == RXD_MODE_1)
1930                         val64 |= PRC_CTRL_RC_ENABLED;
1931                 else
1932                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1933                 if (nic->device_type == XFRAME_II_DEVICE)
1934                         val64 |= PRC_CTRL_GROUP_READS;
1935                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1936                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1937                 writeq(val64, &bar0->prc_ctrl_n[i]);
1938         }
1939
1940         if (nic->rxd_mode == RXD_MODE_3B) {
1941                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1942                 val64 = readq(&bar0->rx_pa_cfg);
1943                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1944                 writeq(val64, &bar0->rx_pa_cfg);
1945         }
1946
1947         /*
1948          * Enabling MC-RLDRAM. After enabling the device, we timeout
1949          * for around 100ms, which is approximately the time required
1950          * for the device to be ready for operation.
1951          */
1952         val64 = readq(&bar0->mc_rldram_mrs);
1953         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1954         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1955         val64 = readq(&bar0->mc_rldram_mrs);
1956
1957         msleep(100);    /* Delay by around 100 ms. */
1958
1959         /* Enabling ECC Protection. */
1960         val64 = readq(&bar0->adapter_control);
1961         val64 &= ~ADAPTER_ECC_EN;
1962         writeq(val64, &bar0->adapter_control);
1963
1964         /*
1965          * Clearing any possible Link state change interrupts that
1966          * could have popped up just before Enabling the card.
1967          */
1968         val64 = readq(&bar0->mac_rmac_err_reg);
1969         if (val64)
1970                 writeq(val64, &bar0->mac_rmac_err_reg);
1971
1972         /*
1973          * Verify if the device is ready to be enabled, if so enable
1974          * it.
1975          */
1976         val64 = readq(&bar0->adapter_status);
1977         if (!verify_xena_quiescence(nic)) {
1978                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1979                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1980                           (unsigned long long) val64);
1981                 return FAILURE;
1982         }
1983
1984         /*
1985          * With some switches, link might be already up at this point.
1986          * Because of this weird behavior, when we enable laser,
1987          * we may not get link. We need to handle this. We cannot
1988          * figure out which switch is misbehaving. So we are forced to
1989          * make a global change.
1990          */
1991
1992         /* Enabling Laser. */
1993         val64 = readq(&bar0->adapter_control);
1994         val64 |= ADAPTER_EOI_TX_ON;
1995         writeq(val64, &bar0->adapter_control);
1996
1997         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
1998                 /*
1999                  * Dont see link state interrupts initally on some switches,
2000                  * so directly scheduling the link state task here.
2001                  */
2002                 schedule_work(&nic->set_link_task);
2003         }
2004         /* SXE-002: Initialize link and activity LED */
2005         subid = nic->pdev->subsystem_device;
2006         if (((subid & 0xFF) >= 0x07) &&
2007             (nic->device_type == XFRAME_I_DEVICE)) {
2008                 val64 = readq(&bar0->gpio_control);
2009                 val64 |= 0x0000800000000000ULL;
2010                 writeq(val64, &bar0->gpio_control);
2011                 val64 = 0x0411040400000000ULL;
2012                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2013         }
2014
2015         return SUCCESS;
2016 }
2017 /**
2018  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2019  */
2020 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2021 {
2022         nic_t *nic = fifo_data->nic;
2023         struct sk_buff *skb;
2024         TxD_t *txds;
2025         u16 j, frg_cnt;
2026
2027         txds = txdlp;
2028         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2029                 pci_unmap_single(nic->pdev, (dma_addr_t)
2030                         txds->Buffer_Pointer, sizeof(u64),
2031                         PCI_DMA_TODEVICE);
2032                 txds++;
2033         }
2034
2035         skb = (struct sk_buff *) ((unsigned long)
2036                         txds->Host_Control);
2037         if (!skb) {
2038                 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2039                 return NULL;
2040         }
2041         pci_unmap_single(nic->pdev, (dma_addr_t)
2042                          txds->Buffer_Pointer,
2043                          skb->len - skb->data_len,
2044                          PCI_DMA_TODEVICE);
2045         frg_cnt = skb_shinfo(skb)->nr_frags;
2046         if (frg_cnt) {
2047                 txds++;
2048                 for (j = 0; j < frg_cnt; j++, txds++) {
2049                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2050                         if (!txds->Buffer_Pointer)
2051                                 break;
2052                         pci_unmap_page(nic->pdev, (dma_addr_t)
2053                                         txds->Buffer_Pointer,
2054                                        frag->size, PCI_DMA_TODEVICE);
2055                 }
2056         }
2057         memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2058         return(skb);
2059 }
2060
2061 /**
2062  *  free_tx_buffers - Free all queued Tx buffers
2063  *  @nic : device private variable.
2064  *  Description:
2065  *  Free all queued Tx buffers.
2066  *  Return Value: void
2067 */
2068
2069 static void free_tx_buffers(struct s2io_nic *nic)
2070 {
2071         struct net_device *dev = nic->dev;
2072         struct sk_buff *skb;
2073         TxD_t *txdp;
2074         int i, j;
2075         mac_info_t *mac_control;
2076         struct config_param *config;
2077         int cnt = 0;
2078
2079         mac_control = &nic->mac_control;
2080         config = &nic->config;
2081
2082         for (i = 0; i < config->tx_fifo_num; i++) {
2083                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2084                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2085                             list_virt_addr;
2086                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2087                         if (skb) {
2088                                 dev_kfree_skb(skb);
2089                                 cnt++;
2090                         }
2091                 }
2092                 DBG_PRINT(INTR_DBG,
2093                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2094                           dev->name, cnt, i);
2095                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2096                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2097         }
2098 }
2099
2100 /**
2101  *   stop_nic -  To stop the nic
2102  *   @nic ; device private variable.
2103  *   Description:
2104  *   This function does exactly the opposite of what the start_nic()
2105  *   function does. This function is called to stop the device.
2106  *   Return Value:
2107  *   void.
2108  */
2109
2110 static void stop_nic(struct s2io_nic *nic)
2111 {
2112         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2113         register u64 val64 = 0;
2114         u16 interruptible;
2115         mac_info_t *mac_control;
2116         struct config_param *config;
2117
2118         mac_control = &nic->mac_control;
2119         config = &nic->config;
2120
2121         /*  Disable all interrupts */
2122         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2123         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2124         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2125         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2126
2127         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2128         val64 = readq(&bar0->adapter_control);
2129         val64 &= ~(ADAPTER_CNTL_EN);
2130         writeq(val64, &bar0->adapter_control);
2131 }
2132
2133 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2134 {
2135         struct net_device *dev = nic->dev;
2136         struct sk_buff *frag_list;
2137         void *tmp;
2138
2139         /* Buffer-1 receives L3/L4 headers */
2140         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2141                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2142                         PCI_DMA_FROMDEVICE);
2143
2144         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2145         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2146         if (skb_shinfo(skb)->frag_list == NULL) {
2147                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2148                 return -ENOMEM ;
2149         }
2150         frag_list = skb_shinfo(skb)->frag_list;
2151         skb->truesize += frag_list->truesize;
2152         frag_list->next = NULL;
2153         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2154         frag_list->data = tmp;
2155         frag_list->tail = tmp;
2156
2157         /* Buffer-2 receives L4 data payload */
2158         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2159                                 frag_list->data, dev->mtu,
2160                                 PCI_DMA_FROMDEVICE);
2161         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2162         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2163
2164         return SUCCESS;
2165 }
2166
2167 /**
2168  *  fill_rx_buffers - Allocates the Rx side skbs
2169  *  @nic:  device private variable
2170  *  @ring_no: ring number
2171  *  Description:
2172  *  The function allocates Rx side skbs and puts the physical
2173  *  address of these buffers into the RxD buffer pointers, so that the NIC
2174  *  can DMA the received frame into these locations.
2175  *  The NIC supports 3 receive modes, viz
2176  *  1. single buffer,
2177  *  2. three buffer and
2178  *  3. Five buffer modes.
2179  *  Each mode defines how many fragments the received frame will be split
2180  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2181  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2182  *  is split into 3 fragments. As of now only single buffer mode is
2183  *  supported.
2184  *   Return Value:
2185  *  SUCCESS on success or an appropriate -ve value on failure.
2186  */
2187
2188 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2189 {
2190         struct net_device *dev = nic->dev;
2191         struct sk_buff *skb;
2192         RxD_t *rxdp;
2193         int off, off1, size, block_no, block_no1;
2194         u32 alloc_tab = 0;
2195         u32 alloc_cnt;
2196         mac_info_t *mac_control;
2197         struct config_param *config;
2198         u64 tmp;
2199         buffAdd_t *ba;
2200         unsigned long flags;
2201         RxD_t *first_rxdp = NULL;
2202
2203         mac_control = &nic->mac_control;
2204         config = &nic->config;
2205         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2206             atomic_read(&nic->rx_bufs_left[ring_no]);
2207
2208         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2209         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2210         while (alloc_tab < alloc_cnt) {
2211                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2212                     block_index;
2213                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2214
2215                 rxdp = mac_control->rings[ring_no].
2216                                 rx_blocks[block_no].rxds[off].virt_addr;
2217
2218                 if ((block_no == block_no1) && (off == off1) &&
2219                                         (rxdp->Host_Control)) {
2220                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2221                                   dev->name);
2222                         DBG_PRINT(INTR_DBG, " info equated\n");
2223                         goto end;
2224                 }
2225                 if (off && (off == rxd_count[nic->rxd_mode])) {
2226                         mac_control->rings[ring_no].rx_curr_put_info.
2227                             block_index++;
2228                         if (mac_control->rings[ring_no].rx_curr_put_info.
2229                             block_index == mac_control->rings[ring_no].
2230                                         block_count)
2231                                 mac_control->rings[ring_no].rx_curr_put_info.
2232                                         block_index = 0;
2233                         block_no = mac_control->rings[ring_no].
2234                                         rx_curr_put_info.block_index;
2235                         if (off == rxd_count[nic->rxd_mode])
2236                                 off = 0;
2237                         mac_control->rings[ring_no].rx_curr_put_info.
2238                                 offset = off;
2239                         rxdp = mac_control->rings[ring_no].
2240                                 rx_blocks[block_no].block_virt_addr;
2241                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2242                                   dev->name, rxdp);
2243                 }
2244                 if(!napi) {
2245                         spin_lock_irqsave(&nic->put_lock, flags);
2246                         mac_control->rings[ring_no].put_pos =
2247                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2248                         spin_unlock_irqrestore(&nic->put_lock, flags);
2249                 } else {
2250                         mac_control->rings[ring_no].put_pos =
2251                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2252                 }
2253                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2254                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2255                                 (rxdp->Control_2 & BIT(0)))) {
2256                         mac_control->rings[ring_no].rx_curr_put_info.
2257                                         offset = off;
2258                         goto end;
2259                 }
2260                 /* calculate size of skb based on ring mode */
2261                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2262                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2263                 if (nic->rxd_mode == RXD_MODE_1)
2264                         size += NET_IP_ALIGN;
2265                 else if (nic->rxd_mode == RXD_MODE_3B)
2266                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2267                 else
2268                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2269
2270                 /* allocate skb */
2271                 skb = dev_alloc_skb(size);
2272                 if(!skb) {
2273                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2274                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2275                         if (first_rxdp) {
2276                                 wmb();
2277                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2278                         }
2279                         return -ENOMEM ;
2280                 }
2281                 if (nic->rxd_mode == RXD_MODE_1) {
2282                         /* 1 buffer mode - normal operation mode */
2283                         memset(rxdp, 0, sizeof(RxD1_t));
2284                         skb_reserve(skb, NET_IP_ALIGN);
2285                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2286                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2287                                 PCI_DMA_FROMDEVICE);
2288                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2289
2290                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2291                         /*
2292                          * 2 or 3 buffer mode -
2293                          * Both 2 buffer mode and 3 buffer mode provides 128
2294                          * byte aligned receive buffers.
2295                          *
2296                          * 3 buffer mode provides header separation where in
2297                          * skb->data will have L3/L4 headers where as
2298                          * skb_shinfo(skb)->frag_list will have the L4 data
2299                          * payload
2300                          */
2301
2302                         memset(rxdp, 0, sizeof(RxD3_t));
2303                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2304                         skb_reserve(skb, BUF0_LEN);
2305                         tmp = (u64)(unsigned long) skb->data;
2306                         tmp += ALIGN_SIZE;
2307                         tmp &= ~ALIGN_SIZE;
2308                         skb->data = (void *) (unsigned long)tmp;
2309                         skb->tail = (void *) (unsigned long)tmp;
2310
2311                         if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2312                                 ((RxD3_t*)rxdp)->Buffer0_ptr =
2313                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2314                                            PCI_DMA_FROMDEVICE);
2315                         else
2316                                 pci_dma_sync_single_for_device(nic->pdev,
2317                                     (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2318                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2319                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2320                         if (nic->rxd_mode == RXD_MODE_3B) {
2321                                 /* Two buffer mode */
2322
2323                                 /*
2324                                  * Buffer2 will have L3/L4 header plus
2325                                  * L4 payload
2326                                  */
2327                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2328                                 (nic->pdev, skb->data, dev->mtu + 4,
2329                                                 PCI_DMA_FROMDEVICE);
2330
2331                                 /* Buffer-1 will be dummy buffer. Not used */
2332                                 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2333                                         ((RxD3_t*)rxdp)->Buffer1_ptr =
2334                                                 pci_map_single(nic->pdev,
2335                                                 ba->ba_1, BUF1_LEN,
2336                                                 PCI_DMA_FROMDEVICE);
2337                                 }
2338                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2339                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2340                                                                 (dev->mtu + 4);
2341                         } else {
2342                                 /* 3 buffer mode */
2343                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2344                                         dev_kfree_skb_irq(skb);
2345                                         if (first_rxdp) {
2346                                                 wmb();
2347                                                 first_rxdp->Control_1 |=
2348                                                         RXD_OWN_XENA;
2349                                         }
2350                                         return -ENOMEM ;
2351                                 }
2352                         }
2353                         rxdp->Control_2 |= BIT(0);
2354                 }
2355                 rxdp->Host_Control = (unsigned long) (skb);
2356                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2357                         rxdp->Control_1 |= RXD_OWN_XENA;
2358                 off++;
2359                 if (off == (rxd_count[nic->rxd_mode] + 1))
2360                         off = 0;
2361                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2362
2363                 rxdp->Control_2 |= SET_RXD_MARKER;
2364                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2365                         if (first_rxdp) {
2366                                 wmb();
2367                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2368                         }
2369                         first_rxdp = rxdp;
2370                 }
2371                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2372                 alloc_tab++;
2373         }
2374
2375       end:
2376         /* Transfer ownership of first descriptor to adapter just before
2377          * exiting. Before that, use memory barrier so that ownership
2378          * and other fields are seen by adapter correctly.
2379          */
2380         if (first_rxdp) {
2381                 wmb();
2382                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2383         }
2384
2385         return SUCCESS;
2386 }
2387
2388 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2389 {
2390         struct net_device *dev = sp->dev;
2391         int j;
2392         struct sk_buff *skb;
2393         RxD_t *rxdp;
2394         mac_info_t *mac_control;
2395         buffAdd_t *ba;
2396
2397         mac_control = &sp->mac_control;
2398         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2399                 rxdp = mac_control->rings[ring_no].
2400                                 rx_blocks[blk].rxds[j].virt_addr;
2401                 skb = (struct sk_buff *)
2402                         ((unsigned long) rxdp->Host_Control);
2403                 if (!skb) {
2404                         continue;
2405                 }
2406                 if (sp->rxd_mode == RXD_MODE_1) {
2407                         pci_unmap_single(sp->pdev, (dma_addr_t)
2408                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2409                                  dev->mtu +
2410                                  HEADER_ETHERNET_II_802_3_SIZE
2411                                  + HEADER_802_2_SIZE +
2412                                  HEADER_SNAP_SIZE,
2413                                  PCI_DMA_FROMDEVICE);
2414                         memset(rxdp, 0, sizeof(RxD1_t));
2415                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2416                         ba = &mac_control->rings[ring_no].
2417                                 ba[blk][j];
2418                         pci_unmap_single(sp->pdev, (dma_addr_t)
2419                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2420                                  BUF0_LEN,
2421                                  PCI_DMA_FROMDEVICE);
2422                         pci_unmap_single(sp->pdev, (dma_addr_t)
2423                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2424                                  BUF1_LEN,
2425                                  PCI_DMA_FROMDEVICE);
2426                         pci_unmap_single(sp->pdev, (dma_addr_t)
2427                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2428                                  dev->mtu + 4,
2429                                  PCI_DMA_FROMDEVICE);
2430                         memset(rxdp, 0, sizeof(RxD3_t));
2431                 } else {
2432                         pci_unmap_single(sp->pdev, (dma_addr_t)
2433                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2434                                 PCI_DMA_FROMDEVICE);
2435                         pci_unmap_single(sp->pdev, (dma_addr_t)
2436                                 ((RxD3_t*)rxdp)->Buffer1_ptr,
2437                                 l3l4hdr_size + 4,
2438                                 PCI_DMA_FROMDEVICE);
2439                         pci_unmap_single(sp->pdev, (dma_addr_t)
2440                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2441                                 PCI_DMA_FROMDEVICE);
2442                         memset(rxdp, 0, sizeof(RxD3_t));
2443                 }
2444                 dev_kfree_skb(skb);
2445                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2446         }
2447 }
2448
2449 /**
2450  *  free_rx_buffers - Frees all Rx buffers
2451  *  @sp: device private variable.
2452  *  Description:
2453  *  This function will free all Rx buffers allocated by host.
2454  *  Return Value:
2455  *  NONE.
2456  */
2457
2458 static void free_rx_buffers(struct s2io_nic *sp)
2459 {
2460         struct net_device *dev = sp->dev;
2461         int i, blk = 0, buf_cnt = 0;
2462         mac_info_t *mac_control;
2463         struct config_param *config;
2464
2465         mac_control = &sp->mac_control;
2466         config = &sp->config;
2467
2468         for (i = 0; i < config->rx_ring_num; i++) {
2469                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2470                         free_rxd_blk(sp,i,blk);
2471
2472                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2473                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2474                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2475                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2476                 atomic_set(&sp->rx_bufs_left[i], 0);
2477                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2478                           dev->name, buf_cnt, i);
2479         }
2480 }
2481
2482 /**
2483  * s2io_poll - Rx interrupt handler for NAPI support
2484  * @dev : pointer to the device structure.
2485  * @budget : The number of packets that were budgeted to be processed
2486  * during  one pass through the 'Poll" function.
2487  * Description:
2488  * Comes into picture only if NAPI support has been incorporated. It does
2489  * the same thing that rx_intr_handler does, but not in a interrupt context
2490  * also It will process only a given number of packets.
2491  * Return value:
2492  * 0 on success and 1 if there are No Rx packets to be processed.
2493  */
2494
2495 static int s2io_poll(struct net_device *dev, int *budget)
2496 {
2497         nic_t *nic = dev->priv;
2498         int pkt_cnt = 0, org_pkts_to_process;
2499         mac_info_t *mac_control;
2500         struct config_param *config;
2501         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2502         int i;
2503
2504         atomic_inc(&nic->isr_cnt);
2505         mac_control = &nic->mac_control;
2506         config = &nic->config;
2507
2508         nic->pkts_to_process = *budget;
2509         if (nic->pkts_to_process > dev->quota)
2510                 nic->pkts_to_process = dev->quota;
2511         org_pkts_to_process = nic->pkts_to_process;
2512
2513         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2514         readl(&bar0->rx_traffic_int);
2515
2516         for (i = 0; i < config->rx_ring_num; i++) {
2517                 rx_intr_handler(&mac_control->rings[i]);
2518                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2519                 if (!nic->pkts_to_process) {
2520                         /* Quota for the current iteration has been met */
2521                         goto no_rx;
2522                 }
2523         }
2524         if (!pkt_cnt)
2525                 pkt_cnt = 1;
2526
2527         dev->quota -= pkt_cnt;
2528         *budget -= pkt_cnt;
2529         netif_rx_complete(dev);
2530
2531         for (i = 0; i < config->rx_ring_num; i++) {
2532                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2533                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2534                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2535                         break;
2536                 }
2537         }
2538         /* Re enable the Rx interrupts. */
2539         writeq(0x0, &bar0->rx_traffic_mask);
2540         readl(&bar0->rx_traffic_mask);
2541         atomic_dec(&nic->isr_cnt);
2542         return 0;
2543
2544 no_rx:
2545         dev->quota -= pkt_cnt;
2546         *budget -= pkt_cnt;
2547
2548         for (i = 0; i < config->rx_ring_num; i++) {
2549                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2550                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2551                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2552                         break;
2553                 }
2554         }
2555         atomic_dec(&nic->isr_cnt);
2556         return 1;
2557 }
2558
2559 #ifdef CONFIG_NET_POLL_CONTROLLER
2560 /**
2561  * s2io_netpoll - netpoll event handler entry point
2562  * @dev : pointer to the device structure.
2563  * Description:
2564  *      This function will be called by upper layer to check for events on the
2565  * interface in situations where interrupts are disabled. It is used for
2566  * specific in-kernel networking tasks, such as remote consoles and kernel
2567  * debugging over the network (example netdump in RedHat).
2568  */
2569 static void s2io_netpoll(struct net_device *dev)
2570 {
2571         nic_t *nic = dev->priv;
2572         mac_info_t *mac_control;
2573         struct config_param *config;
2574         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2575         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2576         int i;
2577
2578         disable_irq(dev->irq);
2579
2580         atomic_inc(&nic->isr_cnt);
2581         mac_control = &nic->mac_control;
2582         config = &nic->config;
2583
2584         writeq(val64, &bar0->rx_traffic_int);
2585         writeq(val64, &bar0->tx_traffic_int);
2586
2587         /* we need to free up the transmitted skbufs or else netpoll will
2588          * run out of skbs and will fail and eventually netpoll application such
2589          * as netdump will fail.
2590          */
2591         for (i = 0; i < config->tx_fifo_num; i++)
2592                 tx_intr_handler(&mac_control->fifos[i]);
2593
2594         /* check for received packet and indicate up to network */
2595         for (i = 0; i < config->rx_ring_num; i++)
2596                 rx_intr_handler(&mac_control->rings[i]);
2597
2598         for (i = 0; i < config->rx_ring_num; i++) {
2599                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2600                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2601                         DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2602                         break;
2603                 }
2604         }
2605         atomic_dec(&nic->isr_cnt);
2606         enable_irq(dev->irq);
2607         return;
2608 }
2609 #endif
2610
2611 /**
2612  *  rx_intr_handler - Rx interrupt handler
2613  *  @nic: device private variable.
2614  *  Description:
2615  *  If the interrupt is because of a received frame or if the
2616  *  receive ring contains fresh as yet un-processed frames,this function is
2617  *  called. It picks out the RxD at which place the last Rx processing had
2618  *  stopped and sends the skb to the OSM's Rx handler and then increments
2619  *  the offset.
2620  *  Return Value:
2621  *  NONE.
2622  */
2623 static void rx_intr_handler(ring_info_t *ring_data)
2624 {
2625         nic_t *nic = ring_data->nic;
2626         struct net_device *dev = (struct net_device *) nic->dev;
2627         int get_block, put_block, put_offset;
2628         rx_curr_get_info_t get_info, put_info;
2629         RxD_t *rxdp;
2630         struct sk_buff *skb;
2631         int pkt_cnt = 0;
2632         int i;
2633
2634         spin_lock(&nic->rx_lock);
2635         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2636                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2637                           __FUNCTION__, dev->name);
2638                 spin_unlock(&nic->rx_lock);
2639                 return;
2640         }
2641
2642         get_info = ring_data->rx_curr_get_info;
2643         get_block = get_info.block_index;
2644         put_info = ring_data->rx_curr_put_info;
2645         put_block = put_info.block_index;
2646         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2647         if (!napi) {
2648                 spin_lock(&nic->put_lock);
2649                 put_offset = ring_data->put_pos;
2650                 spin_unlock(&nic->put_lock);
2651         } else
2652                 put_offset = ring_data->put_pos;
2653
2654         while (RXD_IS_UP2DT(rxdp)) {
2655                 /*
2656                  * If your are next to put index then it's
2657                  * FIFO full condition
2658                  */
2659                 if ((get_block == put_block) &&
2660                     (get_info.offset + 1) == put_info.offset) {
2661                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2662                         break;
2663                 }
2664                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2665                 if (skb == NULL) {
2666                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2667                                   dev->name);
2668                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2669                         spin_unlock(&nic->rx_lock);
2670                         return;
2671                 }
2672                 if (nic->rxd_mode == RXD_MODE_1) {
2673                         pci_unmap_single(nic->pdev, (dma_addr_t)
2674                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2675                                  dev->mtu +
2676                                  HEADER_ETHERNET_II_802_3_SIZE +
2677                                  HEADER_802_2_SIZE +
2678                                  HEADER_SNAP_SIZE,
2679                                  PCI_DMA_FROMDEVICE);
2680                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2681                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2682                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2683                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2684                         pci_unmap_single(nic->pdev, (dma_addr_t)
2685                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2686                                  dev->mtu + 4,
2687                                  PCI_DMA_FROMDEVICE);
2688                 } else {
2689                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2690                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2691                                          PCI_DMA_FROMDEVICE);
2692                         pci_unmap_single(nic->pdev, (dma_addr_t)
2693                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2694                                          l3l4hdr_size + 4,
2695                                          PCI_DMA_FROMDEVICE);
2696                         pci_unmap_single(nic->pdev, (dma_addr_t)
2697                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2698                                          dev->mtu, PCI_DMA_FROMDEVICE);
2699                 }
2700                 prefetch(skb->data);
2701                 rx_osm_handler(ring_data, rxdp);
2702                 get_info.offset++;
2703                 ring_data->rx_curr_get_info.offset = get_info.offset;
2704                 rxdp = ring_data->rx_blocks[get_block].
2705                                 rxds[get_info.offset].virt_addr;
2706                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2707                         get_info.offset = 0;
2708                         ring_data->rx_curr_get_info.offset = get_info.offset;
2709                         get_block++;
2710                         if (get_block == ring_data->block_count)
2711                                 get_block = 0;
2712                         ring_data->rx_curr_get_info.block_index = get_block;
2713                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2714                 }
2715
2716                 nic->pkts_to_process -= 1;
2717                 if ((napi) && (!nic->pkts_to_process))
2718                         break;
2719                 pkt_cnt++;
2720                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2721                         break;
2722         }
2723         if (nic->lro) {
2724                 /* Clear all LRO sessions before exiting */
2725                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2726                         lro_t *lro = &nic->lro0_n[i];
2727                         if (lro->in_use) {
2728                                 update_L3L4_header(nic, lro);
2729                                 queue_rx_frame(lro->parent);
2730                                 clear_lro_session(lro);
2731                         }
2732                 }
2733         }
2734
2735         spin_unlock(&nic->rx_lock);
2736 }
2737
2738 /**
2739  *  tx_intr_handler - Transmit interrupt handler
2740  *  @nic : device private variable
2741  *  Description:
2742  *  If an interrupt was raised to indicate DMA complete of the
2743  *  Tx packet, this function is called. It identifies the last TxD
2744  *  whose buffer was freed and frees all skbs whose data have already
2745  *  DMA'ed into the NICs internal memory.
2746  *  Return Value:
2747  *  NONE
2748  */
2749
2750 static void tx_intr_handler(fifo_info_t *fifo_data)
2751 {
2752         nic_t *nic = fifo_data->nic;
2753         struct net_device *dev = (struct net_device *) nic->dev;
2754         tx_curr_get_info_t get_info, put_info;
2755         struct sk_buff *skb;
2756         TxD_t *txdlp;
2757
2758         get_info = fifo_data->tx_curr_get_info;
2759         put_info = fifo_data->tx_curr_put_info;
2760         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2761             list_virt_addr;
2762         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2763                (get_info.offset != put_info.offset) &&
2764                (txdlp->Host_Control)) {
2765                 /* Check for TxD errors */
2766                 if (txdlp->Control_1 & TXD_T_CODE) {
2767                         unsigned long long err;
2768                         err = txdlp->Control_1 & TXD_T_CODE;
2769                         if (err & 0x1) {
2770                                 nic->mac_control.stats_info->sw_stat.
2771                                                 parity_err_cnt++;
2772                         }
2773                         if ((err >> 48) == 0xA) {
2774                                 DBG_PRINT(TX_DBG, "TxD returned due \
2775                                                 to loss of link\n");
2776                         }
2777                         else {
2778                                 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2779                         }
2780                 }
2781
2782                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2783                 if (skb == NULL) {
2784                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2785                         __FUNCTION__);
2786                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2787                         return;
2788                 }
2789
2790                 /* Updating the statistics block */
2791                 nic->stats.tx_bytes += skb->len;
2792                 dev_kfree_skb_irq(skb);
2793
2794                 get_info.offset++;
2795                 if (get_info.offset == get_info.fifo_len + 1)
2796                         get_info.offset = 0;
2797                 txdlp = (TxD_t *) fifo_data->list_info
2798                     [get_info.offset].list_virt_addr;
2799                 fifo_data->tx_curr_get_info.offset =
2800                     get_info.offset;
2801         }
2802
2803         spin_lock(&nic->tx_lock);
2804         if (netif_queue_stopped(dev))
2805                 netif_wake_queue(dev);
2806         spin_unlock(&nic->tx_lock);
2807 }
2808
2809 /**
2810  *  s2io_mdio_write - Function to write in to MDIO registers
2811  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2812  *  @addr     : address value
2813  *  @value    : data value
2814  *  @dev      : pointer to net_device structure
2815  *  Description:
2816  *  This function is used to write values to the MDIO registers
2817  *  NONE
2818  */
2819 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2820 {
2821         u64 val64 = 0x0;
2822         nic_t *sp = dev->priv;
2823         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2824
2825         //address transaction
2826         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2827                         | MDIO_MMD_DEV_ADDR(mmd_type)
2828                         | MDIO_MMS_PRT_ADDR(0x0);
2829         writeq(val64, &bar0->mdio_control);
2830         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2831         writeq(val64, &bar0->mdio_control);
2832         udelay(100);
2833
2834         //Data transaction
2835         val64 = 0x0;
2836         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2837                         | MDIO_MMD_DEV_ADDR(mmd_type)
2838                         | MDIO_MMS_PRT_ADDR(0x0)
2839                         | MDIO_MDIO_DATA(value)
2840                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2841         writeq(val64, &bar0->mdio_control);
2842         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2843         writeq(val64, &bar0->mdio_control);
2844         udelay(100);
2845
2846         val64 = 0x0;
2847         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2848         | MDIO_MMD_DEV_ADDR(mmd_type)
2849         | MDIO_MMS_PRT_ADDR(0x0)
2850         | MDIO_OP(MDIO_OP_READ_TRANS);
2851         writeq(val64, &bar0->mdio_control);
2852         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2853         writeq(val64, &bar0->mdio_control);
2854         udelay(100);
2855
2856 }
2857
2858 /**
2859  *  s2io_mdio_read - Function to write in to MDIO registers
2860  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2861  *  @addr     : address value
2862  *  @dev      : pointer to net_device structure
2863  *  Description:
2864  *  This function is used to read values to the MDIO registers
2865  *  NONE
2866  */
2867 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2868 {
2869         u64 val64 = 0x0;
2870         u64 rval64 = 0x0;
2871         nic_t *sp = dev->priv;
2872         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2873
2874         /* address transaction */
2875         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2876                         | MDIO_MMD_DEV_ADDR(mmd_type)
2877                         | MDIO_MMS_PRT_ADDR(0x0);
2878         writeq(val64, &bar0->mdio_control);
2879         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2880         writeq(val64, &bar0->mdio_control);
2881         udelay(100);
2882
2883         /* Data transaction */
2884         val64 = 0x0;
2885         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2886                         | MDIO_MMD_DEV_ADDR(mmd_type)
2887                         | MDIO_MMS_PRT_ADDR(0x0)
2888                         | MDIO_OP(MDIO_OP_READ_TRANS);
2889         writeq(val64, &bar0->mdio_control);
2890         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2891         writeq(val64, &bar0->mdio_control);
2892         udelay(100);
2893
2894         /* Read the value from regs */
2895         rval64 = readq(&bar0->mdio_control);
2896         rval64 = rval64 & 0xFFFF0000;
2897         rval64 = rval64 >> 16;
2898         return rval64;
2899 }
2900 /**
2901  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2902  *  @counter      : couter value to be updated
2903  *  @flag         : flag to indicate the status
2904  *  @type         : counter type
2905  *  Description:
2906  *  This function is to check the status of the xpak counters value
2907  *  NONE
2908  */
2909
2910 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2911 {
2912         u64 mask = 0x3;
2913         u64 val64;
2914         int i;
2915         for(i = 0; i <index; i++)
2916                 mask = mask << 0x2;
2917
2918         if(flag > 0)
2919         {
2920                 *counter = *counter + 1;
2921                 val64 = *regs_stat & mask;
2922                 val64 = val64 >> (index * 0x2);
2923                 val64 = val64 + 1;
2924                 if(val64 == 3)
2925                 {
2926                         switch(type)
2927                         {
2928                         case 1:
2929                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2930                                           "service. Excessive temperatures may "
2931                                           "result in premature transceiver "
2932                                           "failure \n");
2933                         break;
2934                         case 2:
2935                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2936                                           "service Excessive bias currents may "
2937                                           "indicate imminent laser diode "
2938                                           "failure \n");
2939                         break;
2940                         case 3:
2941                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2942                                           "service Excessive laser output "
2943                                           "power may saturate far-end "
2944                                           "receiver\n");
2945                         break;
2946                         default:
2947                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2948                                           "type \n");
2949                         }
2950                         val64 = 0x0;
2951                 }
2952                 val64 = val64 << (index * 0x2);
2953                 *regs_stat = (*regs_stat & (~mask)) | (val64);
2954
2955         } else {
2956                 *regs_stat = *regs_stat & (~mask);
2957         }
2958 }
2959
2960 /**
2961  *  s2io_updt_xpak_counter - Function to update the xpak counters
2962  *  @dev         : pointer to net_device struct
2963  *  Description:
2964  *  This function is to upate the status of the xpak counters value
2965  *  NONE
2966  */
2967 static void s2io_updt_xpak_counter(struct net_device *dev)
2968 {
2969         u16 flag  = 0x0;
2970         u16 type  = 0x0;
2971         u16 val16 = 0x0;
2972         u64 val64 = 0x0;
2973         u64 addr  = 0x0;
2974
2975         nic_t *sp = dev->priv;
2976         StatInfo_t *stat_info = sp->mac_control.stats_info;
2977
2978         /* Check the communication with the MDIO slave */
2979         addr = 0x0000;
2980         val64 = 0x0;
2981         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2982         if((val64 == 0xFFFF) || (val64 == 0x0000))
2983         {
2984                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2985                           "Returned %llx\n", (unsigned long long)val64);
2986                 return;
2987         }
2988
2989         /* Check for the expecte value of 2040 at PMA address 0x0000 */
2990         if(val64 != 0x2040)
2991         {
2992                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
2993                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
2994                           (unsigned long long)val64);
2995                 return;
2996         }
2997
2998         /* Loading the DOM register to MDIO register */
2999         addr = 0xA100;
3000         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3001         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3002
3003         /* Reading the Alarm flags */
3004         addr = 0xA070;
3005         val64 = 0x0;
3006         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3007
3008         flag = CHECKBIT(val64, 0x7);
3009         type = 1;
3010         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3011                                 &stat_info->xpak_stat.xpak_regs_stat,
3012                                 0x0, flag, type);
3013
3014         if(CHECKBIT(val64, 0x6))
3015                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3016
3017         flag = CHECKBIT(val64, 0x3);
3018         type = 2;
3019         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3020                                 &stat_info->xpak_stat.xpak_regs_stat,
3021                                 0x2, flag, type);
3022
3023         if(CHECKBIT(val64, 0x2))
3024                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3025
3026         flag = CHECKBIT(val64, 0x1);
3027         type = 3;
3028         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3029                                 &stat_info->xpak_stat.xpak_regs_stat,
3030                                 0x4, flag, type);
3031
3032         if(CHECKBIT(val64, 0x0))
3033                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3034
3035         /* Reading the Warning flags */
3036         addr = 0xA074;
3037         val64 = 0x0;
3038         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3039
3040         if(CHECKBIT(val64, 0x7))
3041                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3042
3043         if(CHECKBIT(val64, 0x6))
3044                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3045
3046         if(CHECKBIT(val64, 0x3))
3047                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3048
3049         if(CHECKBIT(val64, 0x2))
3050                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3051
3052         if(CHECKBIT(val64, 0x1))
3053                 stat_info->xpak_stat.warn_laser_output_power_high++;
3054
3055         if(CHECKBIT(val64, 0x0))
3056                 stat_info->xpak_stat.warn_laser_output_power_low++;
3057 }
3058
3059 /**
3060  *  alarm_intr_handler - Alarm Interrrupt handler
3061  *  @nic: device private variable
3062  *  Description: If the interrupt was neither because of Rx packet or Tx
3063  *  complete, this function is called. If the interrupt was to indicate
3064  *  a loss of link, the OSM link status handler is invoked for any other
3065  *  alarm interrupt the block that raised the interrupt is displayed
3066  *  and a H/W reset is issued.
3067  *  Return Value:
3068  *  NONE
3069 */
3070
3071 static void alarm_intr_handler(struct s2io_nic *nic)
3072 {
3073         struct net_device *dev = (struct net_device *) nic->dev;
3074         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3075         register u64 val64 = 0, err_reg = 0;
3076         u64 cnt;
3077         int i;
3078         if (atomic_read(&nic->card_state) == CARD_DOWN)
3079                 return;
3080         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3081         /* Handling the XPAK counters update */
3082         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3083                 /* waiting for an hour */
3084                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3085         } else {
3086                 s2io_updt_xpak_counter(dev);
3087                 /* reset the count to zero */
3088                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3089         }
3090
3091         /* Handling link status change error Intr */
3092         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3093                 err_reg = readq(&bar0->mac_rmac_err_reg);
3094                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3095                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3096                         schedule_work(&nic->set_link_task);
3097                 }
3098         }
3099
3100         /* Handling Ecc errors */
3101         val64 = readq(&bar0->mc_err_reg);
3102         writeq(val64, &bar0->mc_err_reg);
3103         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3104                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3105                         nic->mac_control.stats_info->sw_stat.
3106                                 double_ecc_errs++;
3107                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3108                                   dev->name);
3109                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3110                         if (nic->device_type != XFRAME_II_DEVICE) {
3111                                 /* Reset XframeI only if critical error */
3112                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3113                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3114                                         netif_stop_queue(dev);
3115                                         schedule_work(&nic->rst_timer_task);
3116                                         nic->mac_control.stats_info->sw_stat.
3117                                                         soft_reset_cnt++;
3118                                 }
3119                         }
3120                 } else {
3121                         nic->mac_control.stats_info->sw_stat.
3122                                 single_ecc_errs++;
3123                 }
3124         }
3125
3126         /* In case of a serious error, the device will be Reset. */
3127         val64 = readq(&bar0->serr_source);
3128         if (val64 & SERR_SOURCE_ANY) {
3129                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3130                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3131                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3132                           (unsigned long long)val64);
3133                 netif_stop_queue(dev);
3134                 schedule_work(&nic->rst_timer_task);
3135                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3136         }
3137
3138         /*
3139          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3140          * Error occurs, the adapter will be recycled by disabling the
3141          * adapter enable bit and enabling it again after the device
3142          * becomes Quiescent.
3143          */
3144         val64 = readq(&bar0->pcc_err_reg);
3145         writeq(val64, &bar0->pcc_err_reg);
3146         if (val64 & PCC_FB_ECC_DB_ERR) {
3147                 u64 ac = readq(&bar0->adapter_control);
3148                 ac &= ~(ADAPTER_CNTL_EN);
3149                 writeq(ac, &bar0->adapter_control);
3150                 ac = readq(&bar0->adapter_control);
3151                 schedule_work(&nic->set_link_task);
3152         }
3153         /* Check for data parity error */
3154         val64 = readq(&bar0->pic_int_status);
3155         if (val64 & PIC_INT_GPIO) {
3156                 val64 = readq(&bar0->gpio_int_reg);
3157                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3158                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3159                         schedule_work(&nic->rst_timer_task);
3160                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3161                 }
3162         }
3163
3164         /* Check for ring full counter */
3165         if (nic->device_type & XFRAME_II_DEVICE) {
3166                 val64 = readq(&bar0->ring_bump_counter1);
3167                 for (i=0; i<4; i++) {
3168                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3169                         cnt >>= 64 - ((i+1)*16);
3170                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3171                                 += cnt;
3172                 }
3173
3174                 val64 = readq(&bar0->ring_bump_counter2);
3175                 for (i=0; i<4; i++) {
3176                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3177                         cnt >>= 64 - ((i+1)*16);
3178                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3179                                 += cnt;
3180                 }
3181         }
3182
3183         /* Other type of interrupts are not being handled now,  TODO */
3184 }
3185
3186 /**
3187  *  wait_for_cmd_complete - waits for a command to complete.
3188  *  @sp : private member of the device structure, which is a pointer to the
3189  *  s2io_nic structure.
3190  *  Description: Function that waits for a command to Write into RMAC
3191  *  ADDR DATA registers to be completed and returns either success or
3192  *  error depending on whether the command was complete or not.
3193  *  Return value:
3194  *   SUCCESS on success and FAILURE on failure.
3195  */
3196
3197 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3198 {
3199         int ret = FAILURE, cnt = 0;
3200         u64 val64;
3201
3202         while (TRUE) {
3203                 val64 = readq(addr);
3204                 if (!(val64 & busy_bit)) {
3205                         ret = SUCCESS;
3206                         break;
3207                 }
3208
3209                 if(in_interrupt())
3210                         mdelay(50);
3211                 else
3212                         msleep(50);
3213
3214                 if (cnt++ > 10)
3215                         break;
3216         }
3217         return ret;
3218 }
3219 /*
3220  * check_pci_device_id - Checks if the device id is supported
3221  * @id : device id
3222  * Description: Function to check if the pci device id is supported by driver.
3223  * Return value: Actual device id if supported else PCI_ANY_ID
3224  */
3225 static u16 check_pci_device_id(u16 id)
3226 {
3227         switch (id) {
3228         case PCI_DEVICE_ID_HERC_WIN:
3229         case PCI_DEVICE_ID_HERC_UNI:
3230                 return XFRAME_II_DEVICE;
3231         case PCI_DEVICE_ID_S2IO_UNI:
3232         case PCI_DEVICE_ID_S2IO_WIN:
3233                 return XFRAME_I_DEVICE;
3234         default:
3235                 return PCI_ANY_ID;
3236         }
3237 }
3238
3239 /**
3240  *  s2io_reset - Resets the card.
3241  *  @sp : private member of the device structure.
3242  *  Description: Function to Reset the card. This function then also
3243  *  restores the previously saved PCI configuration space registers as
3244  *  the card reset also resets the configuration space.
3245  *  Return value:
3246  *  void.
3247  */
3248
3249 static void s2io_reset(nic_t * sp)
3250 {
3251         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3252         u64 val64;
3253         u16 subid, pci_cmd;
3254         int i;
3255         u16 val16;
3256         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3257                         __FUNCTION__, sp->dev->name);
3258
3259         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3260         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3261
3262         if (sp->device_type == XFRAME_II_DEVICE) {
3263                 int ret;
3264                 ret = pci_set_power_state(sp->pdev, 3);
3265                 if (!ret)
3266                         ret = pci_set_power_state(sp->pdev, 0);
3267                 else {
3268                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3269                                         __FUNCTION__);
3270                         goto old_way;
3271                 }
3272                 msleep(20);
3273                 goto new_way;
3274         }
3275 old_way:
3276         val64 = SW_RESET_ALL;
3277         writeq(val64, &bar0->sw_reset);
3278 new_way:
3279         if (strstr(sp->product_name, "CX4")) {
3280                 msleep(750);
3281         }
3282         msleep(250);
3283         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3284
3285                 /* Restore the PCI state saved during initialization. */
3286                 pci_restore_state(sp->pdev);
3287                 pci_read_config_word(sp->pdev, 0x2, &val16);
3288                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3289                         break;
3290                 msleep(200);
3291         }
3292
3293         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3294                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3295         }
3296
3297         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3298
3299         s2io_init_pci(sp);
3300
3301         /* Set swapper to enable I/O register access */
3302         s2io_set_swapper(sp);
3303
3304         /* Restore the MSIX table entries from local variables */
3305         restore_xmsi_data(sp);
3306
3307         /* Clear certain PCI/PCI-X fields after reset */
3308         if (sp->device_type == XFRAME_II_DEVICE) {
3309                 /* Clear "detected parity error" bit */
3310                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3311
3312                 /* Clearing PCIX Ecc status register */
3313                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3314
3315                 /* Clearing PCI_STATUS error reflected here */
3316                 writeq(BIT(62), &bar0->txpic_int_reg);
3317         }
3318
3319         /* Reset device statistics maintained by OS */
3320         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3321
3322         /* SXE-002: Configure link and activity LED to turn it off */
3323         subid = sp->pdev->subsystem_device;
3324         if (((subid & 0xFF) >= 0x07) &&
3325             (sp->device_type == XFRAME_I_DEVICE)) {
3326                 val64 = readq(&bar0->gpio_control);
3327                 val64 |= 0x0000800000000000ULL;
3328                 writeq(val64, &bar0->gpio_control);
3329                 val64 = 0x0411040400000000ULL;
3330                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3331         }
3332
3333         /*
3334          * Clear spurious ECC interrupts that would have occured on
3335          * XFRAME II cards after reset.
3336          */
3337         if (sp->device_type == XFRAME_II_DEVICE) {
3338                 val64 = readq(&bar0->pcc_err_reg);
3339                 writeq(val64, &bar0->pcc_err_reg);
3340         }
3341
3342         sp->device_enabled_once = FALSE;
3343 }
3344
3345 /**
3346  *  s2io_set_swapper - to set the swapper controle on the card
3347  *  @sp : private member of the device structure,
3348  *  pointer to the s2io_nic structure.
3349  *  Description: Function to set the swapper control on the card
3350  *  correctly depending on the 'endianness' of the system.
3351  *  Return value:
3352  *  SUCCESS on success and FAILURE on failure.
3353  */
3354
3355 static int s2io_set_swapper(nic_t * sp)
3356 {
3357         struct net_device *dev = sp->dev;
3358         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3359         u64 val64, valt, valr;
3360
3361         /*
3362          * Set proper endian settings and verify the same by reading
3363          * the PIF Feed-back register.
3364          */
3365
3366         val64 = readq(&bar0->pif_rd_swapper_fb);
3367         if (val64 != 0x0123456789ABCDEFULL) {
3368                 int i = 0;
3369                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3370                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3371                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3372                                 0};                     /* FE=0, SE=0 */
3373
3374                 while(i<4) {
3375                         writeq(value[i], &bar0->swapper_ctrl);
3376                         val64 = readq(&bar0->pif_rd_swapper_fb);
3377                         if (val64 == 0x0123456789ABCDEFULL)
3378                                 break;
3379                         i++;
3380                 }
3381                 if (i == 4) {
3382                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3383                                 dev->name);
3384                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3385                                 (unsigned long long) val64);
3386                         return FAILURE;
3387                 }
3388                 valr = value[i];
3389         } else {
3390                 valr = readq(&bar0->swapper_ctrl);
3391         }
3392
3393         valt = 0x0123456789ABCDEFULL;
3394         writeq(valt, &bar0->xmsi_address);
3395         val64 = readq(&bar0->xmsi_address);
3396
3397         if(val64 != valt) {
3398                 int i = 0;
3399                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3400                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3401                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3402                                 0};                     /* FE=0, SE=0 */
3403
3404                 while(i<4) {
3405                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3406                         writeq(valt, &bar0->xmsi_address);
3407                         val64 = readq(&bar0->xmsi_address);
3408                         if(val64 == valt)
3409                                 break;
3410                         i++;
3411                 }
3412                 if(i == 4) {
3413                         unsigned long long x = val64;
3414                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3415                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3416                         return FAILURE;
3417                 }
3418         }
3419         val64 = readq(&bar0->swapper_ctrl);
3420         val64 &= 0xFFFF000000000000ULL;
3421
3422 #ifdef  __BIG_ENDIAN
3423         /*
3424          * The device by default set to a big endian format, so a
3425          * big endian driver need not set anything.
3426          */
3427         val64 |= (SWAPPER_CTRL_TXP_FE |
3428                  SWAPPER_CTRL_TXP_SE |
3429                  SWAPPER_CTRL_TXD_R_FE |
3430                  SWAPPER_CTRL_TXD_W_FE |
3431                  SWAPPER_CTRL_TXF_R_FE |
3432                  SWAPPER_CTRL_RXD_R_FE |
3433                  SWAPPER_CTRL_RXD_W_FE |
3434                  SWAPPER_CTRL_RXF_W_FE |
3435                  SWAPPER_CTRL_XMSI_FE |
3436                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3437         if (sp->intr_type == INTA)
3438                 val64 |= SWAPPER_CTRL_XMSI_SE;
3439         writeq(val64, &bar0->swapper_ctrl);
3440 #else
3441         /*
3442          * Initially we enable all bits to make it accessible by the
3443          * driver, then we selectively enable only those bits that
3444          * we want to set.
3445          */
3446         val64 |= (SWAPPER_CTRL_TXP_FE |
3447                  SWAPPER_CTRL_TXP_SE |
3448                  SWAPPER_CTRL_TXD_R_FE |
3449                  SWAPPER_CTRL_TXD_R_SE |
3450                  SWAPPER_CTRL_TXD_W_FE |
3451                  SWAPPER_CTRL_TXD_W_SE |
3452                  SWAPPER_CTRL_TXF_R_FE |
3453                  SWAPPER_CTRL_RXD_R_FE |
3454                  SWAPPER_CTRL_RXD_R_SE |
3455                  SWAPPER_CTRL_RXD_W_FE |
3456                  SWAPPER_CTRL_RXD_W_SE |
3457                  SWAPPER_CTRL_RXF_W_FE |
3458                  SWAPPER_CTRL_XMSI_FE |
3459                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3460         if (sp->intr_type == INTA)
3461                 val64 |= SWAPPER_CTRL_XMSI_SE;
3462         writeq(val64, &bar0->swapper_ctrl);
3463 #endif
3464         val64 = readq(&bar0->swapper_ctrl);
3465
3466         /*
3467          * Verifying if endian settings are accurate by reading a
3468          * feedback register.
3469          */
3470         val64 = readq(&bar0->pif_rd_swapper_fb);
3471         if (val64 != 0x0123456789ABCDEFULL) {
3472                 /* Endian settings are incorrect, calls for another dekko. */
3473                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3474                           dev->name);
3475                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3476                           (unsigned long long) val64);
3477                 return FAILURE;
3478         }
3479
3480         return SUCCESS;
3481 }
3482
3483 static int wait_for_msix_trans(nic_t *nic, int i)
3484 {
3485         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3486         u64 val64;
3487         int ret = 0, cnt = 0;
3488
3489         do {
3490                 val64 = readq(&bar0->xmsi_access);
3491                 if (!(val64 & BIT(15)))
3492                         break;
3493                 mdelay(1);
3494                 cnt++;
3495         } while(cnt < 5);
3496         if (cnt == 5) {
3497                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3498                 ret = 1;
3499         }
3500
3501         return ret;
3502 }
3503
3504 static void restore_xmsi_data(nic_t *nic)
3505 {
3506         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3507         u64 val64;
3508         int i;
3509
3510         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3511                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3512                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3513                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3514                 writeq(val64, &bar0->xmsi_access);
3515                 if (wait_for_msix_trans(nic, i)) {
3516                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3517                         continue;
3518                 }
3519         }
3520 }
3521
3522 static void store_xmsi_data(nic_t *nic)
3523 {
3524         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3525         u64 val64, addr, data;
3526         int i;
3527
3528         /* Store and display */
3529         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3530                 val64 = (BIT(15) | vBIT(i, 26, 6));
3531                 writeq(val64, &bar0->xmsi_access);
3532                 if (wait_for_msix_trans(nic, i)) {
3533                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3534                         continue;
3535                 }
3536                 addr = readq(&bar0->xmsi_address);
3537                 data = readq(&bar0->xmsi_data);
3538                 if (addr && data) {
3539                         nic->msix_info[i].addr = addr;
3540                         nic->msix_info[i].data = data;
3541                 }
3542         }
3543 }
3544
3545 int s2io_enable_msi(nic_t *nic)
3546 {
3547         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3548         u16 msi_ctrl, msg_val;
3549         struct config_param *config = &nic->config;
3550         struct net_device *dev = nic->dev;
3551         u64 val64, tx_mat, rx_mat;
3552         int i, err;
3553
3554         val64 = readq(&bar0->pic_control);
3555         val64 &= ~BIT(1);
3556         writeq(val64, &bar0->pic_control);
3557
3558         err = pci_enable_msi(nic->pdev);
3559         if (err) {
3560                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3561                           nic->dev->name);
3562                 return err;
3563         }
3564
3565         /*
3566          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3567          * for interrupt handling.
3568          */
3569         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3570         msg_val ^= 0x1;
3571         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3572         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3573
3574         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3575         msi_ctrl |= 0x10;
3576         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3577
3578         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3579         tx_mat = readq(&bar0->tx_mat0_n[0]);
3580         for (i=0; i<config->tx_fifo_num; i++) {
3581                 tx_mat |= TX_MAT_SET(i, 1);
3582         }
3583         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3584
3585         rx_mat = readq(&bar0->rx_mat);
3586         for (i=0; i<config->rx_ring_num; i++) {
3587                 rx_mat |= RX_MAT_SET(i, 1);
3588         }
3589         writeq(rx_mat, &bar0->rx_mat);
3590
3591         dev->irq = nic->pdev->irq;
3592         return 0;
3593 }
3594
3595 static int s2io_enable_msi_x(nic_t *nic)
3596 {
3597         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3598         u64 tx_mat, rx_mat;
3599         u16 msi_control; /* Temp variable */
3600         int ret, i, j, msix_indx = 1;
3601
3602         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3603                                GFP_KERNEL);
3604         if (nic->entries == NULL) {
3605                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3606                 return -ENOMEM;
3607         }
3608         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3609
3610         nic->s2io_entries =
3611                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3612                                    GFP_KERNEL);
3613         if (nic->s2io_entries == NULL) {
3614                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3615                 kfree(nic->entries);
3616                 return -ENOMEM;
3617         }
3618         memset(nic->s2io_entries, 0,
3619                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3620
3621         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3622                 nic->entries[i].entry = i;
3623                 nic->s2io_entries[i].entry = i;
3624                 nic->s2io_entries[i].arg = NULL;
3625                 nic->s2io_entries[i].in_use = 0;
3626         }
3627
3628         tx_mat = readq(&bar0->tx_mat0_n[0]);
3629         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3630                 tx_mat |= TX_MAT_SET(i, msix_indx);
3631                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3632                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3633                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3634         }
3635         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3636
3637         if (!nic->config.bimodal) {
3638                 rx_mat = readq(&bar0->rx_mat);
3639                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3640                         rx_mat |= RX_MAT_SET(j, msix_indx);
3641                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3642                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3643                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3644                 }
3645                 writeq(rx_mat, &bar0->rx_mat);
3646         } else {
3647                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3648                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3649                         tx_mat |= TX_MAT_SET(i, msix_indx);
3650                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3651                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3652                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3653                 }
3654                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3655         }
3656
3657         nic->avail_msix_vectors = 0;
3658         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3659         /* We fail init if error or we get less vectors than min required */
3660         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3661                 nic->avail_msix_vectors = ret;
3662                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3663         }
3664         if (ret) {
3665                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3666                 kfree(nic->entries);
3667                 kfree(nic->s2io_entries);
3668                 nic->entries = NULL;
3669                 nic->s2io_entries = NULL;
3670                 nic->avail_msix_vectors = 0;
3671                 return -ENOMEM;
3672         }
3673         if (!nic->avail_msix_vectors)
3674                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3675
3676         /*
3677          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3678          * in the herc NIC. (Temp change, needs to be removed later)
3679          */
3680         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3681         msi_control |= 0x1; /* Enable MSI */
3682         pci_write_config_word(nic->pdev, 0x42, msi_control);
3683
3684         return 0;
3685 }
3686
3687 /* ********************************************************* *
3688  * Functions defined below concern the OS part of the driver *
3689  * ********************************************************* */
3690
3691 /**
3692  *  s2io_open - open entry point of the driver
3693  *  @dev : pointer to the device structure.
3694  *  Description:
3695  *  This function is the open entry point of the driver. It mainly calls a
3696  *  function to allocate Rx buffers and inserts them into the buffer
3697  *  descriptors and then enables the Rx part of the NIC.
3698  *  Return value:
3699  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3700  *   file on failure.
3701  */
3702
3703 static int s2io_open(struct net_device *dev)
3704 {
3705         nic_t *sp = dev->priv;
3706         int err = 0;
3707
3708         /*
3709          * Make sure you have link off by default every time
3710          * Nic is initialized
3711          */
3712         netif_carrier_off(dev);
3713         sp->last_link_state = 0;
3714
3715         /* Initialize H/W and enable interrupts */
3716         err = s2io_card_up(sp);
3717         if (err) {
3718                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3719                           dev->name);
3720                 goto hw_init_failed;
3721         }
3722
3723         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3724                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3725                 s2io_card_down(sp);
3726                 err = -ENODEV;
3727                 goto hw_init_failed;
3728         }
3729
3730         netif_start_queue(dev);
3731         return 0;
3732
3733 hw_init_failed:
3734         if (sp->intr_type == MSI_X) {
3735                 if (sp->entries)
3736                         kfree(sp->entries);
3737                 if (sp->s2io_entries)
3738                         kfree(sp->s2io_entries);
3739         }
3740         return err;
3741 }
3742
3743 /**
3744  *  s2io_close -close entry point of the driver
3745  *  @dev : device pointer.
3746  *  Description:
3747  *  This is the stop entry point of the driver. It needs to undo exactly
3748  *  whatever was done by the open entry point,thus it's usually referred to
3749  *  as the close function.Among other things this function mainly stops the
3750  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3751  *  Return value:
3752  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3753  *  file on failure.
3754  */
3755
3756 static int s2io_close(struct net_device *dev)
3757 {
3758         nic_t *sp = dev->priv;
3759
3760         flush_scheduled_work();
3761         netif_stop_queue(dev);
3762         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3763         s2io_card_down(sp);
3764
3765         sp->device_close_flag = TRUE;   /* Device is shut down. */
3766         return 0;
3767 }
3768
3769 /**
3770  *  s2io_xmit - Tx entry point of te driver
3771  *  @skb : the socket buffer containing the Tx data.
3772  *  @dev : device pointer.
3773  *  Description :
3774  *  This function is the Tx entry point of the driver. S2IO NIC supports
3775  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3776  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3777  *  not be upadted.
3778  *  Return value:
3779  *  0 on success & 1 on failure.
3780  */
3781
3782 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3783 {
3784         nic_t *sp = dev->priv;
3785         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3786         register u64 val64;
3787         TxD_t *txdp;
3788         TxFIFO_element_t __iomem *tx_fifo;
3789         unsigned long flags;
3790         u16 vlan_tag = 0;
3791         int vlan_priority = 0;
3792         mac_info_t *mac_control;
3793         struct config_param *config;
3794         int offload_type;
3795
3796         mac_control = &sp->mac_control;
3797         config = &sp->config;
3798
3799         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3800         spin_lock_irqsave(&sp->tx_lock, flags);
3801         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3802                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3803                           dev->name);
3804                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3805                 dev_kfree_skb(skb);
3806                 return 0;
3807         }
3808
3809         queue = 0;
3810
3811         /* Get Fifo number to Transmit based on vlan priority */
3812         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3813                 vlan_tag = vlan_tx_tag_get(skb);
3814                 vlan_priority = vlan_tag >> 13;
3815                 queue = config->fifo_mapping[vlan_priority];
3816         }
3817
3818         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3819         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3820         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3821                 list_virt_addr;
3822
3823         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3824         /* Avoid "put" pointer going beyond "get" pointer */
3825         if (txdp->Host_Control ||
3826                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3827                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3828                 netif_stop_queue(dev);
3829                 dev_kfree_skb(skb);
3830                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3831                 return 0;
3832         }
3833
3834         /* A buffer with no data will be dropped */
3835         if (!skb->len) {
3836                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3837                 dev_kfree_skb(skb);
3838                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3839                 return 0;
3840         }
3841
3842         offload_type = s2io_offload_type(skb);
3843         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3844                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3845                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3846         }
3847         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3848                 txdp->Control_2 |=
3849                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3850                      TXD_TX_CKO_UDP_EN);
3851         }
3852         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3853         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3854         txdp->Control_2 |= config->tx_intr_type;
3855
3856         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3857                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3858                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3859         }
3860
3861         frg_len = skb->len - skb->data_len;
3862         if (offload_type == SKB_GSO_UDP) {
3863                 int ufo_size;
3864
3865                 ufo_size = s2io_udp_mss(skb);
3866                 ufo_size &= ~7;
3867                 txdp->Control_1 |= TXD_UFO_EN;
3868                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3869                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3870 #ifdef __BIG_ENDIAN
3871                 sp->ufo_in_band_v[put_off] =
3872                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3873 #else
3874                 sp->ufo_in_band_v[put_off] =
3875                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3876 #endif
3877                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3878                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3879                                         sp->ufo_in_band_v,
3880                                         sizeof(u64), PCI_DMA_TODEVICE);
3881                 txdp++;
3882         }
3883
3884         txdp->Buffer_Pointer = pci_map_single
3885             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3886         txdp->Host_Control = (unsigned long) skb;
3887         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3888         if (offload_type == SKB_GSO_UDP)
3889                 txdp->Control_1 |= TXD_UFO_EN;
3890
3891         frg_cnt = skb_shinfo(skb)->nr_frags;
3892         /* For fragmented SKB. */
3893         for (i = 0; i < frg_cnt; i++) {
3894                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3895                 /* A '0' length fragment will be ignored */
3896                 if (!frag->size)
3897                         continue;
3898                 txdp++;
3899                 txdp->Buffer_Pointer = (u64) pci_map_page
3900                     (sp->pdev, frag->page, frag->page_offset,
3901                      frag->size, PCI_DMA_TODEVICE);
3902                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3903                 if (offload_type == SKB_GSO_UDP)
3904                         txdp->Control_1 |= TXD_UFO_EN;
3905         }
3906         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3907
3908         if (offload_type == SKB_GSO_UDP)
3909                 frg_cnt++; /* as Txd0 was used for inband header */
3910
3911         tx_fifo = mac_control->tx_FIFO_start[queue];
3912         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3913         writeq(val64, &tx_fifo->TxDL_Pointer);
3914
3915         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3916                  TX_FIFO_LAST_LIST);
3917         if (offload_type)
3918                 val64 |= TX_FIFO_SPECIAL_FUNC;
3919
3920         writeq(val64, &tx_fifo->List_Control);
3921
3922         mmiowb();
3923
3924         put_off++;
3925         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3926                 put_off = 0;
3927         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3928
3929         /* Avoid "put" pointer going beyond "get" pointer */
3930         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3931                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3932                 DBG_PRINT(TX_DBG,
3933                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3934                           put_off, get_off);
3935                 netif_stop_queue(dev);
3936         }
3937
3938         dev->trans_start = jiffies;
3939         spin_unlock_irqrestore(&sp->tx_lock, flags);
3940
3941         return 0;
3942 }
3943
3944 static void
3945 s2io_alarm_handle(unsigned long data)
3946 {
3947         nic_t *sp = (nic_t *)data;
3948
3949         alarm_intr_handler(sp);
3950         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3951 }
3952
3953 static int s2io_chk_rx_buffers(nic_t *sp, int rng_n)
3954 {
3955         int rxb_size, level;
3956
3957         if (!sp->lro) {
3958                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3959                 level = rx_buffer_level(sp, rxb_size, rng_n);
3960
3961                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3962                         int ret;
3963                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3964                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
3965                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3966                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3967                                           __FUNCTION__);
3968                                 clear_bit(0, (&sp->tasklet_status));
3969                                 return -1;
3970                         }
3971                         clear_bit(0, (&sp->tasklet_status));
3972                 } else if (level == LOW)
3973                         tasklet_schedule(&sp->task);
3974
3975         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3976                         DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3977                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3978         }
3979         return 0;
3980 }
3981
3982 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
3983 {
3984         struct net_device *dev = (struct net_device *) dev_id;
3985         nic_t *sp = dev->priv;
3986         int i;
3987         mac_info_t *mac_control;
3988         struct config_param *config;
3989
3990         atomic_inc(&sp->isr_cnt);
3991         mac_control = &sp->mac_control;
3992         config = &sp->config;
3993         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3994
3995         /* If Intr is because of Rx Traffic */
3996         for (i = 0; i < config->rx_ring_num; i++)
3997                 rx_intr_handler(&mac_control->rings[i]);
3998
3999         /* If Intr is because of Tx Traffic */
4000         for (i = 0; i < config->tx_fifo_num; i++)
4001                 tx_intr_handler(&mac_control->fifos[i]);
4002
4003         /*
4004          * If the Rx buffer count is below the panic threshold then
4005          * reallocate the buffers from the interrupt handler itself,
4006          * else schedule a tasklet to reallocate the buffers.
4007          */
4008         for (i = 0; i < config->rx_ring_num; i++)
4009                 s2io_chk_rx_buffers(sp, i);
4010
4011         atomic_dec(&sp->isr_cnt);
4012         return IRQ_HANDLED;
4013 }
4014
4015 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4016 {
4017         ring_info_t *ring = (ring_info_t *)dev_id;
4018         nic_t *sp = ring->nic;
4019
4020         atomic_inc(&sp->isr_cnt);
4021
4022         rx_intr_handler(ring);
4023         s2io_chk_rx_buffers(sp, ring->ring_no);
4024
4025         atomic_dec(&sp->isr_cnt);
4026         return IRQ_HANDLED;
4027 }
4028
4029 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4030 {
4031         fifo_info_t *fifo = (fifo_info_t *)dev_id;
4032         nic_t *sp = fifo->nic;
4033
4034         atomic_inc(&sp->isr_cnt);
4035         tx_intr_handler(fifo);
4036         atomic_dec(&sp->isr_cnt);
4037         return IRQ_HANDLED;
4038 }
4039 static void s2io_txpic_intr_handle(nic_t *sp)
4040 {
4041         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4042         u64 val64;
4043
4044         val64 = readq(&bar0->pic_int_status);
4045         if (val64 & PIC_INT_GPIO) {
4046                 val64 = readq(&bar0->gpio_int_reg);
4047                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4048                     (val64 & GPIO_INT_REG_LINK_UP)) {
4049                         /*
4050                          * This is unstable state so clear both up/down
4051                          * interrupt and adapter to re-evaluate the link state.
4052                          */
4053                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4054                         val64 |= GPIO_INT_REG_LINK_UP;
4055                         writeq(val64, &bar0->gpio_int_reg);
4056                         val64 = readq(&bar0->gpio_int_mask);
4057                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4058                                    GPIO_INT_MASK_LINK_DOWN);
4059                         writeq(val64, &bar0->gpio_int_mask);
4060                 }
4061                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4062                         val64 = readq(&bar0->adapter_status);
4063                                 /* Enable Adapter */
4064                         val64 = readq(&bar0->adapter_control);
4065                         val64 |= ADAPTER_CNTL_EN;
4066                         writeq(val64, &bar0->adapter_control);
4067                         val64 |= ADAPTER_LED_ON;
4068                         writeq(val64, &bar0->adapter_control);
4069                         if (!sp->device_enabled_once)
4070                                 sp->device_enabled_once = 1;
4071
4072                         s2io_link(sp, LINK_UP);
4073                         /*
4074                          * unmask link down interrupt and mask link-up
4075                          * intr
4076                          */
4077                         val64 = readq(&bar0->gpio_int_mask);
4078                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4079                         val64 |= GPIO_INT_MASK_LINK_UP;
4080                         writeq(val64, &bar0->gpio_int_mask);
4081
4082                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4083                         val64 = readq(&bar0->adapter_status);
4084                         s2io_link(sp, LINK_DOWN);
4085                         /* Link is down so unmaks link up interrupt */
4086                         val64 = readq(&bar0->gpio_int_mask);
4087                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4088                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4089                         writeq(val64, &bar0->gpio_int_mask);
4090                 }
4091         }
4092         val64 = readq(&bar0->gpio_int_mask);
4093 }
4094
4095 /**
4096  *  s2io_isr - ISR handler of the device .
4097  *  @irq: the irq of the device.
4098  *  @dev_id: a void pointer to the dev structure of the NIC.
4099  *  Description:  This function is the ISR handler of the device. It
4100  *  identifies the reason for the interrupt and calls the relevant
4101  *  service routines. As a contongency measure, this ISR allocates the
4102  *  recv buffers, if their numbers are below the panic value which is
4103  *  presently set to 25% of the original number of rcv buffers allocated.
4104  *  Return value:
4105  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4106  *   IRQ_NONE: will be returned if interrupt is not from our device
4107  */
4108 static irqreturn_t s2io_isr(int irq, void *dev_id)
4109 {
4110         struct net_device *dev = (struct net_device *) dev_id;
4111         nic_t *sp = dev->priv;
4112         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4113         int i;
4114         u64 reason = 0;
4115         mac_info_t *mac_control;
4116         struct config_param *config;
4117
4118         atomic_inc(&sp->isr_cnt);
4119         mac_control = &sp->mac_control;
4120         config = &sp->config;
4121
4122         /*
4123          * Identify the cause for interrupt and call the appropriate
4124          * interrupt handler. Causes for the interrupt could be;
4125          * 1. Rx of packet.
4126          * 2. Tx complete.
4127          * 3. Link down.
4128          * 4. Error in any functional blocks of the NIC.
4129          */
4130         reason = readq(&bar0->general_int_status);
4131
4132         if (!reason) {
4133                 /* The interrupt was not raised by us. */
4134                 atomic_dec(&sp->isr_cnt);
4135                 return IRQ_NONE;
4136         }
4137         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4138                 /* Disable device and get out */
4139                 atomic_dec(&sp->isr_cnt);
4140                 return IRQ_NONE;
4141         }
4142
4143         if (napi) {
4144                 if (reason & GEN_INTR_RXTRAFFIC) {
4145                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4146                                 __netif_rx_schedule(dev);
4147                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4148                         }
4149                         else
4150                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4151                 }
4152         } else {
4153                 /*
4154                  * Rx handler is called by default, without checking for the
4155                  * cause of interrupt.
4156                  * rx_traffic_int reg is an R1 register, writing all 1's
4157                  * will ensure that the actual interrupt causing bit get's
4158                  * cleared and hence a read can be avoided.
4159                  */
4160                 if (reason & GEN_INTR_RXTRAFFIC)
4161                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4162
4163                 for (i = 0; i < config->rx_ring_num; i++) {
4164                         rx_intr_handler(&mac_control->rings[i]);
4165                 }
4166         }
4167
4168         /*
4169          * tx_traffic_int reg is an R1 register, writing all 1's
4170          * will ensure that the actual interrupt causing bit get's
4171          * cleared and hence a read can be avoided.
4172          */
4173         if (reason & GEN_INTR_TXTRAFFIC)
4174                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4175
4176         for (i = 0; i < config->tx_fifo_num; i++)
4177                 tx_intr_handler(&mac_control->fifos[i]);
4178
4179         if (reason & GEN_INTR_TXPIC)
4180                 s2io_txpic_intr_handle(sp);
4181         /*
4182          * If the Rx buffer count is below the panic threshold then
4183          * reallocate the buffers from the interrupt handler itself,
4184          * else schedule a tasklet to reallocate the buffers.
4185          */
4186         if (!napi) {
4187                 for (i = 0; i < config->rx_ring_num; i++)
4188                         s2io_chk_rx_buffers(sp, i);
4189         }
4190
4191         writeq(0, &bar0->general_int_mask);
4192         readl(&bar0->general_int_status);
4193
4194         atomic_dec(&sp->isr_cnt);
4195         return IRQ_HANDLED;
4196 }
4197
4198 /**
4199  * s2io_updt_stats -
4200  */
4201 static void s2io_updt_stats(nic_t *sp)
4202 {
4203         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4204         u64 val64;
4205         int cnt = 0;
4206
4207         if (atomic_read(&sp->card_state) == CARD_UP) {
4208                 /* Apprx 30us on a 133 MHz bus */
4209                 val64 = SET_UPDT_CLICKS(10) |
4210                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4211                 writeq(val64, &bar0->stat_cfg);
4212                 do {
4213                         udelay(100);
4214                         val64 = readq(&bar0->stat_cfg);
4215                         if (!(val64 & BIT(0)))
4216                                 break;
4217                         cnt++;
4218                         if (cnt == 5)
4219                                 break; /* Updt failed */
4220                 } while(1);
4221         } else {
4222                 memset(sp->mac_control.stats_info, 0, sizeof(StatInfo_t));
4223         }
4224 }
4225
4226 /**
4227  *  s2io_get_stats - Updates the device statistics structure.
4228  *  @dev : pointer to the device structure.
4229  *  Description:
4230  *  This function updates the device statistics structure in the s2io_nic
4231  *  structure and returns a pointer to the same.
4232  *  Return value:
4233  *  pointer to the updated net_device_stats structure.
4234  */
4235
4236 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4237 {
4238         nic_t *sp = dev->priv;
4239         mac_info_t *mac_control;
4240         struct config_param *config;
4241
4242
4243         mac_control = &sp->mac_control;
4244         config = &sp->config;
4245
4246         /* Configure Stats for immediate updt */
4247         s2io_updt_stats(sp);
4248
4249         sp->stats.tx_packets =
4250                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4251         sp->stats.tx_errors =
4252                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4253         sp->stats.rx_errors =
4254                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4255         sp->stats.multicast =
4256                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4257         sp->stats.rx_length_errors =
4258                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4259
4260         return (&sp->stats);
4261 }
4262
4263 /**
4264  *  s2io_set_multicast - entry point for multicast address enable/disable.
4265  *  @dev : pointer to the device structure
4266  *  Description:
4267  *  This function is a driver entry point which gets called by the kernel
4268  *  whenever multicast addresses must be enabled/disabled. This also gets
4269  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4270  *  determine, if multicast address must be enabled or if promiscuous mode
4271  *  is to be disabled etc.
4272  *  Return value:
4273  *  void.
4274  */
4275
4276 static void s2io_set_multicast(struct net_device *dev)
4277 {
4278         int i, j, prev_cnt;
4279         struct dev_mc_list *mclist;
4280         nic_t *sp = dev->priv;
4281         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4282         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4283             0xfeffffffffffULL;
4284         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4285         void __iomem *add;
4286
4287         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4288                 /*  Enable all Multicast addresses */
4289                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4290                        &bar0->rmac_addr_data0_mem);
4291                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4292                        &bar0->rmac_addr_data1_mem);
4293                 val64 = RMAC_ADDR_CMD_MEM_WE |
4294                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4295                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4296                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4297                 /* Wait till command completes */
4298                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4299                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4300
4301                 sp->m_cast_flg = 1;
4302                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4303         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4304                 /*  Disable all Multicast addresses */
4305                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4306                        &bar0->rmac_addr_data0_mem);
4307                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4308                        &bar0->rmac_addr_data1_mem);
4309                 val64 = RMAC_ADDR_CMD_MEM_WE |
4310                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4311                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4312                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4313                 /* Wait till command completes */
4314                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4315                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4316
4317                 sp->m_cast_flg = 0;
4318                 sp->all_multi_pos = 0;
4319         }
4320
4321         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4322                 /*  Put the NIC into promiscuous mode */
4323                 add = &bar0->mac_cfg;
4324                 val64 = readq(&bar0->mac_cfg);
4325                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4326
4327                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4328                 writel((u32) val64, add);
4329                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4330                 writel((u32) (val64 >> 32), (add + 4));
4331
4332                 val64 = readq(&bar0->mac_cfg);
4333                 sp->promisc_flg = 1;
4334                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4335                           dev->name);
4336         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4337                 /*  Remove the NIC from promiscuous mode */
4338                 add = &bar0->mac_cfg;
4339                 val64 = readq(&bar0->mac_cfg);
4340                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4341
4342                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4343                 writel((u32) val64, add);
4344                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4345                 writel((u32) (val64 >> 32), (add + 4));
4346
4347                 val64 = readq(&bar0->mac_cfg);
4348                 sp->promisc_flg = 0;
4349                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4350                           dev->name);
4351         }
4352
4353         /*  Update individual M_CAST address list */
4354         if ((!sp->m_cast_flg) && dev->mc_count) {
4355                 if (dev->mc_count >
4356                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4357                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4358                                   dev->name);
4359                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4360                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4361                         return;
4362                 }
4363
4364                 prev_cnt = sp->mc_addr_count;
4365                 sp->mc_addr_count = dev->mc_count;
4366
4367                 /* Clear out the previous list of Mc in the H/W. */
4368                 for (i = 0; i < prev_cnt; i++) {
4369                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4370                                &bar0->rmac_addr_data0_mem);
4371                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4372                                 &bar0->rmac_addr_data1_mem);
4373                         val64 = RMAC_ADDR_CMD_MEM_WE |
4374                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4375                             RMAC_ADDR_CMD_MEM_OFFSET
4376                             (MAC_MC_ADDR_START_OFFSET + i);
4377                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4378
4379                         /* Wait for command completes */
4380                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4381                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4382                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4383                                           dev->name);
4384                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4385                                 return;
4386                         }
4387                 }
4388
4389                 /* Create the new Rx filter list and update the same in H/W. */
4390                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4391                      i++, mclist = mclist->next) {
4392                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4393                                ETH_ALEN);
4394                         mac_addr = 0;
4395                         for (j = 0; j < ETH_ALEN; j++) {
4396                                 mac_addr |= mclist->dmi_addr[j];
4397                                 mac_addr <<= 8;
4398                         }
4399                         mac_addr >>= 8;
4400                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4401                                &bar0->rmac_addr_data0_mem);
4402                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4403                                 &bar0->rmac_addr_data1_mem);
4404                         val64 = RMAC_ADDR_CMD_MEM_WE |
4405                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4406                             RMAC_ADDR_CMD_MEM_OFFSET
4407                             (i + MAC_MC_ADDR_START_OFFSET);
4408                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4409
4410                         /* Wait for command completes */
4411                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4412                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4413                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4414                                           dev->name);
4415                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4416                                 return;
4417                         }
4418                 }
4419         }
4420 }
4421
4422 /**
4423  *  s2io_set_mac_addr - Programs the Xframe mac address
4424  *  @dev : pointer to the device structure.
4425  *  @addr: a uchar pointer to the new mac address which is to be set.
4426  *  Description : This procedure will program the Xframe to receive
4427  *  frames with new Mac Address
4428  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4429  *  as defined in errno.h file on failure.
4430  */
4431
4432 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4433 {
4434         nic_t *sp = dev->priv;
4435         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4436         register u64 val64, mac_addr = 0;
4437         int i;
4438
4439         /*
4440          * Set the new MAC address as the new unicast filter and reflect this
4441          * change on the device address registered with the OS. It will be
4442          * at offset 0.
4443          */
4444         for (i = 0; i < ETH_ALEN; i++) {
4445                 mac_addr <<= 8;
4446                 mac_addr |= addr[i];
4447         }
4448
4449         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4450                &bar0->rmac_addr_data0_mem);
4451
4452         val64 =
4453             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4454             RMAC_ADDR_CMD_MEM_OFFSET(0);
4455         writeq(val64, &bar0->rmac_addr_cmd_mem);
4456         /* Wait till command completes */
4457         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4458                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4459                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4460                 return FAILURE;
4461         }
4462
4463         return SUCCESS;
4464 }
4465
4466 /**
4467  * s2io_ethtool_sset - Sets different link parameters.
4468  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4469  * @info: pointer to the structure with parameters given by ethtool to set
4470  * link information.
4471  * Description:
4472  * The function sets different link parameters provided by the user onto
4473  * the NIC.
4474  * Return value:
4475  * 0 on success.
4476 */
4477
4478 static int s2io_ethtool_sset(struct net_device *dev,
4479                              struct ethtool_cmd *info)
4480 {
4481         nic_t *sp = dev->priv;
4482         if ((info->autoneg == AUTONEG_ENABLE) ||
4483             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4484                 return -EINVAL;
4485         else {
4486                 s2io_close(sp->dev);
4487                 s2io_open(sp->dev);
4488         }
4489
4490         return 0;
4491 }
4492
4493 /**
4494  * s2io_ethtol_gset - Return link specific information.
4495  * @sp : private member of the device structure, pointer to the
4496  *      s2io_nic structure.
4497  * @info : pointer to the structure with parameters given by ethtool
4498  * to return link information.
4499  * Description:
4500  * Returns link specific information like speed, duplex etc.. to ethtool.
4501  * Return value :
4502  * return 0 on success.
4503  */
4504
4505 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4506 {
4507         nic_t *sp = dev->priv;
4508         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4509         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4510         info->port = PORT_FIBRE;
4511         /* info->transceiver?? TODO */
4512
4513         if (netif_carrier_ok(sp->dev)) {
4514                 info->speed = 10000;
4515                 info->duplex = DUPLEX_FULL;
4516         } else {
4517                 info->speed = -1;
4518                 info->duplex = -1;
4519         }
4520
4521         info->autoneg = AUTONEG_DISABLE;
4522         return 0;
4523 }
4524
4525 /**
4526  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4527  * @sp : private member of the device structure, which is a pointer to the
4528  * s2io_nic structure.
4529  * @info : pointer to the structure with parameters given by ethtool to
4530  * return driver information.
4531  * Description:
4532  * Returns driver specefic information like name, version etc.. to ethtool.
4533  * Return value:
4534  *  void
4535  */
4536
4537 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4538                                   struct ethtool_drvinfo *info)
4539 {
4540         nic_t *sp = dev->priv;
4541
4542         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4543         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4544         strncpy(info->fw_version, "", sizeof(info->fw_version));
4545         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4546         info->regdump_len = XENA_REG_SPACE;
4547         info->eedump_len = XENA_EEPROM_SPACE;
4548         info->testinfo_len = S2IO_TEST_LEN;
4549         info->n_stats = S2IO_STAT_LEN;
4550 }
4551
4552 /**
4553  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4554  *  @sp: private member of the device structure, which is a pointer to the
4555  *  s2io_nic structure.
4556  *  @regs : pointer to the structure with parameters given by ethtool for
4557  *  dumping the registers.
4558  *  @reg_space: The input argumnet into which all the registers are dumped.
4559  *  Description:
4560  *  Dumps the entire register space of xFrame NIC into the user given
4561  *  buffer area.
4562  * Return value :
4563  * void .
4564 */
4565
4566 static void s2io_ethtool_gregs(struct net_device *dev,
4567                                struct ethtool_regs *regs, void *space)
4568 {
4569         int i;
4570         u64 reg;
4571         u8 *reg_space = (u8 *) space;
4572         nic_t *sp = dev->priv;
4573
4574         regs->len = XENA_REG_SPACE;
4575         regs->version = sp->pdev->subsystem_device;
4576
4577         for (i = 0; i < regs->len; i += 8) {
4578                 reg = readq(sp->bar0 + i);
4579                 memcpy((reg_space + i), &reg, 8);
4580         }
4581 }
4582
4583 /**
4584  *  s2io_phy_id  - timer function that alternates adapter LED.
4585  *  @data : address of the private member of the device structure, which
4586  *  is a pointer to the s2io_nic structure, provided as an u32.
4587  * Description: This is actually the timer function that alternates the
4588  * adapter LED bit of the adapter control bit to set/reset every time on
4589  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4590  *  once every second.
4591 */
4592 static void s2io_phy_id(unsigned long data)
4593 {
4594         nic_t *sp = (nic_t *) data;
4595         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4596         u64 val64 = 0;
4597         u16 subid;
4598
4599         subid = sp->pdev->subsystem_device;
4600         if ((sp->device_type == XFRAME_II_DEVICE) ||
4601                    ((subid & 0xFF) >= 0x07)) {
4602                 val64 = readq(&bar0->gpio_control);
4603                 val64 ^= GPIO_CTRL_GPIO_0;
4604                 writeq(val64, &bar0->gpio_control);
4605         } else {
4606                 val64 = readq(&bar0->adapter_control);
4607                 val64 ^= ADAPTER_LED_ON;
4608                 writeq(val64, &bar0->adapter_control);
4609         }
4610
4611         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4612 }
4613
4614 /**
4615  * s2io_ethtool_idnic - To physically identify the nic on the system.
4616  * @sp : private member of the device structure, which is a pointer to the
4617  * s2io_nic structure.
4618  * @id : pointer to the structure with identification parameters given by
4619  * ethtool.
4620  * Description: Used to physically identify the NIC on the system.
4621  * The Link LED will blink for a time specified by the user for
4622  * identification.
4623  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4624  * identification is possible only if it's link is up.
4625  * Return value:
4626  * int , returns 0 on success
4627  */
4628
4629 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4630 {
4631         u64 val64 = 0, last_gpio_ctrl_val;
4632         nic_t *sp = dev->priv;
4633         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4634         u16 subid;
4635
4636         subid = sp->pdev->subsystem_device;
4637         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4638         if ((sp->device_type == XFRAME_I_DEVICE) &&
4639                 ((subid & 0xFF) < 0x07)) {
4640                 val64 = readq(&bar0->adapter_control);
4641                 if (!(val64 & ADAPTER_CNTL_EN)) {
4642                         printk(KERN_ERR
4643                                "Adapter Link down, cannot blink LED\n");
4644                         return -EFAULT;
4645                 }
4646         }
4647         if (sp->id_timer.function == NULL) {
4648                 init_timer(&sp->id_timer);
4649                 sp->id_timer.function = s2io_phy_id;
4650                 sp->id_timer.data = (unsigned long) sp;
4651         }
4652         mod_timer(&sp->id_timer, jiffies);
4653         if (data)
4654                 msleep_interruptible(data * HZ);
4655         else
4656                 msleep_interruptible(MAX_FLICKER_TIME);
4657         del_timer_sync(&sp->id_timer);
4658
4659         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4660                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4661                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4662         }
4663
4664         return 0;
4665 }
4666
4667 /**
4668  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4669  * @sp : private member of the device structure, which is a pointer to the
4670  *      s2io_nic structure.
4671  * @ep : pointer to the structure with pause parameters given by ethtool.
4672  * Description:
4673  * Returns the Pause frame generation and reception capability of the NIC.
4674  * Return value:
4675  *  void
4676  */
4677 static void s2io_ethtool_getpause_data(struct net_device *dev,
4678                                        struct ethtool_pauseparam *ep)
4679 {
4680         u64 val64;
4681         nic_t *sp = dev->priv;
4682         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4683
4684         val64 = readq(&bar0->rmac_pause_cfg);
4685         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4686                 ep->tx_pause = TRUE;
4687         if (val64 & RMAC_PAUSE_RX_ENABLE)
4688                 ep->rx_pause = TRUE;
4689         ep->autoneg = FALSE;
4690 }
4691
4692 /**
4693  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4694  * @sp : private member of the device structure, which is a pointer to the
4695  *      s2io_nic structure.
4696  * @ep : pointer to the structure with pause parameters given by ethtool.
4697  * Description:
4698  * It can be used to set or reset Pause frame generation or reception
4699  * support of the NIC.
4700  * Return value:
4701  * int, returns 0 on Success
4702  */
4703
4704 static int s2io_ethtool_setpause_data(struct net_device *dev,
4705                                struct ethtool_pauseparam *ep)
4706 {
4707         u64 val64;
4708         nic_t *sp = dev->priv;
4709         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4710
4711         val64 = readq(&bar0->rmac_pause_cfg);
4712         if (ep->tx_pause)
4713                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4714         else
4715                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4716         if (ep->rx_pause)
4717                 val64 |= RMAC_PAUSE_RX_ENABLE;
4718         else
4719                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4720         writeq(val64, &bar0->rmac_pause_cfg);
4721         return 0;
4722 }
4723
4724 /**
4725  * read_eeprom - reads 4 bytes of data from user given offset.
4726  * @sp : private member of the device structure, which is a pointer to the
4727  *      s2io_nic structure.
4728  * @off : offset at which the data must be written
4729  * @data : Its an output parameter where the data read at the given
4730  *      offset is stored.
4731  * Description:
4732  * Will read 4 bytes of data from the user given offset and return the
4733  * read data.
4734  * NOTE: Will allow to read only part of the EEPROM visible through the
4735  *   I2C bus.
4736  * Return value:
4737  *  -1 on failure and 0 on success.
4738  */
4739
4740 #define S2IO_DEV_ID             5
4741 static int read_eeprom(nic_t * sp, int off, u64 * data)
4742 {
4743         int ret = -1;
4744         u32 exit_cnt = 0;
4745         u64 val64;
4746         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4747
4748         if (sp->device_type == XFRAME_I_DEVICE) {
4749                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4750                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4751                     I2C_CONTROL_CNTL_START;
4752                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4753
4754                 while (exit_cnt < 5) {
4755                         val64 = readq(&bar0->i2c_control);
4756                         if (I2C_CONTROL_CNTL_END(val64)) {
4757                                 *data = I2C_CONTROL_GET_DATA(val64);
4758                                 ret = 0;
4759                                 break;
4760                         }
4761                         msleep(50);
4762                         exit_cnt++;
4763                 }
4764         }
4765
4766         if (sp->device_type == XFRAME_II_DEVICE) {
4767                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4768                         SPI_CONTROL_BYTECNT(0x3) |
4769                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4770                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4771                 val64 |= SPI_CONTROL_REQ;
4772                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4773                 while (exit_cnt < 5) {
4774                         val64 = readq(&bar0->spi_control);
4775                         if (val64 & SPI_CONTROL_NACK) {
4776                                 ret = 1;
4777                                 break;
4778                         } else if (val64 & SPI_CONTROL_DONE) {
4779                                 *data = readq(&bar0->spi_data);
4780                                 *data &= 0xffffff;
4781                                 ret = 0;
4782                                 break;
4783                         }
4784                         msleep(50);
4785                         exit_cnt++;
4786                 }
4787         }
4788         return ret;
4789 }
4790
4791 /**
4792  *  write_eeprom - actually writes the relevant part of the data value.
4793  *  @sp : private member of the device structure, which is a pointer to the
4794  *       s2io_nic structure.
4795  *  @off : offset at which the data must be written
4796  *  @data : The data that is to be written
4797  *  @cnt : Number of bytes of the data that are actually to be written into
4798  *  the Eeprom. (max of 3)
4799  * Description:
4800  *  Actually writes the relevant part of the data value into the Eeprom
4801  *  through the I2C bus.
4802  * Return value:
4803  *  0 on success, -1 on failure.
4804  */
4805
4806 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4807 {
4808         int exit_cnt = 0, ret = -1;
4809         u64 val64;
4810         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4811
4812         if (sp->device_type == XFRAME_I_DEVICE) {
4813                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4814                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4815                     I2C_CONTROL_CNTL_START;
4816                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4817
4818                 while (exit_cnt < 5) {
4819                         val64 = readq(&bar0->i2c_control);
4820                         if (I2C_CONTROL_CNTL_END(val64)) {
4821                                 if (!(val64 & I2C_CONTROL_NACK))
4822                                         ret = 0;
4823                                 break;
4824                         }
4825                         msleep(50);
4826                         exit_cnt++;
4827                 }
4828         }
4829
4830         if (sp->device_type == XFRAME_II_DEVICE) {
4831                 int write_cnt = (cnt == 8) ? 0 : cnt;
4832                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4833
4834                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4835                         SPI_CONTROL_BYTECNT(write_cnt) |
4836                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4837                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4838                 val64 |= SPI_CONTROL_REQ;
4839                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4840                 while (exit_cnt < 5) {
4841                         val64 = readq(&bar0->spi_control);
4842                         if (val64 & SPI_CONTROL_NACK) {
4843                                 ret = 1;
4844                                 break;
4845                         } else if (val64 & SPI_CONTROL_DONE) {
4846                                 ret = 0;
4847                                 break;
4848                         }
4849                         msleep(50);
4850                         exit_cnt++;
4851                 }
4852         }
4853         return ret;
4854 }
4855 static void s2io_vpd_read(nic_t *nic)
4856 {
4857         u8 *vpd_data;
4858         u8 data;
4859         int i=0, cnt, fail = 0;
4860         int vpd_addr = 0x80;
4861
4862         if (nic->device_type == XFRAME_II_DEVICE) {
4863                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4864                 vpd_addr = 0x80;
4865         }
4866         else {
4867                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4868                 vpd_addr = 0x50;
4869         }
4870         strcpy(nic->serial_num, "NOT AVAILABLE");
4871
4872         vpd_data = kmalloc(256, GFP_KERNEL);
4873         if (!vpd_data)
4874                 return;
4875
4876         for (i = 0; i < 256; i +=4 ) {
4877                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4878                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
4879                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4880                 for (cnt = 0; cnt <5; cnt++) {
4881                         msleep(2);
4882                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4883                         if (data == 0x80)
4884                                 break;
4885                 }
4886                 if (cnt >= 5) {
4887                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4888                         fail = 1;
4889                         break;
4890                 }
4891                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
4892                                       (u32 *)&vpd_data[i]);
4893         }
4894
4895         if(!fail) {
4896                 /* read serial number of adapter */
4897                 for (cnt = 0; cnt < 256; cnt++) {
4898                 if ((vpd_data[cnt] == 'S') &&
4899                         (vpd_data[cnt+1] == 'N') &&
4900                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4901                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
4902                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4903                                         vpd_data[cnt+2]);
4904                                 break;
4905                         }
4906                 }
4907         }
4908
4909         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
4910                 memset(nic->product_name, 0, vpd_data[1]);
4911                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4912         }
4913         kfree(vpd_data);
4914 }
4915
4916 /**
4917  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
4918  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
4919  *  @eeprom : pointer to the user level structure provided by ethtool,
4920  *  containing all relevant information.
4921  *  @data_buf : user defined value to be written into Eeprom.
4922  *  Description: Reads the values stored in the Eeprom at given offset
4923  *  for a given length. Stores these values int the input argument data
4924  *  buffer 'data_buf' and returns these to the caller (ethtool.)
4925  *  Return value:
4926  *  int  0 on success
4927  */
4928
4929 static int s2io_ethtool_geeprom(struct net_device *dev,
4930                          struct ethtool_eeprom *eeprom, u8 * data_buf)
4931 {
4932         u32 i, valid;
4933         u64 data;
4934         nic_t *sp = dev->priv;
4935
4936         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4937
4938         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4939                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4940
4941         for (i = 0; i < eeprom->len; i += 4) {
4942                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4943                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4944                         return -EFAULT;
4945                 }
4946                 valid = INV(data);
4947                 memcpy((data_buf + i), &valid, 4);
4948         }
4949         return 0;
4950 }
4951
4952 /**
4953  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4954  *  @sp : private member of the device structure, which is a pointer to the
4955  *  s2io_nic structure.
4956  *  @eeprom : pointer to the user level structure provided by ethtool,
4957  *  containing all relevant information.
4958  *  @data_buf ; user defined value to be written into Eeprom.
4959  *  Description:
4960  *  Tries to write the user provided value in the Eeprom, at the offset
4961  *  given by the user.
4962  *  Return value:
4963  *  0 on success, -EFAULT on failure.
4964  */
4965
4966 static int s2io_ethtool_seeprom(struct net_device *dev,
4967                                 struct ethtool_eeprom *eeprom,
4968                                 u8 * data_buf)
4969 {
4970         int len = eeprom->len, cnt = 0;
4971         u64 valid = 0, data;
4972         nic_t *sp = dev->priv;
4973
4974         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4975                 DBG_PRINT(ERR_DBG,
4976                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4977                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4978                           eeprom->magic);
4979                 return -EFAULT;
4980         }
4981
4982         while (len) {
4983                 data = (u32) data_buf[cnt] & 0x000000FF;
4984                 if (data) {
4985                         valid = (u32) (data << 24);
4986                 } else
4987                         valid = data;
4988
4989                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4990                         DBG_PRINT(ERR_DBG,
4991                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4992                         DBG_PRINT(ERR_DBG,
4993                                   "write into the specified offset\n");
4994                         return -EFAULT;
4995                 }
4996                 cnt++;
4997                 len--;
4998         }
4999
5000         return 0;
5001 }
5002
5003 /**
5004  * s2io_register_test - reads and writes into all clock domains.
5005  * @sp : private member of the device structure, which is a pointer to the
5006  * s2io_nic structure.
5007  * @data : variable that returns the result of each of the test conducted b
5008  * by the driver.
5009  * Description:
5010  * Read and write into all clock domains. The NIC has 3 clock domains,
5011  * see that registers in all the three regions are accessible.
5012  * Return value:
5013  * 0 on success.
5014  */
5015
5016 static int s2io_register_test(nic_t * sp, uint64_t * data)
5017 {
5018         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5019         u64 val64 = 0, exp_val;
5020         int fail = 0;
5021
5022         val64 = readq(&bar0->pif_rd_swapper_fb);
5023         if (val64 != 0x123456789abcdefULL) {
5024                 fail = 1;
5025                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5026         }
5027
5028         val64 = readq(&bar0->rmac_pause_cfg);
5029         if (val64 != 0xc000ffff00000000ULL) {
5030                 fail = 1;
5031                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5032         }
5033
5034         val64 = readq(&bar0->rx_queue_cfg);
5035         if (sp->device_type == XFRAME_II_DEVICE)
5036                 exp_val = 0x0404040404040404ULL;
5037         else
5038                 exp_val = 0x0808080808080808ULL;
5039         if (val64 != exp_val) {
5040                 fail = 1;
5041                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5042         }
5043
5044         val64 = readq(&bar0->xgxs_efifo_cfg);
5045         if (val64 != 0x000000001923141EULL) {
5046                 fail = 1;
5047                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5048         }
5049
5050         val64 = 0x5A5A5A5A5A5A5A5AULL;
5051         writeq(val64, &bar0->xmsi_data);
5052         val64 = readq(&bar0->xmsi_data);
5053         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5054                 fail = 1;
5055                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5056         }
5057
5058         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5059         writeq(val64, &bar0->xmsi_data);
5060         val64 = readq(&bar0->xmsi_data);
5061         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5062                 fail = 1;
5063                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5064         }
5065
5066         *data = fail;
5067         return fail;
5068 }
5069
5070 /**
5071  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5072  * @sp : private member of the device structure, which is a pointer to the
5073  * s2io_nic structure.
5074  * @data:variable that returns the result of each of the test conducted by
5075  * the driver.
5076  * Description:
5077  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5078  * register.
5079  * Return value:
5080  * 0 on success.
5081  */
5082
5083 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5084 {
5085         int fail = 0;
5086         u64 ret_data, org_4F0, org_7F0;
5087         u8 saved_4F0 = 0, saved_7F0 = 0;
5088         struct net_device *dev = sp->dev;
5089
5090         /* Test Write Error at offset 0 */
5091         /* Note that SPI interface allows write access to all areas
5092          * of EEPROM. Hence doing all negative testing only for Xframe I.
5093          */
5094         if (sp->device_type == XFRAME_I_DEVICE)
5095                 if (!write_eeprom(sp, 0, 0, 3))
5096                         fail = 1;
5097
5098         /* Save current values at offsets 0x4F0 and 0x7F0 */
5099         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5100                 saved_4F0 = 1;
5101         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5102                 saved_7F0 = 1;
5103
5104         /* Test Write at offset 4f0 */
5105         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5106                 fail = 1;
5107         if (read_eeprom(sp, 0x4F0, &ret_data))
5108                 fail = 1;
5109
5110         if (ret_data != 0x012345) {
5111                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5112                         "Data written %llx Data read %llx\n",
5113                         dev->name, (unsigned long long)0x12345,
5114                         (unsigned long long)ret_data);
5115                 fail = 1;
5116         }
5117
5118         /* Reset the EEPROM data go FFFF */
5119         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5120
5121         /* Test Write Request Error at offset 0x7c */
5122         if (sp->device_type == XFRAME_I_DEVICE)
5123                 if (!write_eeprom(sp, 0x07C, 0, 3))
5124                         fail = 1;
5125
5126         /* Test Write Request at offset 0x7f0 */
5127         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5128                 fail = 1;
5129         if (read_eeprom(sp, 0x7F0, &ret_data))
5130                 fail = 1;
5131
5132         if (ret_data != 0x012345) {
5133                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5134                         "Data written %llx Data read %llx\n",
5135                         dev->name, (unsigned long long)0x12345,
5136                         (unsigned long long)ret_data);
5137                 fail = 1;
5138         }
5139
5140         /* Reset the EEPROM data go FFFF */
5141         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5142
5143         if (sp->device_type == XFRAME_I_DEVICE) {
5144                 /* Test Write Error at offset 0x80 */
5145                 if (!write_eeprom(sp, 0x080, 0, 3))
5146                         fail = 1;
5147
5148                 /* Test Write Error at offset 0xfc */
5149                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5150                         fail = 1;
5151
5152                 /* Test Write Error at offset 0x100 */
5153                 if (!write_eeprom(sp, 0x100, 0, 3))
5154                         fail = 1;
5155
5156                 /* Test Write Error at offset 4ec */
5157                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5158                         fail = 1;
5159         }
5160
5161         /* Restore values at offsets 0x4F0 and 0x7F0 */
5162         if (saved_4F0)
5163                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5164         if (saved_7F0)
5165                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5166
5167         *data = fail;
5168         return fail;
5169 }
5170
5171 /**
5172  * s2io_bist_test - invokes the MemBist test of the card .
5173  * @sp : private member of the device structure, which is a pointer to the
5174  * s2io_nic structure.
5175  * @data:variable that returns the result of each of the test conducted by
5176  * the driver.
5177  * Description:
5178  * This invokes the MemBist test of the card. We give around
5179  * 2 secs time for the Test to complete. If it's still not complete
5180  * within this peiod, we consider that the test failed.
5181  * Return value:
5182  * 0 on success and -1 on failure.
5183  */
5184
5185 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5186 {
5187         u8 bist = 0;
5188         int cnt = 0, ret = -1;
5189
5190         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5191         bist |= PCI_BIST_START;
5192         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5193
5194         while (cnt < 20) {
5195                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5196                 if (!(bist & PCI_BIST_START)) {
5197                         *data = (bist & PCI_BIST_CODE_MASK);
5198                         ret = 0;
5199                         break;
5200                 }
5201                 msleep(100);
5202                 cnt++;
5203         }
5204
5205         return ret;
5206 }
5207
5208 /**
5209  * s2io-link_test - verifies the link state of the nic
5210  * @sp ; private member of the device structure, which is a pointer to the
5211  * s2io_nic structure.
5212  * @data: variable that returns the result of each of the test conducted by
5213  * the driver.
5214  * Description:
5215  * The function verifies the link state of the NIC and updates the input
5216  * argument 'data' appropriately.
5217  * Return value:
5218  * 0 on success.
5219  */
5220
5221 static int s2io_link_test(nic_t * sp, uint64_t * data)
5222 {
5223         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5224         u64 val64;
5225
5226         val64 = readq(&bar0->adapter_status);
5227         if(!(LINK_IS_UP(val64)))
5228                 *data = 1;
5229         else
5230                 *data = 0;
5231
5232         return *data;
5233 }
5234
5235 /**
5236  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5237  * @sp - private member of the device structure, which is a pointer to the
5238  * s2io_nic structure.
5239  * @data - variable that returns the result of each of the test
5240  * conducted by the driver.
5241  * Description:
5242  *  This is one of the offline test that tests the read and write
5243  *  access to the RldRam chip on the NIC.
5244  * Return value:
5245  *  0 on success.
5246  */
5247
5248 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5249 {
5250         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5251         u64 val64;
5252         int cnt, iteration = 0, test_fail = 0;
5253
5254         val64 = readq(&bar0->adapter_control);
5255         val64 &= ~ADAPTER_ECC_EN;
5256         writeq(val64, &bar0->adapter_control);
5257
5258         val64 = readq(&bar0->mc_rldram_test_ctrl);
5259         val64 |= MC_RLDRAM_TEST_MODE;
5260         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5261
5262         val64 = readq(&bar0->mc_rldram_mrs);
5263         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5264         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5265
5266         val64 |= MC_RLDRAM_MRS_ENABLE;
5267         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5268
5269         while (iteration < 2) {
5270                 val64 = 0x55555555aaaa0000ULL;
5271                 if (iteration == 1) {
5272                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5273                 }
5274                 writeq(val64, &bar0->mc_rldram_test_d0);
5275
5276                 val64 = 0xaaaa5a5555550000ULL;
5277                 if (iteration == 1) {
5278                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5279                 }
5280                 writeq(val64, &bar0->mc_rldram_test_d1);
5281
5282                 val64 = 0x55aaaaaaaa5a0000ULL;
5283                 if (iteration == 1) {
5284                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5285                 }
5286                 writeq(val64, &bar0->mc_rldram_test_d2);
5287
5288                 val64 = (u64) (0x0000003ffffe0100ULL);
5289                 writeq(val64, &bar0->mc_rldram_test_add);
5290
5291                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5292                         MC_RLDRAM_TEST_GO;
5293                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5294
5295                 for (cnt = 0; cnt < 5; cnt++) {
5296                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5297                         if (val64 & MC_RLDRAM_TEST_DONE)
5298                                 break;
5299                         msleep(200);
5300                 }
5301
5302                 if (cnt == 5)
5303                         break;
5304
5305                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5306                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5307
5308                 for (cnt = 0; cnt < 5; cnt++) {
5309                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5310                         if (val64 & MC_RLDRAM_TEST_DONE)
5311                                 break;
5312                         msleep(500);
5313                 }
5314
5315                 if (cnt == 5)
5316                         break;
5317
5318                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5319                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5320                         test_fail = 1;
5321
5322                 iteration++;
5323         }
5324
5325         *data = test_fail;
5326
5327         /* Bring the adapter out of test mode */
5328         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5329
5330         return test_fail;
5331 }
5332
5333 /**
5334  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5335  *  @sp : private member of the device structure, which is a pointer to the
5336  *  s2io_nic structure.
5337  *  @ethtest : pointer to a ethtool command specific structure that will be
5338  *  returned to the user.
5339  *  @data : variable that returns the result of each of the test
5340  * conducted by the driver.
5341  * Description:
5342  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5343  *  the health of the card.
5344  * Return value:
5345  *  void
5346  */
5347
5348 static void s2io_ethtool_test(struct net_device *dev,
5349                               struct ethtool_test *ethtest,
5350                               uint64_t * data)
5351 {
5352         nic_t *sp = dev->priv;
5353         int orig_state = netif_running(sp->dev);
5354
5355         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5356                 /* Offline Tests. */
5357                 if (orig_state)
5358                         s2io_close(sp->dev);
5359
5360                 if (s2io_register_test(sp, &data[0]))
5361                         ethtest->flags |= ETH_TEST_FL_FAILED;
5362
5363                 s2io_reset(sp);
5364
5365                 if (s2io_rldram_test(sp, &data[3]))
5366                         ethtest->flags |= ETH_TEST_FL_FAILED;
5367
5368                 s2io_reset(sp);
5369
5370                 if (s2io_eeprom_test(sp, &data[1]))
5371                         ethtest->flags |= ETH_TEST_FL_FAILED;
5372
5373                 if (s2io_bist_test(sp, &data[4]))
5374                         ethtest->flags |= ETH_TEST_FL_FAILED;
5375
5376                 if (orig_state)
5377                         s2io_open(sp->dev);
5378
5379                 data[2] = 0;
5380         } else {
5381                 /* Online Tests. */
5382                 if (!orig_state) {
5383                         DBG_PRINT(ERR_DBG,
5384                                   "%s: is not up, cannot run test\n",
5385                                   dev->name);
5386                         data[0] = -1;
5387                         data[1] = -1;
5388                         data[2] = -1;
5389                         data[3] = -1;
5390                         data[4] = -1;
5391                 }
5392
5393                 if (s2io_link_test(sp, &data[2]))
5394                         ethtest->flags |= ETH_TEST_FL_FAILED;
5395
5396                 data[0] = 0;
5397                 data[1] = 0;
5398                 data[3] = 0;
5399                 data[4] = 0;
5400         }
5401 }
5402
5403 static void s2io_get_ethtool_stats(struct net_device *dev,
5404                                    struct ethtool_stats *estats,
5405                                    u64 * tmp_stats)
5406 {
5407         int i = 0;
5408         nic_t *sp = dev->priv;
5409         StatInfo_t *stat_info = sp->mac_control.stats_info;
5410
5411         s2io_updt_stats(sp);
5412         tmp_stats[i++] =
5413                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5414                 le32_to_cpu(stat_info->tmac_frms);
5415         tmp_stats[i++] =
5416                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5417                 le32_to_cpu(stat_info->tmac_data_octets);
5418         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5419         tmp_stats[i++] =
5420                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5421                 le32_to_cpu(stat_info->tmac_mcst_frms);
5422         tmp_stats[i++] =
5423                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5424                 le32_to_cpu(stat_info->tmac_bcst_frms);
5425         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5426         tmp_stats[i++] =
5427                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5428                 le32_to_cpu(stat_info->tmac_ttl_octets);
5429         tmp_stats[i++] =
5430                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5431                 le32_to_cpu(stat_info->tmac_ucst_frms);
5432         tmp_stats[i++] =
5433                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5434                 le32_to_cpu(stat_info->tmac_nucst_frms);
5435         tmp_stats[i++] =
5436                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5437                 le32_to_cpu(stat_info->tmac_any_err_frms);
5438         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5439         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5440         tmp_stats[i++] =
5441                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5442                 le32_to_cpu(stat_info->tmac_vld_ip);
5443         tmp_stats[i++] =
5444                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5445                 le32_to_cpu(stat_info->tmac_drop_ip);
5446         tmp_stats[i++] =
5447                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5448                 le32_to_cpu(stat_info->tmac_icmp);
5449         tmp_stats[i++] =
5450                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5451                 le32_to_cpu(stat_info->tmac_rst_tcp);
5452         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5453         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5454                 le32_to_cpu(stat_info->tmac_udp);
5455         tmp_stats[i++] =
5456                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5457                 le32_to_cpu(stat_info->rmac_vld_frms);
5458         tmp_stats[i++] =
5459                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5460                 le32_to_cpu(stat_info->rmac_data_octets);
5461         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5462         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5463         tmp_stats[i++] =
5464                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5465                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5466         tmp_stats[i++] =
5467                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5468                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5469         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5470         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5471         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5472         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5473         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5474         tmp_stats[i++] =
5475                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5476                 le32_to_cpu(stat_info->rmac_ttl_octets);
5477         tmp_stats[i++] =
5478                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5479                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5480         tmp_stats[i++] =
5481                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5482                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5483         tmp_stats[i++] =
5484                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5485                 le32_to_cpu(stat_info->rmac_discarded_frms);
5486         tmp_stats[i++] =
5487                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5488                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5489         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5490         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5491         tmp_stats[i++] =
5492                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5493                 le32_to_cpu(stat_info->rmac_usized_frms);
5494         tmp_stats[i++] =
5495                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5496                 le32_to_cpu(stat_info->rmac_osized_frms);
5497         tmp_stats[i++] =
5498                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5499                 le32_to_cpu(stat_info->rmac_frag_frms);
5500         tmp_stats[i++] =
5501                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5502                 le32_to_cpu(stat_info->rmac_jabber_frms);
5503         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5504         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5505         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5506         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5507         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5508         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5509         tmp_stats[i++] =
5510                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5511                 le32_to_cpu(stat_info->rmac_ip);
5512         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5513         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5514         tmp_stats[i++] =
5515                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5516                 le32_to_cpu(stat_info->rmac_drop_ip);
5517         tmp_stats[i++] =
5518                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5519                 le32_to_cpu(stat_info->rmac_icmp);
5520         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5521         tmp_stats[i++] =
5522                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5523                 le32_to_cpu(stat_info->rmac_udp);
5524         tmp_stats[i++] =
5525                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5526                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5527         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5528         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5529         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5530         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5531         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5532         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5533         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5534         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5535         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5536         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5537         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5538         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5539         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5540         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5541         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5542         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5543         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5544         tmp_stats[i++] =
5545                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5546                 le32_to_cpu(stat_info->rmac_pause_cnt);
5547         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5548         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5549         tmp_stats[i++] =
5550                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5551                 le32_to_cpu(stat_info->rmac_accepted_ip);
5552         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5553         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5554         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5555         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5556         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5557         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5558         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5559         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5560         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5561         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5562         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5563         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5564         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5565         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5566         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5567         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5568         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5569         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5570         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5571         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5572         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5573         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5574         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5575         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5576         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5577         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5578         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5579         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5580         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5581         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5582         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5583         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5584         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5585         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5586         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5587         tmp_stats[i++] = 0;
5588         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5589         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5590         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5591         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5592         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5593         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5594         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5595         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5596         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5597         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5598         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5599         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5600         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5601         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5602         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5603         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5604         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5605         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5606         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5607         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5608         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5609         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5610         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5611         if (stat_info->sw_stat.num_aggregations) {
5612                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5613                 int count = 0;
5614                 /*
5615                  * Since 64-bit divide does not work on all platforms,
5616                  * do repeated subtraction.
5617                  */
5618                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5619                         tmp -= stat_info->sw_stat.num_aggregations;
5620                         count++;
5621                 }
5622                 tmp_stats[i++] = count;
5623         }
5624         else
5625                 tmp_stats[i++] = 0;
5626 }
5627
5628 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5629 {
5630         return (XENA_REG_SPACE);
5631 }
5632
5633
5634 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5635 {
5636         nic_t *sp = dev->priv;
5637
5638         return (sp->rx_csum);
5639 }
5640
5641 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5642 {
5643         nic_t *sp = dev->priv;
5644
5645         if (data)
5646                 sp->rx_csum = 1;
5647         else
5648                 sp->rx_csum = 0;
5649
5650         return 0;
5651 }
5652
5653 static int s2io_get_eeprom_len(struct net_device *dev)
5654 {
5655         return (XENA_EEPROM_SPACE);
5656 }
5657
5658 static int s2io_ethtool_self_test_count(struct net_device *dev)
5659 {
5660         return (S2IO_TEST_LEN);
5661 }
5662
5663 static void s2io_ethtool_get_strings(struct net_device *dev,
5664                                      u32 stringset, u8 * data)
5665 {
5666         switch (stringset) {
5667         case ETH_SS_TEST:
5668                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5669                 break;
5670         case ETH_SS_STATS:
5671                 memcpy(data, &ethtool_stats_keys,
5672                        sizeof(ethtool_stats_keys));
5673         }
5674 }
5675 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5676 {
5677         return (S2IO_STAT_LEN);
5678 }
5679
5680 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5681 {
5682         if (data)
5683                 dev->features |= NETIF_F_IP_CSUM;
5684         else
5685                 dev->features &= ~NETIF_F_IP_CSUM;
5686
5687         return 0;
5688 }
5689
5690 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5691 {
5692         return (dev->features & NETIF_F_TSO) != 0;
5693 }
5694 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5695 {
5696         if (data)
5697                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5698         else
5699                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5700
5701         return 0;
5702 }
5703
5704 static const struct ethtool_ops netdev_ethtool_ops = {
5705         .get_settings = s2io_ethtool_gset,
5706         .set_settings = s2io_ethtool_sset,
5707         .get_drvinfo = s2io_ethtool_gdrvinfo,
5708         .get_regs_len = s2io_ethtool_get_regs_len,
5709         .get_regs = s2io_ethtool_gregs,
5710         .get_link = ethtool_op_get_link,
5711         .get_eeprom_len = s2io_get_eeprom_len,
5712         .get_eeprom = s2io_ethtool_geeprom,
5713         .set_eeprom = s2io_ethtool_seeprom,
5714         .get_pauseparam = s2io_ethtool_getpause_data,
5715         .set_pauseparam = s2io_ethtool_setpause_data,
5716         .get_rx_csum = s2io_ethtool_get_rx_csum,
5717         .set_rx_csum = s2io_ethtool_set_rx_csum,
5718         .get_tx_csum = ethtool_op_get_tx_csum,
5719         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5720         .get_sg = ethtool_op_get_sg,
5721         .set_sg = ethtool_op_set_sg,
5722         .get_tso = s2io_ethtool_op_get_tso,
5723         .set_tso = s2io_ethtool_op_set_tso,
5724         .get_ufo = ethtool_op_get_ufo,
5725         .set_ufo = ethtool_op_set_ufo,
5726         .self_test_count = s2io_ethtool_self_test_count,
5727         .self_test = s2io_ethtool_test,
5728         .get_strings = s2io_ethtool_get_strings,
5729         .phys_id = s2io_ethtool_idnic,
5730         .get_stats_count = s2io_ethtool_get_stats_count,
5731         .get_ethtool_stats = s2io_get_ethtool_stats
5732 };
5733
5734 /**
5735  *  s2io_ioctl - Entry point for the Ioctl
5736  *  @dev :  Device pointer.
5737  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5738  *  a proprietary structure used to pass information to the driver.
5739  *  @cmd :  This is used to distinguish between the different commands that
5740  *  can be passed to the IOCTL functions.
5741  *  Description:
5742  *  Currently there are no special functionality supported in IOCTL, hence
5743  *  function always return EOPNOTSUPPORTED
5744  */
5745
5746 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5747 {
5748         return -EOPNOTSUPP;
5749 }
5750
5751 /**
5752  *  s2io_change_mtu - entry point to change MTU size for the device.
5753  *   @dev : device pointer.
5754  *   @new_mtu : the new MTU size for the device.
5755  *   Description: A driver entry point to change MTU size for the device.
5756  *   Before changing the MTU the device must be stopped.
5757  *  Return value:
5758  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5759  *   file on failure.
5760  */
5761
5762 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5763 {
5764         nic_t *sp = dev->priv;
5765
5766         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5767                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5768                           dev->name);
5769                 return -EPERM;
5770         }
5771
5772         dev->mtu = new_mtu;
5773         if (netif_running(dev)) {
5774                 s2io_card_down(sp);
5775                 netif_stop_queue(dev);
5776                 if (s2io_card_up(sp)) {
5777                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5778                                   __FUNCTION__);
5779                 }
5780                 if (netif_queue_stopped(dev))
5781                         netif_wake_queue(dev);
5782         } else { /* Device is down */
5783                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5784                 u64 val64 = new_mtu;
5785
5786                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5787         }
5788
5789         return 0;
5790 }
5791
5792 /**
5793  *  s2io_tasklet - Bottom half of the ISR.
5794  *  @dev_adr : address of the device structure in dma_addr_t format.
5795  *  Description:
5796  *  This is the tasklet or the bottom half of the ISR. This is
5797  *  an extension of the ISR which is scheduled by the scheduler to be run
5798  *  when the load on the CPU is low. All low priority tasks of the ISR can
5799  *  be pushed into the tasklet. For now the tasklet is used only to
5800  *  replenish the Rx buffers in the Rx buffer descriptors.
5801  *  Return value:
5802  *  void.
5803  */
5804
5805 static void s2io_tasklet(unsigned long dev_addr)
5806 {
5807         struct net_device *dev = (struct net_device *) dev_addr;
5808         nic_t *sp = dev->priv;
5809         int i, ret;
5810         mac_info_t *mac_control;
5811         struct config_param *config;
5812
5813         mac_control = &sp->mac_control;
5814         config = &sp->config;
5815
5816         if (!TASKLET_IN_USE) {
5817                 for (i = 0; i < config->rx_ring_num; i++) {
5818                         ret = fill_rx_buffers(sp, i);
5819                         if (ret == -ENOMEM) {
5820                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5821                                           dev->name);
5822                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5823                                 break;
5824                         } else if (ret == -EFILL) {
5825                                 DBG_PRINT(ERR_DBG,
5826                                           "%s: Rx Ring %d is full\n",
5827                                           dev->name, i);
5828                                 break;
5829                         }
5830                 }
5831                 clear_bit(0, (&sp->tasklet_status));
5832         }
5833 }
5834
5835 /**
5836  * s2io_set_link - Set the LInk status
5837  * @data: long pointer to device private structue
5838  * Description: Sets the link status for the adapter
5839  */
5840
5841 static void s2io_set_link(struct work_struct *work)
5842 {
5843         nic_t *nic = container_of(work, nic_t, set_link_task);
5844         struct net_device *dev = nic->dev;
5845         XENA_dev_config_t __iomem *bar0 = nic->bar0;
5846         register u64 val64;
5847         u16 subid;
5848
5849         if (test_and_set_bit(0, &(nic->link_state))) {
5850                 /* The card is being reset, no point doing anything */
5851                 return;
5852         }
5853
5854         subid = nic->pdev->subsystem_device;
5855         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5856                 /*
5857                  * Allow a small delay for the NICs self initiated
5858                  * cleanup to complete.
5859                  */
5860                 msleep(100);
5861         }
5862
5863         val64 = readq(&bar0->adapter_status);
5864         if (LINK_IS_UP(val64)) {
5865                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5866                         if (verify_xena_quiescence(nic)) {
5867                                 val64 = readq(&bar0->adapter_control);
5868                                 val64 |= ADAPTER_CNTL_EN;
5869                                 writeq(val64, &bar0->adapter_control);
5870                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5871                                         nic->device_type, subid)) {
5872                                         val64 = readq(&bar0->gpio_control);
5873                                         val64 |= GPIO_CTRL_GPIO_0;
5874                                         writeq(val64, &bar0->gpio_control);
5875                                         val64 = readq(&bar0->gpio_control);
5876                                 } else {
5877                                         val64 |= ADAPTER_LED_ON;
5878                                         writeq(val64, &bar0->adapter_control);
5879                                 }
5880                                 nic->device_enabled_once = TRUE;
5881                         } else {
5882                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5883                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5884                                 netif_stop_queue(dev);
5885                         }
5886                 }
5887                 val64 = readq(&bar0->adapter_status);
5888                 if (!LINK_IS_UP(val64)) {
5889                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5890                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
5891                         DBG_PRINT(ERR_DBG, "device \n");
5892                 } else
5893                         s2io_link(nic, LINK_UP);
5894         } else {
5895                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5896                                                       subid)) {
5897                         val64 = readq(&bar0->gpio_control);
5898                         val64 &= ~GPIO_CTRL_GPIO_0;
5899                         writeq(val64, &bar0->gpio_control);
5900                         val64 = readq(&bar0->gpio_control);
5901                 }
5902                 s2io_link(nic, LINK_DOWN);
5903         }
5904         clear_bit(0, &(nic->link_state));
5905 }
5906
5907 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
5908                            struct sk_buff **skb, u64 *temp0, u64 *temp1,
5909                            u64 *temp2, int size)
5910 {
5911         struct net_device *dev = sp->dev;
5912         struct sk_buff *frag_list;
5913
5914         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5915                 /* allocate skb */
5916                 if (*skb) {
5917                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5918                         /*
5919                          * As Rx frame are not going to be processed,
5920                          * using same mapped address for the Rxd
5921                          * buffer pointer
5922                          */
5923                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
5924                 } else {
5925                         *skb = dev_alloc_skb(size);
5926                         if (!(*skb)) {
5927                                 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5928                                 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5929                                 return -ENOMEM ;
5930                         }
5931                         /* storing the mapped addr in a temp variable
5932                          * such it will be used for next rxd whose
5933                          * Host Control is NULL
5934                          */
5935                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
5936                                 pci_map_single( sp->pdev, (*skb)->data,
5937                                         size - NET_IP_ALIGN,
5938                                         PCI_DMA_FROMDEVICE);
5939                         rxdp->Host_Control = (unsigned long) (*skb);
5940                 }
5941         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5942                 /* Two buffer Mode */
5943                 if (*skb) {
5944                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
5945                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
5946                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
5947                 } else {
5948                         *skb = dev_alloc_skb(size);
5949                         if (!(*skb)) {
5950                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5951                                         dev->name);
5952                                 return -ENOMEM;
5953                         }
5954                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
5955                                 pci_map_single(sp->pdev, (*skb)->data,
5956                                                dev->mtu + 4,
5957                                                PCI_DMA_FROMDEVICE);
5958                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
5959                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5960                                                 PCI_DMA_FROMDEVICE);
5961                         rxdp->Host_Control = (unsigned long) (*skb);
5962
5963                         /* Buffer-1 will be dummy buffer not used */
5964                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
5965                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5966                                                PCI_DMA_FROMDEVICE);
5967                 }
5968         } else if ((rxdp->Host_Control == 0)) {
5969                 /* Three buffer mode */
5970                 if (*skb) {
5971                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
5972                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
5973                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
5974                 } else {
5975                         *skb = dev_alloc_skb(size);
5976                         if (!(*skb)) {
5977                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5978                                           dev->name);
5979                                 return -ENOMEM;
5980                         }
5981                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
5982                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
5983                                                PCI_DMA_FROMDEVICE);
5984                         /* Buffer-1 receives L3/L4 headers */
5985                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
5986                                 pci_map_single( sp->pdev, (*skb)->data,
5987                                                 l3l4hdr_size + 4,
5988                                                 PCI_DMA_FROMDEVICE);
5989                         /*
5990                          * skb_shinfo(skb)->frag_list will have L4
5991                          * data payload
5992                          */
5993                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
5994                                                                    ALIGN_SIZE);
5995                         if (skb_shinfo(*skb)->frag_list == NULL) {
5996                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
5997                                           failed\n ", dev->name);
5998                                 return -ENOMEM ;
5999                         }
6000                         frag_list = skb_shinfo(*skb)->frag_list;
6001                         frag_list->next = NULL;
6002                         /*
6003                          * Buffer-2 receives L4 data payload
6004                          */
6005                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6006                                 pci_map_single( sp->pdev, frag_list->data,
6007                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6008                 }
6009         }
6010         return 0;
6011 }
6012 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6013 {
6014         struct net_device *dev = sp->dev;
6015         if (sp->rxd_mode == RXD_MODE_1) {
6016                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6017         } else if (sp->rxd_mode == RXD_MODE_3B) {
6018                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6019                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6020                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6021         } else {
6022                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6023                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6024                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6025         }
6026 }
6027
6028 static  int rxd_owner_bit_reset(nic_t *sp)
6029 {
6030         int i, j, k, blk_cnt = 0, size;
6031         mac_info_t * mac_control = &sp->mac_control;
6032         struct config_param *config = &sp->config;
6033         struct net_device *dev = sp->dev;
6034         RxD_t *rxdp = NULL;
6035         struct sk_buff *skb = NULL;
6036         buffAdd_t *ba = NULL;
6037         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6038
6039         /* Calculate the size based on ring mode */
6040         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6041                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6042         if (sp->rxd_mode == RXD_MODE_1)
6043                 size += NET_IP_ALIGN;
6044         else if (sp->rxd_mode == RXD_MODE_3B)
6045                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6046         else
6047                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6048
6049         for (i = 0; i < config->rx_ring_num; i++) {
6050                 blk_cnt = config->rx_cfg[i].num_rxd /
6051                         (rxd_count[sp->rxd_mode] +1);
6052
6053                 for (j = 0; j < blk_cnt; j++) {
6054                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6055                                 rxdp = mac_control->rings[i].
6056                                         rx_blocks[j].rxds[k].virt_addr;
6057                                 if(sp->rxd_mode >= RXD_MODE_3A)
6058                                         ba = &mac_control->rings[i].ba[j][k];
6059                                 set_rxd_buffer_pointer(sp, rxdp, ba,
6060                                                        &skb,(u64 *)&temp0_64,
6061                                                        (u64 *)&temp1_64,
6062                                                        (u64 *)&temp2_64, size);
6063
6064                                 set_rxd_buffer_size(sp, rxdp, size);
6065                                 wmb();
6066                                 /* flip the Ownership bit to Hardware */
6067                                 rxdp->Control_1 |= RXD_OWN_XENA;
6068                         }
6069                 }
6070         }
6071         return 0;
6072
6073 }
6074
6075 static int s2io_add_isr(nic_t * sp)
6076 {
6077         int ret = 0;
6078         struct net_device *dev = sp->dev;
6079         int err = 0;
6080
6081         if (sp->intr_type == MSI)
6082                 ret = s2io_enable_msi(sp);
6083         else if (sp->intr_type == MSI_X)
6084                 ret = s2io_enable_msi_x(sp);
6085         if (ret) {
6086                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6087                 sp->intr_type = INTA;
6088         }
6089
6090         /* Store the values of the MSIX table in the nic_t structure */
6091         store_xmsi_data(sp);
6092
6093         /* After proper initialization of H/W, register ISR */
6094         if (sp->intr_type == MSI) {
6095                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6096                         IRQF_SHARED, sp->name, dev);
6097                 if (err) {
6098                         pci_disable_msi(sp->pdev);
6099                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6100                                   dev->name);
6101                         return -1;
6102                 }
6103         }
6104         if (sp->intr_type == MSI_X) {
6105                 int i;
6106
6107                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6108                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6109                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6110                                         dev->name, i);
6111                                 err = request_irq(sp->entries[i].vector,
6112                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6113                                                   sp->s2io_entries[i].arg);
6114                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6115                                 (unsigned long long)sp->msix_info[i].addr);
6116                         } else {
6117                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6118                                         dev->name, i);
6119                                 err = request_irq(sp->entries[i].vector,
6120                                           s2io_msix_ring_handle, 0, sp->desc[i],
6121                                                   sp->s2io_entries[i].arg);
6122                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6123                                 (unsigned long long)sp->msix_info[i].addr);
6124                         }
6125                         if (err) {
6126                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6127                                           "failed\n", dev->name, i);
6128                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6129                                 return -1;
6130                         }
6131                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6132                 }
6133         }
6134         if (sp->intr_type == INTA) {
6135                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6136                                 sp->name, dev);
6137                 if (err) {
6138                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6139                                   dev->name);
6140                         return -1;
6141                 }
6142         }
6143         return 0;
6144 }
6145 static void s2io_rem_isr(nic_t * sp)
6146 {
6147         int cnt = 0;
6148         struct net_device *dev = sp->dev;
6149
6150         if (sp->intr_type == MSI_X) {
6151                 int i;
6152                 u16 msi_control;
6153
6154                 for (i=1; (sp->s2io_entries[i].in_use ==
6155                         MSIX_REGISTERED_SUCCESS); i++) {
6156                         int vector = sp->entries[i].vector;
6157                         void *arg = sp->s2io_entries[i].arg;
6158
6159                         free_irq(vector, arg);
6160                 }
6161                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6162                 msi_control &= 0xFFFE; /* Disable MSI */
6163                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6164
6165                 pci_disable_msix(sp->pdev);
6166         } else {
6167                 free_irq(sp->pdev->irq, dev);
6168                 if (sp->intr_type == MSI) {
6169                         u16 val;
6170
6171                         pci_disable_msi(sp->pdev);
6172                         pci_read_config_word(sp->pdev, 0x4c, &val);
6173                         val ^= 0x1;
6174                         pci_write_config_word(sp->pdev, 0x4c, val);
6175                 }
6176         }
6177         /* Waiting till all Interrupt handlers are complete */
6178         cnt = 0;
6179         do {
6180                 msleep(10);
6181                 if (!atomic_read(&sp->isr_cnt))
6182                         break;
6183                 cnt++;
6184         } while(cnt < 5);
6185 }
6186
6187 static void s2io_card_down(nic_t * sp)
6188 {
6189         int cnt = 0;
6190         XENA_dev_config_t __iomem *bar0 = sp->bar0;
6191         unsigned long flags;
6192         register u64 val64 = 0;
6193
6194         del_timer_sync(&sp->alarm_timer);
6195         /* If s2io_set_link task is executing, wait till it completes. */
6196         while (test_and_set_bit(0, &(sp->link_state))) {
6197                 msleep(50);
6198         }
6199         atomic_set(&sp->card_state, CARD_DOWN);
6200
6201         /* disable Tx and Rx traffic on the NIC */
6202         stop_nic(sp);
6203
6204         s2io_rem_isr(sp);
6205
6206         /* Kill tasklet. */
6207         tasklet_kill(&sp->task);
6208
6209         /* Check if the device is Quiescent and then Reset the NIC */
6210         do {
6211                 /* As per the HW requirement we need to replenish the
6212                  * receive buffer to avoid the ring bump. Since there is
6213                  * no intention of processing the Rx frame at this pointwe are
6214                  * just settting the ownership bit of rxd in Each Rx
6215                  * ring to HW and set the appropriate buffer size
6216                  * based on the ring mode
6217                  */
6218                 rxd_owner_bit_reset(sp);
6219
6220                 val64 = readq(&bar0->adapter_status);
6221                 if (verify_xena_quiescence(sp)) {
6222                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6223                         break;
6224                 }
6225
6226                 msleep(50);
6227                 cnt++;
6228                 if (cnt == 10) {
6229                         DBG_PRINT(ERR_DBG,
6230                                   "s2io_close:Device not Quiescent ");
6231                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6232                                   (unsigned long long) val64);
6233                         break;
6234                 }
6235         } while (1);
6236         s2io_reset(sp);
6237
6238         spin_lock_irqsave(&sp->tx_lock, flags);
6239         /* Free all Tx buffers */
6240         free_tx_buffers(sp);
6241         spin_unlock_irqrestore(&sp->tx_lock, flags);
6242
6243         /* Free all Rx buffers */
6244         spin_lock_irqsave(&sp->rx_lock, flags);
6245         free_rx_buffers(sp);
6246         spin_unlock_irqrestore(&sp->rx_lock, flags);
6247
6248         clear_bit(0, &(sp->link_state));
6249 }
6250
6251 static int s2io_card_up(nic_t * sp)
6252 {
6253         int i, ret = 0;
6254         mac_info_t *mac_control;
6255         struct config_param *config;
6256         struct net_device *dev = (struct net_device *) sp->dev;
6257         u16 interruptible;
6258
6259         /* Initialize the H/W I/O registers */
6260         if (init_nic(sp) != 0) {
6261                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6262                           dev->name);
6263                 s2io_reset(sp);
6264                 return -ENODEV;
6265         }
6266
6267         /*
6268          * Initializing the Rx buffers. For now we are considering only 1
6269          * Rx ring and initializing buffers into 30 Rx blocks
6270          */
6271         mac_control = &sp->mac_control;
6272         config = &sp->config;
6273
6274         for (i = 0; i < config->rx_ring_num; i++) {
6275                 if ((ret = fill_rx_buffers(sp, i))) {
6276                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6277                                   dev->name);
6278                         s2io_reset(sp);
6279                         free_rx_buffers(sp);
6280                         return -ENOMEM;
6281                 }
6282                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6283                           atomic_read(&sp->rx_bufs_left[i]));
6284         }
6285         /* Maintain the state prior to the open */
6286         if (sp->promisc_flg)
6287                 sp->promisc_flg = 0;
6288         if (sp->m_cast_flg) {
6289                 sp->m_cast_flg = 0;
6290                 sp->all_multi_pos= 0;
6291         }
6292
6293         /* Setting its receive mode */
6294         s2io_set_multicast(dev);
6295
6296         if (sp->lro) {
6297                 /* Initialize max aggregatable pkts per session based on MTU */
6298                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6299                 /* Check if we can use(if specified) user provided value */
6300                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6301                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6302         }
6303
6304         /* Enable Rx Traffic and interrupts on the NIC */
6305         if (start_nic(sp)) {
6306                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6307                 s2io_reset(sp);
6308                 free_rx_buffers(sp);
6309                 return -ENODEV;
6310         }
6311
6312         /* Add interrupt service routine */
6313         if (s2io_add_isr(sp) != 0) {
6314                 if (sp->intr_type == MSI_X)
6315                         s2io_rem_isr(sp);
6316                 s2io_reset(sp);
6317                 free_rx_buffers(sp);
6318                 return -ENODEV;
6319         }
6320
6321         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6322
6323         /* Enable tasklet for the device */
6324         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6325
6326         /*  Enable select interrupts */
6327         if (sp->intr_type != INTA)
6328                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6329         else {
6330                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6331                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6332                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6333                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6334         }
6335
6336
6337         atomic_set(&sp->card_state, CARD_UP);
6338         return 0;
6339 }
6340
6341 /**
6342  * s2io_restart_nic - Resets the NIC.
6343  * @data : long pointer to the device private structure
6344  * Description:
6345  * This function is scheduled to be run by the s2io_tx_watchdog
6346  * function after 0.5 secs to reset the NIC. The idea is to reduce
6347  * the run time of the watch dog routine which is run holding a
6348  * spin lock.
6349  */
6350
6351 static void s2io_restart_nic(struct work_struct *work)
6352 {
6353         nic_t *sp = container_of(work, nic_t, rst_timer_task);
6354         struct net_device *dev = sp->dev;
6355
6356         s2io_card_down(sp);
6357         if (s2io_card_up(sp)) {
6358                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6359                           dev->name);
6360         }
6361         netif_wake_queue(dev);
6362         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6363                   dev->name);
6364
6365 }
6366
6367 /**
6368  *  s2io_tx_watchdog - Watchdog for transmit side.
6369  *  @dev : Pointer to net device structure
6370  *  Description:
6371  *  This function is triggered if the Tx Queue is stopped
6372  *  for a pre-defined amount of time when the Interface is still up.
6373  *  If the Interface is jammed in such a situation, the hardware is
6374  *  reset (by s2io_close) and restarted again (by s2io_open) to
6375  *  overcome any problem that might have been caused in the hardware.
6376  *  Return value:
6377  *  void
6378  */
6379
6380 static void s2io_tx_watchdog(struct net_device *dev)
6381 {
6382         nic_t *sp = dev->priv;
6383
6384         if (netif_carrier_ok(dev)) {
6385                 schedule_work(&sp->rst_timer_task);
6386                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6387         }
6388 }
6389
6390 /**
6391  *   rx_osm_handler - To perform some OS related operations on SKB.
6392  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6393  *   @skb : the socket buffer pointer.
6394  *   @len : length of the packet
6395  *   @cksum : FCS checksum of the frame.
6396  *   @ring_no : the ring from which this RxD was extracted.
6397  *   Description:
6398  *   This function is called by the Rx interrupt serivce routine to perform
6399  *   some OS related operations on the SKB before passing it to the upper
6400  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6401  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6402  *   to the upper layer. If the checksum is wrong, it increments the Rx
6403  *   packet error count, frees the SKB and returns error.
6404  *   Return value:
6405  *   SUCCESS on success and -1 on failure.
6406  */
6407 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6408 {
6409         nic_t *sp = ring_data->nic;
6410         struct net_device *dev = (struct net_device *) sp->dev;
6411         struct sk_buff *skb = (struct sk_buff *)
6412                 ((unsigned long) rxdp->Host_Control);
6413         int ring_no = ring_data->ring_no;
6414         u16 l3_csum, l4_csum;
6415         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6416         lro_t *lro;
6417
6418         skb->dev = dev;
6419
6420         if (err) {
6421                 /* Check for parity error */
6422                 if (err & 0x1) {
6423                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6424                 }
6425
6426                 /*
6427                 * Drop the packet if bad transfer code. Exception being
6428                 * 0x5, which could be due to unsupported IPv6 extension header.
6429                 * In this case, we let stack handle the packet.
6430                 * Note that in this case, since checksum will be incorrect,
6431                 * stack will validate the same.
6432                 */
6433                 if (err && ((err >> 48) != 0x5)) {
6434                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6435                                 dev->name, err);
6436                         sp->stats.rx_crc_errors++;
6437                         dev_kfree_skb(skb);
6438                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6439                         rxdp->Host_Control = 0;
6440                         return 0;
6441                 }
6442         }
6443
6444         /* Updating statistics */
6445         rxdp->Host_Control = 0;
6446         sp->rx_pkt_count++;
6447         sp->stats.rx_packets++;
6448         if (sp->rxd_mode == RXD_MODE_1) {
6449                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6450
6451                 sp->stats.rx_bytes += len;
6452                 skb_put(skb, len);
6453
6454         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6455                 int get_block = ring_data->rx_curr_get_info.block_index;
6456                 int get_off = ring_data->rx_curr_get_info.offset;
6457                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6458                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6459                 unsigned char *buff = skb_push(skb, buf0_len);
6460
6461                 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6462                 sp->stats.rx_bytes += buf0_len + buf2_len;
6463                 memcpy(buff, ba->ba_0, buf0_len);
6464
6465                 if (sp->rxd_mode == RXD_MODE_3A) {
6466                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6467
6468                         skb_put(skb, buf1_len);
6469                         skb->len += buf2_len;
6470                         skb->data_len += buf2_len;
6471                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6472                         sp->stats.rx_bytes += buf1_len;
6473
6474                 } else
6475                         skb_put(skb, buf2_len);
6476         }
6477
6478         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6479             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6480             (sp->rx_csum)) {
6481                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6482                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6483                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6484                         /*
6485                          * NIC verifies if the Checksum of the received
6486                          * frame is Ok or not and accordingly returns
6487                          * a flag in the RxD.
6488                          */
6489                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6490                         if (sp->lro) {
6491                                 u32 tcp_len;
6492                                 u8 *tcp;
6493                                 int ret = 0;
6494
6495                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6496                                                 &tcp_len, &lro, rxdp, sp);
6497                                 switch (ret) {
6498                                         case 3: /* Begin anew */
6499                                                 lro->parent = skb;
6500                                                 goto aggregate;
6501                                         case 1: /* Aggregate */
6502                                         {
6503                                                 lro_append_pkt(sp, lro,
6504                                                         skb, tcp_len);
6505                                                 goto aggregate;
6506                                         }
6507                                         case 4: /* Flush session */
6508                                         {
6509                                                 lro_append_pkt(sp, lro,
6510                                                         skb, tcp_len);
6511                                                 queue_rx_frame(lro->parent);
6512                                                 clear_lro_session(lro);
6513                                                 sp->mac_control.stats_info->
6514                                                     sw_stat.flush_max_pkts++;
6515                                                 goto aggregate;
6516                                         }
6517                                         case 2: /* Flush both */
6518                                                 lro->parent->data_len =
6519                                                         lro->frags_len;
6520                                                 sp->mac_control.stats_info->
6521                                                      sw_stat.sending_both++;
6522                                                 queue_rx_frame(lro->parent);
6523                                                 clear_lro_session(lro);
6524                                                 goto send_up;
6525                                         case 0: /* sessions exceeded */
6526                                         case -1: /* non-TCP or not
6527                                                   * L2 aggregatable
6528                                                   */
6529                                         case 5: /*
6530                                                  * First pkt in session not
6531                                                  * L3/L4 aggregatable
6532                                                  */
6533                                                 break;
6534                                         default:
6535                                                 DBG_PRINT(ERR_DBG,
6536                                                         "%s: Samadhana!!\n",
6537                                                          __FUNCTION__);
6538                                                 BUG();
6539                                 }
6540                         }
6541                 } else {
6542                         /*
6543                          * Packet with erroneous checksum, let the
6544                          * upper layers deal with it.
6545                          */
6546                         skb->ip_summed = CHECKSUM_NONE;
6547                 }
6548         } else {
6549                 skb->ip_summed = CHECKSUM_NONE;
6550         }
6551
6552         if (!sp->lro) {
6553                 skb->protocol = eth_type_trans(skb, dev);
6554                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6555                         /* Queueing the vlan frame to the upper layer */
6556                         if (napi)
6557                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6558                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6559                         else
6560                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6561                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6562                 } else {
6563                         if (napi)
6564                                 netif_receive_skb(skb);
6565                         else
6566                                 netif_rx(skb);
6567                 }
6568         } else {
6569 send_up:
6570                 queue_rx_frame(skb);
6571         }
6572         dev->last_rx = jiffies;
6573 aggregate:
6574         atomic_dec(&sp->rx_bufs_left[ring_no]);
6575         return SUCCESS;
6576 }
6577
6578 /**
6579  *  s2io_link - stops/starts the Tx queue.
6580  *  @sp : private member of the device structure, which is a pointer to the
6581  *  s2io_nic structure.
6582  *  @link : inidicates whether link is UP/DOWN.
6583  *  Description:
6584  *  This function stops/starts the Tx queue depending on whether the link
6585  *  status of the NIC is is down or up. This is called by the Alarm
6586  *  interrupt handler whenever a link change interrupt comes up.
6587  *  Return value:
6588  *  void.
6589  */
6590
6591 static void s2io_link(nic_t * sp, int link)
6592 {
6593         struct net_device *dev = (struct net_device *) sp->dev;
6594
6595         if (link != sp->last_link_state) {
6596                 if (link == LINK_DOWN) {
6597                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6598                         netif_carrier_off(dev);
6599                 } else {
6600                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6601                         netif_carrier_on(dev);
6602                 }
6603         }
6604         sp->last_link_state = link;
6605 }
6606
6607 /**
6608  *  get_xena_rev_id - to identify revision ID of xena.
6609  *  @pdev : PCI Dev structure
6610  *  Description:
6611  *  Function to identify the Revision ID of xena.
6612  *  Return value:
6613  *  returns the revision ID of the device.
6614  */
6615
6616 static int get_xena_rev_id(struct pci_dev *pdev)
6617 {
6618         u8 id = 0;
6619         int ret;
6620         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6621         return id;
6622 }
6623
6624 /**
6625  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6626  *  @sp : private member of the device structure, which is a pointer to the
6627  *  s2io_nic structure.
6628  *  Description:
6629  *  This function initializes a few of the PCI and PCI-X configuration registers
6630  *  with recommended values.
6631  *  Return value:
6632  *  void
6633  */
6634
6635 static void s2io_init_pci(nic_t * sp)
6636 {
6637         u16 pci_cmd = 0, pcix_cmd = 0;
6638
6639         /* Enable Data Parity Error Recovery in PCI-X command register. */
6640         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6641                              &(pcix_cmd));
6642         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6643                               (pcix_cmd | 1));
6644         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6645                              &(pcix_cmd));
6646
6647         /* Set the PErr Response bit in PCI command register. */
6648         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6649         pci_write_config_word(sp->pdev, PCI_COMMAND,
6650                               (pci_cmd | PCI_COMMAND_PARITY));
6651         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6652 }
6653
6654 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6655 {
6656         if ( tx_fifo_num > 8) {
6657                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6658                          "supported\n");
6659                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6660                 tx_fifo_num = 8;
6661         }
6662         if ( rx_ring_num > 8) {
6663                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6664                          "supported\n");
6665                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6666                 rx_ring_num = 8;
6667         }
6668         if (*dev_intr_type != INTA)
6669                 napi = 0;
6670
6671 #ifndef CONFIG_PCI_MSI
6672         if (*dev_intr_type != INTA) {
6673                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6674                           "MSI/MSI-X. Defaulting to INTA\n");
6675                 *dev_intr_type = INTA;
6676         }
6677 #else
6678         if (*dev_intr_type > MSI_X) {
6679                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6680                           "Defaulting to INTA\n");
6681                 *dev_intr_type = INTA;
6682         }
6683 #endif
6684         if ((*dev_intr_type == MSI_X) &&
6685                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6686                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6687                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6688                                         "Defaulting to INTA\n");
6689                 *dev_intr_type = INTA;
6690         }
6691         if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6692                 napi = 0;
6693         if (rx_ring_mode > 3) {
6694                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6695                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6696                 rx_ring_mode = 3;
6697         }
6698         return SUCCESS;
6699 }
6700
6701 /**
6702  *  s2io_init_nic - Initialization of the adapter .
6703  *  @pdev : structure containing the PCI related information of the device.
6704  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6705  *  Description:
6706  *  The function initializes an adapter identified by the pci_dec structure.
6707  *  All OS related initialization including memory and device structure and
6708  *  initlaization of the device private variable is done. Also the swapper
6709  *  control register is initialized to enable read and write into the I/O
6710  *  registers of the device.
6711  *  Return value:
6712  *  returns 0 on success and negative on failure.
6713  */
6714
6715 static int __devinit
6716 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6717 {
6718         nic_t *sp;
6719         struct net_device *dev;
6720         int i, j, ret;
6721         int dma_flag = FALSE;
6722         u32 mac_up, mac_down;
6723         u64 val64 = 0, tmp64 = 0;
6724         XENA_dev_config_t __iomem *bar0 = NULL;
6725         u16 subid;
6726         mac_info_t *mac_control;
6727         struct config_param *config;
6728         int mode;
6729         u8 dev_intr_type = intr_type;
6730
6731         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6732                 return ret;
6733
6734         if ((ret = pci_enable_device(pdev))) {
6735                 DBG_PRINT(ERR_DBG,
6736                           "s2io_init_nic: pci_enable_device failed\n");
6737                 return ret;
6738         }
6739
6740         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6741                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6742                 dma_flag = TRUE;
6743                 if (pci_set_consistent_dma_mask
6744                     (pdev, DMA_64BIT_MASK)) {
6745                         DBG_PRINT(ERR_DBG,
6746                                   "Unable to obtain 64bit DMA for \
6747                                         consistent allocations\n");
6748                         pci_disable_device(pdev);
6749                         return -ENOMEM;
6750                 }
6751         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6752                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6753         } else {
6754                 pci_disable_device(pdev);
6755                 return -ENOMEM;
6756         }
6757         if (dev_intr_type != MSI_X) {
6758                 if (pci_request_regions(pdev, s2io_driver_name)) {
6759                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6760                         pci_disable_device(pdev);
6761                         return -ENODEV;
6762                 }
6763         }
6764         else {
6765                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6766                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6767                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6768                         pci_disable_device(pdev);
6769                         return -ENODEV;
6770                 }
6771                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6772                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6773                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6774                         release_mem_region(pci_resource_start(pdev, 0),
6775                                    pci_resource_len(pdev, 0));
6776                         pci_disable_device(pdev);
6777                         return -ENODEV;
6778                 }
6779         }
6780
6781         dev = alloc_etherdev(sizeof(nic_t));
6782         if (dev == NULL) {
6783                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6784                 pci_disable_device(pdev);
6785                 pci_release_regions(pdev);
6786                 return -ENODEV;
6787         }
6788
6789         pci_set_master(pdev);
6790         pci_set_drvdata(pdev, dev);
6791         SET_MODULE_OWNER(dev);
6792         SET_NETDEV_DEV(dev, &pdev->dev);
6793
6794         /*  Private member variable initialized to s2io NIC structure */
6795         sp = dev->priv;
6796         memset(sp, 0, sizeof(nic_t));
6797         sp->dev = dev;
6798         sp->pdev = pdev;
6799         sp->high_dma_flag = dma_flag;
6800         sp->device_enabled_once = FALSE;
6801         if (rx_ring_mode == 1)
6802                 sp->rxd_mode = RXD_MODE_1;
6803         if (rx_ring_mode == 2)
6804                 sp->rxd_mode = RXD_MODE_3B;
6805         if (rx_ring_mode == 3)
6806                 sp->rxd_mode = RXD_MODE_3A;
6807
6808         sp->intr_type = dev_intr_type;
6809
6810         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6811                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6812                 sp->device_type = XFRAME_II_DEVICE;
6813         else
6814                 sp->device_type = XFRAME_I_DEVICE;
6815
6816         sp->lro = lro;
6817
6818         /* Initialize some PCI/PCI-X fields of the NIC. */
6819         s2io_init_pci(sp);
6820
6821         /*
6822          * Setting the device configuration parameters.
6823          * Most of these parameters can be specified by the user during
6824          * module insertion as they are module loadable parameters. If
6825          * these parameters are not not specified during load time, they
6826          * are initialized with default values.
6827          */
6828         mac_control = &sp->mac_control;
6829         config = &sp->config;
6830
6831         /* Tx side parameters. */
6832         config->tx_fifo_num = tx_fifo_num;
6833         for (i = 0; i < MAX_TX_FIFOS; i++) {
6834                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6835                 config->tx_cfg[i].fifo_priority = i;
6836         }
6837
6838         /* mapping the QoS priority to the configured fifos */
6839         for (i = 0; i < MAX_TX_FIFOS; i++)
6840                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6841
6842         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6843         for (i = 0; i < config->tx_fifo_num; i++) {
6844                 config->tx_cfg[i].f_no_snoop =
6845                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6846                 if (config->tx_cfg[i].fifo_len < 65) {
6847                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6848                         break;
6849                 }
6850         }
6851         /* + 2 because one Txd for skb->data and one Txd for UFO */
6852         config->max_txds = MAX_SKB_FRAGS + 2;
6853
6854         /* Rx side parameters. */
6855         config->rx_ring_num = rx_ring_num;
6856         for (i = 0; i < MAX_RX_RINGS; i++) {
6857                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6858                     (rxd_count[sp->rxd_mode] + 1);
6859                 config->rx_cfg[i].ring_priority = i;
6860         }
6861
6862         for (i = 0; i < rx_ring_num; i++) {
6863                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6864                 config->rx_cfg[i].f_no_snoop =
6865                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6866         }
6867
6868         /*  Setting Mac Control parameters */
6869         mac_control->rmac_pause_time = rmac_pause_time;
6870         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6871         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6872
6873
6874         /* Initialize Ring buffer parameters. */
6875         for (i = 0; i < config->rx_ring_num; i++)
6876                 atomic_set(&sp->rx_bufs_left[i], 0);
6877
6878         /* Initialize the number of ISRs currently running */
6879         atomic_set(&sp->isr_cnt, 0);
6880
6881         /*  initialize the shared memory used by the NIC and the host */
6882         if (init_shared_mem(sp)) {
6883                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6884                           dev->name);
6885                 ret = -ENOMEM;
6886                 goto mem_alloc_failed;
6887         }
6888
6889         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6890                                      pci_resource_len(pdev, 0));
6891         if (!sp->bar0) {
6892                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
6893                           dev->name);
6894                 ret = -ENOMEM;
6895                 goto bar0_remap_failed;
6896         }
6897
6898         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6899                                      pci_resource_len(pdev, 2));
6900         if (!sp->bar1) {
6901                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
6902                           dev->name);
6903                 ret = -ENOMEM;
6904                 goto bar1_remap_failed;
6905         }
6906
6907         dev->irq = pdev->irq;
6908         dev->base_addr = (unsigned long) sp->bar0;
6909
6910         /* Initializing the BAR1 address as the start of the FIFO pointer. */
6911         for (j = 0; j < MAX_TX_FIFOS; j++) {
6912                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6913                     (sp->bar1 + (j * 0x00020000));
6914         }
6915
6916         /*  Driver entry points */
6917         dev->open = &s2io_open;
6918         dev->stop = &s2io_close;
6919         dev->hard_start_xmit = &s2io_xmit;
6920         dev->get_stats = &s2io_get_stats;
6921         dev->set_multicast_list = &s2io_set_multicast;
6922         dev->do_ioctl = &s2io_ioctl;
6923         dev->change_mtu = &s2io_change_mtu;
6924         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6925         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6926         dev->vlan_rx_register = s2io_vlan_rx_register;
6927         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6928
6929         /*
6930          * will use eth_mac_addr() for  dev->set_mac_address
6931          * mac address will be set every time dev->open() is called
6932          */
6933         dev->poll = s2io_poll;
6934         dev->weight = 32;
6935
6936 #ifdef CONFIG_NET_POLL_CONTROLLER
6937         dev->poll_controller = s2io_netpoll;
6938 #endif
6939
6940         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6941         if (sp->high_dma_flag == TRUE)
6942                 dev->features |= NETIF_F_HIGHDMA;
6943         dev->features |= NETIF_F_TSO;
6944         dev->features |= NETIF_F_TSO6;
6945         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
6946                 dev->features |= NETIF_F_UFO;
6947                 dev->features |= NETIF_F_HW_CSUM;
6948         }
6949
6950         dev->tx_timeout = &s2io_tx_watchdog;
6951         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6952         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6953         INIT_WORK(&sp->set_link_task, s2io_set_link);
6954
6955         pci_save_state(sp->pdev);
6956
6957         /* Setting swapper control on the NIC, for proper reset operation */
6958         if (s2io_set_swapper(sp)) {
6959                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6960                           dev->name);
6961                 ret = -EAGAIN;
6962                 goto set_swap_failed;
6963         }
6964
6965         /* Verify if the Herc works on the slot its placed into */
6966         if (sp->device_type & XFRAME_II_DEVICE) {
6967                 mode = s2io_verify_pci_mode(sp);
6968                 if (mode < 0) {
6969                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6970                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6971                         ret = -EBADSLT;
6972                         goto set_swap_failed;
6973                 }
6974         }
6975
6976         /* Not needed for Herc */
6977         if (sp->device_type & XFRAME_I_DEVICE) {
6978                 /*
6979                  * Fix for all "FFs" MAC address problems observed on
6980                  * Alpha platforms
6981                  */
6982                 fix_mac_address(sp);
6983                 s2io_reset(sp);
6984         }
6985
6986         /*
6987          * MAC address initialization.
6988          * For now only one mac address will be read and used.
6989          */
6990         bar0 = sp->bar0;
6991         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6992             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6993         writeq(val64, &bar0->rmac_addr_cmd_mem);
6994         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6995                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
6996         tmp64 = readq(&bar0->rmac_addr_data0_mem);
6997         mac_down = (u32) tmp64;
6998         mac_up = (u32) (tmp64 >> 32);
6999
7000         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7001
7002         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7003         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7004         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7005         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7006         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7007         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7008
7009         /*  Set the factory defined MAC address initially   */
7010         dev->addr_len = ETH_ALEN;
7011         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7012
7013         /* reset Nic and bring it to known state */
7014         s2io_reset(sp);
7015
7016         /*
7017          * Initialize the tasklet status and link state flags
7018          * and the card state parameter
7019          */
7020         atomic_set(&(sp->card_state), 0);
7021         sp->tasklet_status = 0;
7022         sp->link_state = 0;
7023
7024         /* Initialize spinlocks */
7025         spin_lock_init(&sp->tx_lock);
7026
7027         if (!napi)
7028                 spin_lock_init(&sp->put_lock);
7029         spin_lock_init(&sp->rx_lock);
7030
7031         /*
7032          * SXE-002: Configure link and activity LED to init state
7033          * on driver load.
7034          */
7035         subid = sp->pdev->subsystem_device;
7036         if ((subid & 0xFF) >= 0x07) {
7037                 val64 = readq(&bar0->gpio_control);
7038                 val64 |= 0x0000800000000000ULL;
7039                 writeq(val64, &bar0->gpio_control);
7040                 val64 = 0x0411040400000000ULL;
7041                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7042                 val64 = readq(&bar0->gpio_control);
7043         }
7044
7045         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7046
7047         if (register_netdev(dev)) {
7048                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7049                 ret = -ENODEV;
7050                 goto register_failed;
7051         }
7052         s2io_vpd_read(sp);
7053         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7054         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7055                   sp->product_name, get_xena_rev_id(sp->pdev));
7056         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7057                   s2io_driver_version);
7058         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7059                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7060                           sp->def_mac_addr[0].mac_addr[0],
7061                           sp->def_mac_addr[0].mac_addr[1],
7062                           sp->def_mac_addr[0].mac_addr[2],
7063                           sp->def_mac_addr[0].mac_addr[3],
7064                           sp->def_mac_addr[0].mac_addr[4],
7065                           sp->def_mac_addr[0].mac_addr[5]);
7066         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7067         if (sp->device_type & XFRAME_II_DEVICE) {
7068                 mode = s2io_print_pci_mode(sp);
7069                 if (mode < 0) {
7070                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7071                         ret = -EBADSLT;
7072                         unregister_netdev(dev);
7073                         goto set_swap_failed;
7074                 }
7075         }
7076         switch(sp->rxd_mode) {
7077                 case RXD_MODE_1:
7078                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7079                                                 dev->name);
7080                     break;
7081                 case RXD_MODE_3B:
7082                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7083                                                 dev->name);
7084                     break;
7085                 case RXD_MODE_3A:
7086                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7087                                                 dev->name);
7088                     break;
7089         }
7090
7091         if (napi)
7092                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7093         switch(sp->intr_type) {
7094                 case INTA:
7095                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7096                     break;
7097                 case MSI:
7098                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7099                     break;
7100                 case MSI_X:
7101                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7102                     break;
7103         }
7104         if (sp->lro)
7105                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7106                           dev->name);
7107         if (ufo)
7108                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7109                                         " enabled\n", dev->name);
7110         /* Initialize device name */
7111         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7112
7113         /* Initialize bimodal Interrupts */
7114         sp->config.bimodal = bimodal;
7115         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7116                 sp->config.bimodal = 0;
7117                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7118                         dev->name);
7119         }
7120
7121         /*
7122          * Make Link state as off at this point, when the Link change
7123          * interrupt comes the state will be automatically changed to
7124          * the right state.
7125          */
7126         netif_carrier_off(dev);
7127
7128         return 0;
7129
7130       register_failed:
7131       set_swap_failed:
7132         iounmap(sp->bar1);
7133       bar1_remap_failed:
7134         iounmap(sp->bar0);
7135       bar0_remap_failed:
7136       mem_alloc_failed:
7137         free_shared_mem(sp);
7138         pci_disable_device(pdev);
7139         if (dev_intr_type != MSI_X)
7140                 pci_release_regions(pdev);
7141         else {
7142                 release_mem_region(pci_resource_start(pdev, 0),
7143                         pci_resource_len(pdev, 0));
7144                 release_mem_region(pci_resource_start(pdev, 2),
7145                         pci_resource_len(pdev, 2));
7146         }
7147         pci_set_drvdata(pdev, NULL);
7148         free_netdev(dev);
7149
7150         return ret;
7151 }
7152
7153 /**
7154  * s2io_rem_nic - Free the PCI device
7155  * @pdev: structure containing the PCI related information of the device.
7156  * Description: This function is called by the Pci subsystem to release a
7157  * PCI device and free up all resource held up by the device. This could
7158  * be in response to a Hot plug event or when the driver is to be removed
7159  * from memory.
7160  */
7161
7162 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7163 {
7164         struct net_device *dev =
7165             (struct net_device *) pci_get_drvdata(pdev);
7166         nic_t *sp;
7167
7168         if (dev == NULL) {
7169                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7170                 return;
7171         }
7172
7173         sp = dev->priv;
7174         unregister_netdev(dev);
7175
7176         free_shared_mem(sp);
7177         iounmap(sp->bar0);
7178         iounmap(sp->bar1);
7179         if (sp->intr_type != MSI_X)
7180                 pci_release_regions(pdev);
7181         else {
7182                 release_mem_region(pci_resource_start(pdev, 0),
7183                         pci_resource_len(pdev, 0));
7184                 release_mem_region(pci_resource_start(pdev, 2),
7185                         pci_resource_len(pdev, 2));
7186         }
7187         pci_set_drvdata(pdev, NULL);
7188         free_netdev(dev);
7189         pci_disable_device(pdev);
7190 }
7191
7192 /**
7193  * s2io_starter - Entry point for the driver
7194  * Description: This function is the entry point for the driver. It verifies
7195  * the module loadable parameters and initializes PCI configuration space.
7196  */
7197
7198 int __init s2io_starter(void)
7199 {
7200         return pci_register_driver(&s2io_driver);
7201 }
7202
7203 /**
7204  * s2io_closer - Cleanup routine for the driver
7205  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7206  */
7207
7208 static __exit void s2io_closer(void)
7209 {
7210         pci_unregister_driver(&s2io_driver);
7211         DBG_PRINT(INIT_DBG, "cleanup done\n");
7212 }
7213
7214 module_init(s2io_starter);
7215 module_exit(s2io_closer);
7216
7217 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7218                 struct tcphdr **tcp, RxD_t *rxdp)
7219 {
7220         int ip_off;
7221         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7222
7223         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7224                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7225                           __FUNCTION__);
7226                 return -1;
7227         }
7228
7229         /* TODO:
7230          * By default the VLAN field in the MAC is stripped by the card, if this
7231          * feature is turned off in rx_pa_cfg register, then the ip_off field
7232          * has to be shifted by a further 2 bytes
7233          */
7234         switch (l2_type) {
7235                 case 0: /* DIX type */
7236                 case 4: /* DIX type with VLAN */
7237                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7238                         break;
7239                 /* LLC, SNAP etc are considered non-mergeable */
7240                 default:
7241                         return -1;
7242         }
7243
7244         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7245         ip_len = (u8)((*ip)->ihl);
7246         ip_len <<= 2;
7247         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7248
7249         return 0;
7250 }
7251
7252 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7253                                   struct tcphdr *tcp)
7254 {
7255         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7256         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7257            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7258                 return -1;
7259         return 0;
7260 }
7261
7262 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7263 {
7264         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7265 }
7266
7267 static void initiate_new_session(lro_t *lro, u8 *l2h,
7268                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7269 {
7270         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7271         lro->l2h = l2h;
7272         lro->iph = ip;
7273         lro->tcph = tcp;
7274         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7275         lro->tcp_ack = ntohl(tcp->ack_seq);
7276         lro->sg_num = 1;
7277         lro->total_len = ntohs(ip->tot_len);
7278         lro->frags_len = 0;
7279         /*
7280          * check if we saw TCP timestamp. Other consistency checks have
7281          * already been done.
7282          */
7283         if (tcp->doff == 8) {
7284                 u32 *ptr;
7285                 ptr = (u32 *)(tcp+1);
7286                 lro->saw_ts = 1;
7287                 lro->cur_tsval = *(ptr+1);
7288                 lro->cur_tsecr = *(ptr+2);
7289         }
7290         lro->in_use = 1;
7291 }
7292
7293 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7294 {
7295         struct iphdr *ip = lro->iph;
7296         struct tcphdr *tcp = lro->tcph;
7297         u16 nchk;
7298         StatInfo_t *statinfo = sp->mac_control.stats_info;
7299         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7300
7301         /* Update L3 header */
7302         ip->tot_len = htons(lro->total_len);
7303         ip->check = 0;
7304         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7305         ip->check = nchk;
7306
7307         /* Update L4 header */
7308         tcp->ack_seq = lro->tcp_ack;
7309         tcp->window = lro->window;
7310
7311         /* Update tsecr field if this session has timestamps enabled */
7312         if (lro->saw_ts) {
7313                 u32 *ptr = (u32 *)(tcp + 1);
7314                 *(ptr+2) = lro->cur_tsecr;
7315         }
7316
7317         /* Update counters required for calculation of
7318          * average no. of packets aggregated.
7319          */
7320         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7321         statinfo->sw_stat.num_aggregations++;
7322 }
7323
7324 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7325                 struct tcphdr *tcp, u32 l4_pyld)
7326 {
7327         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7328         lro->total_len += l4_pyld;
7329         lro->frags_len += l4_pyld;
7330         lro->tcp_next_seq += l4_pyld;
7331         lro->sg_num++;
7332
7333         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7334         lro->tcp_ack = tcp->ack_seq;
7335         lro->window = tcp->window;
7336
7337         if (lro->saw_ts) {
7338                 u32 *ptr;
7339                 /* Update tsecr and tsval from this packet */
7340                 ptr = (u32 *) (tcp + 1);
7341                 lro->cur_tsval = *(ptr + 1);
7342                 lro->cur_tsecr = *(ptr + 2);
7343         }
7344 }
7345
7346 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7347                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7348 {
7349         u8 *ptr;
7350
7351         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7352
7353         if (!tcp_pyld_len) {
7354                 /* Runt frame or a pure ack */
7355                 return -1;
7356         }
7357
7358         if (ip->ihl != 5) /* IP has options */
7359                 return -1;
7360
7361         /* If we see CE codepoint in IP header, packet is not mergeable */
7362         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7363                 return -1;
7364
7365         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7366         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7367                                     tcp->ece || tcp->cwr || !tcp->ack) {
7368                 /*
7369                  * Currently recognize only the ack control word and
7370                  * any other control field being set would result in
7371                  * flushing the LRO session
7372                  */
7373                 return -1;
7374         }
7375
7376         /*
7377          * Allow only one TCP timestamp option. Don't aggregate if
7378          * any other options are detected.
7379          */
7380         if (tcp->doff != 5 && tcp->doff != 8)
7381                 return -1;
7382
7383         if (tcp->doff == 8) {
7384                 ptr = (u8 *)(tcp + 1);
7385                 while (*ptr == TCPOPT_NOP)
7386                         ptr++;
7387                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7388                         return -1;
7389
7390                 /* Ensure timestamp value increases monotonically */
7391                 if (l_lro)
7392                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7393                                 return -1;
7394
7395                 /* timestamp echo reply should be non-zero */
7396                 if (*((u32 *)(ptr+6)) == 0)
7397                         return -1;
7398         }
7399
7400         return 0;
7401 }
7402
7403 static int
7404 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7405                       RxD_t *rxdp, nic_t *sp)
7406 {
7407         struct iphdr *ip;
7408         struct tcphdr *tcph;
7409         int ret = 0, i;
7410
7411         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7412                                          rxdp))) {
7413                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7414                           ip->saddr, ip->daddr);
7415         } else {
7416                 return ret;
7417         }
7418
7419         tcph = (struct tcphdr *)*tcp;
7420         *tcp_len = get_l4_pyld_length(ip, tcph);
7421         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7422                 lro_t *l_lro = &sp->lro0_n[i];
7423                 if (l_lro->in_use) {
7424                         if (check_for_socket_match(l_lro, ip, tcph))
7425                                 continue;
7426                         /* Sock pair matched */
7427                         *lro = l_lro;
7428
7429                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7430                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7431                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7432                                           (*lro)->tcp_next_seq,
7433                                           ntohl(tcph->seq));
7434
7435                                 sp->mac_control.stats_info->
7436                                    sw_stat.outof_sequence_pkts++;
7437                                 ret = 2;
7438                                 break;
7439                         }
7440
7441                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7442                                 ret = 1; /* Aggregate */
7443                         else
7444                                 ret = 2; /* Flush both */
7445                         break;
7446                 }
7447         }
7448
7449         if (ret == 0) {
7450                 /* Before searching for available LRO objects,
7451                  * check if the pkt is L3/L4 aggregatable. If not
7452                  * don't create new LRO session. Just send this
7453                  * packet up.
7454                  */
7455                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7456                         return 5;
7457                 }
7458
7459                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7460                         lro_t *l_lro = &sp->lro0_n[i];
7461                         if (!(l_lro->in_use)) {
7462                                 *lro = l_lro;
7463                                 ret = 3; /* Begin anew */
7464                                 break;
7465                         }
7466                 }
7467         }
7468
7469         if (ret == 0) { /* sessions exceeded */
7470                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7471                           __FUNCTION__);
7472                 *lro = NULL;
7473                 return ret;
7474         }
7475
7476         switch (ret) {
7477                 case 3:
7478                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7479                         break;
7480                 case 2:
7481                         update_L3L4_header(sp, *lro);
7482                         break;
7483                 case 1:
7484                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7485                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7486                                 update_L3L4_header(sp, *lro);
7487                                 ret = 4; /* Flush the LRO */
7488                         }
7489                         break;
7490                 default:
7491                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7492                                 __FUNCTION__);
7493                         break;
7494         }
7495
7496         return ret;
7497 }
7498
7499 static void clear_lro_session(lro_t *lro)
7500 {
7501         static u16 lro_struct_size = sizeof(lro_t);
7502
7503         memset(lro, 0, lro_struct_size);
7504 }
7505
7506 static void queue_rx_frame(struct sk_buff *skb)
7507 {
7508         struct net_device *dev = skb->dev;
7509
7510         skb->protocol = eth_type_trans(skb, dev);
7511         if (napi)
7512                 netif_receive_skb(skb);
7513         else
7514                 netif_rx(skb);
7515 }
7516
7517 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7518                            u32 tcp_len)
7519 {
7520         struct sk_buff *first = lro->parent;
7521
7522         first->len += tcp_len;
7523         first->data_len = lro->frags_len;
7524         skb_pull(skb, (skb->len - tcp_len));
7525         if (skb_shinfo(first)->frag_list)
7526                 lro->last_frag->next = skb;
7527         else
7528                 skb_shinfo(first)->frag_list = skb;
7529         first->truesize += skb->truesize;
7530         lro->last_frag = skb;
7531         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7532         return;
7533 }