]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/sfc/falcon.c
372dbbc7240433641e16bb3779d40778274fbe33
[karo-tx-linux.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * Configurable values
35  *
36  **************************************************************************
37  */
38
39 /* This is set to 16 for a good reason.  In summary, if larger than
40  * 16, the descriptor cache holds more than a default socket
41  * buffer's worth of packets (for UDP we can only have at most one
42  * socket buffer's worth outstanding).  This combined with the fact
43  * that we only get 1 TX event per descriptor cache means the NIC
44  * goes idle.
45  */
46 #define TX_DC_ENTRIES 16
47 #define TX_DC_ENTRIES_ORDER 1
48 #define TX_DC_BASE 0x130000
49
50 #define RX_DC_ENTRIES 64
51 #define RX_DC_ENTRIES_ORDER 3
52 #define RX_DC_BASE 0x100000
53
54 static const unsigned int
55 /* "Large" EEPROM device: Atmel AT25640 or similar
56  * 8 KB, 16-bit address, 32 B write block */
57 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
58                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
59                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
60 /* Default flash device: Atmel AT25F1024
61  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
62 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
63                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
64                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
65                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
66                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
67
68 /* RX FIFO XOFF watermark
69  *
70  * When the amount of the RX FIFO increases used increases past this
71  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
72  * This also has an effect on RX/TX arbitration
73  */
74 static int rx_xoff_thresh_bytes = -1;
75 module_param(rx_xoff_thresh_bytes, int, 0644);
76 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
77
78 /* RX FIFO XON watermark
79  *
80  * When the amount of the RX FIFO used decreases below this
81  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
82  * This also has an effect on RX/TX arbitration
83  */
84 static int rx_xon_thresh_bytes = -1;
85 module_param(rx_xon_thresh_bytes, int, 0644);
86 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
87
88 /* If FALCON_MAX_INT_ERRORS internal errors occur within
89  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
90  * disable it.
91  */
92 #define FALCON_INT_ERROR_EXPIRE 3600
93 #define FALCON_MAX_INT_ERRORS 5
94
95 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
96  */
97 #define FALCON_FLUSH_INTERVAL 10
98 #define FALCON_FLUSH_POLL_COUNT 100
99
100 /**************************************************************************
101  *
102  * Falcon constants
103  *
104  **************************************************************************
105  */
106
107 /* Size and alignment of special buffers (4KB) */
108 #define FALCON_BUF_SIZE 4096
109
110 /* Depth of RX flush request fifo */
111 #define FALCON_RX_FLUSH_COUNT 4
112
113 #define FALCON_IS_DUAL_FUNC(efx)                \
114         (falcon_rev(efx) < FALCON_REV_B0)
115
116 /**************************************************************************
117  *
118  * Falcon hardware access
119  *
120  **************************************************************************/
121
122 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
123                                         unsigned int index)
124 {
125         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
126                         value, index);
127 }
128
129 /* Read the current event from the event queue */
130 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
131                                         unsigned int index)
132 {
133         return (((efx_qword_t *) (channel->eventq.addr)) + index);
134 }
135
136 /* See if an event is present
137  *
138  * We check both the high and low dword of the event for all ones.  We
139  * wrote all ones when we cleared the event, and no valid event can
140  * have all ones in either its high or low dwords.  This approach is
141  * robust against reordering.
142  *
143  * Note that using a single 64-bit comparison is incorrect; even
144  * though the CPU read will be atomic, the DMA write may not be.
145  */
146 static inline int falcon_event_present(efx_qword_t *event)
147 {
148         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
149                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
150 }
151
152 /**************************************************************************
153  *
154  * I2C bus - this is a bit-bashing interface using GPIO pins
155  * Note that it uses the output enables to tristate the outputs
156  * SDA is the data pin and SCL is the clock
157  *
158  **************************************************************************
159  */
160 static void falcon_setsda(void *data, int state)
161 {
162         struct efx_nic *efx = (struct efx_nic *)data;
163         efx_oword_t reg;
164
165         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
166         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
167         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
168 }
169
170 static void falcon_setscl(void *data, int state)
171 {
172         struct efx_nic *efx = (struct efx_nic *)data;
173         efx_oword_t reg;
174
175         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
176         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
177         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
178 }
179
180 static int falcon_getsda(void *data)
181 {
182         struct efx_nic *efx = (struct efx_nic *)data;
183         efx_oword_t reg;
184
185         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
186         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
187 }
188
189 static int falcon_getscl(void *data)
190 {
191         struct efx_nic *efx = (struct efx_nic *)data;
192         efx_oword_t reg;
193
194         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
195         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
196 }
197
198 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
199         .setsda         = falcon_setsda,
200         .setscl         = falcon_setscl,
201         .getsda         = falcon_getsda,
202         .getscl         = falcon_getscl,
203         .udelay         = 5,
204         /* Wait up to 50 ms for slave to let us pull SCL high */
205         .timeout        = DIV_ROUND_UP(HZ, 20),
206 };
207
208 /**************************************************************************
209  *
210  * Falcon special buffer handling
211  * Special buffers are used for event queues and the TX and RX
212  * descriptor rings.
213  *
214  *************************************************************************/
215
216 /*
217  * Initialise a Falcon special buffer
218  *
219  * This will define a buffer (previously allocated via
220  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
221  * it to be used for event queues, descriptor rings etc.
222  */
223 static void
224 falcon_init_special_buffer(struct efx_nic *efx,
225                            struct efx_special_buffer *buffer)
226 {
227         efx_qword_t buf_desc;
228         int index;
229         dma_addr_t dma_addr;
230         int i;
231
232         EFX_BUG_ON_PARANOID(!buffer->addr);
233
234         /* Write buffer descriptors to NIC */
235         for (i = 0; i < buffer->entries; i++) {
236                 index = buffer->index + i;
237                 dma_addr = buffer->dma_addr + (i * 4096);
238                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
239                         index, (unsigned long long)dma_addr);
240                 EFX_POPULATE_QWORD_3(buf_desc,
241                                      FRF_AZ_BUF_ADR_REGION, 0,
242                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
243                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
244                 falcon_write_buf_tbl(efx, &buf_desc, index);
245         }
246 }
247
248 /* Unmaps a buffer from Falcon and clears the buffer table entries */
249 static void
250 falcon_fini_special_buffer(struct efx_nic *efx,
251                            struct efx_special_buffer *buffer)
252 {
253         efx_oword_t buf_tbl_upd;
254         unsigned int start = buffer->index;
255         unsigned int end = (buffer->index + buffer->entries - 1);
256
257         if (!buffer->entries)
258                 return;
259
260         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
261                 buffer->index, buffer->index + buffer->entries - 1);
262
263         EFX_POPULATE_OWORD_4(buf_tbl_upd,
264                              FRF_AZ_BUF_UPD_CMD, 0,
265                              FRF_AZ_BUF_CLR_CMD, 1,
266                              FRF_AZ_BUF_CLR_END_ID, end,
267                              FRF_AZ_BUF_CLR_START_ID, start);
268         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
269 }
270
271 /*
272  * Allocate a new Falcon special buffer
273  *
274  * This allocates memory for a new buffer, clears it and allocates a
275  * new buffer ID range.  It does not write into Falcon's buffer table.
276  *
277  * This call will allocate 4KB buffers, since Falcon can't use 8KB
278  * buffers for event queues and descriptor rings.
279  */
280 static int falcon_alloc_special_buffer(struct efx_nic *efx,
281                                        struct efx_special_buffer *buffer,
282                                        unsigned int len)
283 {
284         len = ALIGN(len, FALCON_BUF_SIZE);
285
286         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
287                                             &buffer->dma_addr);
288         if (!buffer->addr)
289                 return -ENOMEM;
290         buffer->len = len;
291         buffer->entries = len / FALCON_BUF_SIZE;
292         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
293
294         /* All zeros is a potentially valid event so memset to 0xff */
295         memset(buffer->addr, 0xff, len);
296
297         /* Select new buffer ID */
298         buffer->index = efx->next_buffer_table;
299         efx->next_buffer_table += buffer->entries;
300
301         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
302                 "(virt %p phys %llx)\n", buffer->index,
303                 buffer->index + buffer->entries - 1,
304                 (u64)buffer->dma_addr, len,
305                 buffer->addr, (u64)virt_to_phys(buffer->addr));
306
307         return 0;
308 }
309
310 static void falcon_free_special_buffer(struct efx_nic *efx,
311                                        struct efx_special_buffer *buffer)
312 {
313         if (!buffer->addr)
314                 return;
315
316         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
317                 "(virt %p phys %llx)\n", buffer->index,
318                 buffer->index + buffer->entries - 1,
319                 (u64)buffer->dma_addr, buffer->len,
320                 buffer->addr, (u64)virt_to_phys(buffer->addr));
321
322         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
323                             buffer->dma_addr);
324         buffer->addr = NULL;
325         buffer->entries = 0;
326 }
327
328 /**************************************************************************
329  *
330  * Falcon generic buffer handling
331  * These buffers are used for interrupt status and MAC stats
332  *
333  **************************************************************************/
334
335 static int falcon_alloc_buffer(struct efx_nic *efx,
336                                struct efx_buffer *buffer, unsigned int len)
337 {
338         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
339                                             &buffer->dma_addr);
340         if (!buffer->addr)
341                 return -ENOMEM;
342         buffer->len = len;
343         memset(buffer->addr, 0, len);
344         return 0;
345 }
346
347 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
348 {
349         if (buffer->addr) {
350                 pci_free_consistent(efx->pci_dev, buffer->len,
351                                     buffer->addr, buffer->dma_addr);
352                 buffer->addr = NULL;
353         }
354 }
355
356 /**************************************************************************
357  *
358  * Falcon TX path
359  *
360  **************************************************************************/
361
362 /* Returns a pointer to the specified transmit descriptor in the TX
363  * descriptor queue belonging to the specified channel.
364  */
365 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
366                                                unsigned int index)
367 {
368         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
369 }
370
371 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
372 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
373 {
374         unsigned write_ptr;
375         efx_dword_t reg;
376
377         write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
378         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
379         efx_writed_page(tx_queue->efx, &reg,
380                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
381 }
382
383
384 /* For each entry inserted into the software descriptor ring, create a
385  * descriptor in the hardware TX descriptor ring (in host memory), and
386  * write a doorbell.
387  */
388 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
389 {
390
391         struct efx_tx_buffer *buffer;
392         efx_qword_t *txd;
393         unsigned write_ptr;
394
395         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397         do {
398                 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
399                 buffer = &tx_queue->buffer[write_ptr];
400                 txd = falcon_tx_desc(tx_queue, write_ptr);
401                 ++tx_queue->write_count;
402
403                 /* Create TX descriptor ring entry */
404                 EFX_POPULATE_QWORD_4(*txd,
405                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
406                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
407                                      FSF_AZ_TX_KER_BUF_REGION, 0,
408                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
409         } while (tx_queue->write_count != tx_queue->insert_count);
410
411         wmb(); /* Ensure descriptors are written before they are fetched */
412         falcon_notify_tx_desc(tx_queue);
413 }
414
415 /* Allocate hardware resources for a TX queue */
416 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
417 {
418         struct efx_nic *efx = tx_queue->efx;
419         BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
420                      EFX_TXQ_SIZE & EFX_TXQ_MASK);
421         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
422                                            EFX_TXQ_SIZE * sizeof(efx_qword_t));
423 }
424
425 void falcon_init_tx(struct efx_tx_queue *tx_queue)
426 {
427         efx_oword_t tx_desc_ptr;
428         struct efx_nic *efx = tx_queue->efx;
429
430         tx_queue->flushed = FLUSH_NONE;
431
432         /* Pin TX descriptor ring */
433         falcon_init_special_buffer(efx, &tx_queue->txd);
434
435         /* Push TX descriptor ring to card */
436         EFX_POPULATE_OWORD_10(tx_desc_ptr,
437                               FRF_AZ_TX_DESCQ_EN, 1,
438                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
439                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
440                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
441                               FRF_AZ_TX_DESCQ_EVQ_ID,
442                               tx_queue->channel->channel,
443                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
444                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
445                               FRF_AZ_TX_DESCQ_SIZE,
446                               __ffs(tx_queue->txd.entries),
447                               FRF_AZ_TX_DESCQ_TYPE, 0,
448                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
449
450         if (falcon_rev(efx) >= FALCON_REV_B0) {
451                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
452                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
453                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
454                                     !csum);
455         }
456
457         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
458                          tx_queue->queue);
459
460         if (falcon_rev(efx) < FALCON_REV_B0) {
461                 efx_oword_t reg;
462
463                 /* Only 128 bits in this register */
464                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
465
466                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
467                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
468                         clear_bit_le(tx_queue->queue, (void *)&reg);
469                 else
470                         set_bit_le(tx_queue->queue, (void *)&reg);
471                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
472         }
473 }
474
475 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
476 {
477         struct efx_nic *efx = tx_queue->efx;
478         efx_oword_t tx_flush_descq;
479
480         tx_queue->flushed = FLUSH_PENDING;
481
482         /* Post a flush command */
483         EFX_POPULATE_OWORD_2(tx_flush_descq,
484                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
485                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
486         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
487 }
488
489 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
490 {
491         struct efx_nic *efx = tx_queue->efx;
492         efx_oword_t tx_desc_ptr;
493
494         /* The queue should have been flushed */
495         WARN_ON(tx_queue->flushed != FLUSH_DONE);
496
497         /* Remove TX descriptor ring from card */
498         EFX_ZERO_OWORD(tx_desc_ptr);
499         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
500                          tx_queue->queue);
501
502         /* Unpin TX descriptor ring */
503         falcon_fini_special_buffer(efx, &tx_queue->txd);
504 }
505
506 /* Free buffers backing TX queue */
507 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
508 {
509         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
510 }
511
512 /**************************************************************************
513  *
514  * Falcon RX path
515  *
516  **************************************************************************/
517
518 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
519 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
520                                                unsigned int index)
521 {
522         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
523 }
524
525 /* This creates an entry in the RX descriptor queue */
526 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
527                                         unsigned index)
528 {
529         struct efx_rx_buffer *rx_buf;
530         efx_qword_t *rxd;
531
532         rxd = falcon_rx_desc(rx_queue, index);
533         rx_buf = efx_rx_buffer(rx_queue, index);
534         EFX_POPULATE_QWORD_3(*rxd,
535                              FSF_AZ_RX_KER_BUF_SIZE,
536                              rx_buf->len -
537                              rx_queue->efx->type->rx_buffer_padding,
538                              FSF_AZ_RX_KER_BUF_REGION, 0,
539                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
540 }
541
542 /* This writes to the RX_DESC_WPTR register for the specified receive
543  * descriptor ring.
544  */
545 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
546 {
547         efx_dword_t reg;
548         unsigned write_ptr;
549
550         while (rx_queue->notified_count != rx_queue->added_count) {
551                 falcon_build_rx_desc(rx_queue,
552                                      rx_queue->notified_count &
553                                      EFX_RXQ_MASK);
554                 ++rx_queue->notified_count;
555         }
556
557         wmb();
558         write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
559         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
560         efx_writed_page(rx_queue->efx, &reg,
561                         FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
562 }
563
564 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
565 {
566         struct efx_nic *efx = rx_queue->efx;
567         BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
568                      EFX_RXQ_SIZE & EFX_RXQ_MASK);
569         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
570                                            EFX_RXQ_SIZE * sizeof(efx_qword_t));
571 }
572
573 void falcon_init_rx(struct efx_rx_queue *rx_queue)
574 {
575         efx_oword_t rx_desc_ptr;
576         struct efx_nic *efx = rx_queue->efx;
577         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
578         bool iscsi_digest_en = is_b0;
579
580         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
581                 rx_queue->queue, rx_queue->rxd.index,
582                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
583
584         rx_queue->flushed = FLUSH_NONE;
585
586         /* Pin RX descriptor ring */
587         falcon_init_special_buffer(efx, &rx_queue->rxd);
588
589         /* Push RX descriptor ring to card */
590         EFX_POPULATE_OWORD_10(rx_desc_ptr,
591                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
592                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
593                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
594                               FRF_AZ_RX_DESCQ_EVQ_ID,
595                               rx_queue->channel->channel,
596                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
597                               FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
598                               FRF_AZ_RX_DESCQ_SIZE,
599                               __ffs(rx_queue->rxd.entries),
600                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
601                               /* For >=B0 this is scatter so disable */
602                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
603                               FRF_AZ_RX_DESCQ_EN, 1);
604         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
605                          rx_queue->queue);
606 }
607
608 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
609 {
610         struct efx_nic *efx = rx_queue->efx;
611         efx_oword_t rx_flush_descq;
612
613         rx_queue->flushed = FLUSH_PENDING;
614
615         /* Post a flush command */
616         EFX_POPULATE_OWORD_2(rx_flush_descq,
617                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
618                              FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
619         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
620 }
621
622 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
623 {
624         efx_oword_t rx_desc_ptr;
625         struct efx_nic *efx = rx_queue->efx;
626
627         /* The queue should already have been flushed */
628         WARN_ON(rx_queue->flushed != FLUSH_DONE);
629
630         /* Remove RX descriptor ring from card */
631         EFX_ZERO_OWORD(rx_desc_ptr);
632         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
633                          rx_queue->queue);
634
635         /* Unpin RX descriptor ring */
636         falcon_fini_special_buffer(efx, &rx_queue->rxd);
637 }
638
639 /* Free buffers backing RX queue */
640 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
641 {
642         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
643 }
644
645 /**************************************************************************
646  *
647  * Falcon event queue processing
648  * Event queues are processed by per-channel tasklets.
649  *
650  **************************************************************************/
651
652 /* Update a channel's event queue's read pointer (RPTR) register
653  *
654  * This writes the EVQ_RPTR_REG register for the specified channel's
655  * event queue.
656  *
657  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
658  * whereas channel->eventq_read_ptr contains the index of the "next to
659  * read" event.
660  */
661 void falcon_eventq_read_ack(struct efx_channel *channel)
662 {
663         efx_dword_t reg;
664         struct efx_nic *efx = channel->efx;
665
666         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
667         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
668                             channel->channel);
669 }
670
671 /* Use HW to insert a SW defined event */
672 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
673 {
674         efx_oword_t drv_ev_reg;
675
676         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
677                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
678         drv_ev_reg.u32[0] = event->u32[0];
679         drv_ev_reg.u32[1] = event->u32[1];
680         drv_ev_reg.u32[2] = 0;
681         drv_ev_reg.u32[3] = 0;
682         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
683         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
684 }
685
686 /* Handle a transmit completion event
687  *
688  * Falcon batches TX completion events; the message we receive is of
689  * the form "complete all TX events up to this index".
690  */
691 static void falcon_handle_tx_event(struct efx_channel *channel,
692                                    efx_qword_t *event)
693 {
694         unsigned int tx_ev_desc_ptr;
695         unsigned int tx_ev_q_label;
696         struct efx_tx_queue *tx_queue;
697         struct efx_nic *efx = channel->efx;
698
699         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
700                 /* Transmit completion */
701                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
702                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
703                 tx_queue = &efx->tx_queue[tx_ev_q_label];
704                 channel->irq_mod_score +=
705                         (tx_ev_desc_ptr - tx_queue->read_count) &
706                         EFX_TXQ_MASK;
707                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
708         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
709                 /* Rewrite the FIFO write pointer */
710                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
711                 tx_queue = &efx->tx_queue[tx_ev_q_label];
712
713                 if (efx_dev_registered(efx))
714                         netif_tx_lock(efx->net_dev);
715                 falcon_notify_tx_desc(tx_queue);
716                 if (efx_dev_registered(efx))
717                         netif_tx_unlock(efx->net_dev);
718         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
719                    EFX_WORKAROUND_10727(efx)) {
720                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
721         } else {
722                 EFX_ERR(efx, "channel %d unexpected TX event "
723                         EFX_QWORD_FMT"\n", channel->channel,
724                         EFX_QWORD_VAL(*event));
725         }
726 }
727
728 /* Detect errors included in the rx_evt_pkt_ok bit. */
729 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
730                                     const efx_qword_t *event,
731                                     bool *rx_ev_pkt_ok,
732                                     bool *discard)
733 {
734         struct efx_nic *efx = rx_queue->efx;
735         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
736         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
737         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
738         bool rx_ev_other_err, rx_ev_pause_frm;
739         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
740         unsigned rx_ev_pkt_type;
741
742         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
743         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
744         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
745         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
746         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
747                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
748         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
749         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
750                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
751         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
752                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
753         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
754         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
755         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
756                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
757         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
758
759         /* Every error apart from tobe_disc and pause_frm */
760         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
761                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
762                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
763
764         /* Count errors that are not in MAC stats.  Ignore expected
765          * checksum errors during self-test. */
766         if (rx_ev_frm_trunc)
767                 ++rx_queue->channel->n_rx_frm_trunc;
768         else if (rx_ev_tobe_disc)
769                 ++rx_queue->channel->n_rx_tobe_disc;
770         else if (!efx->loopback_selftest) {
771                 if (rx_ev_ip_hdr_chksum_err)
772                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
773                 else if (rx_ev_tcp_udp_chksum_err)
774                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
775         }
776         if (rx_ev_ip_frag_err)
777                 ++rx_queue->channel->n_rx_ip_frag_err;
778
779         /* The frame must be discarded if any of these are true. */
780         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
781                     rx_ev_tobe_disc | rx_ev_pause_frm);
782
783         /* TOBE_DISC is expected on unicast mismatches; don't print out an
784          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
785          * to a FIFO overflow.
786          */
787 #ifdef EFX_ENABLE_DEBUG
788         if (rx_ev_other_err) {
789                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
790                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
791                             rx_queue->queue, EFX_QWORD_VAL(*event),
792                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
793                             rx_ev_ip_hdr_chksum_err ?
794                             " [IP_HDR_CHKSUM_ERR]" : "",
795                             rx_ev_tcp_udp_chksum_err ?
796                             " [TCP_UDP_CHKSUM_ERR]" : "",
797                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
798                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
799                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
800                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
801                             rx_ev_pause_frm ? " [PAUSE]" : "");
802         }
803 #endif
804 }
805
806 /* Handle receive events that are not in-order. */
807 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
808                                        unsigned index)
809 {
810         struct efx_nic *efx = rx_queue->efx;
811         unsigned expected, dropped;
812
813         expected = rx_queue->removed_count & EFX_RXQ_MASK;
814         dropped = (index - expected) & EFX_RXQ_MASK;
815         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
816                 dropped, index, expected);
817
818         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
819                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
820 }
821
822 /* Handle a packet received event
823  *
824  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
825  * wrong destination address
826  * Also "is multicast" and "matches multicast filter" flags can be used to
827  * discard non-matching multicast packets.
828  */
829 static void falcon_handle_rx_event(struct efx_channel *channel,
830                                    const efx_qword_t *event)
831 {
832         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
833         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
834         unsigned expected_ptr;
835         bool rx_ev_pkt_ok, discard = false, checksummed;
836         struct efx_rx_queue *rx_queue;
837         struct efx_nic *efx = channel->efx;
838
839         /* Basic packet information */
840         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
841         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
842         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
843         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
844         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
845         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
846                 channel->channel);
847
848         rx_queue = &efx->rx_queue[channel->channel];
849
850         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
851         expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
852         if (unlikely(rx_ev_desc_ptr != expected_ptr))
853                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
854
855         if (likely(rx_ev_pkt_ok)) {
856                 /* If packet is marked as OK and packet type is TCP/IPv4 or
857                  * UDP/IPv4, then we can rely on the hardware checksum.
858                  */
859                 checksummed =
860                         efx->rx_checksum_enabled &&
861                         (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
862                          rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
863         } else {
864                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
865                                         &discard);
866                 checksummed = false;
867         }
868
869         /* Detect multicast packets that didn't match the filter */
870         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
871         if (rx_ev_mcast_pkt) {
872                 unsigned int rx_ev_mcast_hash_match =
873                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
874
875                 if (unlikely(!rx_ev_mcast_hash_match))
876                         discard = true;
877         }
878
879         channel->irq_mod_score += 2;
880
881         /* Handle received packet */
882         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
883                       checksummed, discard);
884 }
885
886 /* Global events are basically PHY events */
887 static void falcon_handle_global_event(struct efx_channel *channel,
888                                        efx_qword_t *event)
889 {
890         struct efx_nic *efx = channel->efx;
891         bool handled = false;
892
893         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
894             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
895             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
896                 /* Ignored */
897                 handled = true;
898         }
899
900         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
901             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
902                 efx->xmac_poll_required = true;
903                 handled = true;
904         }
905
906         if (falcon_rev(efx) <= FALCON_REV_A1 ?
907             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
908             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
909                 EFX_ERR(efx, "channel %d seen global RX_RESET "
910                         "event. Resetting.\n", channel->channel);
911
912                 atomic_inc(&efx->rx_reset);
913                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
914                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
915                 handled = true;
916         }
917
918         if (!handled)
919                 EFX_ERR(efx, "channel %d unknown global event "
920                         EFX_QWORD_FMT "\n", channel->channel,
921                         EFX_QWORD_VAL(*event));
922 }
923
924 static void falcon_handle_driver_event(struct efx_channel *channel,
925                                        efx_qword_t *event)
926 {
927         struct efx_nic *efx = channel->efx;
928         unsigned int ev_sub_code;
929         unsigned int ev_sub_data;
930
931         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
932         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
933
934         switch (ev_sub_code) {
935         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
936                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
937                           channel->channel, ev_sub_data);
938                 break;
939         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
940                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
941                           channel->channel, ev_sub_data);
942                 break;
943         case FSE_AZ_EVQ_INIT_DONE_EV:
944                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
945                         channel->channel, ev_sub_data);
946                 break;
947         case FSE_AZ_SRM_UPD_DONE_EV:
948                 EFX_TRACE(efx, "channel %d SRAM update done\n",
949                           channel->channel);
950                 break;
951         case FSE_AZ_WAKE_UP_EV:
952                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
953                           channel->channel, ev_sub_data);
954                 break;
955         case FSE_AZ_TIMER_EV:
956                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
957                           channel->channel, ev_sub_data);
958                 break;
959         case FSE_AA_RX_RECOVER_EV:
960                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
961                         "Resetting.\n", channel->channel);
962                 atomic_inc(&efx->rx_reset);
963                 efx_schedule_reset(efx,
964                                    EFX_WORKAROUND_6555(efx) ?
965                                    RESET_TYPE_RX_RECOVERY :
966                                    RESET_TYPE_DISABLE);
967                 break;
968         case FSE_BZ_RX_DSC_ERROR_EV:
969                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
970                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
971                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
972                 break;
973         case FSE_BZ_TX_DSC_ERROR_EV:
974                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
975                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
976                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
977                 break;
978         default:
979                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
980                           "data %04x\n", channel->channel, ev_sub_code,
981                           ev_sub_data);
982                 break;
983         }
984 }
985
986 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
987 {
988         unsigned int read_ptr;
989         efx_qword_t event, *p_event;
990         int ev_code;
991         int rx_packets = 0;
992
993         read_ptr = channel->eventq_read_ptr;
994
995         do {
996                 p_event = falcon_event(channel, read_ptr);
997                 event = *p_event;
998
999                 if (!falcon_event_present(&event))
1000                         /* End of events */
1001                         break;
1002
1003                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1004                           channel->channel, EFX_QWORD_VAL(event));
1005
1006                 /* Clear this event by marking it all ones */
1007                 EFX_SET_QWORD(*p_event);
1008
1009                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1010
1011                 switch (ev_code) {
1012                 case FSE_AZ_EV_CODE_RX_EV:
1013                         falcon_handle_rx_event(channel, &event);
1014                         ++rx_packets;
1015                         break;
1016                 case FSE_AZ_EV_CODE_TX_EV:
1017                         falcon_handle_tx_event(channel, &event);
1018                         break;
1019                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1020                         channel->eventq_magic = EFX_QWORD_FIELD(
1021                                 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1022                         EFX_LOG(channel->efx, "channel %d received generated "
1023                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1024                                 EFX_QWORD_VAL(event));
1025                         break;
1026                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1027                         falcon_handle_global_event(channel, &event);
1028                         break;
1029                 case FSE_AZ_EV_CODE_DRIVER_EV:
1030                         falcon_handle_driver_event(channel, &event);
1031                         break;
1032                 default:
1033                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1034                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1035                                 ev_code, EFX_QWORD_VAL(event));
1036                 }
1037
1038                 /* Increment read pointer */
1039                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1040
1041         } while (rx_packets < rx_quota);
1042
1043         channel->eventq_read_ptr = read_ptr;
1044         return rx_packets;
1045 }
1046
1047 void falcon_set_int_moderation(struct efx_channel *channel)
1048 {
1049         efx_dword_t timer_cmd;
1050         struct efx_nic *efx = channel->efx;
1051
1052         /* Set timer register */
1053         if (channel->irq_moderation) {
1054                 EFX_POPULATE_DWORD_2(timer_cmd,
1055                                      FRF_AB_TC_TIMER_MODE,
1056                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
1057                                      FRF_AB_TC_TIMER_VAL,
1058                                      channel->irq_moderation - 1);
1059         } else {
1060                 EFX_POPULATE_DWORD_2(timer_cmd,
1061                                      FRF_AB_TC_TIMER_MODE,
1062                                      FFE_BB_TIMER_MODE_DIS,
1063                                      FRF_AB_TC_TIMER_VAL, 0);
1064         }
1065         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1066         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1067                                channel->channel);
1068
1069 }
1070
1071 /* Allocate buffer table entries for event queue */
1072 int falcon_probe_eventq(struct efx_channel *channel)
1073 {
1074         struct efx_nic *efx = channel->efx;
1075         BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1076                      EFX_EVQ_SIZE & EFX_EVQ_MASK);
1077         return falcon_alloc_special_buffer(efx, &channel->eventq,
1078                                            EFX_EVQ_SIZE * sizeof(efx_qword_t));
1079 }
1080
1081 void falcon_init_eventq(struct efx_channel *channel)
1082 {
1083         efx_oword_t evq_ptr;
1084         struct efx_nic *efx = channel->efx;
1085
1086         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1087                 channel->channel, channel->eventq.index,
1088                 channel->eventq.index + channel->eventq.entries - 1);
1089
1090         /* Pin event queue buffer */
1091         falcon_init_special_buffer(efx, &channel->eventq);
1092
1093         /* Fill event queue with all ones (i.e. empty events) */
1094         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1095
1096         /* Push event queue to card */
1097         EFX_POPULATE_OWORD_3(evq_ptr,
1098                              FRF_AZ_EVQ_EN, 1,
1099                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1100                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1101         efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1102                          channel->channel);
1103
1104         falcon_set_int_moderation(channel);
1105 }
1106
1107 void falcon_fini_eventq(struct efx_channel *channel)
1108 {
1109         efx_oword_t eventq_ptr;
1110         struct efx_nic *efx = channel->efx;
1111
1112         /* Remove event queue from card */
1113         EFX_ZERO_OWORD(eventq_ptr);
1114         efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1115                          channel->channel);
1116
1117         /* Unpin event queue */
1118         falcon_fini_special_buffer(efx, &channel->eventq);
1119 }
1120
1121 /* Free buffers backing event queue */
1122 void falcon_remove_eventq(struct efx_channel *channel)
1123 {
1124         falcon_free_special_buffer(channel->efx, &channel->eventq);
1125 }
1126
1127
1128 /* Generates a test event on the event queue.  A subsequent call to
1129  * process_eventq() should pick up the event and place the value of
1130  * "magic" into channel->eventq_magic;
1131  */
1132 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1133 {
1134         efx_qword_t test_event;
1135
1136         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1137                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1138                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1139         falcon_generate_event(channel, &test_event);
1140 }
1141
1142 /**************************************************************************
1143  *
1144  * Flush handling
1145  *
1146  **************************************************************************/
1147
1148
1149 static void falcon_poll_flush_events(struct efx_nic *efx)
1150 {
1151         struct efx_channel *channel = &efx->channel[0];
1152         struct efx_tx_queue *tx_queue;
1153         struct efx_rx_queue *rx_queue;
1154         unsigned int read_ptr = channel->eventq_read_ptr;
1155         unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1156
1157         do {
1158                 efx_qword_t *event = falcon_event(channel, read_ptr);
1159                 int ev_code, ev_sub_code, ev_queue;
1160                 bool ev_failed;
1161
1162                 if (!falcon_event_present(event))
1163                         break;
1164
1165                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1166                 ev_sub_code = EFX_QWORD_FIELD(*event,
1167                                               FSF_AZ_DRIVER_EV_SUBCODE);
1168                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1169                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1170                         ev_queue = EFX_QWORD_FIELD(*event,
1171                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1172                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1173                                 tx_queue = efx->tx_queue + ev_queue;
1174                                 tx_queue->flushed = FLUSH_DONE;
1175                         }
1176                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1177                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1178                         ev_queue = EFX_QWORD_FIELD(
1179                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1180                         ev_failed = EFX_QWORD_FIELD(
1181                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1182                         if (ev_queue < efx->n_rx_queues) {
1183                                 rx_queue = efx->rx_queue + ev_queue;
1184                                 rx_queue->flushed =
1185                                         ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1186                         }
1187                 }
1188
1189                 /* We're about to destroy the queue anyway, so
1190                  * it's ok to throw away every non-flush event */
1191                 EFX_SET_QWORD(*event);
1192
1193                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1194         } while (read_ptr != end_ptr);
1195
1196         channel->eventq_read_ptr = read_ptr;
1197 }
1198
1199 static void falcon_prepare_flush(struct efx_nic *efx)
1200 {
1201         falcon_deconfigure_mac_wrapper(efx);
1202
1203         /* Wait for the tx and rx fifo's to get to the next packet boundary
1204          * (~1ms without back-pressure), then to drain the remainder of the
1205          * fifo's at data path speeds (negligible), with a healthy margin. */
1206         msleep(10);
1207 }
1208
1209 /* Handle tx and rx flushes at the same time, since they run in
1210  * parallel in the hardware and there's no reason for us to
1211  * serialise them */
1212 int falcon_flush_queues(struct efx_nic *efx)
1213 {
1214         struct efx_rx_queue *rx_queue;
1215         struct efx_tx_queue *tx_queue;
1216         int i, tx_pending, rx_pending;
1217
1218         falcon_prepare_flush(efx);
1219
1220         /* Flush all tx queues in parallel */
1221         efx_for_each_tx_queue(tx_queue, efx)
1222                 falcon_flush_tx_queue(tx_queue);
1223
1224         /* The hardware supports four concurrent rx flushes, each of which may
1225          * need to be retried if there is an outstanding descriptor fetch */
1226         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1227                 rx_pending = tx_pending = 0;
1228                 efx_for_each_rx_queue(rx_queue, efx) {
1229                         if (rx_queue->flushed == FLUSH_PENDING)
1230                                 ++rx_pending;
1231                 }
1232                 efx_for_each_rx_queue(rx_queue, efx) {
1233                         if (rx_pending == FALCON_RX_FLUSH_COUNT)
1234                                 break;
1235                         if (rx_queue->flushed == FLUSH_FAILED ||
1236                             rx_queue->flushed == FLUSH_NONE) {
1237                                 falcon_flush_rx_queue(rx_queue);
1238                                 ++rx_pending;
1239                         }
1240                 }
1241                 efx_for_each_tx_queue(tx_queue, efx) {
1242                         if (tx_queue->flushed != FLUSH_DONE)
1243                                 ++tx_pending;
1244                 }
1245
1246                 if (rx_pending == 0 && tx_pending == 0)
1247                         return 0;
1248
1249                 msleep(FALCON_FLUSH_INTERVAL);
1250                 falcon_poll_flush_events(efx);
1251         }
1252
1253         /* Mark the queues as all flushed. We're going to return failure
1254          * leading to a reset, or fake up success anyway */
1255         efx_for_each_tx_queue(tx_queue, efx) {
1256                 if (tx_queue->flushed != FLUSH_DONE)
1257                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1258                                 tx_queue->queue);
1259                 tx_queue->flushed = FLUSH_DONE;
1260         }
1261         efx_for_each_rx_queue(rx_queue, efx) {
1262                 if (rx_queue->flushed != FLUSH_DONE)
1263                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1264                                 rx_queue->queue);
1265                 rx_queue->flushed = FLUSH_DONE;
1266         }
1267
1268         if (EFX_WORKAROUND_7803(efx))
1269                 return 0;
1270
1271         return -ETIMEDOUT;
1272 }
1273
1274 /**************************************************************************
1275  *
1276  * Falcon hardware interrupts
1277  * The hardware interrupt handler does very little work; all the event
1278  * queue processing is carried out by per-channel tasklets.
1279  *
1280  **************************************************************************/
1281
1282 /* Enable/disable/generate Falcon interrupts */
1283 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1284                                      int force)
1285 {
1286         efx_oword_t int_en_reg_ker;
1287
1288         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1289                              FRF_AZ_KER_INT_KER, force,
1290                              FRF_AZ_DRV_INT_EN_KER, enabled);
1291         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1292 }
1293
1294 void falcon_enable_interrupts(struct efx_nic *efx)
1295 {
1296         efx_oword_t int_adr_reg_ker;
1297         struct efx_channel *channel;
1298
1299         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1300         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1301
1302         /* Program address */
1303         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1304                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1305                              EFX_INT_MODE_USE_MSI(efx),
1306                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1307         efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1308
1309         /* Enable interrupts */
1310         falcon_interrupts(efx, 1, 0);
1311
1312         /* Force processing of all the channels to get the EVQ RPTRs up to
1313            date */
1314         efx_for_each_channel(channel, efx)
1315                 efx_schedule_channel(channel);
1316 }
1317
1318 void falcon_disable_interrupts(struct efx_nic *efx)
1319 {
1320         /* Disable interrupts */
1321         falcon_interrupts(efx, 0, 0);
1322 }
1323
1324 /* Generate a Falcon test interrupt
1325  * Interrupt must already have been enabled, otherwise nasty things
1326  * may happen.
1327  */
1328 void falcon_generate_interrupt(struct efx_nic *efx)
1329 {
1330         falcon_interrupts(efx, 1, 1);
1331 }
1332
1333 /* Acknowledge a legacy interrupt from Falcon
1334  *
1335  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1336  *
1337  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1338  * BIU. Interrupt acknowledge is read sensitive so must write instead
1339  * (then read to ensure the BIU collector is flushed)
1340  *
1341  * NB most hardware supports MSI interrupts
1342  */
1343 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1344 {
1345         efx_dword_t reg;
1346
1347         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1348         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1349         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1350 }
1351
1352 /* Process a fatal interrupt
1353  * Disable bus mastering ASAP and schedule a reset
1354  */
1355 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1356 {
1357         struct falcon_nic_data *nic_data = efx->nic_data;
1358         efx_oword_t *int_ker = efx->irq_status.addr;
1359         efx_oword_t fatal_intr;
1360         int error, mem_perr;
1361
1362         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1363         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1364
1365         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1366                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1367                 EFX_OWORD_VAL(fatal_intr),
1368                 error ? "disabling bus mastering" : "no recognised error");
1369         if (error == 0)
1370                 goto out;
1371
1372         /* If this is a memory parity error dump which blocks are offending */
1373         mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1374         if (mem_perr) {
1375                 efx_oword_t reg;
1376                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1377                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1378                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1379         }
1380
1381         /* Disable both devices */
1382         pci_clear_master(efx->pci_dev);
1383         if (FALCON_IS_DUAL_FUNC(efx))
1384                 pci_clear_master(nic_data->pci_dev2);
1385         falcon_disable_interrupts(efx);
1386
1387         /* Count errors and reset or disable the NIC accordingly */
1388         if (efx->int_error_count == 0 ||
1389             time_after(jiffies, efx->int_error_expire)) {
1390                 efx->int_error_count = 0;
1391                 efx->int_error_expire =
1392                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1393         }
1394         if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1395                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1396                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1397         } else {
1398                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1399                         "NIC will be disabled\n");
1400                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1401         }
1402 out:
1403         return IRQ_HANDLED;
1404 }
1405
1406 /* Handle a legacy interrupt from Falcon
1407  * Acknowledges the interrupt and schedule event queue processing.
1408  */
1409 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1410 {
1411         struct efx_nic *efx = dev_id;
1412         efx_oword_t *int_ker = efx->irq_status.addr;
1413         irqreturn_t result = IRQ_NONE;
1414         struct efx_channel *channel;
1415         efx_dword_t reg;
1416         u32 queues;
1417         int syserr;
1418
1419         /* Read the ISR which also ACKs the interrupts */
1420         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1421         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1422
1423         /* Check to see if we have a serious error condition */
1424         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1425         if (unlikely(syserr))
1426                 return falcon_fatal_interrupt(efx);
1427
1428         /* Schedule processing of any interrupting queues */
1429         efx_for_each_channel(channel, efx) {
1430                 if ((queues & 1) ||
1431                     falcon_event_present(
1432                             falcon_event(channel, channel->eventq_read_ptr))) {
1433                         efx_schedule_channel(channel);
1434                         result = IRQ_HANDLED;
1435                 }
1436                 queues >>= 1;
1437         }
1438
1439         if (result == IRQ_HANDLED) {
1440                 efx->last_irq_cpu = raw_smp_processor_id();
1441                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1442                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1443         }
1444
1445         return result;
1446 }
1447
1448
1449 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1450 {
1451         struct efx_nic *efx = dev_id;
1452         efx_oword_t *int_ker = efx->irq_status.addr;
1453         struct efx_channel *channel;
1454         int syserr;
1455         int queues;
1456
1457         /* Check to see if this is our interrupt.  If it isn't, we
1458          * exit without having touched the hardware.
1459          */
1460         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1461                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1462                           raw_smp_processor_id());
1463                 return IRQ_NONE;
1464         }
1465         efx->last_irq_cpu = raw_smp_processor_id();
1466         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1467                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1468
1469         /* Check to see if we have a serious error condition */
1470         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1471         if (unlikely(syserr))
1472                 return falcon_fatal_interrupt(efx);
1473
1474         /* Determine interrupting queues, clear interrupt status
1475          * register and acknowledge the device interrupt.
1476          */
1477         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1478         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1479         EFX_ZERO_OWORD(*int_ker);
1480         wmb(); /* Ensure the vector is cleared before interrupt ack */
1481         falcon_irq_ack_a1(efx);
1482
1483         /* Schedule processing of any interrupting queues */
1484         channel = &efx->channel[0];
1485         while (queues) {
1486                 if (queues & 0x01)
1487                         efx_schedule_channel(channel);
1488                 channel++;
1489                 queues >>= 1;
1490         }
1491
1492         return IRQ_HANDLED;
1493 }
1494
1495 /* Handle an MSI interrupt from Falcon
1496  *
1497  * Handle an MSI hardware interrupt.  This routine schedules event
1498  * queue processing.  No interrupt acknowledgement cycle is necessary.
1499  * Also, we never need to check that the interrupt is for us, since
1500  * MSI interrupts cannot be shared.
1501  */
1502 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1503 {
1504         struct efx_channel *channel = dev_id;
1505         struct efx_nic *efx = channel->efx;
1506         efx_oword_t *int_ker = efx->irq_status.addr;
1507         int syserr;
1508
1509         efx->last_irq_cpu = raw_smp_processor_id();
1510         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1511                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1512
1513         /* Check to see if we have a serious error condition */
1514         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1515         if (unlikely(syserr))
1516                 return falcon_fatal_interrupt(efx);
1517
1518         /* Schedule processing of the channel */
1519         efx_schedule_channel(channel);
1520
1521         return IRQ_HANDLED;
1522 }
1523
1524
1525 /* Setup RSS indirection table.
1526  * This maps from the hash value of the packet to RXQ
1527  */
1528 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1529 {
1530         int i = 0;
1531         unsigned long offset;
1532         efx_dword_t dword;
1533
1534         if (falcon_rev(efx) < FALCON_REV_B0)
1535                 return;
1536
1537         for (offset = FR_BZ_RX_INDIRECTION_TBL;
1538              offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1539              offset += 0x10) {
1540                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1541                                      i % efx->n_rx_queues);
1542                 efx_writed(efx, &dword, offset);
1543                 i++;
1544         }
1545 }
1546
1547 /* Hook interrupt handler(s)
1548  * Try MSI and then legacy interrupts.
1549  */
1550 int falcon_init_interrupt(struct efx_nic *efx)
1551 {
1552         struct efx_channel *channel;
1553         int rc;
1554
1555         if (!EFX_INT_MODE_USE_MSI(efx)) {
1556                 irq_handler_t handler;
1557                 if (falcon_rev(efx) >= FALCON_REV_B0)
1558                         handler = falcon_legacy_interrupt_b0;
1559                 else
1560                         handler = falcon_legacy_interrupt_a1;
1561
1562                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1563                                  efx->name, efx);
1564                 if (rc) {
1565                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1566                                 efx->pci_dev->irq);
1567                         goto fail1;
1568                 }
1569                 return 0;
1570         }
1571
1572         /* Hook MSI or MSI-X interrupt */
1573         efx_for_each_channel(channel, efx) {
1574                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1575                                  IRQF_PROBE_SHARED, /* Not shared */
1576                                  channel->name, channel);
1577                 if (rc) {
1578                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1579                         goto fail2;
1580                 }
1581         }
1582
1583         return 0;
1584
1585  fail2:
1586         efx_for_each_channel(channel, efx)
1587                 free_irq(channel->irq, channel);
1588  fail1:
1589         return rc;
1590 }
1591
1592 void falcon_fini_interrupt(struct efx_nic *efx)
1593 {
1594         struct efx_channel *channel;
1595         efx_oword_t reg;
1596
1597         /* Disable MSI/MSI-X interrupts */
1598         efx_for_each_channel(channel, efx) {
1599                 if (channel->irq)
1600                         free_irq(channel->irq, channel);
1601         }
1602
1603         /* ACK legacy interrupt */
1604         if (falcon_rev(efx) >= FALCON_REV_B0)
1605                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1606         else
1607                 falcon_irq_ack_a1(efx);
1608
1609         /* Disable legacy interrupt */
1610         if (efx->legacy_irq)
1611                 free_irq(efx->legacy_irq, efx);
1612 }
1613
1614 /**************************************************************************
1615  *
1616  * EEPROM/flash
1617  *
1618  **************************************************************************
1619  */
1620
1621 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1622
1623 static int falcon_spi_poll(struct efx_nic *efx)
1624 {
1625         efx_oword_t reg;
1626         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1627         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1628 }
1629
1630 /* Wait for SPI command completion */
1631 static int falcon_spi_wait(struct efx_nic *efx)
1632 {
1633         /* Most commands will finish quickly, so we start polling at
1634          * very short intervals.  Sometimes the command may have to
1635          * wait for VPD or expansion ROM access outside of our
1636          * control, so we allow up to 100 ms. */
1637         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1638         int i;
1639
1640         for (i = 0; i < 10; i++) {
1641                 if (!falcon_spi_poll(efx))
1642                         return 0;
1643                 udelay(10);
1644         }
1645
1646         for (;;) {
1647                 if (!falcon_spi_poll(efx))
1648                         return 0;
1649                 if (time_after_eq(jiffies, timeout)) {
1650                         EFX_ERR(efx, "timed out waiting for SPI\n");
1651                         return -ETIMEDOUT;
1652                 }
1653                 schedule_timeout_uninterruptible(1);
1654         }
1655 }
1656
1657 int falcon_spi_cmd(const struct efx_spi_device *spi,
1658                    unsigned int command, int address,
1659                    const void *in, void *out, size_t len)
1660 {
1661         struct efx_nic *efx = spi->efx;
1662         bool addressed = (address >= 0);
1663         bool reading = (out != NULL);
1664         efx_oword_t reg;
1665         int rc;
1666
1667         /* Input validation */
1668         if (len > FALCON_SPI_MAX_LEN)
1669                 return -EINVAL;
1670         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1671
1672         /* Check that previous command is not still running */
1673         rc = falcon_spi_poll(efx);
1674         if (rc)
1675                 return rc;
1676
1677         /* Program address register, if we have an address */
1678         if (addressed) {
1679                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1680                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1681         }
1682
1683         /* Program data register, if we have data */
1684         if (in != NULL) {
1685                 memcpy(&reg, in, len);
1686                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1687         }
1688
1689         /* Issue read/write command */
1690         EFX_POPULATE_OWORD_7(reg,
1691                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1692                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1693                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
1694                              FRF_AB_EE_SPI_HCMD_READ, reading,
1695                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1696                              FRF_AB_EE_SPI_HCMD_ADBCNT,
1697                              (addressed ? spi->addr_len : 0),
1698                              FRF_AB_EE_SPI_HCMD_ENC, command);
1699         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1700
1701         /* Wait for read/write to complete */
1702         rc = falcon_spi_wait(efx);
1703         if (rc)
1704                 return rc;
1705
1706         /* Read data */
1707         if (out != NULL) {
1708                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1709                 memcpy(out, &reg, len);
1710         }
1711
1712         return 0;
1713 }
1714
1715 static size_t
1716 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1717 {
1718         return min(FALCON_SPI_MAX_LEN,
1719                    (spi->block_size - (start & (spi->block_size - 1))));
1720 }
1721
1722 static inline u8
1723 efx_spi_munge_command(const struct efx_spi_device *spi,
1724                       const u8 command, const unsigned int address)
1725 {
1726         return command | (((address >> 8) & spi->munge_address) << 3);
1727 }
1728
1729 /* Wait up to 10 ms for buffered write completion */
1730 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1731 {
1732         struct efx_nic *efx = spi->efx;
1733         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1734         u8 status;
1735         int rc;
1736
1737         for (;;) {
1738                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1739                                     &status, sizeof(status));
1740                 if (rc)
1741                         return rc;
1742                 if (!(status & SPI_STATUS_NRDY))
1743                         return 0;
1744                 if (time_after_eq(jiffies, timeout)) {
1745                         EFX_ERR(efx, "SPI write timeout on device %d"
1746                                 " last status=0x%02x\n",
1747                                 spi->device_id, status);
1748                         return -ETIMEDOUT;
1749                 }
1750                 schedule_timeout_uninterruptible(1);
1751         }
1752 }
1753
1754 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1755                     size_t len, size_t *retlen, u8 *buffer)
1756 {
1757         size_t block_len, pos = 0;
1758         unsigned int command;
1759         int rc = 0;
1760
1761         while (pos < len) {
1762                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1763
1764                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1765                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1766                                     buffer + pos, block_len);
1767                 if (rc)
1768                         break;
1769                 pos += block_len;
1770
1771                 /* Avoid locking up the system */
1772                 cond_resched();
1773                 if (signal_pending(current)) {
1774                         rc = -EINTR;
1775                         break;
1776                 }
1777         }
1778
1779         if (retlen)
1780                 *retlen = pos;
1781         return rc;
1782 }
1783
1784 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1785                      size_t len, size_t *retlen, const u8 *buffer)
1786 {
1787         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1788         size_t block_len, pos = 0;
1789         unsigned int command;
1790         int rc = 0;
1791
1792         while (pos < len) {
1793                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1794                 if (rc)
1795                         break;
1796
1797                 block_len = min(len - pos,
1798                                 falcon_spi_write_limit(spi, start + pos));
1799                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1800                 rc = falcon_spi_cmd(spi, command, start + pos,
1801                                     buffer + pos, NULL, block_len);
1802                 if (rc)
1803                         break;
1804
1805                 rc = falcon_spi_wait_write(spi);
1806                 if (rc)
1807                         break;
1808
1809                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1810                 rc = falcon_spi_cmd(spi, command, start + pos,
1811                                     NULL, verify_buffer, block_len);
1812                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1813                         rc = -EIO;
1814                         break;
1815                 }
1816
1817                 pos += block_len;
1818
1819                 /* Avoid locking up the system */
1820                 cond_resched();
1821                 if (signal_pending(current)) {
1822                         rc = -EINTR;
1823                         break;
1824                 }
1825         }
1826
1827         if (retlen)
1828                 *retlen = pos;
1829         return rc;
1830 }
1831
1832 /**************************************************************************
1833  *
1834  * MAC wrapper
1835  *
1836  **************************************************************************
1837  */
1838
1839 static int falcon_reset_macs(struct efx_nic *efx)
1840 {
1841         efx_oword_t reg;
1842         int count;
1843
1844         if (falcon_rev(efx) < FALCON_REV_B0) {
1845                 /* It's not safe to use GLB_CTL_REG to reset the
1846                  * macs, so instead use the internal MAC resets
1847                  */
1848                 if (!EFX_IS10G(efx)) {
1849                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1850                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1851                         udelay(1000);
1852
1853                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1854                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1855                         udelay(1000);
1856                         return 0;
1857                 } else {
1858                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1859                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1860
1861                         for (count = 0; count < 10000; count++) {
1862                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1863                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1864                                     0)
1865                                         return 0;
1866                                 udelay(10);
1867                         }
1868
1869                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1870                         return -ETIMEDOUT;
1871                 }
1872         }
1873
1874         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1875          * the drain sequence with the statistics fetch */
1876         falcon_stop_nic_stats(efx);
1877
1878         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1879         EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1880         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1881
1882         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1883         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1884         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1885         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1886         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1887
1888         count = 0;
1889         while (1) {
1890                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1891                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1892                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1893                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1894                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1895                                 count);
1896                         break;
1897                 }
1898                 if (count > 20) {
1899                         EFX_ERR(efx, "MAC reset failed\n");
1900                         break;
1901                 }
1902                 count++;
1903                 udelay(10);
1904         }
1905
1906         /* If we've reset the EM block and the link is up, then
1907          * we'll have to kick the XAUI link so the PHY can recover */
1908         if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1909                 falcon_reset_xaui(efx);
1910
1911         falcon_start_nic_stats(efx);
1912
1913         return 0;
1914 }
1915
1916 void falcon_drain_tx_fifo(struct efx_nic *efx)
1917 {
1918         efx_oword_t reg;
1919
1920         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1921             (efx->loopback_mode != LOOPBACK_NONE))
1922                 return;
1923
1924         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1925         /* There is no point in draining more than once */
1926         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1927                 return;
1928
1929         falcon_reset_macs(efx);
1930 }
1931
1932 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1933 {
1934         efx_oword_t reg;
1935
1936         if (falcon_rev(efx) < FALCON_REV_B0)
1937                 return;
1938
1939         /* Isolate the MAC -> RX */
1940         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1941         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1942         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1943
1944         if (!efx->link_state.up)
1945                 falcon_drain_tx_fifo(efx);
1946 }
1947
1948 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1949 {
1950         struct efx_link_state *link_state = &efx->link_state;
1951         efx_oword_t reg;
1952         int link_speed;
1953         bool tx_fc;
1954
1955         switch (link_state->speed) {
1956         case 10000: link_speed = 3; break;
1957         case 1000:  link_speed = 2; break;
1958         case 100:   link_speed = 1; break;
1959         default:    link_speed = 0; break;
1960         }
1961         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1962          * as advertised.  Disable to ensure packets are not
1963          * indefinitely held and TX queue can be flushed at any point
1964          * while the link is down. */
1965         EFX_POPULATE_OWORD_5(reg,
1966                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1967                              FRF_AB_MAC_BCAD_ACPT, 1,
1968                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
1969                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1970                              FRF_AB_MAC_SPEED, link_speed);
1971         /* On B0, MAC backpressure can be disabled and packets get
1972          * discarded. */
1973         if (falcon_rev(efx) >= FALCON_REV_B0) {
1974                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1975                                     !link_state->up);
1976         }
1977
1978         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1979
1980         /* Restore the multicast hash registers. */
1981         falcon_push_multicast_hash(efx);
1982
1983         /* Transmission of pause frames when RX crosses the threshold is
1984          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1985          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1986         tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1987         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1988         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1989
1990         /* Unisolate the MAC -> RX */
1991         if (falcon_rev(efx) >= FALCON_REV_B0)
1992                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1993         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1994 }
1995
1996 static void falcon_stats_request(struct efx_nic *efx)
1997 {
1998         struct falcon_nic_data *nic_data = efx->nic_data;
1999         efx_oword_t reg;
2000
2001         WARN_ON(nic_data->stats_pending);
2002         WARN_ON(nic_data->stats_disable_count);
2003
2004         if (nic_data->stats_dma_done == NULL)
2005                 return; /* no mac selected */
2006
2007         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
2008         nic_data->stats_pending = true;
2009         wmb(); /* ensure done flag is clear */
2010
2011         /* Initiate DMA transfer of stats */
2012         EFX_POPULATE_OWORD_2(reg,
2013                              FRF_AB_MAC_STAT_DMA_CMD, 1,
2014                              FRF_AB_MAC_STAT_DMA_ADR,
2015                              efx->stats_buffer.dma_addr);
2016         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2017
2018         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
2019 }
2020
2021 static void falcon_stats_complete(struct efx_nic *efx)
2022 {
2023         struct falcon_nic_data *nic_data = efx->nic_data;
2024
2025         if (!nic_data->stats_pending)
2026                 return;
2027
2028         nic_data->stats_pending = 0;
2029         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
2030                 rmb(); /* read the done flag before the stats */
2031                 efx->mac_op->update_stats(efx);
2032         } else {
2033                 EFX_ERR(efx, "timed out waiting for statistics\n");
2034         }
2035 }
2036
2037 static void falcon_stats_timer_func(unsigned long context)
2038 {
2039         struct efx_nic *efx = (struct efx_nic *)context;
2040         struct falcon_nic_data *nic_data = efx->nic_data;
2041
2042         spin_lock(&efx->stats_lock);
2043
2044         falcon_stats_complete(efx);
2045         if (nic_data->stats_disable_count == 0)
2046                 falcon_stats_request(efx);
2047
2048         spin_unlock(&efx->stats_lock);
2049 }
2050
2051 static bool falcon_loopback_link_poll(struct efx_nic *efx)
2052 {
2053         struct efx_link_state old_state = efx->link_state;
2054
2055         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2056         WARN_ON(!LOOPBACK_INTERNAL(efx));
2057
2058         efx->link_state.fd = true;
2059         efx->link_state.fc = efx->wanted_fc;
2060         efx->link_state.up = true;
2061
2062         if (efx->loopback_mode == LOOPBACK_GMAC)
2063                 efx->link_state.speed = 1000;
2064         else
2065                 efx->link_state.speed = 10000;
2066
2067         return !efx_link_state_equal(&efx->link_state, &old_state);
2068 }
2069
2070 /**************************************************************************
2071  *
2072  * PHY access via GMII
2073  *
2074  **************************************************************************
2075  */
2076
2077 /* Wait for GMII access to complete */
2078 static int falcon_gmii_wait(struct efx_nic *efx)
2079 {
2080         efx_oword_t md_stat;
2081         int count;
2082
2083         /* wait upto 50ms - taken max from datasheet */
2084         for (count = 0; count < 5000; count++) {
2085                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2086                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2087                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2088                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2089                                 EFX_ERR(efx, "error from GMII access "
2090                                         EFX_OWORD_FMT"\n",
2091                                         EFX_OWORD_VAL(md_stat));
2092                                 return -EIO;
2093                         }
2094                         return 0;
2095                 }
2096                 udelay(10);
2097         }
2098         EFX_ERR(efx, "timed out waiting for GMII\n");
2099         return -ETIMEDOUT;
2100 }
2101
2102 /* Write an MDIO register of a PHY connected to Falcon. */
2103 static int falcon_mdio_write(struct net_device *net_dev,
2104                              int prtad, int devad, u16 addr, u16 value)
2105 {
2106         struct efx_nic *efx = netdev_priv(net_dev);
2107         efx_oword_t reg;
2108         int rc;
2109
2110         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2111                     prtad, devad, addr, value);
2112
2113         mutex_lock(&efx->mdio_lock);
2114
2115         /* Check MDIO not currently being accessed */
2116         rc = falcon_gmii_wait(efx);
2117         if (rc)
2118                 goto out;
2119
2120         /* Write the address/ID register */
2121         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2122         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2123
2124         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2125                              FRF_AB_MD_DEV_ADR, devad);
2126         efx_writeo(efx, &reg, FR_AB_MD_ID);
2127
2128         /* Write data */
2129         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2130         efx_writeo(efx, &reg, FR_AB_MD_TXD);
2131
2132         EFX_POPULATE_OWORD_2(reg,
2133                              FRF_AB_MD_WRC, 1,
2134                              FRF_AB_MD_GC, 0);
2135         efx_writeo(efx, &reg, FR_AB_MD_CS);
2136
2137         /* Wait for data to be written */
2138         rc = falcon_gmii_wait(efx);
2139         if (rc) {
2140                 /* Abort the write operation */
2141                 EFX_POPULATE_OWORD_2(reg,
2142                                      FRF_AB_MD_WRC, 0,
2143                                      FRF_AB_MD_GC, 1);
2144                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2145                 udelay(10);
2146         }
2147
2148 out:
2149         mutex_unlock(&efx->mdio_lock);
2150         return rc;
2151 }
2152
2153 /* Read an MDIO register of a PHY connected to Falcon. */
2154 static int falcon_mdio_read(struct net_device *net_dev,
2155                             int prtad, int devad, u16 addr)
2156 {
2157         struct efx_nic *efx = netdev_priv(net_dev);
2158         efx_oword_t reg;
2159         int rc;
2160
2161         mutex_lock(&efx->mdio_lock);
2162
2163         /* Check MDIO not currently being accessed */
2164         rc = falcon_gmii_wait(efx);
2165         if (rc)
2166                 goto out;
2167
2168         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2169         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2170
2171         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2172                              FRF_AB_MD_DEV_ADR, devad);
2173         efx_writeo(efx, &reg, FR_AB_MD_ID);
2174
2175         /* Request data to be read */
2176         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2177         efx_writeo(efx, &reg, FR_AB_MD_CS);
2178
2179         /* Wait for data to become available */
2180         rc = falcon_gmii_wait(efx);
2181         if (rc == 0) {
2182                 efx_reado(efx, &reg, FR_AB_MD_RXD);
2183                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2184                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2185                             prtad, devad, addr, rc);
2186         } else {
2187                 /* Abort the read operation */
2188                 EFX_POPULATE_OWORD_2(reg,
2189                                      FRF_AB_MD_RIC, 0,
2190                                      FRF_AB_MD_GC, 1);
2191                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2192
2193                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2194                         prtad, devad, addr, rc);
2195         }
2196
2197 out:
2198         mutex_unlock(&efx->mdio_lock);
2199         return rc;
2200 }
2201
2202 static void falcon_clock_mac(struct efx_nic *efx)
2203 {
2204         unsigned strap_val;
2205         efx_oword_t nic_stat;
2206
2207         /* Configure the NIC generated MAC clock correctly */
2208         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2209         strap_val = EFX_IS10G(efx) ? 5 : 3;
2210         if (falcon_rev(efx) >= FALCON_REV_B0) {
2211                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2212                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2213                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2214         } else {
2215                 /* Falcon A1 does not support 1G/10G speed switching
2216                  * and must not be used with a PHY that does. */
2217                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2218                        strap_val);
2219         }
2220 }
2221
2222 int falcon_switch_mac(struct efx_nic *efx)
2223 {
2224         struct efx_mac_operations *old_mac_op = efx->mac_op;
2225         struct falcon_nic_data *nic_data = efx->nic_data;
2226         unsigned int stats_done_offset;
2227         int rc = 0;
2228
2229         /* Don't try to fetch MAC stats while we're switching MACs */
2230         falcon_stop_nic_stats(efx);
2231
2232         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2233         efx->mac_op = (EFX_IS10G(efx) ?
2234                        &falcon_xmac_operations : &falcon_gmac_operations);
2235
2236         if (EFX_IS10G(efx))
2237                 stats_done_offset = XgDmaDone_offset;
2238         else
2239                 stats_done_offset = GDmaDone_offset;
2240         nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
2241
2242         if (old_mac_op == efx->mac_op)
2243                 goto out;
2244
2245         falcon_clock_mac(efx);
2246
2247         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2248         /* Not all macs support a mac-level link state */
2249         efx->xmac_poll_required = false;
2250
2251         rc = falcon_reset_macs(efx);
2252 out:
2253         falcon_start_nic_stats(efx);
2254         return rc;
2255 }
2256
2257 /* This call is responsible for hooking in the MAC and PHY operations */
2258 int falcon_probe_port(struct efx_nic *efx)
2259 {
2260         int rc;
2261
2262         switch (efx->phy_type) {
2263         case PHY_TYPE_SFX7101:
2264                 efx->phy_op = &falcon_sfx7101_phy_ops;
2265                 break;
2266         case PHY_TYPE_SFT9001A:
2267         case PHY_TYPE_SFT9001B:
2268                 efx->phy_op = &falcon_sft9001_phy_ops;
2269                 break;
2270         case PHY_TYPE_QT2022C2:
2271         case PHY_TYPE_QT2025C:
2272                 efx->phy_op = &falcon_qt202x_phy_ops;
2273                 break;
2274         default:
2275                 EFX_ERR(efx, "Unknown PHY type %d\n",
2276                         efx->phy_type);
2277                 return -ENODEV;
2278         }
2279
2280         if (efx->phy_op->macs & EFX_XMAC)
2281                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2282                                         (1 << LOOPBACK_XGXS) |
2283                                         (1 << LOOPBACK_XAUI));
2284         if (efx->phy_op->macs & EFX_GMAC)
2285                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2286         efx->loopback_modes |= efx->phy_op->loopbacks;
2287
2288         /* Set up MDIO structure for PHY */
2289         efx->mdio.mmds = efx->phy_op->mmds;
2290         efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2291         efx->mdio.mdio_read = falcon_mdio_read;
2292         efx->mdio.mdio_write = falcon_mdio_write;
2293
2294         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2295         if (falcon_rev(efx) >= FALCON_REV_B0)
2296                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2297         else
2298                 efx->wanted_fc = EFX_FC_RX;
2299
2300         /* Allocate buffer for stats */
2301         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2302                                  FALCON_MAC_STATS_SIZE);
2303         if (rc)
2304                 return rc;
2305         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2306                 (u64)efx->stats_buffer.dma_addr,
2307                 efx->stats_buffer.addr,
2308                 (u64)virt_to_phys(efx->stats_buffer.addr));
2309
2310         return 0;
2311 }
2312
2313 void falcon_remove_port(struct efx_nic *efx)
2314 {
2315         falcon_free_buffer(efx, &efx->stats_buffer);
2316 }
2317
2318 /**************************************************************************
2319  *
2320  * Multicast filtering
2321  *
2322  **************************************************************************
2323  */
2324
2325 void falcon_push_multicast_hash(struct efx_nic *efx)
2326 {
2327         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2328
2329         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2330
2331         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2332         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2333 }
2334
2335
2336 /**************************************************************************
2337  *
2338  * Falcon test code
2339  *
2340  **************************************************************************/
2341
2342 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2343 {
2344         struct falcon_nvconfig *nvconfig;
2345         struct efx_spi_device *spi;
2346         void *region;
2347         int rc, magic_num, struct_ver;
2348         __le16 *word, *limit;
2349         u32 csum;
2350
2351         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2352         if (!spi)
2353                 return -EINVAL;
2354
2355         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2356         if (!region)
2357                 return -ENOMEM;
2358         nvconfig = region + FALCON_NVCONFIG_OFFSET;
2359
2360         mutex_lock(&efx->spi_lock);
2361         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2362         mutex_unlock(&efx->spi_lock);
2363         if (rc) {
2364                 EFX_ERR(efx, "Failed to read %s\n",
2365                         efx->spi_flash ? "flash" : "EEPROM");
2366                 rc = -EIO;
2367                 goto out;
2368         }
2369
2370         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2371         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2372
2373         rc = -EINVAL;
2374         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2375                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2376                 goto out;
2377         }
2378         if (struct_ver < 2) {
2379                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2380                 goto out;
2381         } else if (struct_ver < 4) {
2382                 word = &nvconfig->board_magic_num;
2383                 limit = (__le16 *) (nvconfig + 1);
2384         } else {
2385                 word = region;
2386                 limit = region + FALCON_NVCONFIG_END;
2387         }
2388         for (csum = 0; word < limit; ++word)
2389                 csum += le16_to_cpu(*word);
2390
2391         if (~csum & 0xffff) {
2392                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2393                 goto out;
2394         }
2395
2396         rc = 0;
2397         if (nvconfig_out)
2398                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2399
2400  out:
2401         kfree(region);
2402         return rc;
2403 }
2404
2405 /* Registers tested in the falcon register test */
2406 static struct {
2407         unsigned address;
2408         efx_oword_t mask;
2409 } efx_test_registers[] = {
2410         { FR_AZ_ADR_REGION,
2411           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2412         { FR_AZ_RX_CFG,
2413           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2414         { FR_AZ_TX_CFG,
2415           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2416         { FR_AZ_TX_RESERVED,
2417           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2418         { FR_AB_MAC_CTRL,
2419           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2420         { FR_AZ_SRM_TX_DC_CFG,
2421           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2422         { FR_AZ_RX_DC_CFG,
2423           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2424         { FR_AZ_RX_DC_PF_WM,
2425           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2426         { FR_BZ_DP_CTRL,
2427           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2428         { FR_AB_GM_CFG2,
2429           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2430         { FR_AB_GMF_CFG0,
2431           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2432         { FR_AB_XM_GLB_CFG,
2433           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2434         { FR_AB_XM_TX_CFG,
2435           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2436         { FR_AB_XM_RX_CFG,
2437           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2438         { FR_AB_XM_RX_PARAM,
2439           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2440         { FR_AB_XM_FC,
2441           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2442         { FR_AB_XM_ADR_LO,
2443           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2444         { FR_AB_XX_SD_CTL,
2445           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2446 };
2447
2448 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2449                                      const efx_oword_t *mask)
2450 {
2451         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2452                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2453 }
2454
2455 int falcon_test_registers(struct efx_nic *efx)
2456 {
2457         unsigned address = 0, i, j;
2458         efx_oword_t mask, imask, original, reg, buf;
2459
2460         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2461         WARN_ON(!LOOPBACK_INTERNAL(efx));
2462
2463         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2464                 address = efx_test_registers[i].address;
2465                 mask = imask = efx_test_registers[i].mask;
2466                 EFX_INVERT_OWORD(imask);
2467
2468                 efx_reado(efx, &original, address);
2469
2470                 /* bit sweep on and off */
2471                 for (j = 0; j < 128; j++) {
2472                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2473                                 continue;
2474
2475                         /* Test this testable bit can be set in isolation */
2476                         EFX_AND_OWORD(reg, original, mask);
2477                         EFX_SET_OWORD32(reg, j, j, 1);
2478
2479                         efx_writeo(efx, &reg, address);
2480                         efx_reado(efx, &buf, address);
2481
2482                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2483                                 goto fail;
2484
2485                         /* Test this testable bit can be cleared in isolation */
2486                         EFX_OR_OWORD(reg, original, mask);
2487                         EFX_SET_OWORD32(reg, j, j, 0);
2488
2489                         efx_writeo(efx, &reg, address);
2490                         efx_reado(efx, &buf, address);
2491
2492                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2493                                 goto fail;
2494                 }
2495
2496                 efx_writeo(efx, &original, address);
2497         }
2498
2499         return 0;
2500
2501 fail:
2502         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2503                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2504                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2505         return -EIO;
2506 }
2507
2508 /**************************************************************************
2509  *
2510  * Device reset
2511  *
2512  **************************************************************************
2513  */
2514
2515 /* Resets NIC to known state.  This routine must be called in process
2516  * context and is allowed to sleep. */
2517 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2518 {
2519         struct falcon_nic_data *nic_data = efx->nic_data;
2520         efx_oword_t glb_ctl_reg_ker;
2521         int rc;
2522
2523         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2524
2525         /* Initiate device reset */
2526         if (method == RESET_TYPE_WORLD) {
2527                 rc = pci_save_state(efx->pci_dev);
2528                 if (rc) {
2529                         EFX_ERR(efx, "failed to backup PCI state of primary "
2530                                 "function prior to hardware reset\n");
2531                         goto fail1;
2532                 }
2533                 if (FALCON_IS_DUAL_FUNC(efx)) {
2534                         rc = pci_save_state(nic_data->pci_dev2);
2535                         if (rc) {
2536                                 EFX_ERR(efx, "failed to backup PCI state of "
2537                                         "secondary function prior to "
2538                                         "hardware reset\n");
2539                                 goto fail2;
2540                         }
2541                 }
2542
2543                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2544                                      FRF_AB_EXT_PHY_RST_DUR,
2545                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2546                                      FRF_AB_SWRST, 1);
2547         } else {
2548                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2549                                      /* exclude PHY from "invisible" reset */
2550                                      FRF_AB_EXT_PHY_RST_CTL,
2551                                      method == RESET_TYPE_INVISIBLE,
2552                                      /* exclude EEPROM/flash and PCIe */
2553                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2554                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2555                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2556                                      FRF_AB_EE_RST_CTL, 1,
2557                                      FRF_AB_EXT_PHY_RST_DUR,
2558                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2559                                      FRF_AB_SWRST, 1);
2560         }
2561         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2562
2563         EFX_LOG(efx, "waiting for hardware reset\n");
2564         schedule_timeout_uninterruptible(HZ / 20);
2565
2566         /* Restore PCI configuration if needed */
2567         if (method == RESET_TYPE_WORLD) {
2568                 if (FALCON_IS_DUAL_FUNC(efx)) {
2569                         rc = pci_restore_state(nic_data->pci_dev2);
2570                         if (rc) {
2571                                 EFX_ERR(efx, "failed to restore PCI config for "
2572                                         "the secondary function\n");
2573                                 goto fail3;
2574                         }
2575                 }
2576                 rc = pci_restore_state(efx->pci_dev);
2577                 if (rc) {
2578                         EFX_ERR(efx, "failed to restore PCI config for the "
2579                                 "primary function\n");
2580                         goto fail4;
2581                 }
2582                 EFX_LOG(efx, "successfully restored PCI config\n");
2583         }
2584
2585         /* Assert that reset complete */
2586         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2587         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2588                 rc = -ETIMEDOUT;
2589                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2590                 goto fail5;
2591         }
2592         EFX_LOG(efx, "hardware reset complete\n");
2593
2594         return 0;
2595
2596         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2597 fail2:
2598 fail3:
2599         pci_restore_state(efx->pci_dev);
2600 fail1:
2601 fail4:
2602 fail5:
2603         return rc;
2604 }
2605
2606 void falcon_monitor(struct efx_nic *efx)
2607 {
2608         bool link_changed;
2609         int rc;
2610
2611         BUG_ON(!mutex_is_locked(&efx->mac_lock));
2612
2613         rc = falcon_board(efx)->type->monitor(efx);
2614         if (rc) {
2615                 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
2616                         (rc == -ERANGE) ? "reported fault" : "failed");
2617                 efx->phy_mode |= PHY_MODE_LOW_POWER;
2618                 __efx_reconfigure_port(efx);
2619         }
2620
2621         if (LOOPBACK_INTERNAL(efx))
2622                 link_changed = falcon_loopback_link_poll(efx);
2623         else
2624                 link_changed = efx->phy_op->poll(efx);
2625
2626         if (link_changed) {
2627                 falcon_stop_nic_stats(efx);
2628                 falcon_deconfigure_mac_wrapper(efx);
2629
2630                 falcon_switch_mac(efx);
2631                 efx->mac_op->reconfigure(efx);
2632
2633                 falcon_start_nic_stats(efx);
2634
2635                 efx_link_status_changed(efx);
2636         }
2637
2638         if (EFX_IS10G(efx))
2639                 falcon_poll_xmac(efx);
2640 }
2641
2642 /* Zeroes out the SRAM contents.  This routine must be called in
2643  * process context and is allowed to sleep.
2644  */
2645 static int falcon_reset_sram(struct efx_nic *efx)
2646 {
2647         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2648         int count;
2649
2650         /* Set the SRAM wake/sleep GPIO appropriately. */
2651         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2652         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2653         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2654         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2655
2656         /* Initiate SRAM reset */
2657         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2658                              FRF_AZ_SRM_INIT_EN, 1,
2659                              FRF_AZ_SRM_NB_SZ, 0);
2660         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2661
2662         /* Wait for SRAM reset to complete */
2663         count = 0;
2664         do {
2665                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2666
2667                 /* SRAM reset is slow; expect around 16ms */
2668                 schedule_timeout_uninterruptible(HZ / 50);
2669
2670                 /* Check for reset complete */
2671                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2672                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2673                         EFX_LOG(efx, "SRAM reset complete\n");
2674
2675                         return 0;
2676                 }
2677         } while (++count < 20); /* wait upto 0.4 sec */
2678
2679         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2680         return -ETIMEDOUT;
2681 }
2682
2683 static int falcon_spi_device_init(struct efx_nic *efx,
2684                                   struct efx_spi_device **spi_device_ret,
2685                                   unsigned int device_id, u32 device_type)
2686 {
2687         struct efx_spi_device *spi_device;
2688
2689         if (device_type != 0) {
2690                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2691                 if (!spi_device)
2692                         return -ENOMEM;
2693                 spi_device->device_id = device_id;
2694                 spi_device->size =
2695                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2696                 spi_device->addr_len =
2697                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2698                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2699                                              spi_device->addr_len == 1);
2700                 spi_device->erase_command =
2701                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2702                 spi_device->erase_size =
2703                         1 << SPI_DEV_TYPE_FIELD(device_type,
2704                                                 SPI_DEV_TYPE_ERASE_SIZE);
2705                 spi_device->block_size =
2706                         1 << SPI_DEV_TYPE_FIELD(device_type,
2707                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2708
2709                 spi_device->efx = efx;
2710         } else {
2711                 spi_device = NULL;
2712         }
2713
2714         kfree(*spi_device_ret);
2715         *spi_device_ret = spi_device;
2716         return 0;
2717 }
2718
2719
2720 static void falcon_remove_spi_devices(struct efx_nic *efx)
2721 {
2722         kfree(efx->spi_eeprom);
2723         efx->spi_eeprom = NULL;
2724         kfree(efx->spi_flash);
2725         efx->spi_flash = NULL;
2726 }
2727
2728 /* Extract non-volatile configuration */
2729 static int falcon_probe_nvconfig(struct efx_nic *efx)
2730 {
2731         struct falcon_nvconfig *nvconfig;
2732         int board_rev;
2733         int rc;
2734
2735         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2736         if (!nvconfig)
2737                 return -ENOMEM;
2738
2739         rc = falcon_read_nvram(efx, nvconfig);
2740         if (rc == -EINVAL) {
2741                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2742                 efx->phy_type = PHY_TYPE_NONE;
2743                 efx->mdio.prtad = MDIO_PRTAD_NONE;
2744                 board_rev = 0;
2745                 rc = 0;
2746         } else if (rc) {
2747                 goto fail1;
2748         } else {
2749                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2750                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2751
2752                 efx->phy_type = v2->port0_phy_type;
2753                 efx->mdio.prtad = v2->port0_phy_addr;
2754                 board_rev = le16_to_cpu(v2->board_revision);
2755
2756                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2757                         rc = falcon_spi_device_init(
2758                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2759                                 le32_to_cpu(v3->spi_device_type
2760                                             [FFE_AB_SPI_DEVICE_FLASH]));
2761                         if (rc)
2762                                 goto fail2;
2763                         rc = falcon_spi_device_init(
2764                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2765                                 le32_to_cpu(v3->spi_device_type
2766                                             [FFE_AB_SPI_DEVICE_EEPROM]));
2767                         if (rc)
2768                                 goto fail2;
2769                 }
2770         }
2771
2772         /* Read the MAC addresses */
2773         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2774
2775         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2776
2777         falcon_probe_board(efx, board_rev);
2778
2779         kfree(nvconfig);
2780         return 0;
2781
2782  fail2:
2783         falcon_remove_spi_devices(efx);
2784  fail1:
2785         kfree(nvconfig);
2786         return rc;
2787 }
2788
2789 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2790  * count, port speed).  Set workaround and feature flags accordingly.
2791  */
2792 static int falcon_probe_nic_variant(struct efx_nic *efx)
2793 {
2794         efx_oword_t altera_build;
2795         efx_oword_t nic_stat;
2796
2797         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2798         if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2799                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2800                 return -ENODEV;
2801         }
2802
2803         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2804
2805         switch (falcon_rev(efx)) {
2806         case FALCON_REV_A0:
2807         case 0xff:
2808                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2809                 return -ENODEV;
2810
2811         case FALCON_REV_A1:
2812                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2813                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2814                         return -ENODEV;
2815                 }
2816                 break;
2817
2818         case FALCON_REV_B0:
2819                 break;
2820
2821         default:
2822                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2823                 return -ENODEV;
2824         }
2825
2826         /* Initial assumed speed */
2827         efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2828
2829         return 0;
2830 }
2831
2832 /* Probe all SPI devices on the NIC */
2833 static void falcon_probe_spi_devices(struct efx_nic *efx)
2834 {
2835         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2836         int boot_dev;
2837
2838         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2839         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2840         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2841
2842         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2843                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2844                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2845                 EFX_LOG(efx, "Booted from %s\n",
2846                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2847         } else {
2848                 /* Disable VPD and set clock dividers to safe
2849                  * values for initial programming. */
2850                 boot_dev = -1;
2851                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2852                         " setting SPI config\n");
2853                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2854                                      /* 125 MHz / 7 ~= 20 MHz */
2855                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2856                                      /* 125 MHz / 63 ~= 2 MHz */
2857                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2858                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2859         }
2860
2861         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2862                 falcon_spi_device_init(efx, &efx->spi_flash,
2863                                        FFE_AB_SPI_DEVICE_FLASH,
2864                                        default_flash_type);
2865         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2866                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2867                                        FFE_AB_SPI_DEVICE_EEPROM,
2868                                        large_eeprom_type);
2869 }
2870
2871 int falcon_probe_nic(struct efx_nic *efx)
2872 {
2873         struct falcon_nic_data *nic_data;
2874         struct falcon_board *board;
2875         int rc;
2876
2877         /* Allocate storage for hardware specific data */
2878         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2879         if (!nic_data)
2880                 return -ENOMEM;
2881         efx->nic_data = nic_data;
2882
2883         /* Determine number of ports etc. */
2884         rc = falcon_probe_nic_variant(efx);
2885         if (rc)
2886                 goto fail1;
2887
2888         /* Probe secondary function if expected */
2889         if (FALCON_IS_DUAL_FUNC(efx)) {
2890                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2891
2892                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2893                                              dev))) {
2894                         if (dev->bus == efx->pci_dev->bus &&
2895                             dev->devfn == efx->pci_dev->devfn + 1) {
2896                                 nic_data->pci_dev2 = dev;
2897                                 break;
2898                         }
2899                 }
2900                 if (!nic_data->pci_dev2) {
2901                         EFX_ERR(efx, "failed to find secondary function\n");
2902                         rc = -ENODEV;
2903                         goto fail2;
2904                 }
2905         }
2906
2907         /* Now we can reset the NIC */
2908         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2909         if (rc) {
2910                 EFX_ERR(efx, "failed to reset NIC\n");
2911                 goto fail3;
2912         }
2913
2914         /* Allocate memory for INT_KER */
2915         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2916         if (rc)
2917                 goto fail4;
2918         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2919
2920         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2921                 (u64)efx->irq_status.dma_addr,
2922                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2923
2924         falcon_probe_spi_devices(efx);
2925
2926         /* Read in the non-volatile configuration */
2927         rc = falcon_probe_nvconfig(efx);
2928         if (rc)
2929                 goto fail5;
2930
2931         /* Initialise I2C adapter */
2932         board = falcon_board(efx);
2933         board->i2c_adap.owner = THIS_MODULE;
2934         board->i2c_data = falcon_i2c_bit_operations;
2935         board->i2c_data.data = efx;
2936         board->i2c_adap.algo_data = &board->i2c_data;
2937         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2938         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2939                 sizeof(board->i2c_adap.name));
2940         rc = i2c_bit_add_bus(&board->i2c_adap);
2941         if (rc)
2942                 goto fail5;
2943
2944         rc = falcon_board(efx)->type->init(efx);
2945         if (rc) {
2946                 EFX_ERR(efx, "failed to initialise board\n");
2947                 goto fail6;
2948         }
2949
2950         nic_data->stats_disable_count = 1;
2951         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2952                     (unsigned long)efx);
2953
2954         return 0;
2955
2956  fail6:
2957         BUG_ON(i2c_del_adapter(&board->i2c_adap));
2958         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2959  fail5:
2960         falcon_remove_spi_devices(efx);
2961         falcon_free_buffer(efx, &efx->irq_status);
2962  fail4:
2963  fail3:
2964         if (nic_data->pci_dev2) {
2965                 pci_dev_put(nic_data->pci_dev2);
2966                 nic_data->pci_dev2 = NULL;
2967         }
2968  fail2:
2969  fail1:
2970         kfree(efx->nic_data);
2971         return rc;
2972 }
2973
2974 static void falcon_init_rx_cfg(struct efx_nic *efx)
2975 {
2976         /* Prior to Siena the RX DMA engine will split each frame at
2977          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2978          * be so large that that never happens. */
2979         const unsigned huge_buf_size = (3 * 4096) >> 5;
2980         /* RX control FIFO thresholds (32 entries) */
2981         const unsigned ctrl_xon_thr = 20;
2982         const unsigned ctrl_xoff_thr = 25;
2983         /* RX data FIFO thresholds (256-byte units; size varies) */
2984         int data_xon_thr = rx_xon_thresh_bytes >> 8;
2985         int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2986         efx_oword_t reg;
2987
2988         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2989         if (falcon_rev(efx) <= FALCON_REV_A1) {
2990                 /* Data FIFO size is 5.5K */
2991                 if (data_xon_thr < 0)
2992                         data_xon_thr = 512 >> 8;
2993                 if (data_xoff_thr < 0)
2994                         data_xoff_thr = 2048 >> 8;
2995                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2996                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2997                                     huge_buf_size);
2998                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2999                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
3000                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
3001                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
3002         } else {
3003                 /* Data FIFO size is 80K; register fields moved */
3004                 if (data_xon_thr < 0)
3005                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
3006                 if (data_xoff_thr < 0)
3007                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
3008                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
3009                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
3010                                     huge_buf_size);
3011                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
3012                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
3013                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
3014                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
3015                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
3016         }
3017         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
3018 }
3019
3020 /* This call performs hardware-specific global initialisation, such as
3021  * defining the descriptor cache sizes and number of RSS channels.
3022  * It does not set up any buffers, descriptor rings or event queues.
3023  */
3024 int falcon_init_nic(struct efx_nic *efx)
3025 {
3026         efx_oword_t temp;
3027         int rc;
3028
3029         /* Use on-chip SRAM */
3030         efx_reado(efx, &temp, FR_AB_NIC_STAT);
3031         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3032         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3033
3034         /* Set the source of the GMAC clock */
3035         if (falcon_rev(efx) == FALCON_REV_B0) {
3036                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3037                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3038                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
3039         }
3040
3041         /* Select the correct MAC */
3042         falcon_clock_mac(efx);
3043
3044         rc = falcon_reset_sram(efx);
3045         if (rc)
3046                 return rc;
3047
3048         /* Set positions of descriptor caches in SRAM. */
3049         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3050         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3051         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3052         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3053
3054         /* Set TX descriptor cache size. */
3055         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3056         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3057         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3058
3059         /* Set RX descriptor cache size.  Set low watermark to size-8, as
3060          * this allows most efficient prefetching.
3061          */
3062         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3063         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3064         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3065         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3066         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3067
3068         /* Clear the parity enables on the TX data fifos as
3069          * they produce false parity errors because of timing issues
3070          */
3071         if (EFX_WORKAROUND_5129(efx)) {
3072                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3073                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3074                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3075         }
3076
3077         /* Enable all the genuinely fatal interrupts.  (They are still
3078          * masked by the overall interrupt mask, controlled by
3079          * falcon_interrupts()).
3080          *
3081          * Note: All other fatal interrupts are enabled
3082          */
3083         EFX_POPULATE_OWORD_3(temp,
3084                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3085                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3086                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3087         EFX_INVERT_OWORD(temp);
3088         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3089
3090         if (EFX_WORKAROUND_7244(efx)) {
3091                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3092                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3093                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3094                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3095                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3096                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3097         }
3098
3099         falcon_setup_rss_indir_table(efx);
3100
3101         /* XXX This is documented only for Falcon A0/A1 */
3102         /* Setup RX.  Wait for descriptor is broken and must
3103          * be disabled.  RXDP recovery shouldn't be needed, but is.
3104          */
3105         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3106         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3107         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3108         if (EFX_WORKAROUND_5583(efx))
3109                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3110         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3111
3112         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3113          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3114          */
3115         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3116         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3117         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3118         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3119         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3120         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3121         /* Enable SW_EV to inherit in char driver - assume harmless here */
3122         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3123         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3124         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3125         /* Squash TX of packets of 16 bytes or less */
3126         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3127                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3128         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3129
3130         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3131          * descriptors (which is bad).
3132          */
3133         efx_reado(efx, &temp, FR_AZ_TX_CFG);
3134         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3135         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3136
3137         falcon_init_rx_cfg(efx);
3138
3139         /* Set destination of both TX and RX Flush events */
3140         if (falcon_rev(efx) >= FALCON_REV_B0) {
3141                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3142                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3143         }
3144
3145         return 0;
3146 }
3147
3148 void falcon_remove_nic(struct efx_nic *efx)
3149 {
3150         struct falcon_nic_data *nic_data = efx->nic_data;
3151         struct falcon_board *board = falcon_board(efx);
3152         int rc;
3153
3154         board->type->fini(efx);
3155
3156         /* Remove I2C adapter and clear it in preparation for a retry */
3157         rc = i2c_del_adapter(&board->i2c_adap);
3158         BUG_ON(rc);
3159         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3160
3161         falcon_remove_spi_devices(efx);
3162         falcon_free_buffer(efx, &efx->irq_status);
3163
3164         falcon_reset_hw(efx, RESET_TYPE_ALL);
3165
3166         /* Release the second function after the reset */
3167         if (nic_data->pci_dev2) {
3168                 pci_dev_put(nic_data->pci_dev2);
3169                 nic_data->pci_dev2 = NULL;
3170         }
3171
3172         /* Tear down the private nic state */
3173         kfree(efx->nic_data);
3174         efx->nic_data = NULL;
3175 }
3176
3177 void falcon_update_nic_stats(struct efx_nic *efx)
3178 {
3179         struct falcon_nic_data *nic_data = efx->nic_data;
3180         efx_oword_t cnt;
3181
3182         if (nic_data->stats_disable_count)
3183                 return;
3184
3185         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3186         efx->n_rx_nodesc_drop_cnt +=
3187                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3188
3189         if (nic_data->stats_pending &&
3190             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
3191                 nic_data->stats_pending = false;
3192                 rmb(); /* read the done flag before the stats */
3193                 efx->mac_op->update_stats(efx);
3194         }
3195 }
3196
3197 void falcon_start_nic_stats(struct efx_nic *efx)
3198 {
3199         struct falcon_nic_data *nic_data = efx->nic_data;
3200
3201         spin_lock_bh(&efx->stats_lock);
3202         if (--nic_data->stats_disable_count == 0)
3203                 falcon_stats_request(efx);
3204         spin_unlock_bh(&efx->stats_lock);
3205 }
3206
3207 void falcon_stop_nic_stats(struct efx_nic *efx)
3208 {
3209         struct falcon_nic_data *nic_data = efx->nic_data;
3210         int i;
3211
3212         might_sleep();
3213
3214         spin_lock_bh(&efx->stats_lock);
3215         ++nic_data->stats_disable_count;
3216         spin_unlock_bh(&efx->stats_lock);
3217
3218         del_timer_sync(&nic_data->stats_timer);
3219
3220         /* Wait enough time for the most recent transfer to
3221          * complete. */
3222         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
3223                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
3224                         break;
3225                 msleep(1);
3226         }
3227
3228         spin_lock_bh(&efx->stats_lock);
3229         falcon_stats_complete(efx);
3230         spin_unlock_bh(&efx->stats_lock);
3231 }
3232
3233 /**************************************************************************
3234  *
3235  * Revision-dependent attributes used by efx.c
3236  *
3237  **************************************************************************
3238  */
3239
3240 struct efx_nic_type falcon_a_nic_type = {
3241         .mem_map_size = 0x20000,
3242         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3243         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3244         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3245         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3246         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3247         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3248         .rx_buffer_padding = 0x24,
3249         .max_interrupt_mode = EFX_INT_MODE_MSI,
3250         .phys_addr_channels = 4,
3251 };
3252
3253 struct efx_nic_type falcon_b_nic_type = {
3254         /* Map everything up to and including the RSS indirection
3255          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3256          * requires that they not be mapped.  */
3257         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3258                          FR_BZ_RX_INDIRECTION_TBL_STEP *
3259                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
3260         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3261         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3262         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3263         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3264         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3265         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3266         .rx_buffer_padding = 0,
3267         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3268         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3269                                    * interrupt handler only supports 32
3270                                    * channels */
3271 };
3272