]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/sfc/falcon.c
sfc: Split MAC stats DMA initiation and completion
[karo-tx-linux.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * Configurable values
35  *
36  **************************************************************************
37  */
38
39 /* This is set to 16 for a good reason.  In summary, if larger than
40  * 16, the descriptor cache holds more than a default socket
41  * buffer's worth of packets (for UDP we can only have at most one
42  * socket buffer's worth outstanding).  This combined with the fact
43  * that we only get 1 TX event per descriptor cache means the NIC
44  * goes idle.
45  */
46 #define TX_DC_ENTRIES 16
47 #define TX_DC_ENTRIES_ORDER 1
48 #define TX_DC_BASE 0x130000
49
50 #define RX_DC_ENTRIES 64
51 #define RX_DC_ENTRIES_ORDER 3
52 #define RX_DC_BASE 0x100000
53
54 static const unsigned int
55 /* "Large" EEPROM device: Atmel AT25640 or similar
56  * 8 KB, 16-bit address, 32 B write block */
57 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
58                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
59                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
60 /* Default flash device: Atmel AT25F1024
61  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
62 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
63                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
64                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
65                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
66                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
67
68 /* RX FIFO XOFF watermark
69  *
70  * When the amount of the RX FIFO increases used increases past this
71  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
72  * This also has an effect on RX/TX arbitration
73  */
74 static int rx_xoff_thresh_bytes = -1;
75 module_param(rx_xoff_thresh_bytes, int, 0644);
76 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
77
78 /* RX FIFO XON watermark
79  *
80  * When the amount of the RX FIFO used decreases below this
81  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
82  * This also has an effect on RX/TX arbitration
83  */
84 static int rx_xon_thresh_bytes = -1;
85 module_param(rx_xon_thresh_bytes, int, 0644);
86 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
87
88 /* If FALCON_MAX_INT_ERRORS internal errors occur within
89  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
90  * disable it.
91  */
92 #define FALCON_INT_ERROR_EXPIRE 3600
93 #define FALCON_MAX_INT_ERRORS 5
94
95 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
96  */
97 #define FALCON_FLUSH_INTERVAL 10
98 #define FALCON_FLUSH_POLL_COUNT 100
99
100 /**************************************************************************
101  *
102  * Falcon constants
103  *
104  **************************************************************************
105  */
106
107 /* Size and alignment of special buffers (4KB) */
108 #define FALCON_BUF_SIZE 4096
109
110 /* Depth of RX flush request fifo */
111 #define FALCON_RX_FLUSH_COUNT 4
112
113 #define FALCON_IS_DUAL_FUNC(efx)                \
114         (falcon_rev(efx) < FALCON_REV_B0)
115
116 /**************************************************************************
117  *
118  * Falcon hardware access
119  *
120  **************************************************************************/
121
122 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
123                                         unsigned int index)
124 {
125         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
126                         value, index);
127 }
128
129 /* Read the current event from the event queue */
130 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
131                                         unsigned int index)
132 {
133         return (((efx_qword_t *) (channel->eventq.addr)) + index);
134 }
135
136 /* See if an event is present
137  *
138  * We check both the high and low dword of the event for all ones.  We
139  * wrote all ones when we cleared the event, and no valid event can
140  * have all ones in either its high or low dwords.  This approach is
141  * robust against reordering.
142  *
143  * Note that using a single 64-bit comparison is incorrect; even
144  * though the CPU read will be atomic, the DMA write may not be.
145  */
146 static inline int falcon_event_present(efx_qword_t *event)
147 {
148         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
149                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
150 }
151
152 /**************************************************************************
153  *
154  * I2C bus - this is a bit-bashing interface using GPIO pins
155  * Note that it uses the output enables to tristate the outputs
156  * SDA is the data pin and SCL is the clock
157  *
158  **************************************************************************
159  */
160 static void falcon_setsda(void *data, int state)
161 {
162         struct efx_nic *efx = (struct efx_nic *)data;
163         efx_oword_t reg;
164
165         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
166         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
167         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
168 }
169
170 static void falcon_setscl(void *data, int state)
171 {
172         struct efx_nic *efx = (struct efx_nic *)data;
173         efx_oword_t reg;
174
175         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
176         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
177         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
178 }
179
180 static int falcon_getsda(void *data)
181 {
182         struct efx_nic *efx = (struct efx_nic *)data;
183         efx_oword_t reg;
184
185         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
186         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
187 }
188
189 static int falcon_getscl(void *data)
190 {
191         struct efx_nic *efx = (struct efx_nic *)data;
192         efx_oword_t reg;
193
194         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
195         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
196 }
197
198 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
199         .setsda         = falcon_setsda,
200         .setscl         = falcon_setscl,
201         .getsda         = falcon_getsda,
202         .getscl         = falcon_getscl,
203         .udelay         = 5,
204         /* Wait up to 50 ms for slave to let us pull SCL high */
205         .timeout        = DIV_ROUND_UP(HZ, 20),
206 };
207
208 /**************************************************************************
209  *
210  * Falcon special buffer handling
211  * Special buffers are used for event queues and the TX and RX
212  * descriptor rings.
213  *
214  *************************************************************************/
215
216 /*
217  * Initialise a Falcon special buffer
218  *
219  * This will define a buffer (previously allocated via
220  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
221  * it to be used for event queues, descriptor rings etc.
222  */
223 static void
224 falcon_init_special_buffer(struct efx_nic *efx,
225                            struct efx_special_buffer *buffer)
226 {
227         efx_qword_t buf_desc;
228         int index;
229         dma_addr_t dma_addr;
230         int i;
231
232         EFX_BUG_ON_PARANOID(!buffer->addr);
233
234         /* Write buffer descriptors to NIC */
235         for (i = 0; i < buffer->entries; i++) {
236                 index = buffer->index + i;
237                 dma_addr = buffer->dma_addr + (i * 4096);
238                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
239                         index, (unsigned long long)dma_addr);
240                 EFX_POPULATE_QWORD_3(buf_desc,
241                                      FRF_AZ_BUF_ADR_REGION, 0,
242                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
243                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
244                 falcon_write_buf_tbl(efx, &buf_desc, index);
245         }
246 }
247
248 /* Unmaps a buffer from Falcon and clears the buffer table entries */
249 static void
250 falcon_fini_special_buffer(struct efx_nic *efx,
251                            struct efx_special_buffer *buffer)
252 {
253         efx_oword_t buf_tbl_upd;
254         unsigned int start = buffer->index;
255         unsigned int end = (buffer->index + buffer->entries - 1);
256
257         if (!buffer->entries)
258                 return;
259
260         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
261                 buffer->index, buffer->index + buffer->entries - 1);
262
263         EFX_POPULATE_OWORD_4(buf_tbl_upd,
264                              FRF_AZ_BUF_UPD_CMD, 0,
265                              FRF_AZ_BUF_CLR_CMD, 1,
266                              FRF_AZ_BUF_CLR_END_ID, end,
267                              FRF_AZ_BUF_CLR_START_ID, start);
268         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
269 }
270
271 /*
272  * Allocate a new Falcon special buffer
273  *
274  * This allocates memory for a new buffer, clears it and allocates a
275  * new buffer ID range.  It does not write into Falcon's buffer table.
276  *
277  * This call will allocate 4KB buffers, since Falcon can't use 8KB
278  * buffers for event queues and descriptor rings.
279  */
280 static int falcon_alloc_special_buffer(struct efx_nic *efx,
281                                        struct efx_special_buffer *buffer,
282                                        unsigned int len)
283 {
284         len = ALIGN(len, FALCON_BUF_SIZE);
285
286         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
287                                             &buffer->dma_addr);
288         if (!buffer->addr)
289                 return -ENOMEM;
290         buffer->len = len;
291         buffer->entries = len / FALCON_BUF_SIZE;
292         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
293
294         /* All zeros is a potentially valid event so memset to 0xff */
295         memset(buffer->addr, 0xff, len);
296
297         /* Select new buffer ID */
298         buffer->index = efx->next_buffer_table;
299         efx->next_buffer_table += buffer->entries;
300
301         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
302                 "(virt %p phys %llx)\n", buffer->index,
303                 buffer->index + buffer->entries - 1,
304                 (u64)buffer->dma_addr, len,
305                 buffer->addr, (u64)virt_to_phys(buffer->addr));
306
307         return 0;
308 }
309
310 static void falcon_free_special_buffer(struct efx_nic *efx,
311                                        struct efx_special_buffer *buffer)
312 {
313         if (!buffer->addr)
314                 return;
315
316         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
317                 "(virt %p phys %llx)\n", buffer->index,
318                 buffer->index + buffer->entries - 1,
319                 (u64)buffer->dma_addr, buffer->len,
320                 buffer->addr, (u64)virt_to_phys(buffer->addr));
321
322         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
323                             buffer->dma_addr);
324         buffer->addr = NULL;
325         buffer->entries = 0;
326 }
327
328 /**************************************************************************
329  *
330  * Falcon generic buffer handling
331  * These buffers are used for interrupt status and MAC stats
332  *
333  **************************************************************************/
334
335 static int falcon_alloc_buffer(struct efx_nic *efx,
336                                struct efx_buffer *buffer, unsigned int len)
337 {
338         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
339                                             &buffer->dma_addr);
340         if (!buffer->addr)
341                 return -ENOMEM;
342         buffer->len = len;
343         memset(buffer->addr, 0, len);
344         return 0;
345 }
346
347 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
348 {
349         if (buffer->addr) {
350                 pci_free_consistent(efx->pci_dev, buffer->len,
351                                     buffer->addr, buffer->dma_addr);
352                 buffer->addr = NULL;
353         }
354 }
355
356 /**************************************************************************
357  *
358  * Falcon TX path
359  *
360  **************************************************************************/
361
362 /* Returns a pointer to the specified transmit descriptor in the TX
363  * descriptor queue belonging to the specified channel.
364  */
365 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
366                                                unsigned int index)
367 {
368         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
369 }
370
371 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
372 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
373 {
374         unsigned write_ptr;
375         efx_dword_t reg;
376
377         write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
378         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
379         efx_writed_page(tx_queue->efx, &reg,
380                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
381 }
382
383
384 /* For each entry inserted into the software descriptor ring, create a
385  * descriptor in the hardware TX descriptor ring (in host memory), and
386  * write a doorbell.
387  */
388 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
389 {
390
391         struct efx_tx_buffer *buffer;
392         efx_qword_t *txd;
393         unsigned write_ptr;
394
395         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397         do {
398                 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
399                 buffer = &tx_queue->buffer[write_ptr];
400                 txd = falcon_tx_desc(tx_queue, write_ptr);
401                 ++tx_queue->write_count;
402
403                 /* Create TX descriptor ring entry */
404                 EFX_POPULATE_QWORD_4(*txd,
405                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
406                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
407                                      FSF_AZ_TX_KER_BUF_REGION, 0,
408                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
409         } while (tx_queue->write_count != tx_queue->insert_count);
410
411         wmb(); /* Ensure descriptors are written before they are fetched */
412         falcon_notify_tx_desc(tx_queue);
413 }
414
415 /* Allocate hardware resources for a TX queue */
416 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
417 {
418         struct efx_nic *efx = tx_queue->efx;
419         BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
420                      EFX_TXQ_SIZE & EFX_TXQ_MASK);
421         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
422                                            EFX_TXQ_SIZE * sizeof(efx_qword_t));
423 }
424
425 void falcon_init_tx(struct efx_tx_queue *tx_queue)
426 {
427         efx_oword_t tx_desc_ptr;
428         struct efx_nic *efx = tx_queue->efx;
429
430         tx_queue->flushed = FLUSH_NONE;
431
432         /* Pin TX descriptor ring */
433         falcon_init_special_buffer(efx, &tx_queue->txd);
434
435         /* Push TX descriptor ring to card */
436         EFX_POPULATE_OWORD_10(tx_desc_ptr,
437                               FRF_AZ_TX_DESCQ_EN, 1,
438                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
439                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
440                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
441                               FRF_AZ_TX_DESCQ_EVQ_ID,
442                               tx_queue->channel->channel,
443                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
444                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
445                               FRF_AZ_TX_DESCQ_SIZE,
446                               __ffs(tx_queue->txd.entries),
447                               FRF_AZ_TX_DESCQ_TYPE, 0,
448                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
449
450         if (falcon_rev(efx) >= FALCON_REV_B0) {
451                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
452                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
453                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
454                                     !csum);
455         }
456
457         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
458                          tx_queue->queue);
459
460         if (falcon_rev(efx) < FALCON_REV_B0) {
461                 efx_oword_t reg;
462
463                 /* Only 128 bits in this register */
464                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
465
466                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
467                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
468                         clear_bit_le(tx_queue->queue, (void *)&reg);
469                 else
470                         set_bit_le(tx_queue->queue, (void *)&reg);
471                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
472         }
473 }
474
475 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
476 {
477         struct efx_nic *efx = tx_queue->efx;
478         efx_oword_t tx_flush_descq;
479
480         tx_queue->flushed = FLUSH_PENDING;
481
482         /* Post a flush command */
483         EFX_POPULATE_OWORD_2(tx_flush_descq,
484                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
485                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
486         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
487 }
488
489 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
490 {
491         struct efx_nic *efx = tx_queue->efx;
492         efx_oword_t tx_desc_ptr;
493
494         /* The queue should have been flushed */
495         WARN_ON(tx_queue->flushed != FLUSH_DONE);
496
497         /* Remove TX descriptor ring from card */
498         EFX_ZERO_OWORD(tx_desc_ptr);
499         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
500                          tx_queue->queue);
501
502         /* Unpin TX descriptor ring */
503         falcon_fini_special_buffer(efx, &tx_queue->txd);
504 }
505
506 /* Free buffers backing TX queue */
507 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
508 {
509         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
510 }
511
512 /**************************************************************************
513  *
514  * Falcon RX path
515  *
516  **************************************************************************/
517
518 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
519 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
520                                                unsigned int index)
521 {
522         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
523 }
524
525 /* This creates an entry in the RX descriptor queue */
526 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
527                                         unsigned index)
528 {
529         struct efx_rx_buffer *rx_buf;
530         efx_qword_t *rxd;
531
532         rxd = falcon_rx_desc(rx_queue, index);
533         rx_buf = efx_rx_buffer(rx_queue, index);
534         EFX_POPULATE_QWORD_3(*rxd,
535                              FSF_AZ_RX_KER_BUF_SIZE,
536                              rx_buf->len -
537                              rx_queue->efx->type->rx_buffer_padding,
538                              FSF_AZ_RX_KER_BUF_REGION, 0,
539                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
540 }
541
542 /* This writes to the RX_DESC_WPTR register for the specified receive
543  * descriptor ring.
544  */
545 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
546 {
547         efx_dword_t reg;
548         unsigned write_ptr;
549
550         while (rx_queue->notified_count != rx_queue->added_count) {
551                 falcon_build_rx_desc(rx_queue,
552                                      rx_queue->notified_count &
553                                      EFX_RXQ_MASK);
554                 ++rx_queue->notified_count;
555         }
556
557         wmb();
558         write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
559         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
560         efx_writed_page(rx_queue->efx, &reg,
561                         FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
562 }
563
564 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
565 {
566         struct efx_nic *efx = rx_queue->efx;
567         BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
568                      EFX_RXQ_SIZE & EFX_RXQ_MASK);
569         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
570                                            EFX_RXQ_SIZE * sizeof(efx_qword_t));
571 }
572
573 void falcon_init_rx(struct efx_rx_queue *rx_queue)
574 {
575         efx_oword_t rx_desc_ptr;
576         struct efx_nic *efx = rx_queue->efx;
577         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
578         bool iscsi_digest_en = is_b0;
579
580         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
581                 rx_queue->queue, rx_queue->rxd.index,
582                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
583
584         rx_queue->flushed = FLUSH_NONE;
585
586         /* Pin RX descriptor ring */
587         falcon_init_special_buffer(efx, &rx_queue->rxd);
588
589         /* Push RX descriptor ring to card */
590         EFX_POPULATE_OWORD_10(rx_desc_ptr,
591                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
592                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
593                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
594                               FRF_AZ_RX_DESCQ_EVQ_ID,
595                               rx_queue->channel->channel,
596                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
597                               FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
598                               FRF_AZ_RX_DESCQ_SIZE,
599                               __ffs(rx_queue->rxd.entries),
600                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
601                               /* For >=B0 this is scatter so disable */
602                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
603                               FRF_AZ_RX_DESCQ_EN, 1);
604         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
605                          rx_queue->queue);
606 }
607
608 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
609 {
610         struct efx_nic *efx = rx_queue->efx;
611         efx_oword_t rx_flush_descq;
612
613         rx_queue->flushed = FLUSH_PENDING;
614
615         /* Post a flush command */
616         EFX_POPULATE_OWORD_2(rx_flush_descq,
617                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
618                              FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
619         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
620 }
621
622 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
623 {
624         efx_oword_t rx_desc_ptr;
625         struct efx_nic *efx = rx_queue->efx;
626
627         /* The queue should already have been flushed */
628         WARN_ON(rx_queue->flushed != FLUSH_DONE);
629
630         /* Remove RX descriptor ring from card */
631         EFX_ZERO_OWORD(rx_desc_ptr);
632         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
633                          rx_queue->queue);
634
635         /* Unpin RX descriptor ring */
636         falcon_fini_special_buffer(efx, &rx_queue->rxd);
637 }
638
639 /* Free buffers backing RX queue */
640 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
641 {
642         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
643 }
644
645 /**************************************************************************
646  *
647  * Falcon event queue processing
648  * Event queues are processed by per-channel tasklets.
649  *
650  **************************************************************************/
651
652 /* Update a channel's event queue's read pointer (RPTR) register
653  *
654  * This writes the EVQ_RPTR_REG register for the specified channel's
655  * event queue.
656  *
657  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
658  * whereas channel->eventq_read_ptr contains the index of the "next to
659  * read" event.
660  */
661 void falcon_eventq_read_ack(struct efx_channel *channel)
662 {
663         efx_dword_t reg;
664         struct efx_nic *efx = channel->efx;
665
666         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
667         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
668                             channel->channel);
669 }
670
671 /* Use HW to insert a SW defined event */
672 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
673 {
674         efx_oword_t drv_ev_reg;
675
676         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
677                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
678         drv_ev_reg.u32[0] = event->u32[0];
679         drv_ev_reg.u32[1] = event->u32[1];
680         drv_ev_reg.u32[2] = 0;
681         drv_ev_reg.u32[3] = 0;
682         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
683         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
684 }
685
686 /* Handle a transmit completion event
687  *
688  * Falcon batches TX completion events; the message we receive is of
689  * the form "complete all TX events up to this index".
690  */
691 static void falcon_handle_tx_event(struct efx_channel *channel,
692                                    efx_qword_t *event)
693 {
694         unsigned int tx_ev_desc_ptr;
695         unsigned int tx_ev_q_label;
696         struct efx_tx_queue *tx_queue;
697         struct efx_nic *efx = channel->efx;
698
699         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
700                 /* Transmit completion */
701                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
702                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
703                 tx_queue = &efx->tx_queue[tx_ev_q_label];
704                 channel->irq_mod_score +=
705                         (tx_ev_desc_ptr - tx_queue->read_count) &
706                         EFX_TXQ_MASK;
707                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
708         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
709                 /* Rewrite the FIFO write pointer */
710                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
711                 tx_queue = &efx->tx_queue[tx_ev_q_label];
712
713                 if (efx_dev_registered(efx))
714                         netif_tx_lock(efx->net_dev);
715                 falcon_notify_tx_desc(tx_queue);
716                 if (efx_dev_registered(efx))
717                         netif_tx_unlock(efx->net_dev);
718         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
719                    EFX_WORKAROUND_10727(efx)) {
720                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
721         } else {
722                 EFX_ERR(efx, "channel %d unexpected TX event "
723                         EFX_QWORD_FMT"\n", channel->channel,
724                         EFX_QWORD_VAL(*event));
725         }
726 }
727
728 /* Detect errors included in the rx_evt_pkt_ok bit. */
729 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
730                                     const efx_qword_t *event,
731                                     bool *rx_ev_pkt_ok,
732                                     bool *discard)
733 {
734         struct efx_nic *efx = rx_queue->efx;
735         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
736         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
737         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
738         bool rx_ev_other_err, rx_ev_pause_frm;
739         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
740         unsigned rx_ev_pkt_type;
741
742         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
743         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
744         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
745         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
746         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
747                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
748         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
749         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
750                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
751         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
752                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
753         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
754         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
755         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
756                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
757         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
758
759         /* Every error apart from tobe_disc and pause_frm */
760         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
761                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
762                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
763
764         /* Count errors that are not in MAC stats.  Ignore expected
765          * checksum errors during self-test. */
766         if (rx_ev_frm_trunc)
767                 ++rx_queue->channel->n_rx_frm_trunc;
768         else if (rx_ev_tobe_disc)
769                 ++rx_queue->channel->n_rx_tobe_disc;
770         else if (!efx->loopback_selftest) {
771                 if (rx_ev_ip_hdr_chksum_err)
772                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
773                 else if (rx_ev_tcp_udp_chksum_err)
774                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
775         }
776         if (rx_ev_ip_frag_err)
777                 ++rx_queue->channel->n_rx_ip_frag_err;
778
779         /* The frame must be discarded if any of these are true. */
780         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
781                     rx_ev_tobe_disc | rx_ev_pause_frm);
782
783         /* TOBE_DISC is expected on unicast mismatches; don't print out an
784          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
785          * to a FIFO overflow.
786          */
787 #ifdef EFX_ENABLE_DEBUG
788         if (rx_ev_other_err) {
789                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
790                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
791                             rx_queue->queue, EFX_QWORD_VAL(*event),
792                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
793                             rx_ev_ip_hdr_chksum_err ?
794                             " [IP_HDR_CHKSUM_ERR]" : "",
795                             rx_ev_tcp_udp_chksum_err ?
796                             " [TCP_UDP_CHKSUM_ERR]" : "",
797                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
798                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
799                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
800                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
801                             rx_ev_pause_frm ? " [PAUSE]" : "");
802         }
803 #endif
804 }
805
806 /* Handle receive events that are not in-order. */
807 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
808                                        unsigned index)
809 {
810         struct efx_nic *efx = rx_queue->efx;
811         unsigned expected, dropped;
812
813         expected = rx_queue->removed_count & EFX_RXQ_MASK;
814         dropped = (index - expected) & EFX_RXQ_MASK;
815         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
816                 dropped, index, expected);
817
818         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
819                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
820 }
821
822 /* Handle a packet received event
823  *
824  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
825  * wrong destination address
826  * Also "is multicast" and "matches multicast filter" flags can be used to
827  * discard non-matching multicast packets.
828  */
829 static void falcon_handle_rx_event(struct efx_channel *channel,
830                                    const efx_qword_t *event)
831 {
832         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
833         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
834         unsigned expected_ptr;
835         bool rx_ev_pkt_ok, discard = false, checksummed;
836         struct efx_rx_queue *rx_queue;
837         struct efx_nic *efx = channel->efx;
838
839         /* Basic packet information */
840         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
841         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
842         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
843         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
844         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
845         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
846                 channel->channel);
847
848         rx_queue = &efx->rx_queue[channel->channel];
849
850         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
851         expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
852         if (unlikely(rx_ev_desc_ptr != expected_ptr))
853                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
854
855         if (likely(rx_ev_pkt_ok)) {
856                 /* If packet is marked as OK and packet type is TCP/IPv4 or
857                  * UDP/IPv4, then we can rely on the hardware checksum.
858                  */
859                 checksummed =
860                         efx->rx_checksum_enabled &&
861                         (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
862                          rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
863         } else {
864                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
865                                         &discard);
866                 checksummed = false;
867         }
868
869         /* Detect multicast packets that didn't match the filter */
870         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
871         if (rx_ev_mcast_pkt) {
872                 unsigned int rx_ev_mcast_hash_match =
873                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
874
875                 if (unlikely(!rx_ev_mcast_hash_match))
876                         discard = true;
877         }
878
879         channel->irq_mod_score += 2;
880
881         /* Handle received packet */
882         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
883                       checksummed, discard);
884 }
885
886 /* Global events are basically PHY events */
887 static void falcon_handle_global_event(struct efx_channel *channel,
888                                        efx_qword_t *event)
889 {
890         struct efx_nic *efx = channel->efx;
891         bool handled = false;
892
893         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
894             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
895             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
896                 efx->phy_op->clear_interrupt(efx);
897                 queue_work(efx->workqueue, &efx->phy_work);
898                 handled = true;
899         }
900
901         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
902             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
903                 queue_work(efx->workqueue, &efx->mac_work);
904                 handled = true;
905         }
906
907         if (falcon_rev(efx) <= FALCON_REV_A1 ?
908             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
909             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
910                 EFX_ERR(efx, "channel %d seen global RX_RESET "
911                         "event. Resetting.\n", channel->channel);
912
913                 atomic_inc(&efx->rx_reset);
914                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
915                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
916                 handled = true;
917         }
918
919         if (!handled)
920                 EFX_ERR(efx, "channel %d unknown global event "
921                         EFX_QWORD_FMT "\n", channel->channel,
922                         EFX_QWORD_VAL(*event));
923 }
924
925 static void falcon_handle_driver_event(struct efx_channel *channel,
926                                        efx_qword_t *event)
927 {
928         struct efx_nic *efx = channel->efx;
929         unsigned int ev_sub_code;
930         unsigned int ev_sub_data;
931
932         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
933         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
934
935         switch (ev_sub_code) {
936         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
937                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
938                           channel->channel, ev_sub_data);
939                 break;
940         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
941                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
942                           channel->channel, ev_sub_data);
943                 break;
944         case FSE_AZ_EVQ_INIT_DONE_EV:
945                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
946                         channel->channel, ev_sub_data);
947                 break;
948         case FSE_AZ_SRM_UPD_DONE_EV:
949                 EFX_TRACE(efx, "channel %d SRAM update done\n",
950                           channel->channel);
951                 break;
952         case FSE_AZ_WAKE_UP_EV:
953                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
954                           channel->channel, ev_sub_data);
955                 break;
956         case FSE_AZ_TIMER_EV:
957                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
958                           channel->channel, ev_sub_data);
959                 break;
960         case FSE_AA_RX_RECOVER_EV:
961                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
962                         "Resetting.\n", channel->channel);
963                 atomic_inc(&efx->rx_reset);
964                 efx_schedule_reset(efx,
965                                    EFX_WORKAROUND_6555(efx) ?
966                                    RESET_TYPE_RX_RECOVERY :
967                                    RESET_TYPE_DISABLE);
968                 break;
969         case FSE_BZ_RX_DSC_ERROR_EV:
970                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
971                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
972                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
973                 break;
974         case FSE_BZ_TX_DSC_ERROR_EV:
975                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
976                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
977                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
978                 break;
979         default:
980                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
981                           "data %04x\n", channel->channel, ev_sub_code,
982                           ev_sub_data);
983                 break;
984         }
985 }
986
987 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
988 {
989         unsigned int read_ptr;
990         efx_qword_t event, *p_event;
991         int ev_code;
992         int rx_packets = 0;
993
994         read_ptr = channel->eventq_read_ptr;
995
996         do {
997                 p_event = falcon_event(channel, read_ptr);
998                 event = *p_event;
999
1000                 if (!falcon_event_present(&event))
1001                         /* End of events */
1002                         break;
1003
1004                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1005                           channel->channel, EFX_QWORD_VAL(event));
1006
1007                 /* Clear this event by marking it all ones */
1008                 EFX_SET_QWORD(*p_event);
1009
1010                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1011
1012                 switch (ev_code) {
1013                 case FSE_AZ_EV_CODE_RX_EV:
1014                         falcon_handle_rx_event(channel, &event);
1015                         ++rx_packets;
1016                         break;
1017                 case FSE_AZ_EV_CODE_TX_EV:
1018                         falcon_handle_tx_event(channel, &event);
1019                         break;
1020                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1021                         channel->eventq_magic = EFX_QWORD_FIELD(
1022                                 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1023                         EFX_LOG(channel->efx, "channel %d received generated "
1024                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1025                                 EFX_QWORD_VAL(event));
1026                         break;
1027                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1028                         falcon_handle_global_event(channel, &event);
1029                         break;
1030                 case FSE_AZ_EV_CODE_DRIVER_EV:
1031                         falcon_handle_driver_event(channel, &event);
1032                         break;
1033                 default:
1034                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1035                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1036                                 ev_code, EFX_QWORD_VAL(event));
1037                 }
1038
1039                 /* Increment read pointer */
1040                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1041
1042         } while (rx_packets < rx_quota);
1043
1044         channel->eventq_read_ptr = read_ptr;
1045         return rx_packets;
1046 }
1047
1048 void falcon_set_int_moderation(struct efx_channel *channel)
1049 {
1050         efx_dword_t timer_cmd;
1051         struct efx_nic *efx = channel->efx;
1052
1053         /* Set timer register */
1054         if (channel->irq_moderation) {
1055                 EFX_POPULATE_DWORD_2(timer_cmd,
1056                                      FRF_AB_TC_TIMER_MODE,
1057                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
1058                                      FRF_AB_TC_TIMER_VAL,
1059                                      channel->irq_moderation - 1);
1060         } else {
1061                 EFX_POPULATE_DWORD_2(timer_cmd,
1062                                      FRF_AB_TC_TIMER_MODE,
1063                                      FFE_BB_TIMER_MODE_DIS,
1064                                      FRF_AB_TC_TIMER_VAL, 0);
1065         }
1066         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1067         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1068                                channel->channel);
1069
1070 }
1071
1072 /* Allocate buffer table entries for event queue */
1073 int falcon_probe_eventq(struct efx_channel *channel)
1074 {
1075         struct efx_nic *efx = channel->efx;
1076         BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1077                      EFX_EVQ_SIZE & EFX_EVQ_MASK);
1078         return falcon_alloc_special_buffer(efx, &channel->eventq,
1079                                            EFX_EVQ_SIZE * sizeof(efx_qword_t));
1080 }
1081
1082 void falcon_init_eventq(struct efx_channel *channel)
1083 {
1084         efx_oword_t evq_ptr;
1085         struct efx_nic *efx = channel->efx;
1086
1087         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1088                 channel->channel, channel->eventq.index,
1089                 channel->eventq.index + channel->eventq.entries - 1);
1090
1091         /* Pin event queue buffer */
1092         falcon_init_special_buffer(efx, &channel->eventq);
1093
1094         /* Fill event queue with all ones (i.e. empty events) */
1095         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1096
1097         /* Push event queue to card */
1098         EFX_POPULATE_OWORD_3(evq_ptr,
1099                              FRF_AZ_EVQ_EN, 1,
1100                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1101                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1102         efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1103                          channel->channel);
1104
1105         falcon_set_int_moderation(channel);
1106 }
1107
1108 void falcon_fini_eventq(struct efx_channel *channel)
1109 {
1110         efx_oword_t eventq_ptr;
1111         struct efx_nic *efx = channel->efx;
1112
1113         /* Remove event queue from card */
1114         EFX_ZERO_OWORD(eventq_ptr);
1115         efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1116                          channel->channel);
1117
1118         /* Unpin event queue */
1119         falcon_fini_special_buffer(efx, &channel->eventq);
1120 }
1121
1122 /* Free buffers backing event queue */
1123 void falcon_remove_eventq(struct efx_channel *channel)
1124 {
1125         falcon_free_special_buffer(channel->efx, &channel->eventq);
1126 }
1127
1128
1129 /* Generates a test event on the event queue.  A subsequent call to
1130  * process_eventq() should pick up the event and place the value of
1131  * "magic" into channel->eventq_magic;
1132  */
1133 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1134 {
1135         efx_qword_t test_event;
1136
1137         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1138                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1139                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1140         falcon_generate_event(channel, &test_event);
1141 }
1142
1143 void falcon_sim_phy_event(struct efx_nic *efx)
1144 {
1145         efx_qword_t phy_event;
1146
1147         EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1148                              FSE_AZ_EV_CODE_GLOBAL_EV);
1149         if (EFX_IS10G(efx))
1150                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1151         else
1152                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1153
1154         falcon_generate_event(&efx->channel[0], &phy_event);
1155 }
1156
1157 /**************************************************************************
1158  *
1159  * Flush handling
1160  *
1161  **************************************************************************/
1162
1163
1164 static void falcon_poll_flush_events(struct efx_nic *efx)
1165 {
1166         struct efx_channel *channel = &efx->channel[0];
1167         struct efx_tx_queue *tx_queue;
1168         struct efx_rx_queue *rx_queue;
1169         unsigned int read_ptr = channel->eventq_read_ptr;
1170         unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1171
1172         do {
1173                 efx_qword_t *event = falcon_event(channel, read_ptr);
1174                 int ev_code, ev_sub_code, ev_queue;
1175                 bool ev_failed;
1176
1177                 if (!falcon_event_present(event))
1178                         break;
1179
1180                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1181                 ev_sub_code = EFX_QWORD_FIELD(*event,
1182                                               FSF_AZ_DRIVER_EV_SUBCODE);
1183                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1184                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1185                         ev_queue = EFX_QWORD_FIELD(*event,
1186                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1187                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1188                                 tx_queue = efx->tx_queue + ev_queue;
1189                                 tx_queue->flushed = FLUSH_DONE;
1190                         }
1191                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1192                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1193                         ev_queue = EFX_QWORD_FIELD(
1194                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1195                         ev_failed = EFX_QWORD_FIELD(
1196                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1197                         if (ev_queue < efx->n_rx_queues) {
1198                                 rx_queue = efx->rx_queue + ev_queue;
1199                                 rx_queue->flushed =
1200                                         ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1201                         }
1202                 }
1203
1204                 /* We're about to destroy the queue anyway, so
1205                  * it's ok to throw away every non-flush event */
1206                 EFX_SET_QWORD(*event);
1207
1208                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1209         } while (read_ptr != end_ptr);
1210
1211         channel->eventq_read_ptr = read_ptr;
1212 }
1213
1214 static void falcon_prepare_flush(struct efx_nic *efx)
1215 {
1216         falcon_deconfigure_mac_wrapper(efx);
1217
1218         /* Wait for the tx and rx fifo's to get to the next packet boundary
1219          * (~1ms without back-pressure), then to drain the remainder of the
1220          * fifo's at data path speeds (negligible), with a healthy margin. */
1221         msleep(10);
1222 }
1223
1224 /* Handle tx and rx flushes at the same time, since they run in
1225  * parallel in the hardware and there's no reason for us to
1226  * serialise them */
1227 int falcon_flush_queues(struct efx_nic *efx)
1228 {
1229         struct efx_rx_queue *rx_queue;
1230         struct efx_tx_queue *tx_queue;
1231         int i, tx_pending, rx_pending;
1232
1233         falcon_prepare_flush(efx);
1234
1235         /* Flush all tx queues in parallel */
1236         efx_for_each_tx_queue(tx_queue, efx)
1237                 falcon_flush_tx_queue(tx_queue);
1238
1239         /* The hardware supports four concurrent rx flushes, each of which may
1240          * need to be retried if there is an outstanding descriptor fetch */
1241         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1242                 rx_pending = tx_pending = 0;
1243                 efx_for_each_rx_queue(rx_queue, efx) {
1244                         if (rx_queue->flushed == FLUSH_PENDING)
1245                                 ++rx_pending;
1246                 }
1247                 efx_for_each_rx_queue(rx_queue, efx) {
1248                         if (rx_pending == FALCON_RX_FLUSH_COUNT)
1249                                 break;
1250                         if (rx_queue->flushed == FLUSH_FAILED ||
1251                             rx_queue->flushed == FLUSH_NONE) {
1252                                 falcon_flush_rx_queue(rx_queue);
1253                                 ++rx_pending;
1254                         }
1255                 }
1256                 efx_for_each_tx_queue(tx_queue, efx) {
1257                         if (tx_queue->flushed != FLUSH_DONE)
1258                                 ++tx_pending;
1259                 }
1260
1261                 if (rx_pending == 0 && tx_pending == 0)
1262                         return 0;
1263
1264                 msleep(FALCON_FLUSH_INTERVAL);
1265                 falcon_poll_flush_events(efx);
1266         }
1267
1268         /* Mark the queues as all flushed. We're going to return failure
1269          * leading to a reset, or fake up success anyway */
1270         efx_for_each_tx_queue(tx_queue, efx) {
1271                 if (tx_queue->flushed != FLUSH_DONE)
1272                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1273                                 tx_queue->queue);
1274                 tx_queue->flushed = FLUSH_DONE;
1275         }
1276         efx_for_each_rx_queue(rx_queue, efx) {
1277                 if (rx_queue->flushed != FLUSH_DONE)
1278                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1279                                 rx_queue->queue);
1280                 rx_queue->flushed = FLUSH_DONE;
1281         }
1282
1283         if (EFX_WORKAROUND_7803(efx))
1284                 return 0;
1285
1286         return -ETIMEDOUT;
1287 }
1288
1289 /**************************************************************************
1290  *
1291  * Falcon hardware interrupts
1292  * The hardware interrupt handler does very little work; all the event
1293  * queue processing is carried out by per-channel tasklets.
1294  *
1295  **************************************************************************/
1296
1297 /* Enable/disable/generate Falcon interrupts */
1298 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1299                                      int force)
1300 {
1301         efx_oword_t int_en_reg_ker;
1302
1303         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1304                              FRF_AZ_KER_INT_KER, force,
1305                              FRF_AZ_DRV_INT_EN_KER, enabled);
1306         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1307 }
1308
1309 void falcon_enable_interrupts(struct efx_nic *efx)
1310 {
1311         efx_oword_t int_adr_reg_ker;
1312         struct efx_channel *channel;
1313
1314         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1315         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1316
1317         /* Program address */
1318         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1319                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1320                              EFX_INT_MODE_USE_MSI(efx),
1321                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1322         efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1323
1324         /* Enable interrupts */
1325         falcon_interrupts(efx, 1, 0);
1326
1327         /* Force processing of all the channels to get the EVQ RPTRs up to
1328            date */
1329         efx_for_each_channel(channel, efx)
1330                 efx_schedule_channel(channel);
1331 }
1332
1333 void falcon_disable_interrupts(struct efx_nic *efx)
1334 {
1335         /* Disable interrupts */
1336         falcon_interrupts(efx, 0, 0);
1337 }
1338
1339 /* Generate a Falcon test interrupt
1340  * Interrupt must already have been enabled, otherwise nasty things
1341  * may happen.
1342  */
1343 void falcon_generate_interrupt(struct efx_nic *efx)
1344 {
1345         falcon_interrupts(efx, 1, 1);
1346 }
1347
1348 /* Acknowledge a legacy interrupt from Falcon
1349  *
1350  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1351  *
1352  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1353  * BIU. Interrupt acknowledge is read sensitive so must write instead
1354  * (then read to ensure the BIU collector is flushed)
1355  *
1356  * NB most hardware supports MSI interrupts
1357  */
1358 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1359 {
1360         efx_dword_t reg;
1361
1362         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1363         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1364         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1365 }
1366
1367 /* Process a fatal interrupt
1368  * Disable bus mastering ASAP and schedule a reset
1369  */
1370 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1371 {
1372         struct falcon_nic_data *nic_data = efx->nic_data;
1373         efx_oword_t *int_ker = efx->irq_status.addr;
1374         efx_oword_t fatal_intr;
1375         int error, mem_perr;
1376
1377         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1378         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1379
1380         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1381                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1382                 EFX_OWORD_VAL(fatal_intr),
1383                 error ? "disabling bus mastering" : "no recognised error");
1384         if (error == 0)
1385                 goto out;
1386
1387         /* If this is a memory parity error dump which blocks are offending */
1388         mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1389         if (mem_perr) {
1390                 efx_oword_t reg;
1391                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1392                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1393                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1394         }
1395
1396         /* Disable both devices */
1397         pci_clear_master(efx->pci_dev);
1398         if (FALCON_IS_DUAL_FUNC(efx))
1399                 pci_clear_master(nic_data->pci_dev2);
1400         falcon_disable_interrupts(efx);
1401
1402         /* Count errors and reset or disable the NIC accordingly */
1403         if (efx->int_error_count == 0 ||
1404             time_after(jiffies, efx->int_error_expire)) {
1405                 efx->int_error_count = 0;
1406                 efx->int_error_expire =
1407                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1408         }
1409         if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1410                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1411                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1412         } else {
1413                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1414                         "NIC will be disabled\n");
1415                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1416         }
1417 out:
1418         return IRQ_HANDLED;
1419 }
1420
1421 /* Handle a legacy interrupt from Falcon
1422  * Acknowledges the interrupt and schedule event queue processing.
1423  */
1424 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1425 {
1426         struct efx_nic *efx = dev_id;
1427         efx_oword_t *int_ker = efx->irq_status.addr;
1428         irqreturn_t result = IRQ_NONE;
1429         struct efx_channel *channel;
1430         efx_dword_t reg;
1431         u32 queues;
1432         int syserr;
1433
1434         /* Read the ISR which also ACKs the interrupts */
1435         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1436         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1437
1438         /* Check to see if we have a serious error condition */
1439         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1440         if (unlikely(syserr))
1441                 return falcon_fatal_interrupt(efx);
1442
1443         /* Schedule processing of any interrupting queues */
1444         efx_for_each_channel(channel, efx) {
1445                 if ((queues & 1) ||
1446                     falcon_event_present(
1447                             falcon_event(channel, channel->eventq_read_ptr))) {
1448                         efx_schedule_channel(channel);
1449                         result = IRQ_HANDLED;
1450                 }
1451                 queues >>= 1;
1452         }
1453
1454         if (result == IRQ_HANDLED) {
1455                 efx->last_irq_cpu = raw_smp_processor_id();
1456                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1457                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1458         }
1459
1460         return result;
1461 }
1462
1463
1464 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1465 {
1466         struct efx_nic *efx = dev_id;
1467         efx_oword_t *int_ker = efx->irq_status.addr;
1468         struct efx_channel *channel;
1469         int syserr;
1470         int queues;
1471
1472         /* Check to see if this is our interrupt.  If it isn't, we
1473          * exit without having touched the hardware.
1474          */
1475         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1476                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1477                           raw_smp_processor_id());
1478                 return IRQ_NONE;
1479         }
1480         efx->last_irq_cpu = raw_smp_processor_id();
1481         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1482                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1483
1484         /* Check to see if we have a serious error condition */
1485         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1486         if (unlikely(syserr))
1487                 return falcon_fatal_interrupt(efx);
1488
1489         /* Determine interrupting queues, clear interrupt status
1490          * register and acknowledge the device interrupt.
1491          */
1492         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1493         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1494         EFX_ZERO_OWORD(*int_ker);
1495         wmb(); /* Ensure the vector is cleared before interrupt ack */
1496         falcon_irq_ack_a1(efx);
1497
1498         /* Schedule processing of any interrupting queues */
1499         channel = &efx->channel[0];
1500         while (queues) {
1501                 if (queues & 0x01)
1502                         efx_schedule_channel(channel);
1503                 channel++;
1504                 queues >>= 1;
1505         }
1506
1507         return IRQ_HANDLED;
1508 }
1509
1510 /* Handle an MSI interrupt from Falcon
1511  *
1512  * Handle an MSI hardware interrupt.  This routine schedules event
1513  * queue processing.  No interrupt acknowledgement cycle is necessary.
1514  * Also, we never need to check that the interrupt is for us, since
1515  * MSI interrupts cannot be shared.
1516  */
1517 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1518 {
1519         struct efx_channel *channel = dev_id;
1520         struct efx_nic *efx = channel->efx;
1521         efx_oword_t *int_ker = efx->irq_status.addr;
1522         int syserr;
1523
1524         efx->last_irq_cpu = raw_smp_processor_id();
1525         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1526                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1527
1528         /* Check to see if we have a serious error condition */
1529         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1530         if (unlikely(syserr))
1531                 return falcon_fatal_interrupt(efx);
1532
1533         /* Schedule processing of the channel */
1534         efx_schedule_channel(channel);
1535
1536         return IRQ_HANDLED;
1537 }
1538
1539
1540 /* Setup RSS indirection table.
1541  * This maps from the hash value of the packet to RXQ
1542  */
1543 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1544 {
1545         int i = 0;
1546         unsigned long offset;
1547         efx_dword_t dword;
1548
1549         if (falcon_rev(efx) < FALCON_REV_B0)
1550                 return;
1551
1552         for (offset = FR_BZ_RX_INDIRECTION_TBL;
1553              offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1554              offset += 0x10) {
1555                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1556                                      i % efx->n_rx_queues);
1557                 efx_writed(efx, &dword, offset);
1558                 i++;
1559         }
1560 }
1561
1562 /* Hook interrupt handler(s)
1563  * Try MSI and then legacy interrupts.
1564  */
1565 int falcon_init_interrupt(struct efx_nic *efx)
1566 {
1567         struct efx_channel *channel;
1568         int rc;
1569
1570         if (!EFX_INT_MODE_USE_MSI(efx)) {
1571                 irq_handler_t handler;
1572                 if (falcon_rev(efx) >= FALCON_REV_B0)
1573                         handler = falcon_legacy_interrupt_b0;
1574                 else
1575                         handler = falcon_legacy_interrupt_a1;
1576
1577                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1578                                  efx->name, efx);
1579                 if (rc) {
1580                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1581                                 efx->pci_dev->irq);
1582                         goto fail1;
1583                 }
1584                 return 0;
1585         }
1586
1587         /* Hook MSI or MSI-X interrupt */
1588         efx_for_each_channel(channel, efx) {
1589                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1590                                  IRQF_PROBE_SHARED, /* Not shared */
1591                                  channel->name, channel);
1592                 if (rc) {
1593                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1594                         goto fail2;
1595                 }
1596         }
1597
1598         return 0;
1599
1600  fail2:
1601         efx_for_each_channel(channel, efx)
1602                 free_irq(channel->irq, channel);
1603  fail1:
1604         return rc;
1605 }
1606
1607 void falcon_fini_interrupt(struct efx_nic *efx)
1608 {
1609         struct efx_channel *channel;
1610         efx_oword_t reg;
1611
1612         /* Disable MSI/MSI-X interrupts */
1613         efx_for_each_channel(channel, efx) {
1614                 if (channel->irq)
1615                         free_irq(channel->irq, channel);
1616         }
1617
1618         /* ACK legacy interrupt */
1619         if (falcon_rev(efx) >= FALCON_REV_B0)
1620                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1621         else
1622                 falcon_irq_ack_a1(efx);
1623
1624         /* Disable legacy interrupt */
1625         if (efx->legacy_irq)
1626                 free_irq(efx->legacy_irq, efx);
1627 }
1628
1629 /**************************************************************************
1630  *
1631  * EEPROM/flash
1632  *
1633  **************************************************************************
1634  */
1635
1636 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1637
1638 static int falcon_spi_poll(struct efx_nic *efx)
1639 {
1640         efx_oword_t reg;
1641         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1642         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1643 }
1644
1645 /* Wait for SPI command completion */
1646 static int falcon_spi_wait(struct efx_nic *efx)
1647 {
1648         /* Most commands will finish quickly, so we start polling at
1649          * very short intervals.  Sometimes the command may have to
1650          * wait for VPD or expansion ROM access outside of our
1651          * control, so we allow up to 100 ms. */
1652         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1653         int i;
1654
1655         for (i = 0; i < 10; i++) {
1656                 if (!falcon_spi_poll(efx))
1657                         return 0;
1658                 udelay(10);
1659         }
1660
1661         for (;;) {
1662                 if (!falcon_spi_poll(efx))
1663                         return 0;
1664                 if (time_after_eq(jiffies, timeout)) {
1665                         EFX_ERR(efx, "timed out waiting for SPI\n");
1666                         return -ETIMEDOUT;
1667                 }
1668                 schedule_timeout_uninterruptible(1);
1669         }
1670 }
1671
1672 int falcon_spi_cmd(const struct efx_spi_device *spi,
1673                    unsigned int command, int address,
1674                    const void *in, void *out, size_t len)
1675 {
1676         struct efx_nic *efx = spi->efx;
1677         bool addressed = (address >= 0);
1678         bool reading = (out != NULL);
1679         efx_oword_t reg;
1680         int rc;
1681
1682         /* Input validation */
1683         if (len > FALCON_SPI_MAX_LEN)
1684                 return -EINVAL;
1685         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1686
1687         /* Check that previous command is not still running */
1688         rc = falcon_spi_poll(efx);
1689         if (rc)
1690                 return rc;
1691
1692         /* Program address register, if we have an address */
1693         if (addressed) {
1694                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1695                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1696         }
1697
1698         /* Program data register, if we have data */
1699         if (in != NULL) {
1700                 memcpy(&reg, in, len);
1701                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1702         }
1703
1704         /* Issue read/write command */
1705         EFX_POPULATE_OWORD_7(reg,
1706                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1707                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1708                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
1709                              FRF_AB_EE_SPI_HCMD_READ, reading,
1710                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1711                              FRF_AB_EE_SPI_HCMD_ADBCNT,
1712                              (addressed ? spi->addr_len : 0),
1713                              FRF_AB_EE_SPI_HCMD_ENC, command);
1714         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1715
1716         /* Wait for read/write to complete */
1717         rc = falcon_spi_wait(efx);
1718         if (rc)
1719                 return rc;
1720
1721         /* Read data */
1722         if (out != NULL) {
1723                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1724                 memcpy(out, &reg, len);
1725         }
1726
1727         return 0;
1728 }
1729
1730 static size_t
1731 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1732 {
1733         return min(FALCON_SPI_MAX_LEN,
1734                    (spi->block_size - (start & (spi->block_size - 1))));
1735 }
1736
1737 static inline u8
1738 efx_spi_munge_command(const struct efx_spi_device *spi,
1739                       const u8 command, const unsigned int address)
1740 {
1741         return command | (((address >> 8) & spi->munge_address) << 3);
1742 }
1743
1744 /* Wait up to 10 ms for buffered write completion */
1745 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1746 {
1747         struct efx_nic *efx = spi->efx;
1748         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1749         u8 status;
1750         int rc;
1751
1752         for (;;) {
1753                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1754                                     &status, sizeof(status));
1755                 if (rc)
1756                         return rc;
1757                 if (!(status & SPI_STATUS_NRDY))
1758                         return 0;
1759                 if (time_after_eq(jiffies, timeout)) {
1760                         EFX_ERR(efx, "SPI write timeout on device %d"
1761                                 " last status=0x%02x\n",
1762                                 spi->device_id, status);
1763                         return -ETIMEDOUT;
1764                 }
1765                 schedule_timeout_uninterruptible(1);
1766         }
1767 }
1768
1769 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1770                     size_t len, size_t *retlen, u8 *buffer)
1771 {
1772         size_t block_len, pos = 0;
1773         unsigned int command;
1774         int rc = 0;
1775
1776         while (pos < len) {
1777                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1778
1779                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1780                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1781                                     buffer + pos, block_len);
1782                 if (rc)
1783                         break;
1784                 pos += block_len;
1785
1786                 /* Avoid locking up the system */
1787                 cond_resched();
1788                 if (signal_pending(current)) {
1789                         rc = -EINTR;
1790                         break;
1791                 }
1792         }
1793
1794         if (retlen)
1795                 *retlen = pos;
1796         return rc;
1797 }
1798
1799 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1800                      size_t len, size_t *retlen, const u8 *buffer)
1801 {
1802         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1803         size_t block_len, pos = 0;
1804         unsigned int command;
1805         int rc = 0;
1806
1807         while (pos < len) {
1808                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1809                 if (rc)
1810                         break;
1811
1812                 block_len = min(len - pos,
1813                                 falcon_spi_write_limit(spi, start + pos));
1814                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1815                 rc = falcon_spi_cmd(spi, command, start + pos,
1816                                     buffer + pos, NULL, block_len);
1817                 if (rc)
1818                         break;
1819
1820                 rc = falcon_spi_wait_write(spi);
1821                 if (rc)
1822                         break;
1823
1824                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1825                 rc = falcon_spi_cmd(spi, command, start + pos,
1826                                     NULL, verify_buffer, block_len);
1827                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1828                         rc = -EIO;
1829                         break;
1830                 }
1831
1832                 pos += block_len;
1833
1834                 /* Avoid locking up the system */
1835                 cond_resched();
1836                 if (signal_pending(current)) {
1837                         rc = -EINTR;
1838                         break;
1839                 }
1840         }
1841
1842         if (retlen)
1843                 *retlen = pos;
1844         return rc;
1845 }
1846
1847 /**************************************************************************
1848  *
1849  * MAC wrapper
1850  *
1851  **************************************************************************
1852  */
1853
1854 static int falcon_reset_macs(struct efx_nic *efx)
1855 {
1856         efx_oword_t reg;
1857         int count;
1858
1859         if (falcon_rev(efx) < FALCON_REV_B0) {
1860                 /* It's not safe to use GLB_CTL_REG to reset the
1861                  * macs, so instead use the internal MAC resets
1862                  */
1863                 if (!EFX_IS10G(efx)) {
1864                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1865                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1866                         udelay(1000);
1867
1868                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1869                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1870                         udelay(1000);
1871                         return 0;
1872                 } else {
1873                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1874                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1875
1876                         for (count = 0; count < 10000; count++) {
1877                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1878                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1879                                     0)
1880                                         return 0;
1881                                 udelay(10);
1882                         }
1883
1884                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1885                         return -ETIMEDOUT;
1886                 }
1887         }
1888
1889         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1890          * the drain sequence with the statistics fetch */
1891         falcon_stop_nic_stats(efx);
1892
1893         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1894         EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1895         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1896
1897         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1898         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1899         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1900         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1901         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1902
1903         count = 0;
1904         while (1) {
1905                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1906                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1907                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1908                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1909                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1910                                 count);
1911                         break;
1912                 }
1913                 if (count > 20) {
1914                         EFX_ERR(efx, "MAC reset failed\n");
1915                         break;
1916                 }
1917                 count++;
1918                 udelay(10);
1919         }
1920
1921         /* If we've reset the EM block and the link is up, then
1922          * we'll have to kick the XAUI link so the PHY can recover */
1923         if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1924                 falcon_reset_xaui(efx);
1925
1926         falcon_start_nic_stats(efx);
1927
1928         return 0;
1929 }
1930
1931 void falcon_drain_tx_fifo(struct efx_nic *efx)
1932 {
1933         efx_oword_t reg;
1934
1935         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1936             (efx->loopback_mode != LOOPBACK_NONE))
1937                 return;
1938
1939         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1940         /* There is no point in draining more than once */
1941         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1942                 return;
1943
1944         falcon_reset_macs(efx);
1945 }
1946
1947 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1948 {
1949         efx_oword_t reg;
1950
1951         if (falcon_rev(efx) < FALCON_REV_B0)
1952                 return;
1953
1954         /* Isolate the MAC -> RX */
1955         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1956         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1957         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1958
1959         if (!efx->link_state.up)
1960                 falcon_drain_tx_fifo(efx);
1961 }
1962
1963 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1964 {
1965         struct efx_link_state *link_state = &efx->link_state;
1966         efx_oword_t reg;
1967         int link_speed;
1968         bool tx_fc;
1969
1970         switch (link_state->speed) {
1971         case 10000: link_speed = 3; break;
1972         case 1000:  link_speed = 2; break;
1973         case 100:   link_speed = 1; break;
1974         default:    link_speed = 0; break;
1975         }
1976         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1977          * as advertised.  Disable to ensure packets are not
1978          * indefinitely held and TX queue can be flushed at any point
1979          * while the link is down. */
1980         EFX_POPULATE_OWORD_5(reg,
1981                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1982                              FRF_AB_MAC_BCAD_ACPT, 1,
1983                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
1984                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1985                              FRF_AB_MAC_SPEED, link_speed);
1986         /* On B0, MAC backpressure can be disabled and packets get
1987          * discarded. */
1988         if (falcon_rev(efx) >= FALCON_REV_B0) {
1989                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1990                                     !link_state->up);
1991         }
1992
1993         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1994
1995         /* Restore the multicast hash registers. */
1996         falcon_set_multicast_hash(efx);
1997
1998         /* Transmission of pause frames when RX crosses the threshold is
1999          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2000          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2001         tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
2002         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2003         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
2004
2005         /* Unisolate the MAC -> RX */
2006         if (falcon_rev(efx) >= FALCON_REV_B0)
2007                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2008         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2009 }
2010
2011 static void falcon_stats_request(struct efx_nic *efx)
2012 {
2013         struct falcon_nic_data *nic_data = efx->nic_data;
2014         efx_oword_t reg;
2015
2016         WARN_ON(nic_data->stats_pending);
2017         WARN_ON(nic_data->stats_disable_count);
2018
2019         if (nic_data->stats_dma_done == NULL)
2020                 return; /* no mac selected */
2021
2022         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
2023         nic_data->stats_pending = true;
2024         wmb(); /* ensure done flag is clear */
2025
2026         /* Initiate DMA transfer of stats */
2027         EFX_POPULATE_OWORD_2(reg,
2028                              FRF_AB_MAC_STAT_DMA_CMD, 1,
2029                              FRF_AB_MAC_STAT_DMA_ADR,
2030                              efx->stats_buffer.dma_addr);
2031         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2032
2033         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
2034 }
2035
2036 static void falcon_stats_complete(struct efx_nic *efx)
2037 {
2038         struct falcon_nic_data *nic_data = efx->nic_data;
2039
2040         if (!nic_data->stats_pending)
2041                 return;
2042
2043         nic_data->stats_pending = 0;
2044         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
2045                 rmb(); /* read the done flag before the stats */
2046                 efx->mac_op->update_stats(efx);
2047         } else {
2048                 EFX_ERR(efx, "timed out waiting for statistics\n");
2049         }
2050 }
2051
2052 static void falcon_stats_timer_func(unsigned long context)
2053 {
2054         struct efx_nic *efx = (struct efx_nic *)context;
2055         struct falcon_nic_data *nic_data = efx->nic_data;
2056
2057         spin_lock(&efx->stats_lock);
2058
2059         falcon_stats_complete(efx);
2060         if (nic_data->stats_disable_count == 0)
2061                 falcon_stats_request(efx);
2062
2063         spin_unlock(&efx->stats_lock);
2064 }
2065
2066 /**************************************************************************
2067  *
2068  * PHY access via GMII
2069  *
2070  **************************************************************************
2071  */
2072
2073 /* Wait for GMII access to complete */
2074 static int falcon_gmii_wait(struct efx_nic *efx)
2075 {
2076         efx_oword_t md_stat;
2077         int count;
2078
2079         /* wait upto 50ms - taken max from datasheet */
2080         for (count = 0; count < 5000; count++) {
2081                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2082                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2083                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2084                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2085                                 EFX_ERR(efx, "error from GMII access "
2086                                         EFX_OWORD_FMT"\n",
2087                                         EFX_OWORD_VAL(md_stat));
2088                                 return -EIO;
2089                         }
2090                         return 0;
2091                 }
2092                 udelay(10);
2093         }
2094         EFX_ERR(efx, "timed out waiting for GMII\n");
2095         return -ETIMEDOUT;
2096 }
2097
2098 /* Write an MDIO register of a PHY connected to Falcon. */
2099 static int falcon_mdio_write(struct net_device *net_dev,
2100                              int prtad, int devad, u16 addr, u16 value)
2101 {
2102         struct efx_nic *efx = netdev_priv(net_dev);
2103         efx_oword_t reg;
2104         int rc;
2105
2106         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2107                     prtad, devad, addr, value);
2108
2109         spin_lock_bh(&efx->phy_lock);
2110
2111         /* Check MDIO not currently being accessed */
2112         rc = falcon_gmii_wait(efx);
2113         if (rc)
2114                 goto out;
2115
2116         /* Write the address/ID register */
2117         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2118         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2119
2120         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2121                              FRF_AB_MD_DEV_ADR, devad);
2122         efx_writeo(efx, &reg, FR_AB_MD_ID);
2123
2124         /* Write data */
2125         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2126         efx_writeo(efx, &reg, FR_AB_MD_TXD);
2127
2128         EFX_POPULATE_OWORD_2(reg,
2129                              FRF_AB_MD_WRC, 1,
2130                              FRF_AB_MD_GC, 0);
2131         efx_writeo(efx, &reg, FR_AB_MD_CS);
2132
2133         /* Wait for data to be written */
2134         rc = falcon_gmii_wait(efx);
2135         if (rc) {
2136                 /* Abort the write operation */
2137                 EFX_POPULATE_OWORD_2(reg,
2138                                      FRF_AB_MD_WRC, 0,
2139                                      FRF_AB_MD_GC, 1);
2140                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2141                 udelay(10);
2142         }
2143
2144  out:
2145         spin_unlock_bh(&efx->phy_lock);
2146         return rc;
2147 }
2148
2149 /* Read an MDIO register of a PHY connected to Falcon. */
2150 static int falcon_mdio_read(struct net_device *net_dev,
2151                             int prtad, int devad, u16 addr)
2152 {
2153         struct efx_nic *efx = netdev_priv(net_dev);
2154         efx_oword_t reg;
2155         int rc;
2156
2157         spin_lock_bh(&efx->phy_lock);
2158
2159         /* Check MDIO not currently being accessed */
2160         rc = falcon_gmii_wait(efx);
2161         if (rc)
2162                 goto out;
2163
2164         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2165         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2166
2167         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2168                              FRF_AB_MD_DEV_ADR, devad);
2169         efx_writeo(efx, &reg, FR_AB_MD_ID);
2170
2171         /* Request data to be read */
2172         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2173         efx_writeo(efx, &reg, FR_AB_MD_CS);
2174
2175         /* Wait for data to become available */
2176         rc = falcon_gmii_wait(efx);
2177         if (rc == 0) {
2178                 efx_reado(efx, &reg, FR_AB_MD_RXD);
2179                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2180                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2181                             prtad, devad, addr, rc);
2182         } else {
2183                 /* Abort the read operation */
2184                 EFX_POPULATE_OWORD_2(reg,
2185                                      FRF_AB_MD_RIC, 0,
2186                                      FRF_AB_MD_GC, 1);
2187                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2188
2189                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2190                         prtad, devad, addr, rc);
2191         }
2192
2193  out:
2194         spin_unlock_bh(&efx->phy_lock);
2195         return rc;
2196 }
2197
2198 static void falcon_clock_mac(struct efx_nic *efx)
2199 {
2200         unsigned strap_val;
2201         efx_oword_t nic_stat;
2202
2203         /* Configure the NIC generated MAC clock correctly */
2204         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2205         strap_val = EFX_IS10G(efx) ? 5 : 3;
2206         if (falcon_rev(efx) >= FALCON_REV_B0) {
2207                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2208                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2209                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2210         } else {
2211                 /* Falcon A1 does not support 1G/10G speed switching
2212                  * and must not be used with a PHY that does. */
2213                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2214                        strap_val);
2215         }
2216 }
2217
2218 int falcon_switch_mac(struct efx_nic *efx)
2219 {
2220         struct efx_mac_operations *old_mac_op = efx->mac_op;
2221         struct falcon_nic_data *nic_data = efx->nic_data;
2222         unsigned int stats_done_offset;
2223         int rc = 0;
2224
2225         /* Don't try to fetch MAC stats while we're switching MACs */
2226         falcon_stop_nic_stats(efx);
2227
2228         /* Internal loopbacks override the phy speed setting */
2229         if (efx->loopback_mode == LOOPBACK_GMAC) {
2230                 efx->link_state.speed = 1000;
2231                 efx->link_state.fd = true;
2232         } else if (LOOPBACK_INTERNAL(efx)) {
2233                 efx->link_state.speed = 10000;
2234                 efx->link_state.fd = true;
2235         }
2236
2237         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2238         efx->mac_op = (EFX_IS10G(efx) ?
2239                        &falcon_xmac_operations : &falcon_gmac_operations);
2240
2241         if (EFX_IS10G(efx))
2242                 stats_done_offset = XgDmaDone_offset;
2243         else
2244                 stats_done_offset = GDmaDone_offset;
2245         nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
2246
2247         if (old_mac_op == efx->mac_op)
2248                 goto out;
2249
2250         falcon_clock_mac(efx);
2251
2252         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2253         /* Not all macs support a mac-level link state */
2254         efx->mac_up = true;
2255
2256         rc = falcon_reset_macs(efx);
2257 out:
2258         falcon_start_nic_stats(efx);
2259         return rc;
2260 }
2261
2262 /* This call is responsible for hooking in the MAC and PHY operations */
2263 int falcon_probe_port(struct efx_nic *efx)
2264 {
2265         int rc;
2266
2267         switch (efx->phy_type) {
2268         case PHY_TYPE_SFX7101:
2269                 efx->phy_op = &falcon_sfx7101_phy_ops;
2270                 break;
2271         case PHY_TYPE_SFT9001A:
2272         case PHY_TYPE_SFT9001B:
2273                 efx->phy_op = &falcon_sft9001_phy_ops;
2274                 break;
2275         case PHY_TYPE_QT2022C2:
2276         case PHY_TYPE_QT2025C:
2277                 efx->phy_op = &falcon_qt202x_phy_ops;
2278                 break;
2279         default:
2280                 EFX_ERR(efx, "Unknown PHY type %d\n",
2281                         efx->phy_type);
2282                 return -ENODEV;
2283         }
2284
2285         if (efx->phy_op->macs & EFX_XMAC)
2286                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2287                                         (1 << LOOPBACK_XGXS) |
2288                                         (1 << LOOPBACK_XAUI));
2289         if (efx->phy_op->macs & EFX_GMAC)
2290                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2291         efx->loopback_modes |= efx->phy_op->loopbacks;
2292
2293         /* Set up MDIO structure for PHY */
2294         efx->mdio.mmds = efx->phy_op->mmds;
2295         efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2296         efx->mdio.mdio_read = falcon_mdio_read;
2297         efx->mdio.mdio_write = falcon_mdio_write;
2298
2299         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2300         if (falcon_rev(efx) >= FALCON_REV_B0)
2301                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2302         else
2303                 efx->wanted_fc = EFX_FC_RX;
2304
2305         /* Allocate buffer for stats */
2306         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2307                                  FALCON_MAC_STATS_SIZE);
2308         if (rc)
2309                 return rc;
2310         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2311                 (u64)efx->stats_buffer.dma_addr,
2312                 efx->stats_buffer.addr,
2313                 (u64)virt_to_phys(efx->stats_buffer.addr));
2314
2315         return 0;
2316 }
2317
2318 void falcon_remove_port(struct efx_nic *efx)
2319 {
2320         falcon_free_buffer(efx, &efx->stats_buffer);
2321 }
2322
2323 /**************************************************************************
2324  *
2325  * Multicast filtering
2326  *
2327  **************************************************************************
2328  */
2329
2330 void falcon_set_multicast_hash(struct efx_nic *efx)
2331 {
2332         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2333
2334         /* Broadcast packets go through the multicast hash filter.
2335          * ether_crc_le() of the broadcast address is 0xbe2612ff
2336          * so we always add bit 0xff to the mask.
2337          */
2338         set_bit_le(0xff, mc_hash->byte);
2339
2340         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2341         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2342 }
2343
2344
2345 /**************************************************************************
2346  *
2347  * Falcon test code
2348  *
2349  **************************************************************************/
2350
2351 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2352 {
2353         struct falcon_nvconfig *nvconfig;
2354         struct efx_spi_device *spi;
2355         void *region;
2356         int rc, magic_num, struct_ver;
2357         __le16 *word, *limit;
2358         u32 csum;
2359
2360         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2361         if (!spi)
2362                 return -EINVAL;
2363
2364         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2365         if (!region)
2366                 return -ENOMEM;
2367         nvconfig = region + FALCON_NVCONFIG_OFFSET;
2368
2369         mutex_lock(&efx->spi_lock);
2370         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2371         mutex_unlock(&efx->spi_lock);
2372         if (rc) {
2373                 EFX_ERR(efx, "Failed to read %s\n",
2374                         efx->spi_flash ? "flash" : "EEPROM");
2375                 rc = -EIO;
2376                 goto out;
2377         }
2378
2379         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2380         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2381
2382         rc = -EINVAL;
2383         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2384                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2385                 goto out;
2386         }
2387         if (struct_ver < 2) {
2388                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2389                 goto out;
2390         } else if (struct_ver < 4) {
2391                 word = &nvconfig->board_magic_num;
2392                 limit = (__le16 *) (nvconfig + 1);
2393         } else {
2394                 word = region;
2395                 limit = region + FALCON_NVCONFIG_END;
2396         }
2397         for (csum = 0; word < limit; ++word)
2398                 csum += le16_to_cpu(*word);
2399
2400         if (~csum & 0xffff) {
2401                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2402                 goto out;
2403         }
2404
2405         rc = 0;
2406         if (nvconfig_out)
2407                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2408
2409  out:
2410         kfree(region);
2411         return rc;
2412 }
2413
2414 /* Registers tested in the falcon register test */
2415 static struct {
2416         unsigned address;
2417         efx_oword_t mask;
2418 } efx_test_registers[] = {
2419         { FR_AZ_ADR_REGION,
2420           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2421         { FR_AZ_RX_CFG,
2422           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2423         { FR_AZ_TX_CFG,
2424           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2425         { FR_AZ_TX_RESERVED,
2426           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2427         { FR_AB_MAC_CTRL,
2428           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2429         { FR_AZ_SRM_TX_DC_CFG,
2430           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2431         { FR_AZ_RX_DC_CFG,
2432           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2433         { FR_AZ_RX_DC_PF_WM,
2434           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2435         { FR_BZ_DP_CTRL,
2436           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2437         { FR_AB_GM_CFG2,
2438           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2439         { FR_AB_GMF_CFG0,
2440           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2441         { FR_AB_XM_GLB_CFG,
2442           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2443         { FR_AB_XM_TX_CFG,
2444           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2445         { FR_AB_XM_RX_CFG,
2446           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2447         { FR_AB_XM_RX_PARAM,
2448           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2449         { FR_AB_XM_FC,
2450           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2451         { FR_AB_XM_ADR_LO,
2452           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2453         { FR_AB_XX_SD_CTL,
2454           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2455 };
2456
2457 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2458                                      const efx_oword_t *mask)
2459 {
2460         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2461                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2462 }
2463
2464 int falcon_test_registers(struct efx_nic *efx)
2465 {
2466         unsigned address = 0, i, j;
2467         efx_oword_t mask, imask, original, reg, buf;
2468
2469         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2470         WARN_ON(!LOOPBACK_INTERNAL(efx));
2471
2472         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2473                 address = efx_test_registers[i].address;
2474                 mask = imask = efx_test_registers[i].mask;
2475                 EFX_INVERT_OWORD(imask);
2476
2477                 efx_reado(efx, &original, address);
2478
2479                 /* bit sweep on and off */
2480                 for (j = 0; j < 128; j++) {
2481                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2482                                 continue;
2483
2484                         /* Test this testable bit can be set in isolation */
2485                         EFX_AND_OWORD(reg, original, mask);
2486                         EFX_SET_OWORD32(reg, j, j, 1);
2487
2488                         efx_writeo(efx, &reg, address);
2489                         efx_reado(efx, &buf, address);
2490
2491                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2492                                 goto fail;
2493
2494                         /* Test this testable bit can be cleared in isolation */
2495                         EFX_OR_OWORD(reg, original, mask);
2496                         EFX_SET_OWORD32(reg, j, j, 0);
2497
2498                         efx_writeo(efx, &reg, address);
2499                         efx_reado(efx, &buf, address);
2500
2501                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2502                                 goto fail;
2503                 }
2504
2505                 efx_writeo(efx, &original, address);
2506         }
2507
2508         return 0;
2509
2510 fail:
2511         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2512                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2513                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2514         return -EIO;
2515 }
2516
2517 /**************************************************************************
2518  *
2519  * Device reset
2520  *
2521  **************************************************************************
2522  */
2523
2524 /* Resets NIC to known state.  This routine must be called in process
2525  * context and is allowed to sleep. */
2526 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2527 {
2528         struct falcon_nic_data *nic_data = efx->nic_data;
2529         efx_oword_t glb_ctl_reg_ker;
2530         int rc;
2531
2532         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2533
2534         /* Initiate device reset */
2535         if (method == RESET_TYPE_WORLD) {
2536                 rc = pci_save_state(efx->pci_dev);
2537                 if (rc) {
2538                         EFX_ERR(efx, "failed to backup PCI state of primary "
2539                                 "function prior to hardware reset\n");
2540                         goto fail1;
2541                 }
2542                 if (FALCON_IS_DUAL_FUNC(efx)) {
2543                         rc = pci_save_state(nic_data->pci_dev2);
2544                         if (rc) {
2545                                 EFX_ERR(efx, "failed to backup PCI state of "
2546                                         "secondary function prior to "
2547                                         "hardware reset\n");
2548                                 goto fail2;
2549                         }
2550                 }
2551
2552                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2553                                      FRF_AB_EXT_PHY_RST_DUR,
2554                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2555                                      FRF_AB_SWRST, 1);
2556         } else {
2557                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2558                                      /* exclude PHY from "invisible" reset */
2559                                      FRF_AB_EXT_PHY_RST_CTL,
2560                                      method == RESET_TYPE_INVISIBLE,
2561                                      /* exclude EEPROM/flash and PCIe */
2562                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2563                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2564                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2565                                      FRF_AB_EE_RST_CTL, 1,
2566                                      FRF_AB_EXT_PHY_RST_DUR,
2567                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2568                                      FRF_AB_SWRST, 1);
2569         }
2570         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2571
2572         EFX_LOG(efx, "waiting for hardware reset\n");
2573         schedule_timeout_uninterruptible(HZ / 20);
2574
2575         /* Restore PCI configuration if needed */
2576         if (method == RESET_TYPE_WORLD) {
2577                 if (FALCON_IS_DUAL_FUNC(efx)) {
2578                         rc = pci_restore_state(nic_data->pci_dev2);
2579                         if (rc) {
2580                                 EFX_ERR(efx, "failed to restore PCI config for "
2581                                         "the secondary function\n");
2582                                 goto fail3;
2583                         }
2584                 }
2585                 rc = pci_restore_state(efx->pci_dev);
2586                 if (rc) {
2587                         EFX_ERR(efx, "failed to restore PCI config for the "
2588                                 "primary function\n");
2589                         goto fail4;
2590                 }
2591                 EFX_LOG(efx, "successfully restored PCI config\n");
2592         }
2593
2594         /* Assert that reset complete */
2595         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2596         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2597                 rc = -ETIMEDOUT;
2598                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2599                 goto fail5;
2600         }
2601         EFX_LOG(efx, "hardware reset complete\n");
2602
2603         return 0;
2604
2605         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2606 fail2:
2607 fail3:
2608         pci_restore_state(efx->pci_dev);
2609 fail1:
2610 fail4:
2611 fail5:
2612         return rc;
2613 }
2614
2615 /* Zeroes out the SRAM contents.  This routine must be called in
2616  * process context and is allowed to sleep.
2617  */
2618 static int falcon_reset_sram(struct efx_nic *efx)
2619 {
2620         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2621         int count;
2622
2623         /* Set the SRAM wake/sleep GPIO appropriately. */
2624         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2625         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2626         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2627         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2628
2629         /* Initiate SRAM reset */
2630         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2631                              FRF_AZ_SRM_INIT_EN, 1,
2632                              FRF_AZ_SRM_NB_SZ, 0);
2633         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2634
2635         /* Wait for SRAM reset to complete */
2636         count = 0;
2637         do {
2638                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2639
2640                 /* SRAM reset is slow; expect around 16ms */
2641                 schedule_timeout_uninterruptible(HZ / 50);
2642
2643                 /* Check for reset complete */
2644                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2645                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2646                         EFX_LOG(efx, "SRAM reset complete\n");
2647
2648                         return 0;
2649                 }
2650         } while (++count < 20); /* wait upto 0.4 sec */
2651
2652         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2653         return -ETIMEDOUT;
2654 }
2655
2656 static int falcon_spi_device_init(struct efx_nic *efx,
2657                                   struct efx_spi_device **spi_device_ret,
2658                                   unsigned int device_id, u32 device_type)
2659 {
2660         struct efx_spi_device *spi_device;
2661
2662         if (device_type != 0) {
2663                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2664                 if (!spi_device)
2665                         return -ENOMEM;
2666                 spi_device->device_id = device_id;
2667                 spi_device->size =
2668                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2669                 spi_device->addr_len =
2670                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2671                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2672                                              spi_device->addr_len == 1);
2673                 spi_device->erase_command =
2674                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2675                 spi_device->erase_size =
2676                         1 << SPI_DEV_TYPE_FIELD(device_type,
2677                                                 SPI_DEV_TYPE_ERASE_SIZE);
2678                 spi_device->block_size =
2679                         1 << SPI_DEV_TYPE_FIELD(device_type,
2680                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2681
2682                 spi_device->efx = efx;
2683         } else {
2684                 spi_device = NULL;
2685         }
2686
2687         kfree(*spi_device_ret);
2688         *spi_device_ret = spi_device;
2689         return 0;
2690 }
2691
2692
2693 static void falcon_remove_spi_devices(struct efx_nic *efx)
2694 {
2695         kfree(efx->spi_eeprom);
2696         efx->spi_eeprom = NULL;
2697         kfree(efx->spi_flash);
2698         efx->spi_flash = NULL;
2699 }
2700
2701 /* Extract non-volatile configuration */
2702 static int falcon_probe_nvconfig(struct efx_nic *efx)
2703 {
2704         struct falcon_nvconfig *nvconfig;
2705         int board_rev;
2706         int rc;
2707
2708         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2709         if (!nvconfig)
2710                 return -ENOMEM;
2711
2712         rc = falcon_read_nvram(efx, nvconfig);
2713         if (rc == -EINVAL) {
2714                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2715                 efx->phy_type = PHY_TYPE_NONE;
2716                 efx->mdio.prtad = MDIO_PRTAD_NONE;
2717                 board_rev = 0;
2718                 rc = 0;
2719         } else if (rc) {
2720                 goto fail1;
2721         } else {
2722                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2723                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2724
2725                 efx->phy_type = v2->port0_phy_type;
2726                 efx->mdio.prtad = v2->port0_phy_addr;
2727                 board_rev = le16_to_cpu(v2->board_revision);
2728
2729                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2730                         rc = falcon_spi_device_init(
2731                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2732                                 le32_to_cpu(v3->spi_device_type
2733                                             [FFE_AB_SPI_DEVICE_FLASH]));
2734                         if (rc)
2735                                 goto fail2;
2736                         rc = falcon_spi_device_init(
2737                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2738                                 le32_to_cpu(v3->spi_device_type
2739                                             [FFE_AB_SPI_DEVICE_EEPROM]));
2740                         if (rc)
2741                                 goto fail2;
2742                 }
2743         }
2744
2745         /* Read the MAC addresses */
2746         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2747
2748         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2749
2750         falcon_probe_board(efx, board_rev);
2751
2752         kfree(nvconfig);
2753         return 0;
2754
2755  fail2:
2756         falcon_remove_spi_devices(efx);
2757  fail1:
2758         kfree(nvconfig);
2759         return rc;
2760 }
2761
2762 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2763  * count, port speed).  Set workaround and feature flags accordingly.
2764  */
2765 static int falcon_probe_nic_variant(struct efx_nic *efx)
2766 {
2767         efx_oword_t altera_build;
2768         efx_oword_t nic_stat;
2769
2770         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2771         if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2772                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2773                 return -ENODEV;
2774         }
2775
2776         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2777
2778         switch (falcon_rev(efx)) {
2779         case FALCON_REV_A0:
2780         case 0xff:
2781                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2782                 return -ENODEV;
2783
2784         case FALCON_REV_A1:
2785                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2786                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2787                         return -ENODEV;
2788                 }
2789                 break;
2790
2791         case FALCON_REV_B0:
2792                 break;
2793
2794         default:
2795                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2796                 return -ENODEV;
2797         }
2798
2799         /* Initial assumed speed */
2800         efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2801
2802         return 0;
2803 }
2804
2805 /* Probe all SPI devices on the NIC */
2806 static void falcon_probe_spi_devices(struct efx_nic *efx)
2807 {
2808         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2809         int boot_dev;
2810
2811         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2812         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2813         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2814
2815         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2816                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2817                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2818                 EFX_LOG(efx, "Booted from %s\n",
2819                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2820         } else {
2821                 /* Disable VPD and set clock dividers to safe
2822                  * values for initial programming. */
2823                 boot_dev = -1;
2824                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2825                         " setting SPI config\n");
2826                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2827                                      /* 125 MHz / 7 ~= 20 MHz */
2828                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2829                                      /* 125 MHz / 63 ~= 2 MHz */
2830                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2831                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2832         }
2833
2834         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2835                 falcon_spi_device_init(efx, &efx->spi_flash,
2836                                        FFE_AB_SPI_DEVICE_FLASH,
2837                                        default_flash_type);
2838         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2839                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2840                                        FFE_AB_SPI_DEVICE_EEPROM,
2841                                        large_eeprom_type);
2842 }
2843
2844 int falcon_probe_nic(struct efx_nic *efx)
2845 {
2846         struct falcon_nic_data *nic_data;
2847         struct falcon_board *board;
2848         int rc;
2849
2850         /* Allocate storage for hardware specific data */
2851         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2852         if (!nic_data)
2853                 return -ENOMEM;
2854         efx->nic_data = nic_data;
2855
2856         /* Determine number of ports etc. */
2857         rc = falcon_probe_nic_variant(efx);
2858         if (rc)
2859                 goto fail1;
2860
2861         /* Probe secondary function if expected */
2862         if (FALCON_IS_DUAL_FUNC(efx)) {
2863                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2864
2865                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2866                                              dev))) {
2867                         if (dev->bus == efx->pci_dev->bus &&
2868                             dev->devfn == efx->pci_dev->devfn + 1) {
2869                                 nic_data->pci_dev2 = dev;
2870                                 break;
2871                         }
2872                 }
2873                 if (!nic_data->pci_dev2) {
2874                         EFX_ERR(efx, "failed to find secondary function\n");
2875                         rc = -ENODEV;
2876                         goto fail2;
2877                 }
2878         }
2879
2880         /* Now we can reset the NIC */
2881         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2882         if (rc) {
2883                 EFX_ERR(efx, "failed to reset NIC\n");
2884                 goto fail3;
2885         }
2886
2887         /* Allocate memory for INT_KER */
2888         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2889         if (rc)
2890                 goto fail4;
2891         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2892
2893         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2894                 (u64)efx->irq_status.dma_addr,
2895                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2896
2897         falcon_probe_spi_devices(efx);
2898
2899         /* Read in the non-volatile configuration */
2900         rc = falcon_probe_nvconfig(efx);
2901         if (rc)
2902                 goto fail5;
2903
2904         /* Initialise I2C adapter */
2905         board = falcon_board(efx);
2906         board->i2c_adap.owner = THIS_MODULE;
2907         board->i2c_data = falcon_i2c_bit_operations;
2908         board->i2c_data.data = efx;
2909         board->i2c_adap.algo_data = &board->i2c_data;
2910         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2911         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2912                 sizeof(board->i2c_adap.name));
2913         rc = i2c_bit_add_bus(&board->i2c_adap);
2914         if (rc)
2915                 goto fail5;
2916
2917         rc = falcon_board(efx)->type->init(efx);
2918         if (rc) {
2919                 EFX_ERR(efx, "failed to initialise board\n");
2920                 goto fail6;
2921         }
2922
2923         nic_data->stats_disable_count = 1;
2924         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2925                     (unsigned long)efx);
2926
2927         return 0;
2928
2929  fail6:
2930         BUG_ON(i2c_del_adapter(&board->i2c_adap));
2931         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2932  fail5:
2933         falcon_remove_spi_devices(efx);
2934         falcon_free_buffer(efx, &efx->irq_status);
2935  fail4:
2936  fail3:
2937         if (nic_data->pci_dev2) {
2938                 pci_dev_put(nic_data->pci_dev2);
2939                 nic_data->pci_dev2 = NULL;
2940         }
2941  fail2:
2942  fail1:
2943         kfree(efx->nic_data);
2944         return rc;
2945 }
2946
2947 static void falcon_init_rx_cfg(struct efx_nic *efx)
2948 {
2949         /* Prior to Siena the RX DMA engine will split each frame at
2950          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2951          * be so large that that never happens. */
2952         const unsigned huge_buf_size = (3 * 4096) >> 5;
2953         /* RX control FIFO thresholds (32 entries) */
2954         const unsigned ctrl_xon_thr = 20;
2955         const unsigned ctrl_xoff_thr = 25;
2956         /* RX data FIFO thresholds (256-byte units; size varies) */
2957         int data_xon_thr = rx_xon_thresh_bytes >> 8;
2958         int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2959         efx_oword_t reg;
2960
2961         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2962         if (falcon_rev(efx) <= FALCON_REV_A1) {
2963                 /* Data FIFO size is 5.5K */
2964                 if (data_xon_thr < 0)
2965                         data_xon_thr = 512 >> 8;
2966                 if (data_xoff_thr < 0)
2967                         data_xoff_thr = 2048 >> 8;
2968                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2969                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2970                                     huge_buf_size);
2971                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2972                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2973                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2974                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2975         } else {
2976                 /* Data FIFO size is 80K; register fields moved */
2977                 if (data_xon_thr < 0)
2978                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2979                 if (data_xoff_thr < 0)
2980                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2981                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2982                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2983                                     huge_buf_size);
2984                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2985                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2986                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2987                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2988                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2989         }
2990         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2991 }
2992
2993 /* This call performs hardware-specific global initialisation, such as
2994  * defining the descriptor cache sizes and number of RSS channels.
2995  * It does not set up any buffers, descriptor rings or event queues.
2996  */
2997 int falcon_init_nic(struct efx_nic *efx)
2998 {
2999         efx_oword_t temp;
3000         int rc;
3001
3002         /* Use on-chip SRAM */
3003         efx_reado(efx, &temp, FR_AB_NIC_STAT);
3004         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3005         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3006
3007         /* Set the source of the GMAC clock */
3008         if (falcon_rev(efx) == FALCON_REV_B0) {
3009                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3010                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3011                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
3012         }
3013
3014         /* Select the correct MAC */
3015         falcon_clock_mac(efx);
3016
3017         rc = falcon_reset_sram(efx);
3018         if (rc)
3019                 return rc;
3020
3021         /* Set positions of descriptor caches in SRAM. */
3022         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3023         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3024         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3025         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3026
3027         /* Set TX descriptor cache size. */
3028         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3029         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3030         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3031
3032         /* Set RX descriptor cache size.  Set low watermark to size-8, as
3033          * this allows most efficient prefetching.
3034          */
3035         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3036         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3037         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3038         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3039         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3040
3041         /* Clear the parity enables on the TX data fifos as
3042          * they produce false parity errors because of timing issues
3043          */
3044         if (EFX_WORKAROUND_5129(efx)) {
3045                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3046                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3047                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3048         }
3049
3050         /* Enable all the genuinely fatal interrupts.  (They are still
3051          * masked by the overall interrupt mask, controlled by
3052          * falcon_interrupts()).
3053          *
3054          * Note: All other fatal interrupts are enabled
3055          */
3056         EFX_POPULATE_OWORD_3(temp,
3057                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3058                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3059                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3060         EFX_INVERT_OWORD(temp);
3061         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3062
3063         if (EFX_WORKAROUND_7244(efx)) {
3064                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3065                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3066                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3067                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3068                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3069                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3070         }
3071
3072         falcon_setup_rss_indir_table(efx);
3073
3074         /* XXX This is documented only for Falcon A0/A1 */
3075         /* Setup RX.  Wait for descriptor is broken and must
3076          * be disabled.  RXDP recovery shouldn't be needed, but is.
3077          */
3078         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3079         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3080         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3081         if (EFX_WORKAROUND_5583(efx))
3082                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3083         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3084
3085         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3086          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3087          */
3088         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3089         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3090         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3091         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3092         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3093         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3094         /* Enable SW_EV to inherit in char driver - assume harmless here */
3095         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3096         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3097         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3098         /* Squash TX of packets of 16 bytes or less */
3099         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3100                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3101         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3102
3103         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3104          * descriptors (which is bad).
3105          */
3106         efx_reado(efx, &temp, FR_AZ_TX_CFG);
3107         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3108         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3109
3110         falcon_init_rx_cfg(efx);
3111
3112         /* Set destination of both TX and RX Flush events */
3113         if (falcon_rev(efx) >= FALCON_REV_B0) {
3114                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3115                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3116         }
3117
3118         return 0;
3119 }
3120
3121 void falcon_remove_nic(struct efx_nic *efx)
3122 {
3123         struct falcon_nic_data *nic_data = efx->nic_data;
3124         struct falcon_board *board = falcon_board(efx);
3125         int rc;
3126
3127         board->type->fini(efx);
3128
3129         /* Remove I2C adapter and clear it in preparation for a retry */
3130         rc = i2c_del_adapter(&board->i2c_adap);
3131         BUG_ON(rc);
3132         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3133
3134         falcon_remove_spi_devices(efx);
3135         falcon_free_buffer(efx, &efx->irq_status);
3136
3137         falcon_reset_hw(efx, RESET_TYPE_ALL);
3138
3139         /* Release the second function after the reset */
3140         if (nic_data->pci_dev2) {
3141                 pci_dev_put(nic_data->pci_dev2);
3142                 nic_data->pci_dev2 = NULL;
3143         }
3144
3145         /* Tear down the private nic state */
3146         kfree(efx->nic_data);
3147         efx->nic_data = NULL;
3148 }
3149
3150 void falcon_update_nic_stats(struct efx_nic *efx)
3151 {
3152         struct falcon_nic_data *nic_data = efx->nic_data;
3153         efx_oword_t cnt;
3154
3155         if (nic_data->stats_disable_count)
3156                 return;
3157
3158         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3159         efx->n_rx_nodesc_drop_cnt +=
3160                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3161
3162         if (nic_data->stats_pending &&
3163             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
3164                 nic_data->stats_pending = false;
3165                 rmb(); /* read the done flag before the stats */
3166                 efx->mac_op->update_stats(efx);
3167         }
3168 }
3169
3170 void falcon_start_nic_stats(struct efx_nic *efx)
3171 {
3172         struct falcon_nic_data *nic_data = efx->nic_data;
3173
3174         spin_lock_bh(&efx->stats_lock);
3175         if (--nic_data->stats_disable_count == 0)
3176                 falcon_stats_request(efx);
3177         spin_unlock_bh(&efx->stats_lock);
3178 }
3179
3180 void falcon_stop_nic_stats(struct efx_nic *efx)
3181 {
3182         struct falcon_nic_data *nic_data = efx->nic_data;
3183         int i;
3184
3185         might_sleep();
3186
3187         spin_lock_bh(&efx->stats_lock);
3188         ++nic_data->stats_disable_count;
3189         spin_unlock_bh(&efx->stats_lock);
3190
3191         del_timer_sync(&nic_data->stats_timer);
3192
3193         /* Wait enough time for the most recent transfer to
3194          * complete. */
3195         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
3196                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
3197                         break;
3198                 msleep(1);
3199         }
3200
3201         spin_lock_bh(&efx->stats_lock);
3202         falcon_stats_complete(efx);
3203         spin_unlock_bh(&efx->stats_lock);
3204 }
3205
3206 /**************************************************************************
3207  *
3208  * Revision-dependent attributes used by efx.c
3209  *
3210  **************************************************************************
3211  */
3212
3213 struct efx_nic_type falcon_a_nic_type = {
3214         .mem_map_size = 0x20000,
3215         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3216         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3217         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3218         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3219         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3220         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3221         .rx_buffer_padding = 0x24,
3222         .max_interrupt_mode = EFX_INT_MODE_MSI,
3223         .phys_addr_channels = 4,
3224 };
3225
3226 struct efx_nic_type falcon_b_nic_type = {
3227         /* Map everything up to and including the RSS indirection
3228          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3229          * requires that they not be mapped.  */
3230         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3231                          FR_BZ_RX_INDIRECTION_TBL_STEP *
3232                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
3233         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3234         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3235         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3236         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3237         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3238         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3239         .rx_buffer_padding = 0,
3240         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3241         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3242                                    * interrupt handler only supports 32
3243                                    * channels */
3244 };
3245