]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/sfc/falcon.c
sfc: Really allow RX checksum offload to be disabled
[linux-beck.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "workarounds.h"
30
31 /* Falcon hardware control.
32  * Falcon is the internal codename for the SFC4000 controller that is
33  * present in SFE400X evaluation boards
34  */
35
36 /**
37  * struct falcon_nic_data - Falcon NIC state
38  * @pci_dev2: The secondary PCI device if present
39  * @i2c_data: Operations and state for I2C bit-bashing algorithm
40  */
41 struct falcon_nic_data {
42         struct pci_dev *pci_dev2;
43         struct i2c_algo_bit_data i2c_data;
44 };
45
46 /**************************************************************************
47  *
48  * Configurable values
49  *
50  **************************************************************************
51  */
52
53 static int disable_dma_stats;
54
55 /* This is set to 16 for a good reason.  In summary, if larger than
56  * 16, the descriptor cache holds more than a default socket
57  * buffer's worth of packets (for UDP we can only have at most one
58  * socket buffer's worth outstanding).  This combined with the fact
59  * that we only get 1 TX event per descriptor cache means the NIC
60  * goes idle.
61  */
62 #define TX_DC_ENTRIES 16
63 #define TX_DC_ENTRIES_ORDER 0
64 #define TX_DC_BASE 0x130000
65
66 #define RX_DC_ENTRIES 64
67 #define RX_DC_ENTRIES_ORDER 2
68 #define RX_DC_BASE 0x100000
69
70 static const unsigned int
71 /* "Large" EEPROM device: Atmel AT25640 or similar
72  * 8 KB, 16-bit address, 32 B write block */
73 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
74                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
75                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
76 /* Default flash device: Atmel AT25F1024
77  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
78 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
79                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
80                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
81                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
82                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
83
84 /* RX FIFO XOFF watermark
85  *
86  * When the amount of the RX FIFO increases used increases past this
87  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
88  * This also has an effect on RX/TX arbitration
89  */
90 static int rx_xoff_thresh_bytes = -1;
91 module_param(rx_xoff_thresh_bytes, int, 0644);
92 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
93
94 /* RX FIFO XON watermark
95  *
96  * When the amount of the RX FIFO used decreases below this
97  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
98  * This also has an effect on RX/TX arbitration
99  */
100 static int rx_xon_thresh_bytes = -1;
101 module_param(rx_xon_thresh_bytes, int, 0644);
102 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
103
104 /* If FALCON_MAX_INT_ERRORS internal errors occur within
105  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
106  * disable it.
107  */
108 #define FALCON_INT_ERROR_EXPIRE 3600
109 #define FALCON_MAX_INT_ERRORS 5
110
111 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
112  */
113 #define FALCON_FLUSH_INTERVAL 10
114 #define FALCON_FLUSH_POLL_COUNT 100
115
116 /**************************************************************************
117  *
118  * Falcon constants
119  *
120  **************************************************************************
121  */
122
123 /* Size and alignment of special buffers (4KB) */
124 #define FALCON_BUF_SIZE 4096
125
126 /* Dummy SRAM size code */
127 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
128
129 #define FALCON_IS_DUAL_FUNC(efx)                \
130         (falcon_rev(efx) < FALCON_REV_B0)
131
132 /**************************************************************************
133  *
134  * Falcon hardware access
135  *
136  **************************************************************************/
137
138 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
139                                         unsigned int index)
140 {
141         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
142                         value, index);
143 }
144
145 /* Read the current event from the event queue */
146 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
147                                         unsigned int index)
148 {
149         return (((efx_qword_t *) (channel->eventq.addr)) + index);
150 }
151
152 /* See if an event is present
153  *
154  * We check both the high and low dword of the event for all ones.  We
155  * wrote all ones when we cleared the event, and no valid event can
156  * have all ones in either its high or low dwords.  This approach is
157  * robust against reordering.
158  *
159  * Note that using a single 64-bit comparison is incorrect; even
160  * though the CPU read will be atomic, the DMA write may not be.
161  */
162 static inline int falcon_event_present(efx_qword_t *event)
163 {
164         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
165                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
166 }
167
168 /**************************************************************************
169  *
170  * I2C bus - this is a bit-bashing interface using GPIO pins
171  * Note that it uses the output enables to tristate the outputs
172  * SDA is the data pin and SCL is the clock
173  *
174  **************************************************************************
175  */
176 static void falcon_setsda(void *data, int state)
177 {
178         struct efx_nic *efx = (struct efx_nic *)data;
179         efx_oword_t reg;
180
181         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
182         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
183         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
184 }
185
186 static void falcon_setscl(void *data, int state)
187 {
188         struct efx_nic *efx = (struct efx_nic *)data;
189         efx_oword_t reg;
190
191         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
192         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
193         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
194 }
195
196 static int falcon_getsda(void *data)
197 {
198         struct efx_nic *efx = (struct efx_nic *)data;
199         efx_oword_t reg;
200
201         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
202         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
203 }
204
205 static int falcon_getscl(void *data)
206 {
207         struct efx_nic *efx = (struct efx_nic *)data;
208         efx_oword_t reg;
209
210         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
211         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
212 }
213
214 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
215         .setsda         = falcon_setsda,
216         .setscl         = falcon_setscl,
217         .getsda         = falcon_getsda,
218         .getscl         = falcon_getscl,
219         .udelay         = 5,
220         /* Wait up to 50 ms for slave to let us pull SCL high */
221         .timeout        = DIV_ROUND_UP(HZ, 20),
222 };
223
224 /**************************************************************************
225  *
226  * Falcon special buffer handling
227  * Special buffers are used for event queues and the TX and RX
228  * descriptor rings.
229  *
230  *************************************************************************/
231
232 /*
233  * Initialise a Falcon special buffer
234  *
235  * This will define a buffer (previously allocated via
236  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
237  * it to be used for event queues, descriptor rings etc.
238  */
239 static void
240 falcon_init_special_buffer(struct efx_nic *efx,
241                            struct efx_special_buffer *buffer)
242 {
243         efx_qword_t buf_desc;
244         int index;
245         dma_addr_t dma_addr;
246         int i;
247
248         EFX_BUG_ON_PARANOID(!buffer->addr);
249
250         /* Write buffer descriptors to NIC */
251         for (i = 0; i < buffer->entries; i++) {
252                 index = buffer->index + i;
253                 dma_addr = buffer->dma_addr + (i * 4096);
254                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
255                         index, (unsigned long long)dma_addr);
256                 EFX_POPULATE_QWORD_3(buf_desc,
257                                      FRF_AZ_BUF_ADR_REGION, 0,
258                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
259                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
260                 falcon_write_buf_tbl(efx, &buf_desc, index);
261         }
262 }
263
264 /* Unmaps a buffer from Falcon and clears the buffer table entries */
265 static void
266 falcon_fini_special_buffer(struct efx_nic *efx,
267                            struct efx_special_buffer *buffer)
268 {
269         efx_oword_t buf_tbl_upd;
270         unsigned int start = buffer->index;
271         unsigned int end = (buffer->index + buffer->entries - 1);
272
273         if (!buffer->entries)
274                 return;
275
276         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
277                 buffer->index, buffer->index + buffer->entries - 1);
278
279         EFX_POPULATE_OWORD_4(buf_tbl_upd,
280                              FRF_AZ_BUF_UPD_CMD, 0,
281                              FRF_AZ_BUF_CLR_CMD, 1,
282                              FRF_AZ_BUF_CLR_END_ID, end,
283                              FRF_AZ_BUF_CLR_START_ID, start);
284         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
285 }
286
287 /*
288  * Allocate a new Falcon special buffer
289  *
290  * This allocates memory for a new buffer, clears it and allocates a
291  * new buffer ID range.  It does not write into Falcon's buffer table.
292  *
293  * This call will allocate 4KB buffers, since Falcon can't use 8KB
294  * buffers for event queues and descriptor rings.
295  */
296 static int falcon_alloc_special_buffer(struct efx_nic *efx,
297                                        struct efx_special_buffer *buffer,
298                                        unsigned int len)
299 {
300         len = ALIGN(len, FALCON_BUF_SIZE);
301
302         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
303                                             &buffer->dma_addr);
304         if (!buffer->addr)
305                 return -ENOMEM;
306         buffer->len = len;
307         buffer->entries = len / FALCON_BUF_SIZE;
308         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
309
310         /* All zeros is a potentially valid event so memset to 0xff */
311         memset(buffer->addr, 0xff, len);
312
313         /* Select new buffer ID */
314         buffer->index = efx->next_buffer_table;
315         efx->next_buffer_table += buffer->entries;
316
317         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
318                 "(virt %p phys %llx)\n", buffer->index,
319                 buffer->index + buffer->entries - 1,
320                 (u64)buffer->dma_addr, len,
321                 buffer->addr, (u64)virt_to_phys(buffer->addr));
322
323         return 0;
324 }
325
326 static void falcon_free_special_buffer(struct efx_nic *efx,
327                                        struct efx_special_buffer *buffer)
328 {
329         if (!buffer->addr)
330                 return;
331
332         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
333                 "(virt %p phys %llx)\n", buffer->index,
334                 buffer->index + buffer->entries - 1,
335                 (u64)buffer->dma_addr, buffer->len,
336                 buffer->addr, (u64)virt_to_phys(buffer->addr));
337
338         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
339                             buffer->dma_addr);
340         buffer->addr = NULL;
341         buffer->entries = 0;
342 }
343
344 /**************************************************************************
345  *
346  * Falcon generic buffer handling
347  * These buffers are used for interrupt status and MAC stats
348  *
349  **************************************************************************/
350
351 static int falcon_alloc_buffer(struct efx_nic *efx,
352                                struct efx_buffer *buffer, unsigned int len)
353 {
354         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
355                                             &buffer->dma_addr);
356         if (!buffer->addr)
357                 return -ENOMEM;
358         buffer->len = len;
359         memset(buffer->addr, 0, len);
360         return 0;
361 }
362
363 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
364 {
365         if (buffer->addr) {
366                 pci_free_consistent(efx->pci_dev, buffer->len,
367                                     buffer->addr, buffer->dma_addr);
368                 buffer->addr = NULL;
369         }
370 }
371
372 /**************************************************************************
373  *
374  * Falcon TX path
375  *
376  **************************************************************************/
377
378 /* Returns a pointer to the specified transmit descriptor in the TX
379  * descriptor queue belonging to the specified channel.
380  */
381 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
382                                                unsigned int index)
383 {
384         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
385 }
386
387 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
388 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
389 {
390         unsigned write_ptr;
391         efx_dword_t reg;
392
393         write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
394         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
395         efx_writed_page(tx_queue->efx, &reg,
396                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
397 }
398
399
400 /* For each entry inserted into the software descriptor ring, create a
401  * descriptor in the hardware TX descriptor ring (in host memory), and
402  * write a doorbell.
403  */
404 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
405 {
406
407         struct efx_tx_buffer *buffer;
408         efx_qword_t *txd;
409         unsigned write_ptr;
410
411         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
412
413         do {
414                 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
415                 buffer = &tx_queue->buffer[write_ptr];
416                 txd = falcon_tx_desc(tx_queue, write_ptr);
417                 ++tx_queue->write_count;
418
419                 /* Create TX descriptor ring entry */
420                 EFX_POPULATE_QWORD_4(*txd,
421                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
422                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
423                                      FSF_AZ_TX_KER_BUF_REGION, 0,
424                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
425         } while (tx_queue->write_count != tx_queue->insert_count);
426
427         wmb(); /* Ensure descriptors are written before they are fetched */
428         falcon_notify_tx_desc(tx_queue);
429 }
430
431 /* Allocate hardware resources for a TX queue */
432 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
433 {
434         struct efx_nic *efx = tx_queue->efx;
435         BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
436                      EFX_TXQ_SIZE & EFX_TXQ_MASK);
437         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
438                                            EFX_TXQ_SIZE * sizeof(efx_qword_t));
439 }
440
441 void falcon_init_tx(struct efx_tx_queue *tx_queue)
442 {
443         efx_oword_t tx_desc_ptr;
444         struct efx_nic *efx = tx_queue->efx;
445
446         tx_queue->flushed = false;
447
448         /* Pin TX descriptor ring */
449         falcon_init_special_buffer(efx, &tx_queue->txd);
450
451         /* Push TX descriptor ring to card */
452         EFX_POPULATE_OWORD_10(tx_desc_ptr,
453                               FRF_AZ_TX_DESCQ_EN, 1,
454                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
455                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
456                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
457                               FRF_AZ_TX_DESCQ_EVQ_ID,
458                               tx_queue->channel->channel,
459                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
460                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
461                               FRF_AZ_TX_DESCQ_SIZE,
462                               __ffs(tx_queue->txd.entries),
463                               FRF_AZ_TX_DESCQ_TYPE, 0,
464                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
465
466         if (falcon_rev(efx) >= FALCON_REV_B0) {
467                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
468                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
469                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
470                                     !csum);
471         }
472
473         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
474                          tx_queue->queue);
475
476         if (falcon_rev(efx) < FALCON_REV_B0) {
477                 efx_oword_t reg;
478
479                 /* Only 128 bits in this register */
480                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
481
482                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
483                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
484                         clear_bit_le(tx_queue->queue, (void *)&reg);
485                 else
486                         set_bit_le(tx_queue->queue, (void *)&reg);
487                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
488         }
489 }
490
491 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
492 {
493         struct efx_nic *efx = tx_queue->efx;
494         efx_oword_t tx_flush_descq;
495
496         /* Post a flush command */
497         EFX_POPULATE_OWORD_2(tx_flush_descq,
498                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
500         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
501 }
502
503 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
504 {
505         struct efx_nic *efx = tx_queue->efx;
506         efx_oword_t tx_desc_ptr;
507
508         /* The queue should have been flushed */
509         WARN_ON(!tx_queue->flushed);
510
511         /* Remove TX descriptor ring from card */
512         EFX_ZERO_OWORD(tx_desc_ptr);
513         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
514                          tx_queue->queue);
515
516         /* Unpin TX descriptor ring */
517         falcon_fini_special_buffer(efx, &tx_queue->txd);
518 }
519
520 /* Free buffers backing TX queue */
521 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
522 {
523         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524 }
525
526 /**************************************************************************
527  *
528  * Falcon RX path
529  *
530  **************************************************************************/
531
532 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
533 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
534                                                unsigned int index)
535 {
536         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
537 }
538
539 /* This creates an entry in the RX descriptor queue */
540 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
541                                         unsigned index)
542 {
543         struct efx_rx_buffer *rx_buf;
544         efx_qword_t *rxd;
545
546         rxd = falcon_rx_desc(rx_queue, index);
547         rx_buf = efx_rx_buffer(rx_queue, index);
548         EFX_POPULATE_QWORD_3(*rxd,
549                              FSF_AZ_RX_KER_BUF_SIZE,
550                              rx_buf->len -
551                              rx_queue->efx->type->rx_buffer_padding,
552                              FSF_AZ_RX_KER_BUF_REGION, 0,
553                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
554 }
555
556 /* This writes to the RX_DESC_WPTR register for the specified receive
557  * descriptor ring.
558  */
559 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
560 {
561         efx_dword_t reg;
562         unsigned write_ptr;
563
564         while (rx_queue->notified_count != rx_queue->added_count) {
565                 falcon_build_rx_desc(rx_queue,
566                                      rx_queue->notified_count &
567                                      EFX_RXQ_MASK);
568                 ++rx_queue->notified_count;
569         }
570
571         wmb();
572         write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
573         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
574         efx_writed_page(rx_queue->efx, &reg,
575                         FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
576 }
577
578 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
579 {
580         struct efx_nic *efx = rx_queue->efx;
581         BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
582                      EFX_RXQ_SIZE & EFX_RXQ_MASK);
583         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
584                                            EFX_RXQ_SIZE * sizeof(efx_qword_t));
585 }
586
587 void falcon_init_rx(struct efx_rx_queue *rx_queue)
588 {
589         efx_oword_t rx_desc_ptr;
590         struct efx_nic *efx = rx_queue->efx;
591         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
592         bool iscsi_digest_en = is_b0;
593
594         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
595                 rx_queue->queue, rx_queue->rxd.index,
596                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
597
598         rx_queue->flushed = false;
599
600         /* Pin RX descriptor ring */
601         falcon_init_special_buffer(efx, &rx_queue->rxd);
602
603         /* Push RX descriptor ring to card */
604         EFX_POPULATE_OWORD_10(rx_desc_ptr,
605                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
606                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
607                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
608                               FRF_AZ_RX_DESCQ_EVQ_ID,
609                               rx_queue->channel->channel,
610                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
611                               FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
612                               FRF_AZ_RX_DESCQ_SIZE,
613                               __ffs(rx_queue->rxd.entries),
614                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
615                               /* For >=B0 this is scatter so disable */
616                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
617                               FRF_AZ_RX_DESCQ_EN, 1);
618         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
619                          rx_queue->queue);
620 }
621
622 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
623 {
624         struct efx_nic *efx = rx_queue->efx;
625         efx_oword_t rx_flush_descq;
626
627         /* Post a flush command */
628         EFX_POPULATE_OWORD_2(rx_flush_descq,
629                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
630                              FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
631         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
632 }
633
634 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
635 {
636         efx_oword_t rx_desc_ptr;
637         struct efx_nic *efx = rx_queue->efx;
638
639         /* The queue should already have been flushed */
640         WARN_ON(!rx_queue->flushed);
641
642         /* Remove RX descriptor ring from card */
643         EFX_ZERO_OWORD(rx_desc_ptr);
644         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
645                          rx_queue->queue);
646
647         /* Unpin RX descriptor ring */
648         falcon_fini_special_buffer(efx, &rx_queue->rxd);
649 }
650
651 /* Free buffers backing RX queue */
652 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
653 {
654         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
655 }
656
657 /**************************************************************************
658  *
659  * Falcon event queue processing
660  * Event queues are processed by per-channel tasklets.
661  *
662  **************************************************************************/
663
664 /* Update a channel's event queue's read pointer (RPTR) register
665  *
666  * This writes the EVQ_RPTR_REG register for the specified channel's
667  * event queue.
668  *
669  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
670  * whereas channel->eventq_read_ptr contains the index of the "next to
671  * read" event.
672  */
673 void falcon_eventq_read_ack(struct efx_channel *channel)
674 {
675         efx_dword_t reg;
676         struct efx_nic *efx = channel->efx;
677
678         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
679         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
680                             channel->channel);
681 }
682
683 /* Use HW to insert a SW defined event */
684 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
685 {
686         efx_oword_t drv_ev_reg;
687
688         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
689                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
690         drv_ev_reg.u32[0] = event->u32[0];
691         drv_ev_reg.u32[1] = event->u32[1];
692         drv_ev_reg.u32[2] = 0;
693         drv_ev_reg.u32[3] = 0;
694         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
695         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
696 }
697
698 /* Handle a transmit completion event
699  *
700  * Falcon batches TX completion events; the message we receive is of
701  * the form "complete all TX events up to this index".
702  */
703 static void falcon_handle_tx_event(struct efx_channel *channel,
704                                    efx_qword_t *event)
705 {
706         unsigned int tx_ev_desc_ptr;
707         unsigned int tx_ev_q_label;
708         struct efx_tx_queue *tx_queue;
709         struct efx_nic *efx = channel->efx;
710
711         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
712                 /* Transmit completion */
713                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
714                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
715                 tx_queue = &efx->tx_queue[tx_ev_q_label];
716                 channel->irq_mod_score +=
717                         (tx_ev_desc_ptr - tx_queue->read_count) &
718                         EFX_TXQ_MASK;
719                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
720         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
721                 /* Rewrite the FIFO write pointer */
722                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
723                 tx_queue = &efx->tx_queue[tx_ev_q_label];
724
725                 if (efx_dev_registered(efx))
726                         netif_tx_lock(efx->net_dev);
727                 falcon_notify_tx_desc(tx_queue);
728                 if (efx_dev_registered(efx))
729                         netif_tx_unlock(efx->net_dev);
730         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
731                    EFX_WORKAROUND_10727(efx)) {
732                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
733         } else {
734                 EFX_ERR(efx, "channel %d unexpected TX event "
735                         EFX_QWORD_FMT"\n", channel->channel,
736                         EFX_QWORD_VAL(*event));
737         }
738 }
739
740 /* Detect errors included in the rx_evt_pkt_ok bit. */
741 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
742                                     const efx_qword_t *event,
743                                     bool *rx_ev_pkt_ok,
744                                     bool *discard)
745 {
746         struct efx_nic *efx = rx_queue->efx;
747         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
748         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
749         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
750         bool rx_ev_other_err, rx_ev_pause_frm;
751         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
752         unsigned rx_ev_pkt_type;
753
754         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
755         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
756         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
757         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
758         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
759                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
760         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
761         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
762                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
763         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
764                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
765         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
766         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
767         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
768                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
769         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
770
771         /* Every error apart from tobe_disc and pause_frm */
772         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
773                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
774                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
775
776         /* Count errors that are not in MAC stats.  Ignore expected
777          * checksum errors during self-test. */
778         if (rx_ev_frm_trunc)
779                 ++rx_queue->channel->n_rx_frm_trunc;
780         else if (rx_ev_tobe_disc)
781                 ++rx_queue->channel->n_rx_tobe_disc;
782         else if (!efx->loopback_selftest) {
783                 if (rx_ev_ip_hdr_chksum_err)
784                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
785                 else if (rx_ev_tcp_udp_chksum_err)
786                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
787         }
788         if (rx_ev_ip_frag_err)
789                 ++rx_queue->channel->n_rx_ip_frag_err;
790
791         /* The frame must be discarded if any of these are true. */
792         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
793                     rx_ev_tobe_disc | rx_ev_pause_frm);
794
795         /* TOBE_DISC is expected on unicast mismatches; don't print out an
796          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
797          * to a FIFO overflow.
798          */
799 #ifdef EFX_ENABLE_DEBUG
800         if (rx_ev_other_err) {
801                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
802                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
803                             rx_queue->queue, EFX_QWORD_VAL(*event),
804                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
805                             rx_ev_ip_hdr_chksum_err ?
806                             " [IP_HDR_CHKSUM_ERR]" : "",
807                             rx_ev_tcp_udp_chksum_err ?
808                             " [TCP_UDP_CHKSUM_ERR]" : "",
809                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
810                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
811                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
812                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
813                             rx_ev_pause_frm ? " [PAUSE]" : "");
814         }
815 #endif
816 }
817
818 /* Handle receive events that are not in-order. */
819 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
820                                        unsigned index)
821 {
822         struct efx_nic *efx = rx_queue->efx;
823         unsigned expected, dropped;
824
825         expected = rx_queue->removed_count & EFX_RXQ_MASK;
826         dropped = (index - expected) & EFX_RXQ_MASK;
827         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
828                 dropped, index, expected);
829
830         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
831                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
832 }
833
834 /* Handle a packet received event
835  *
836  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
837  * wrong destination address
838  * Also "is multicast" and "matches multicast filter" flags can be used to
839  * discard non-matching multicast packets.
840  */
841 static void falcon_handle_rx_event(struct efx_channel *channel,
842                                    const efx_qword_t *event)
843 {
844         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
845         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
846         unsigned expected_ptr;
847         bool rx_ev_pkt_ok, discard = false, checksummed;
848         struct efx_rx_queue *rx_queue;
849         struct efx_nic *efx = channel->efx;
850
851         /* Basic packet information */
852         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
853         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
854         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
855         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
856         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
857         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
858                 channel->channel);
859
860         rx_queue = &efx->rx_queue[channel->channel];
861
862         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
863         expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
864         if (unlikely(rx_ev_desc_ptr != expected_ptr))
865                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
866
867         if (likely(rx_ev_pkt_ok)) {
868                 /* If packet is marked as OK and packet type is TCP/IPv4 or
869                  * UDP/IPv4, then we can rely on the hardware checksum.
870                  */
871                 checksummed =
872                         efx->rx_checksum_enabled &&
873                         (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
874                          rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
875         } else {
876                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
877                                         &discard);
878                 checksummed = false;
879         }
880
881         /* Detect multicast packets that didn't match the filter */
882         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
883         if (rx_ev_mcast_pkt) {
884                 unsigned int rx_ev_mcast_hash_match =
885                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
886
887                 if (unlikely(!rx_ev_mcast_hash_match))
888                         discard = true;
889         }
890
891         channel->irq_mod_score += 2;
892
893         /* Handle received packet */
894         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
895                       checksummed, discard);
896 }
897
898 /* Global events are basically PHY events */
899 static void falcon_handle_global_event(struct efx_channel *channel,
900                                        efx_qword_t *event)
901 {
902         struct efx_nic *efx = channel->efx;
903         bool handled = false;
904
905         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
906             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
907             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
908                 efx->phy_op->clear_interrupt(efx);
909                 queue_work(efx->workqueue, &efx->phy_work);
910                 handled = true;
911         }
912
913         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
914             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
915                 queue_work(efx->workqueue, &efx->mac_work);
916                 handled = true;
917         }
918
919         if (falcon_rev(efx) <= FALCON_REV_A1 ?
920             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
921             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
922                 EFX_ERR(efx, "channel %d seen global RX_RESET "
923                         "event. Resetting.\n", channel->channel);
924
925                 atomic_inc(&efx->rx_reset);
926                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
927                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
928                 handled = true;
929         }
930
931         if (!handled)
932                 EFX_ERR(efx, "channel %d unknown global event "
933                         EFX_QWORD_FMT "\n", channel->channel,
934                         EFX_QWORD_VAL(*event));
935 }
936
937 static void falcon_handle_driver_event(struct efx_channel *channel,
938                                        efx_qword_t *event)
939 {
940         struct efx_nic *efx = channel->efx;
941         unsigned int ev_sub_code;
942         unsigned int ev_sub_data;
943
944         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
945         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
946
947         switch (ev_sub_code) {
948         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
949                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
950                           channel->channel, ev_sub_data);
951                 break;
952         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
953                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
954                           channel->channel, ev_sub_data);
955                 break;
956         case FSE_AZ_EVQ_INIT_DONE_EV:
957                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
958                         channel->channel, ev_sub_data);
959                 break;
960         case FSE_AZ_SRM_UPD_DONE_EV:
961                 EFX_TRACE(efx, "channel %d SRAM update done\n",
962                           channel->channel);
963                 break;
964         case FSE_AZ_WAKE_UP_EV:
965                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
966                           channel->channel, ev_sub_data);
967                 break;
968         case FSE_AZ_TIMER_EV:
969                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
970                           channel->channel, ev_sub_data);
971                 break;
972         case FSE_AA_RX_RECOVER_EV:
973                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
974                         "Resetting.\n", channel->channel);
975                 atomic_inc(&efx->rx_reset);
976                 efx_schedule_reset(efx,
977                                    EFX_WORKAROUND_6555(efx) ?
978                                    RESET_TYPE_RX_RECOVERY :
979                                    RESET_TYPE_DISABLE);
980                 break;
981         case FSE_BZ_RX_DSC_ERROR_EV:
982                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
983                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
984                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
985                 break;
986         case FSE_BZ_TX_DSC_ERROR_EV:
987                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
988                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
989                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
990                 break;
991         default:
992                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
993                           "data %04x\n", channel->channel, ev_sub_code,
994                           ev_sub_data);
995                 break;
996         }
997 }
998
999 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1000 {
1001         unsigned int read_ptr;
1002         efx_qword_t event, *p_event;
1003         int ev_code;
1004         int rx_packets = 0;
1005
1006         read_ptr = channel->eventq_read_ptr;
1007
1008         do {
1009                 p_event = falcon_event(channel, read_ptr);
1010                 event = *p_event;
1011
1012                 if (!falcon_event_present(&event))
1013                         /* End of events */
1014                         break;
1015
1016                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1017                           channel->channel, EFX_QWORD_VAL(event));
1018
1019                 /* Clear this event by marking it all ones */
1020                 EFX_SET_QWORD(*p_event);
1021
1022                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1023
1024                 switch (ev_code) {
1025                 case FSE_AZ_EV_CODE_RX_EV:
1026                         falcon_handle_rx_event(channel, &event);
1027                         ++rx_packets;
1028                         break;
1029                 case FSE_AZ_EV_CODE_TX_EV:
1030                         falcon_handle_tx_event(channel, &event);
1031                         break;
1032                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1033                         channel->eventq_magic = EFX_QWORD_FIELD(
1034                                 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1035                         EFX_LOG(channel->efx, "channel %d received generated "
1036                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1037                                 EFX_QWORD_VAL(event));
1038                         break;
1039                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1040                         falcon_handle_global_event(channel, &event);
1041                         break;
1042                 case FSE_AZ_EV_CODE_DRIVER_EV:
1043                         falcon_handle_driver_event(channel, &event);
1044                         break;
1045                 default:
1046                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1047                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1048                                 ev_code, EFX_QWORD_VAL(event));
1049                 }
1050
1051                 /* Increment read pointer */
1052                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1053
1054         } while (rx_packets < rx_quota);
1055
1056         channel->eventq_read_ptr = read_ptr;
1057         return rx_packets;
1058 }
1059
1060 void falcon_set_int_moderation(struct efx_channel *channel)
1061 {
1062         efx_dword_t timer_cmd;
1063         struct efx_nic *efx = channel->efx;
1064
1065         /* Set timer register */
1066         if (channel->irq_moderation) {
1067                 EFX_POPULATE_DWORD_2(timer_cmd,
1068                                      FRF_AB_TC_TIMER_MODE,
1069                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
1070                                      FRF_AB_TC_TIMER_VAL,
1071                                      channel->irq_moderation - 1);
1072         } else {
1073                 EFX_POPULATE_DWORD_2(timer_cmd,
1074                                      FRF_AB_TC_TIMER_MODE,
1075                                      FFE_BB_TIMER_MODE_DIS,
1076                                      FRF_AB_TC_TIMER_VAL, 0);
1077         }
1078         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1079         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1080                                channel->channel);
1081
1082 }
1083
1084 /* Allocate buffer table entries for event queue */
1085 int falcon_probe_eventq(struct efx_channel *channel)
1086 {
1087         struct efx_nic *efx = channel->efx;
1088         BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1089                      EFX_EVQ_SIZE & EFX_EVQ_MASK);
1090         return falcon_alloc_special_buffer(efx, &channel->eventq,
1091                                            EFX_EVQ_SIZE * sizeof(efx_qword_t));
1092 }
1093
1094 void falcon_init_eventq(struct efx_channel *channel)
1095 {
1096         efx_oword_t evq_ptr;
1097         struct efx_nic *efx = channel->efx;
1098
1099         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1100                 channel->channel, channel->eventq.index,
1101                 channel->eventq.index + channel->eventq.entries - 1);
1102
1103         /* Pin event queue buffer */
1104         falcon_init_special_buffer(efx, &channel->eventq);
1105
1106         /* Fill event queue with all ones (i.e. empty events) */
1107         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1108
1109         /* Push event queue to card */
1110         EFX_POPULATE_OWORD_3(evq_ptr,
1111                              FRF_AZ_EVQ_EN, 1,
1112                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1113                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1114         efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1115                          channel->channel);
1116
1117         falcon_set_int_moderation(channel);
1118 }
1119
1120 void falcon_fini_eventq(struct efx_channel *channel)
1121 {
1122         efx_oword_t eventq_ptr;
1123         struct efx_nic *efx = channel->efx;
1124
1125         /* Remove event queue from card */
1126         EFX_ZERO_OWORD(eventq_ptr);
1127         efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1128                          channel->channel);
1129
1130         /* Unpin event queue */
1131         falcon_fini_special_buffer(efx, &channel->eventq);
1132 }
1133
1134 /* Free buffers backing event queue */
1135 void falcon_remove_eventq(struct efx_channel *channel)
1136 {
1137         falcon_free_special_buffer(channel->efx, &channel->eventq);
1138 }
1139
1140
1141 /* Generates a test event on the event queue.  A subsequent call to
1142  * process_eventq() should pick up the event and place the value of
1143  * "magic" into channel->eventq_magic;
1144  */
1145 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1146 {
1147         efx_qword_t test_event;
1148
1149         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1150                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1151                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1152         falcon_generate_event(channel, &test_event);
1153 }
1154
1155 void falcon_sim_phy_event(struct efx_nic *efx)
1156 {
1157         efx_qword_t phy_event;
1158
1159         EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1160                              FSE_AZ_EV_CODE_GLOBAL_EV);
1161         if (EFX_IS10G(efx))
1162                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1163         else
1164                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1165
1166         falcon_generate_event(&efx->channel[0], &phy_event);
1167 }
1168
1169 /**************************************************************************
1170  *
1171  * Flush handling
1172  *
1173  **************************************************************************/
1174
1175
1176 static void falcon_poll_flush_events(struct efx_nic *efx)
1177 {
1178         struct efx_channel *channel = &efx->channel[0];
1179         struct efx_tx_queue *tx_queue;
1180         struct efx_rx_queue *rx_queue;
1181         unsigned int read_ptr = channel->eventq_read_ptr;
1182         unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1183
1184         do {
1185                 efx_qword_t *event = falcon_event(channel, read_ptr);
1186                 int ev_code, ev_sub_code, ev_queue;
1187                 bool ev_failed;
1188
1189                 if (!falcon_event_present(event))
1190                         break;
1191
1192                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1193                 ev_sub_code = EFX_QWORD_FIELD(*event,
1194                                               FSF_AZ_DRIVER_EV_SUBCODE);
1195                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1196                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1197                         ev_queue = EFX_QWORD_FIELD(*event,
1198                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1199                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1200                                 tx_queue = efx->tx_queue + ev_queue;
1201                                 tx_queue->flushed = true;
1202                         }
1203                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1204                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1205                         ev_queue = EFX_QWORD_FIELD(
1206                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1207                         ev_failed = EFX_QWORD_FIELD(
1208                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1209                         if (ev_queue < efx->n_rx_queues) {
1210                                 rx_queue = efx->rx_queue + ev_queue;
1211
1212                                 /* retry the rx flush */
1213                                 if (ev_failed)
1214                                         falcon_flush_rx_queue(rx_queue);
1215                                 else
1216                                         rx_queue->flushed = true;
1217                         }
1218                 }
1219
1220                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1221         } while (read_ptr != end_ptr);
1222 }
1223
1224 /* Handle tx and rx flushes at the same time, since they run in
1225  * parallel in the hardware and there's no reason for us to
1226  * serialise them */
1227 int falcon_flush_queues(struct efx_nic *efx)
1228 {
1229         struct efx_rx_queue *rx_queue;
1230         struct efx_tx_queue *tx_queue;
1231         int i;
1232         bool outstanding;
1233
1234         /* Issue flush requests */
1235         efx_for_each_tx_queue(tx_queue, efx) {
1236                 tx_queue->flushed = false;
1237                 falcon_flush_tx_queue(tx_queue);
1238         }
1239         efx_for_each_rx_queue(rx_queue, efx) {
1240                 rx_queue->flushed = false;
1241                 falcon_flush_rx_queue(rx_queue);
1242         }
1243
1244         /* Poll the evq looking for flush completions. Since we're not pushing
1245          * any more rx or tx descriptors at this point, we're in no danger of
1246          * overflowing the evq whilst we wait */
1247         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1248                 msleep(FALCON_FLUSH_INTERVAL);
1249                 falcon_poll_flush_events(efx);
1250
1251                 /* Check if every queue has been succesfully flushed */
1252                 outstanding = false;
1253                 efx_for_each_tx_queue(tx_queue, efx)
1254                         outstanding |= !tx_queue->flushed;
1255                 efx_for_each_rx_queue(rx_queue, efx)
1256                         outstanding |= !rx_queue->flushed;
1257                 if (!outstanding)
1258                         return 0;
1259         }
1260
1261         /* Mark the queues as all flushed. We're going to return failure
1262          * leading to a reset, or fake up success anyway. "flushed" now
1263          * indicates that we tried to flush. */
1264         efx_for_each_tx_queue(tx_queue, efx) {
1265                 if (!tx_queue->flushed)
1266                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1267                                 tx_queue->queue);
1268                 tx_queue->flushed = true;
1269         }
1270         efx_for_each_rx_queue(rx_queue, efx) {
1271                 if (!rx_queue->flushed)
1272                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1273                                 rx_queue->queue);
1274                 rx_queue->flushed = true;
1275         }
1276
1277         if (EFX_WORKAROUND_7803(efx))
1278                 return 0;
1279
1280         return -ETIMEDOUT;
1281 }
1282
1283 /**************************************************************************
1284  *
1285  * Falcon hardware interrupts
1286  * The hardware interrupt handler does very little work; all the event
1287  * queue processing is carried out by per-channel tasklets.
1288  *
1289  **************************************************************************/
1290
1291 /* Enable/disable/generate Falcon interrupts */
1292 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1293                                      int force)
1294 {
1295         efx_oword_t int_en_reg_ker;
1296
1297         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1298                              FRF_AZ_KER_INT_KER, force,
1299                              FRF_AZ_DRV_INT_EN_KER, enabled);
1300         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1301 }
1302
1303 void falcon_enable_interrupts(struct efx_nic *efx)
1304 {
1305         efx_oword_t int_adr_reg_ker;
1306         struct efx_channel *channel;
1307
1308         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1309         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1310
1311         /* Program address */
1312         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1313                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1314                              EFX_INT_MODE_USE_MSI(efx),
1315                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1316         efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1317
1318         /* Enable interrupts */
1319         falcon_interrupts(efx, 1, 0);
1320
1321         /* Force processing of all the channels to get the EVQ RPTRs up to
1322            date */
1323         efx_for_each_channel(channel, efx)
1324                 efx_schedule_channel(channel);
1325 }
1326
1327 void falcon_disable_interrupts(struct efx_nic *efx)
1328 {
1329         /* Disable interrupts */
1330         falcon_interrupts(efx, 0, 0);
1331 }
1332
1333 /* Generate a Falcon test interrupt
1334  * Interrupt must already have been enabled, otherwise nasty things
1335  * may happen.
1336  */
1337 void falcon_generate_interrupt(struct efx_nic *efx)
1338 {
1339         falcon_interrupts(efx, 1, 1);
1340 }
1341
1342 /* Acknowledge a legacy interrupt from Falcon
1343  *
1344  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1345  *
1346  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1347  * BIU. Interrupt acknowledge is read sensitive so must write instead
1348  * (then read to ensure the BIU collector is flushed)
1349  *
1350  * NB most hardware supports MSI interrupts
1351  */
1352 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1353 {
1354         efx_dword_t reg;
1355
1356         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1357         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1358         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1359 }
1360
1361 /* Process a fatal interrupt
1362  * Disable bus mastering ASAP and schedule a reset
1363  */
1364 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1365 {
1366         struct falcon_nic_data *nic_data = efx->nic_data;
1367         efx_oword_t *int_ker = efx->irq_status.addr;
1368         efx_oword_t fatal_intr;
1369         int error, mem_perr;
1370
1371         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1372         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1373
1374         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1375                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1376                 EFX_OWORD_VAL(fatal_intr),
1377                 error ? "disabling bus mastering" : "no recognised error");
1378         if (error == 0)
1379                 goto out;
1380
1381         /* If this is a memory parity error dump which blocks are offending */
1382         mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1383         if (mem_perr) {
1384                 efx_oword_t reg;
1385                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1386                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1387                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1388         }
1389
1390         /* Disable both devices */
1391         pci_clear_master(efx->pci_dev);
1392         if (FALCON_IS_DUAL_FUNC(efx))
1393                 pci_clear_master(nic_data->pci_dev2);
1394         falcon_disable_interrupts(efx);
1395
1396         /* Count errors and reset or disable the NIC accordingly */
1397         if (efx->int_error_count == 0 ||
1398             time_after(jiffies, efx->int_error_expire)) {
1399                 efx->int_error_count = 0;
1400                 efx->int_error_expire =
1401                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1402         }
1403         if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1404                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1405                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1406         } else {
1407                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1408                         "NIC will be disabled\n");
1409                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1410         }
1411 out:
1412         return IRQ_HANDLED;
1413 }
1414
1415 /* Handle a legacy interrupt from Falcon
1416  * Acknowledges the interrupt and schedule event queue processing.
1417  */
1418 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1419 {
1420         struct efx_nic *efx = dev_id;
1421         efx_oword_t *int_ker = efx->irq_status.addr;
1422         irqreturn_t result = IRQ_NONE;
1423         struct efx_channel *channel;
1424         efx_dword_t reg;
1425         u32 queues;
1426         int syserr;
1427
1428         /* Read the ISR which also ACKs the interrupts */
1429         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1430         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1431
1432         /* Check to see if we have a serious error condition */
1433         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1434         if (unlikely(syserr))
1435                 return falcon_fatal_interrupt(efx);
1436
1437         /* Schedule processing of any interrupting queues */
1438         efx_for_each_channel(channel, efx) {
1439                 if ((queues & 1) ||
1440                     falcon_event_present(
1441                             falcon_event(channel, channel->eventq_read_ptr))) {
1442                         efx_schedule_channel(channel);
1443                         result = IRQ_HANDLED;
1444                 }
1445                 queues >>= 1;
1446         }
1447
1448         if (result == IRQ_HANDLED) {
1449                 efx->last_irq_cpu = raw_smp_processor_id();
1450                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1451                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1452         }
1453
1454         return result;
1455 }
1456
1457
1458 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1459 {
1460         struct efx_nic *efx = dev_id;
1461         efx_oword_t *int_ker = efx->irq_status.addr;
1462         struct efx_channel *channel;
1463         int syserr;
1464         int queues;
1465
1466         /* Check to see if this is our interrupt.  If it isn't, we
1467          * exit without having touched the hardware.
1468          */
1469         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1470                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1471                           raw_smp_processor_id());
1472                 return IRQ_NONE;
1473         }
1474         efx->last_irq_cpu = raw_smp_processor_id();
1475         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1476                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1477
1478         /* Check to see if we have a serious error condition */
1479         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1480         if (unlikely(syserr))
1481                 return falcon_fatal_interrupt(efx);
1482
1483         /* Determine interrupting queues, clear interrupt status
1484          * register and acknowledge the device interrupt.
1485          */
1486         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1487         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1488         EFX_ZERO_OWORD(*int_ker);
1489         wmb(); /* Ensure the vector is cleared before interrupt ack */
1490         falcon_irq_ack_a1(efx);
1491
1492         /* Schedule processing of any interrupting queues */
1493         channel = &efx->channel[0];
1494         while (queues) {
1495                 if (queues & 0x01)
1496                         efx_schedule_channel(channel);
1497                 channel++;
1498                 queues >>= 1;
1499         }
1500
1501         return IRQ_HANDLED;
1502 }
1503
1504 /* Handle an MSI interrupt from Falcon
1505  *
1506  * Handle an MSI hardware interrupt.  This routine schedules event
1507  * queue processing.  No interrupt acknowledgement cycle is necessary.
1508  * Also, we never need to check that the interrupt is for us, since
1509  * MSI interrupts cannot be shared.
1510  */
1511 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1512 {
1513         struct efx_channel *channel = dev_id;
1514         struct efx_nic *efx = channel->efx;
1515         efx_oword_t *int_ker = efx->irq_status.addr;
1516         int syserr;
1517
1518         efx->last_irq_cpu = raw_smp_processor_id();
1519         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1520                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1521
1522         /* Check to see if we have a serious error condition */
1523         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1524         if (unlikely(syserr))
1525                 return falcon_fatal_interrupt(efx);
1526
1527         /* Schedule processing of the channel */
1528         efx_schedule_channel(channel);
1529
1530         return IRQ_HANDLED;
1531 }
1532
1533
1534 /* Setup RSS indirection table.
1535  * This maps from the hash value of the packet to RXQ
1536  */
1537 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1538 {
1539         int i = 0;
1540         unsigned long offset;
1541         efx_dword_t dword;
1542
1543         if (falcon_rev(efx) < FALCON_REV_B0)
1544                 return;
1545
1546         for (offset = FR_BZ_RX_INDIRECTION_TBL;
1547              offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1548              offset += 0x10) {
1549                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1550                                      i % efx->n_rx_queues);
1551                 efx_writed(efx, &dword, offset);
1552                 i++;
1553         }
1554 }
1555
1556 /* Hook interrupt handler(s)
1557  * Try MSI and then legacy interrupts.
1558  */
1559 int falcon_init_interrupt(struct efx_nic *efx)
1560 {
1561         struct efx_channel *channel;
1562         int rc;
1563
1564         if (!EFX_INT_MODE_USE_MSI(efx)) {
1565                 irq_handler_t handler;
1566                 if (falcon_rev(efx) >= FALCON_REV_B0)
1567                         handler = falcon_legacy_interrupt_b0;
1568                 else
1569                         handler = falcon_legacy_interrupt_a1;
1570
1571                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1572                                  efx->name, efx);
1573                 if (rc) {
1574                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1575                                 efx->pci_dev->irq);
1576                         goto fail1;
1577                 }
1578                 return 0;
1579         }
1580
1581         /* Hook MSI or MSI-X interrupt */
1582         efx_for_each_channel(channel, efx) {
1583                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1584                                  IRQF_PROBE_SHARED, /* Not shared */
1585                                  channel->name, channel);
1586                 if (rc) {
1587                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1588                         goto fail2;
1589                 }
1590         }
1591
1592         return 0;
1593
1594  fail2:
1595         efx_for_each_channel(channel, efx)
1596                 free_irq(channel->irq, channel);
1597  fail1:
1598         return rc;
1599 }
1600
1601 void falcon_fini_interrupt(struct efx_nic *efx)
1602 {
1603         struct efx_channel *channel;
1604         efx_oword_t reg;
1605
1606         /* Disable MSI/MSI-X interrupts */
1607         efx_for_each_channel(channel, efx) {
1608                 if (channel->irq)
1609                         free_irq(channel->irq, channel);
1610         }
1611
1612         /* ACK legacy interrupt */
1613         if (falcon_rev(efx) >= FALCON_REV_B0)
1614                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1615         else
1616                 falcon_irq_ack_a1(efx);
1617
1618         /* Disable legacy interrupt */
1619         if (efx->legacy_irq)
1620                 free_irq(efx->legacy_irq, efx);
1621 }
1622
1623 /**************************************************************************
1624  *
1625  * EEPROM/flash
1626  *
1627  **************************************************************************
1628  */
1629
1630 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1631
1632 static int falcon_spi_poll(struct efx_nic *efx)
1633 {
1634         efx_oword_t reg;
1635         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1636         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1637 }
1638
1639 /* Wait for SPI command completion */
1640 static int falcon_spi_wait(struct efx_nic *efx)
1641 {
1642         /* Most commands will finish quickly, so we start polling at
1643          * very short intervals.  Sometimes the command may have to
1644          * wait for VPD or expansion ROM access outside of our
1645          * control, so we allow up to 100 ms. */
1646         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1647         int i;
1648
1649         for (i = 0; i < 10; i++) {
1650                 if (!falcon_spi_poll(efx))
1651                         return 0;
1652                 udelay(10);
1653         }
1654
1655         for (;;) {
1656                 if (!falcon_spi_poll(efx))
1657                         return 0;
1658                 if (time_after_eq(jiffies, timeout)) {
1659                         EFX_ERR(efx, "timed out waiting for SPI\n");
1660                         return -ETIMEDOUT;
1661                 }
1662                 schedule_timeout_uninterruptible(1);
1663         }
1664 }
1665
1666 int falcon_spi_cmd(const struct efx_spi_device *spi,
1667                    unsigned int command, int address,
1668                    const void *in, void *out, size_t len)
1669 {
1670         struct efx_nic *efx = spi->efx;
1671         bool addressed = (address >= 0);
1672         bool reading = (out != NULL);
1673         efx_oword_t reg;
1674         int rc;
1675
1676         /* Input validation */
1677         if (len > FALCON_SPI_MAX_LEN)
1678                 return -EINVAL;
1679         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1680
1681         /* Check that previous command is not still running */
1682         rc = falcon_spi_poll(efx);
1683         if (rc)
1684                 return rc;
1685
1686         /* Program address register, if we have an address */
1687         if (addressed) {
1688                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1689                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1690         }
1691
1692         /* Program data register, if we have data */
1693         if (in != NULL) {
1694                 memcpy(&reg, in, len);
1695                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1696         }
1697
1698         /* Issue read/write command */
1699         EFX_POPULATE_OWORD_7(reg,
1700                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1701                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1702                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
1703                              FRF_AB_EE_SPI_HCMD_READ, reading,
1704                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1705                              FRF_AB_EE_SPI_HCMD_ADBCNT,
1706                              (addressed ? spi->addr_len : 0),
1707                              FRF_AB_EE_SPI_HCMD_ENC, command);
1708         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1709
1710         /* Wait for read/write to complete */
1711         rc = falcon_spi_wait(efx);
1712         if (rc)
1713                 return rc;
1714
1715         /* Read data */
1716         if (out != NULL) {
1717                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1718                 memcpy(out, &reg, len);
1719         }
1720
1721         return 0;
1722 }
1723
1724 static size_t
1725 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1726 {
1727         return min(FALCON_SPI_MAX_LEN,
1728                    (spi->block_size - (start & (spi->block_size - 1))));
1729 }
1730
1731 static inline u8
1732 efx_spi_munge_command(const struct efx_spi_device *spi,
1733                       const u8 command, const unsigned int address)
1734 {
1735         return command | (((address >> 8) & spi->munge_address) << 3);
1736 }
1737
1738 /* Wait up to 10 ms for buffered write completion */
1739 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1740 {
1741         struct efx_nic *efx = spi->efx;
1742         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1743         u8 status;
1744         int rc;
1745
1746         for (;;) {
1747                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1748                                     &status, sizeof(status));
1749                 if (rc)
1750                         return rc;
1751                 if (!(status & SPI_STATUS_NRDY))
1752                         return 0;
1753                 if (time_after_eq(jiffies, timeout)) {
1754                         EFX_ERR(efx, "SPI write timeout on device %d"
1755                                 " last status=0x%02x\n",
1756                                 spi->device_id, status);
1757                         return -ETIMEDOUT;
1758                 }
1759                 schedule_timeout_uninterruptible(1);
1760         }
1761 }
1762
1763 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1764                     size_t len, size_t *retlen, u8 *buffer)
1765 {
1766         size_t block_len, pos = 0;
1767         unsigned int command;
1768         int rc = 0;
1769
1770         while (pos < len) {
1771                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1772
1773                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1774                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1775                                     buffer + pos, block_len);
1776                 if (rc)
1777                         break;
1778                 pos += block_len;
1779
1780                 /* Avoid locking up the system */
1781                 cond_resched();
1782                 if (signal_pending(current)) {
1783                         rc = -EINTR;
1784                         break;
1785                 }
1786         }
1787
1788         if (retlen)
1789                 *retlen = pos;
1790         return rc;
1791 }
1792
1793 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1794                      size_t len, size_t *retlen, const u8 *buffer)
1795 {
1796         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1797         size_t block_len, pos = 0;
1798         unsigned int command;
1799         int rc = 0;
1800
1801         while (pos < len) {
1802                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1803                 if (rc)
1804                         break;
1805
1806                 block_len = min(len - pos,
1807                                 falcon_spi_write_limit(spi, start + pos));
1808                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1809                 rc = falcon_spi_cmd(spi, command, start + pos,
1810                                     buffer + pos, NULL, block_len);
1811                 if (rc)
1812                         break;
1813
1814                 rc = falcon_spi_wait_write(spi);
1815                 if (rc)
1816                         break;
1817
1818                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1819                 rc = falcon_spi_cmd(spi, command, start + pos,
1820                                     NULL, verify_buffer, block_len);
1821                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1822                         rc = -EIO;
1823                         break;
1824                 }
1825
1826                 pos += block_len;
1827
1828                 /* Avoid locking up the system */
1829                 cond_resched();
1830                 if (signal_pending(current)) {
1831                         rc = -EINTR;
1832                         break;
1833                 }
1834         }
1835
1836         if (retlen)
1837                 *retlen = pos;
1838         return rc;
1839 }
1840
1841 /**************************************************************************
1842  *
1843  * MAC wrapper
1844  *
1845  **************************************************************************
1846  */
1847
1848 static int falcon_reset_macs(struct efx_nic *efx)
1849 {
1850         efx_oword_t reg;
1851         int count;
1852
1853         if (falcon_rev(efx) < FALCON_REV_B0) {
1854                 /* It's not safe to use GLB_CTL_REG to reset the
1855                  * macs, so instead use the internal MAC resets
1856                  */
1857                 if (!EFX_IS10G(efx)) {
1858                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1859                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1860                         udelay(1000);
1861
1862                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1863                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1864                         udelay(1000);
1865                         return 0;
1866                 } else {
1867                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1868                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1869
1870                         for (count = 0; count < 10000; count++) {
1871                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1872                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1873                                     0)
1874                                         return 0;
1875                                 udelay(10);
1876                         }
1877
1878                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1879                         return -ETIMEDOUT;
1880                 }
1881         }
1882
1883         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1884          * the drain sequence with the statistics fetch */
1885         efx_stats_disable(efx);
1886
1887         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1888         EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1889         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1890
1891         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1892         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1893         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1894         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1895         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1896
1897         count = 0;
1898         while (1) {
1899                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1900                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1901                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1902                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1903                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1904                                 count);
1905                         break;
1906                 }
1907                 if (count > 20) {
1908                         EFX_ERR(efx, "MAC reset failed\n");
1909                         break;
1910                 }
1911                 count++;
1912                 udelay(10);
1913         }
1914
1915         efx_stats_enable(efx);
1916
1917         /* If we've reset the EM block and the link is up, then
1918          * we'll have to kick the XAUI link so the PHY can recover */
1919         if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1920                 falcon_reset_xaui(efx);
1921
1922         return 0;
1923 }
1924
1925 void falcon_drain_tx_fifo(struct efx_nic *efx)
1926 {
1927         efx_oword_t reg;
1928
1929         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1930             (efx->loopback_mode != LOOPBACK_NONE))
1931                 return;
1932
1933         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1934         /* There is no point in draining more than once */
1935         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1936                 return;
1937
1938         falcon_reset_macs(efx);
1939 }
1940
1941 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1942 {
1943         efx_oword_t reg;
1944
1945         if (falcon_rev(efx) < FALCON_REV_B0)
1946                 return;
1947
1948         /* Isolate the MAC -> RX */
1949         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1950         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1951         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1952
1953         if (!efx->link_up)
1954                 falcon_drain_tx_fifo(efx);
1955 }
1956
1957 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1958 {
1959         efx_oword_t reg;
1960         int link_speed;
1961         bool tx_fc;
1962
1963         switch (efx->link_speed) {
1964         case 10000: link_speed = 3; break;
1965         case 1000:  link_speed = 2; break;
1966         case 100:   link_speed = 1; break;
1967         default:    link_speed = 0; break;
1968         }
1969         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1970          * as advertised.  Disable to ensure packets are not
1971          * indefinitely held and TX queue can be flushed at any point
1972          * while the link is down. */
1973         EFX_POPULATE_OWORD_5(reg,
1974                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1975                              FRF_AB_MAC_BCAD_ACPT, 1,
1976                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
1977                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1978                              FRF_AB_MAC_SPEED, link_speed);
1979         /* On B0, MAC backpressure can be disabled and packets get
1980          * discarded. */
1981         if (falcon_rev(efx) >= FALCON_REV_B0) {
1982                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1983                                     !efx->link_up);
1984         }
1985
1986         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1987
1988         /* Restore the multicast hash registers. */
1989         falcon_set_multicast_hash(efx);
1990
1991         /* Transmission of pause frames when RX crosses the threshold is
1992          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1993          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1994         tx_fc = !!(efx->link_fc & EFX_FC_TX);
1995         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1996         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1997
1998         /* Unisolate the MAC -> RX */
1999         if (falcon_rev(efx) >= FALCON_REV_B0)
2000                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2001         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2002 }
2003
2004 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2005 {
2006         efx_oword_t reg;
2007         u32 *dma_done;
2008         int i;
2009
2010         if (disable_dma_stats)
2011                 return 0;
2012
2013         /* Statistics fetch will fail if the MAC is in TX drain */
2014         if (falcon_rev(efx) >= FALCON_REV_B0) {
2015                 efx_oword_t temp;
2016                 efx_reado(efx, &temp, FR_AB_MAC_CTRL);
2017                 if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2018                         return 0;
2019         }
2020
2021         dma_done = (efx->stats_buffer.addr + done_offset);
2022         *dma_done = FALCON_STATS_NOT_DONE;
2023         wmb(); /* ensure done flag is clear */
2024
2025         /* Initiate DMA transfer of stats */
2026         EFX_POPULATE_OWORD_2(reg,
2027                              FRF_AB_MAC_STAT_DMA_CMD, 1,
2028                              FRF_AB_MAC_STAT_DMA_ADR,
2029                              efx->stats_buffer.dma_addr);
2030         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2031
2032         /* Wait for transfer to complete */
2033         for (i = 0; i < 400; i++) {
2034                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2035                         rmb(); /* Ensure the stats are valid. */
2036                         return 0;
2037                 }
2038                 udelay(10);
2039         }
2040
2041         EFX_ERR(efx, "timed out waiting for statistics\n");
2042         return -ETIMEDOUT;
2043 }
2044
2045 /**************************************************************************
2046  *
2047  * PHY access via GMII
2048  *
2049  **************************************************************************
2050  */
2051
2052 /* Wait for GMII access to complete */
2053 static int falcon_gmii_wait(struct efx_nic *efx)
2054 {
2055         efx_dword_t md_stat;
2056         int count;
2057
2058         /* wait upto 50ms - taken max from datasheet */
2059         for (count = 0; count < 5000; count++) {
2060                 efx_readd(efx, &md_stat, FR_AB_MD_STAT);
2061                 if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2062                         if (EFX_DWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2063                             EFX_DWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2064                                 EFX_ERR(efx, "error from GMII access "
2065                                         EFX_DWORD_FMT"\n",
2066                                         EFX_DWORD_VAL(md_stat));
2067                                 return -EIO;
2068                         }
2069                         return 0;
2070                 }
2071                 udelay(10);
2072         }
2073         EFX_ERR(efx, "timed out waiting for GMII\n");
2074         return -ETIMEDOUT;
2075 }
2076
2077 /* Write an MDIO register of a PHY connected to Falcon. */
2078 static int falcon_mdio_write(struct net_device *net_dev,
2079                              int prtad, int devad, u16 addr, u16 value)
2080 {
2081         struct efx_nic *efx = netdev_priv(net_dev);
2082         efx_oword_t reg;
2083         int rc;
2084
2085         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2086                     prtad, devad, addr, value);
2087
2088         spin_lock_bh(&efx->phy_lock);
2089
2090         /* Check MDIO not currently being accessed */
2091         rc = falcon_gmii_wait(efx);
2092         if (rc)
2093                 goto out;
2094
2095         /* Write the address/ID register */
2096         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2097         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2098
2099         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2100                              FRF_AB_MD_DEV_ADR, devad);
2101         efx_writeo(efx, &reg, FR_AB_MD_ID);
2102
2103         /* Write data */
2104         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2105         efx_writeo(efx, &reg, FR_AB_MD_TXD);
2106
2107         EFX_POPULATE_OWORD_2(reg,
2108                              FRF_AB_MD_WRC, 1,
2109                              FRF_AB_MD_GC, 0);
2110         efx_writeo(efx, &reg, FR_AB_MD_CS);
2111
2112         /* Wait for data to be written */
2113         rc = falcon_gmii_wait(efx);
2114         if (rc) {
2115                 /* Abort the write operation */
2116                 EFX_POPULATE_OWORD_2(reg,
2117                                      FRF_AB_MD_WRC, 0,
2118                                      FRF_AB_MD_GC, 1);
2119                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2120                 udelay(10);
2121         }
2122
2123  out:
2124         spin_unlock_bh(&efx->phy_lock);
2125         return rc;
2126 }
2127
2128 /* Read an MDIO register of a PHY connected to Falcon. */
2129 static int falcon_mdio_read(struct net_device *net_dev,
2130                             int prtad, int devad, u16 addr)
2131 {
2132         struct efx_nic *efx = netdev_priv(net_dev);
2133         efx_oword_t reg;
2134         int rc;
2135
2136         spin_lock_bh(&efx->phy_lock);
2137
2138         /* Check MDIO not currently being accessed */
2139         rc = falcon_gmii_wait(efx);
2140         if (rc)
2141                 goto out;
2142
2143         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2144         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2145
2146         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2147                              FRF_AB_MD_DEV_ADR, devad);
2148         efx_writeo(efx, &reg, FR_AB_MD_ID);
2149
2150         /* Request data to be read */
2151         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2152         efx_writeo(efx, &reg, FR_AB_MD_CS);
2153
2154         /* Wait for data to become available */
2155         rc = falcon_gmii_wait(efx);
2156         if (rc == 0) {
2157                 efx_reado(efx, &reg, FR_AB_MD_RXD);
2158                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2159                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2160                             prtad, devad, addr, rc);
2161         } else {
2162                 /* Abort the read operation */
2163                 EFX_POPULATE_OWORD_2(reg,
2164                                      FRF_AB_MD_RIC, 0,
2165                                      FRF_AB_MD_GC, 1);
2166                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2167
2168                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2169                         prtad, devad, addr, rc);
2170         }
2171
2172  out:
2173         spin_unlock_bh(&efx->phy_lock);
2174         return rc;
2175 }
2176
2177 int falcon_switch_mac(struct efx_nic *efx)
2178 {
2179         struct efx_mac_operations *old_mac_op = efx->mac_op;
2180         efx_oword_t nic_stat;
2181         unsigned strap_val;
2182         int rc = 0;
2183
2184         /* Don't try to fetch MAC stats while we're switching MACs */
2185         efx_stats_disable(efx);
2186
2187         /* Internal loopbacks override the phy speed setting */
2188         if (efx->loopback_mode == LOOPBACK_GMAC) {
2189                 efx->link_speed = 1000;
2190                 efx->link_fd = true;
2191         } else if (LOOPBACK_INTERNAL(efx)) {
2192                 efx->link_speed = 10000;
2193                 efx->link_fd = true;
2194         }
2195
2196         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2197         efx->mac_op = (EFX_IS10G(efx) ?
2198                        &falcon_xmac_operations : &falcon_gmac_operations);
2199
2200         /* Always push the NIC_STAT_REG setting even if the mac hasn't
2201          * changed, because this function is run post online reset */
2202         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2203         strap_val = EFX_IS10G(efx) ? 5 : 3;
2204         if (falcon_rev(efx) >= FALCON_REV_B0) {
2205                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2206                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2207                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2208         } else {
2209                 /* Falcon A1 does not support 1G/10G speed switching
2210                  * and must not be used with a PHY that does. */
2211                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2212                        strap_val);
2213         }
2214
2215         if (old_mac_op == efx->mac_op)
2216                 goto out;
2217
2218         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2219         /* Not all macs support a mac-level link state */
2220         efx->mac_up = true;
2221
2222         rc = falcon_reset_macs(efx);
2223 out:
2224         efx_stats_enable(efx);
2225         return rc;
2226 }
2227
2228 /* This call is responsible for hooking in the MAC and PHY operations */
2229 int falcon_probe_port(struct efx_nic *efx)
2230 {
2231         int rc;
2232
2233         switch (efx->phy_type) {
2234         case PHY_TYPE_SFX7101:
2235                 efx->phy_op = &falcon_sfx7101_phy_ops;
2236                 break;
2237         case PHY_TYPE_SFT9001A:
2238         case PHY_TYPE_SFT9001B:
2239                 efx->phy_op = &falcon_sft9001_phy_ops;
2240                 break;
2241         case PHY_TYPE_QT2022C2:
2242         case PHY_TYPE_QT2025C:
2243                 efx->phy_op = &falcon_qt202x_phy_ops;
2244                 break;
2245         default:
2246                 EFX_ERR(efx, "Unknown PHY type %d\n",
2247                         efx->phy_type);
2248                 return -ENODEV;
2249         }
2250
2251         if (efx->phy_op->macs & EFX_XMAC)
2252                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2253                                         (1 << LOOPBACK_XGXS) |
2254                                         (1 << LOOPBACK_XAUI));
2255         if (efx->phy_op->macs & EFX_GMAC)
2256                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2257         efx->loopback_modes |= efx->phy_op->loopbacks;
2258
2259         /* Set up MDIO structure for PHY */
2260         efx->mdio.mmds = efx->phy_op->mmds;
2261         efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2262         efx->mdio.mdio_read = falcon_mdio_read;
2263         efx->mdio.mdio_write = falcon_mdio_write;
2264
2265         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2266         if (falcon_rev(efx) >= FALCON_REV_B0)
2267                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2268         else
2269                 efx->wanted_fc = EFX_FC_RX;
2270
2271         /* Allocate buffer for stats */
2272         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2273                                  FALCON_MAC_STATS_SIZE);
2274         if (rc)
2275                 return rc;
2276         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2277                 (u64)efx->stats_buffer.dma_addr,
2278                 efx->stats_buffer.addr,
2279                 (u64)virt_to_phys(efx->stats_buffer.addr));
2280
2281         return 0;
2282 }
2283
2284 void falcon_remove_port(struct efx_nic *efx)
2285 {
2286         falcon_free_buffer(efx, &efx->stats_buffer);
2287 }
2288
2289 /**************************************************************************
2290  *
2291  * Multicast filtering
2292  *
2293  **************************************************************************
2294  */
2295
2296 void falcon_set_multicast_hash(struct efx_nic *efx)
2297 {
2298         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2299
2300         /* Broadcast packets go through the multicast hash filter.
2301          * ether_crc_le() of the broadcast address is 0xbe2612ff
2302          * so we always add bit 0xff to the mask.
2303          */
2304         set_bit_le(0xff, mc_hash->byte);
2305
2306         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2307         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2308 }
2309
2310
2311 /**************************************************************************
2312  *
2313  * Falcon test code
2314  *
2315  **************************************************************************/
2316
2317 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2318 {
2319         struct falcon_nvconfig *nvconfig;
2320         struct efx_spi_device *spi;
2321         void *region;
2322         int rc, magic_num, struct_ver;
2323         __le16 *word, *limit;
2324         u32 csum;
2325
2326         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2327         if (!spi)
2328                 return -EINVAL;
2329
2330         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2331         if (!region)
2332                 return -ENOMEM;
2333         nvconfig = region + FALCON_NVCONFIG_OFFSET;
2334
2335         mutex_lock(&efx->spi_lock);
2336         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2337         mutex_unlock(&efx->spi_lock);
2338         if (rc) {
2339                 EFX_ERR(efx, "Failed to read %s\n",
2340                         efx->spi_flash ? "flash" : "EEPROM");
2341                 rc = -EIO;
2342                 goto out;
2343         }
2344
2345         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2346         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2347
2348         rc = -EINVAL;
2349         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2350                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2351                 goto out;
2352         }
2353         if (struct_ver < 2) {
2354                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2355                 goto out;
2356         } else if (struct_ver < 4) {
2357                 word = &nvconfig->board_magic_num;
2358                 limit = (__le16 *) (nvconfig + 1);
2359         } else {
2360                 word = region;
2361                 limit = region + FALCON_NVCONFIG_END;
2362         }
2363         for (csum = 0; word < limit; ++word)
2364                 csum += le16_to_cpu(*word);
2365
2366         if (~csum & 0xffff) {
2367                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2368                 goto out;
2369         }
2370
2371         rc = 0;
2372         if (nvconfig_out)
2373                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2374
2375  out:
2376         kfree(region);
2377         return rc;
2378 }
2379
2380 /* Registers tested in the falcon register test */
2381 static struct {
2382         unsigned address;
2383         efx_oword_t mask;
2384 } efx_test_registers[] = {
2385         { FR_AZ_ADR_REGION,
2386           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2387         { FR_AZ_RX_CFG,
2388           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2389         { FR_AZ_TX_CFG,
2390           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2391         { FR_AZ_TX_RESERVED,
2392           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2393         { FR_AB_MAC_CTRL,
2394           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2395         { FR_AZ_SRM_TX_DC_CFG,
2396           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2397         { FR_AZ_RX_DC_CFG,
2398           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2399         { FR_AZ_RX_DC_PF_WM,
2400           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2401         { FR_BZ_DP_CTRL,
2402           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2403         { FR_AB_GM_CFG2,
2404           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2405         { FR_AB_GMF_CFG0,
2406           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2407         { FR_AB_XM_GLB_CFG,
2408           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2409         { FR_AB_XM_TX_CFG,
2410           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2411         { FR_AB_XM_RX_CFG,
2412           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2413         { FR_AB_XM_RX_PARAM,
2414           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2415         { FR_AB_XM_FC,
2416           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2417         { FR_AB_XM_ADR_LO,
2418           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2419         { FR_AB_XX_SD_CTL,
2420           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2421 };
2422
2423 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2424                                      const efx_oword_t *mask)
2425 {
2426         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2427                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2428 }
2429
2430 int falcon_test_registers(struct efx_nic *efx)
2431 {
2432         unsigned address = 0, i, j;
2433         efx_oword_t mask, imask, original, reg, buf;
2434
2435         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2436         WARN_ON(!LOOPBACK_INTERNAL(efx));
2437
2438         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2439                 address = efx_test_registers[i].address;
2440                 mask = imask = efx_test_registers[i].mask;
2441                 EFX_INVERT_OWORD(imask);
2442
2443                 efx_reado(efx, &original, address);
2444
2445                 /* bit sweep on and off */
2446                 for (j = 0; j < 128; j++) {
2447                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2448                                 continue;
2449
2450                         /* Test this testable bit can be set in isolation */
2451                         EFX_AND_OWORD(reg, original, mask);
2452                         EFX_SET_OWORD32(reg, j, j, 1);
2453
2454                         efx_writeo(efx, &reg, address);
2455                         efx_reado(efx, &buf, address);
2456
2457                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2458                                 goto fail;
2459
2460                         /* Test this testable bit can be cleared in isolation */
2461                         EFX_OR_OWORD(reg, original, mask);
2462                         EFX_SET_OWORD32(reg, j, j, 0);
2463
2464                         efx_writeo(efx, &reg, address);
2465                         efx_reado(efx, &buf, address);
2466
2467                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2468                                 goto fail;
2469                 }
2470
2471                 efx_writeo(efx, &original, address);
2472         }
2473
2474         return 0;
2475
2476 fail:
2477         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2478                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2479                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2480         return -EIO;
2481 }
2482
2483 /**************************************************************************
2484  *
2485  * Device reset
2486  *
2487  **************************************************************************
2488  */
2489
2490 /* Resets NIC to known state.  This routine must be called in process
2491  * context and is allowed to sleep. */
2492 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2493 {
2494         struct falcon_nic_data *nic_data = efx->nic_data;
2495         efx_oword_t glb_ctl_reg_ker;
2496         int rc;
2497
2498         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2499
2500         /* Initiate device reset */
2501         if (method == RESET_TYPE_WORLD) {
2502                 rc = pci_save_state(efx->pci_dev);
2503                 if (rc) {
2504                         EFX_ERR(efx, "failed to backup PCI state of primary "
2505                                 "function prior to hardware reset\n");
2506                         goto fail1;
2507                 }
2508                 if (FALCON_IS_DUAL_FUNC(efx)) {
2509                         rc = pci_save_state(nic_data->pci_dev2);
2510                         if (rc) {
2511                                 EFX_ERR(efx, "failed to backup PCI state of "
2512                                         "secondary function prior to "
2513                                         "hardware reset\n");
2514                                 goto fail2;
2515                         }
2516                 }
2517
2518                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2519                                      FRF_AB_EXT_PHY_RST_DUR,
2520                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2521                                      FRF_AB_SWRST, 1);
2522         } else {
2523                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2524                                      /* exclude PHY from "invisible" reset */
2525                                      FRF_AB_EXT_PHY_RST_CTL,
2526                                      method == RESET_TYPE_INVISIBLE,
2527                                      /* exclude EEPROM/flash and PCIe */
2528                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2529                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2530                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2531                                      FRF_AB_EE_RST_CTL, 1,
2532                                      FRF_AB_EXT_PHY_RST_DUR,
2533                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2534                                      FRF_AB_SWRST, 1);
2535         }
2536         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2537
2538         EFX_LOG(efx, "waiting for hardware reset\n");
2539         schedule_timeout_uninterruptible(HZ / 20);
2540
2541         /* Restore PCI configuration if needed */
2542         if (method == RESET_TYPE_WORLD) {
2543                 if (FALCON_IS_DUAL_FUNC(efx)) {
2544                         rc = pci_restore_state(nic_data->pci_dev2);
2545                         if (rc) {
2546                                 EFX_ERR(efx, "failed to restore PCI config for "
2547                                         "the secondary function\n");
2548                                 goto fail3;
2549                         }
2550                 }
2551                 rc = pci_restore_state(efx->pci_dev);
2552                 if (rc) {
2553                         EFX_ERR(efx, "failed to restore PCI config for the "
2554                                 "primary function\n");
2555                         goto fail4;
2556                 }
2557                 EFX_LOG(efx, "successfully restored PCI config\n");
2558         }
2559
2560         /* Assert that reset complete */
2561         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2562         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2563                 rc = -ETIMEDOUT;
2564                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2565                 goto fail5;
2566         }
2567         EFX_LOG(efx, "hardware reset complete\n");
2568
2569         return 0;
2570
2571         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2572 fail2:
2573 fail3:
2574         pci_restore_state(efx->pci_dev);
2575 fail1:
2576 fail4:
2577 fail5:
2578         return rc;
2579 }
2580
2581 /* Zeroes out the SRAM contents.  This routine must be called in
2582  * process context and is allowed to sleep.
2583  */
2584 static int falcon_reset_sram(struct efx_nic *efx)
2585 {
2586         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2587         int count;
2588
2589         /* Set the SRAM wake/sleep GPIO appropriately. */
2590         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2591         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2592         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2593         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2594
2595         /* Initiate SRAM reset */
2596         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2597                              FRF_AZ_SRM_INIT_EN, 1,
2598                              FRF_AZ_SRM_NB_SZ, 0);
2599         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2600
2601         /* Wait for SRAM reset to complete */
2602         count = 0;
2603         do {
2604                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2605
2606                 /* SRAM reset is slow; expect around 16ms */
2607                 schedule_timeout_uninterruptible(HZ / 50);
2608
2609                 /* Check for reset complete */
2610                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2611                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2612                         EFX_LOG(efx, "SRAM reset complete\n");
2613
2614                         return 0;
2615                 }
2616         } while (++count < 20); /* wait upto 0.4 sec */
2617
2618         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2619         return -ETIMEDOUT;
2620 }
2621
2622 static int falcon_spi_device_init(struct efx_nic *efx,
2623                                   struct efx_spi_device **spi_device_ret,
2624                                   unsigned int device_id, u32 device_type)
2625 {
2626         struct efx_spi_device *spi_device;
2627
2628         if (device_type != 0) {
2629                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2630                 if (!spi_device)
2631                         return -ENOMEM;
2632                 spi_device->device_id = device_id;
2633                 spi_device->size =
2634                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2635                 spi_device->addr_len =
2636                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2637                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2638                                              spi_device->addr_len == 1);
2639                 spi_device->erase_command =
2640                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2641                 spi_device->erase_size =
2642                         1 << SPI_DEV_TYPE_FIELD(device_type,
2643                                                 SPI_DEV_TYPE_ERASE_SIZE);
2644                 spi_device->block_size =
2645                         1 << SPI_DEV_TYPE_FIELD(device_type,
2646                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2647
2648                 spi_device->efx = efx;
2649         } else {
2650                 spi_device = NULL;
2651         }
2652
2653         kfree(*spi_device_ret);
2654         *spi_device_ret = spi_device;
2655         return 0;
2656 }
2657
2658
2659 static void falcon_remove_spi_devices(struct efx_nic *efx)
2660 {
2661         kfree(efx->spi_eeprom);
2662         efx->spi_eeprom = NULL;
2663         kfree(efx->spi_flash);
2664         efx->spi_flash = NULL;
2665 }
2666
2667 /* Extract non-volatile configuration */
2668 static int falcon_probe_nvconfig(struct efx_nic *efx)
2669 {
2670         struct falcon_nvconfig *nvconfig;
2671         int board_rev;
2672         int rc;
2673
2674         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2675         if (!nvconfig)
2676                 return -ENOMEM;
2677
2678         rc = falcon_read_nvram(efx, nvconfig);
2679         if (rc == -EINVAL) {
2680                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2681                 efx->phy_type = PHY_TYPE_NONE;
2682                 efx->mdio.prtad = MDIO_PRTAD_NONE;
2683                 board_rev = 0;
2684                 rc = 0;
2685         } else if (rc) {
2686                 goto fail1;
2687         } else {
2688                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2689                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2690
2691                 efx->phy_type = v2->port0_phy_type;
2692                 efx->mdio.prtad = v2->port0_phy_addr;
2693                 board_rev = le16_to_cpu(v2->board_revision);
2694
2695                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2696                         rc = falcon_spi_device_init(
2697                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2698                                 le32_to_cpu(v3->spi_device_type
2699                                             [FFE_AB_SPI_DEVICE_FLASH]));
2700                         if (rc)
2701                                 goto fail2;
2702                         rc = falcon_spi_device_init(
2703                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2704                                 le32_to_cpu(v3->spi_device_type
2705                                             [FFE_AB_SPI_DEVICE_EEPROM]));
2706                         if (rc)
2707                                 goto fail2;
2708                 }
2709         }
2710
2711         /* Read the MAC addresses */
2712         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2713
2714         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2715
2716         falcon_probe_board(efx, board_rev);
2717
2718         kfree(nvconfig);
2719         return 0;
2720
2721  fail2:
2722         falcon_remove_spi_devices(efx);
2723  fail1:
2724         kfree(nvconfig);
2725         return rc;
2726 }
2727
2728 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2729  * count, port speed).  Set workaround and feature flags accordingly.
2730  */
2731 static int falcon_probe_nic_variant(struct efx_nic *efx)
2732 {
2733         efx_oword_t altera_build;
2734         efx_oword_t nic_stat;
2735
2736         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2737         if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2738                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2739                 return -ENODEV;
2740         }
2741
2742         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2743
2744         switch (falcon_rev(efx)) {
2745         case FALCON_REV_A0:
2746         case 0xff:
2747                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2748                 return -ENODEV;
2749
2750         case FALCON_REV_A1:
2751                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2752                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2753                         return -ENODEV;
2754                 }
2755                 break;
2756
2757         case FALCON_REV_B0:
2758                 break;
2759
2760         default:
2761                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2762                 return -ENODEV;
2763         }
2764
2765         /* Initial assumed speed */
2766         efx->link_speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2767
2768         return 0;
2769 }
2770
2771 /* Probe all SPI devices on the NIC */
2772 static void falcon_probe_spi_devices(struct efx_nic *efx)
2773 {
2774         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2775         int boot_dev;
2776
2777         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2778         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2779         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2780
2781         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2782                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2783                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2784                 EFX_LOG(efx, "Booted from %s\n",
2785                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2786         } else {
2787                 /* Disable VPD and set clock dividers to safe
2788                  * values for initial programming. */
2789                 boot_dev = -1;
2790                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2791                         " setting SPI config\n");
2792                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2793                                      /* 125 MHz / 7 ~= 20 MHz */
2794                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2795                                      /* 125 MHz / 63 ~= 2 MHz */
2796                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2797                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2798         }
2799
2800         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2801                 falcon_spi_device_init(efx, &efx->spi_flash,
2802                                        FFE_AB_SPI_DEVICE_FLASH,
2803                                        default_flash_type);
2804         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2805                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2806                                        FFE_AB_SPI_DEVICE_EEPROM,
2807                                        large_eeprom_type);
2808 }
2809
2810 int falcon_probe_nic(struct efx_nic *efx)
2811 {
2812         struct falcon_nic_data *nic_data;
2813         int rc;
2814
2815         /* Allocate storage for hardware specific data */
2816         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2817         if (!nic_data)
2818                 return -ENOMEM;
2819         efx->nic_data = nic_data;
2820
2821         /* Determine number of ports etc. */
2822         rc = falcon_probe_nic_variant(efx);
2823         if (rc)
2824                 goto fail1;
2825
2826         /* Probe secondary function if expected */
2827         if (FALCON_IS_DUAL_FUNC(efx)) {
2828                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2829
2830                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2831                                              dev))) {
2832                         if (dev->bus == efx->pci_dev->bus &&
2833                             dev->devfn == efx->pci_dev->devfn + 1) {
2834                                 nic_data->pci_dev2 = dev;
2835                                 break;
2836                         }
2837                 }
2838                 if (!nic_data->pci_dev2) {
2839                         EFX_ERR(efx, "failed to find secondary function\n");
2840                         rc = -ENODEV;
2841                         goto fail2;
2842                 }
2843         }
2844
2845         /* Now we can reset the NIC */
2846         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2847         if (rc) {
2848                 EFX_ERR(efx, "failed to reset NIC\n");
2849                 goto fail3;
2850         }
2851
2852         /* Allocate memory for INT_KER */
2853         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2854         if (rc)
2855                 goto fail4;
2856         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2857
2858         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2859                 (u64)efx->irq_status.dma_addr,
2860                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2861
2862         falcon_probe_spi_devices(efx);
2863
2864         /* Read in the non-volatile configuration */
2865         rc = falcon_probe_nvconfig(efx);
2866         if (rc)
2867                 goto fail5;
2868
2869         /* Initialise I2C adapter */
2870         efx->i2c_adap.owner = THIS_MODULE;
2871         nic_data->i2c_data = falcon_i2c_bit_operations;
2872         nic_data->i2c_data.data = efx;
2873         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2874         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2875         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2876         rc = i2c_bit_add_bus(&efx->i2c_adap);
2877         if (rc)
2878                 goto fail5;
2879
2880         return 0;
2881
2882  fail5:
2883         falcon_remove_spi_devices(efx);
2884         falcon_free_buffer(efx, &efx->irq_status);
2885  fail4:
2886  fail3:
2887         if (nic_data->pci_dev2) {
2888                 pci_dev_put(nic_data->pci_dev2);
2889                 nic_data->pci_dev2 = NULL;
2890         }
2891  fail2:
2892  fail1:
2893         kfree(efx->nic_data);
2894         return rc;
2895 }
2896
2897 static void falcon_init_rx_cfg(struct efx_nic *efx)
2898 {
2899         /* Prior to Siena the RX DMA engine will split each frame at
2900          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2901          * be so large that that never happens. */
2902         const unsigned huge_buf_size = (3 * 4096) >> 5;
2903         /* RX control FIFO thresholds (32 entries) */
2904         const unsigned ctrl_xon_thr = 20;
2905         const unsigned ctrl_xoff_thr = 25;
2906         /* RX data FIFO thresholds (256-byte units; size varies) */
2907         int data_xon_thr = rx_xon_thresh_bytes >> 8;
2908         int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2909         efx_oword_t reg;
2910
2911         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2912         if (falcon_rev(efx) <= FALCON_REV_A1) {
2913                 /* Data FIFO size is 5.5K */
2914                 if (data_xon_thr < 0)
2915                         data_xon_thr = 512 >> 8;
2916                 if (data_xoff_thr < 0)
2917                         data_xoff_thr = 2048 >> 8;
2918                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2919                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2920                                     huge_buf_size);
2921                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2922                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2923                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2924                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2925         } else {
2926                 /* Data FIFO size is 80K; register fields moved */
2927                 if (data_xon_thr < 0)
2928                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2929                 if (data_xoff_thr < 0)
2930                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2931                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2932                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2933                                     huge_buf_size);
2934                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2935                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2936                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2937                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2938                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2939         }
2940         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2941 }
2942
2943 /* This call performs hardware-specific global initialisation, such as
2944  * defining the descriptor cache sizes and number of RSS channels.
2945  * It does not set up any buffers, descriptor rings or event queues.
2946  */
2947 int falcon_init_nic(struct efx_nic *efx)
2948 {
2949         efx_oword_t temp;
2950         int rc;
2951
2952         /* Use on-chip SRAM */
2953         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2954         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2955         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2956
2957         /* Set the source of the GMAC clock */
2958         if (falcon_rev(efx) == FALCON_REV_B0) {
2959                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
2960                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
2961                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
2962         }
2963
2964         rc = falcon_reset_sram(efx);
2965         if (rc)
2966                 return rc;
2967
2968         /* Set positions of descriptor caches in SRAM. */
2969         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2970         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
2971         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2972         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
2973
2974         /* Set TX descriptor cache size. */
2975         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2976         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2977         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
2978
2979         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2980          * this allows most efficient prefetching.
2981          */
2982         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2983         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2984         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
2985         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2986         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
2987
2988         /* Clear the parity enables on the TX data fifos as
2989          * they produce false parity errors because of timing issues
2990          */
2991         if (EFX_WORKAROUND_5129(efx)) {
2992                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2993                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2994                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2995         }
2996
2997         /* Enable all the genuinely fatal interrupts.  (They are still
2998          * masked by the overall interrupt mask, controlled by
2999          * falcon_interrupts()).
3000          *
3001          * Note: All other fatal interrupts are enabled
3002          */
3003         EFX_POPULATE_OWORD_3(temp,
3004                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3005                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3006                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3007         EFX_INVERT_OWORD(temp);
3008         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3009
3010         if (EFX_WORKAROUND_7244(efx)) {
3011                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3012                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3013                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3014                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3015                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3016                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3017         }
3018
3019         falcon_setup_rss_indir_table(efx);
3020
3021         /* XXX This is documented only for Falcon A0/A1 */
3022         /* Setup RX.  Wait for descriptor is broken and must
3023          * be disabled.  RXDP recovery shouldn't be needed, but is.
3024          */
3025         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3026         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3027         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3028         if (EFX_WORKAROUND_5583(efx))
3029                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3030         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3031
3032         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3033          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3034          */
3035         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3036         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3037         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3038         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3039         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3040         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3041         /* Enable SW_EV to inherit in char driver - assume harmless here */
3042         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3043         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3044         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3045         /* Squash TX of packets of 16 bytes or less */
3046         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3047                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3048         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3049
3050         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3051          * descriptors (which is bad).
3052          */
3053         efx_reado(efx, &temp, FR_AZ_TX_CFG);
3054         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3055         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3056
3057         falcon_init_rx_cfg(efx);
3058
3059         /* Set destination of both TX and RX Flush events */
3060         if (falcon_rev(efx) >= FALCON_REV_B0) {
3061                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3062                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3063         }
3064
3065         return 0;
3066 }
3067
3068 void falcon_remove_nic(struct efx_nic *efx)
3069 {
3070         struct falcon_nic_data *nic_data = efx->nic_data;
3071         int rc;
3072
3073         /* Remove I2C adapter and clear it in preparation for a retry */
3074         rc = i2c_del_adapter(&efx->i2c_adap);
3075         BUG_ON(rc);
3076         memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3077
3078         falcon_remove_spi_devices(efx);
3079         falcon_free_buffer(efx, &efx->irq_status);
3080
3081         falcon_reset_hw(efx, RESET_TYPE_ALL);
3082
3083         /* Release the second function after the reset */
3084         if (nic_data->pci_dev2) {
3085                 pci_dev_put(nic_data->pci_dev2);
3086                 nic_data->pci_dev2 = NULL;
3087         }
3088
3089         /* Tear down the private nic state */
3090         kfree(efx->nic_data);
3091         efx->nic_data = NULL;
3092 }
3093
3094 void falcon_update_nic_stats(struct efx_nic *efx)
3095 {
3096         efx_oword_t cnt;
3097
3098         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3099         efx->n_rx_nodesc_drop_cnt +=
3100                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3101 }
3102
3103 /**************************************************************************
3104  *
3105  * Revision-dependent attributes used by efx.c
3106  *
3107  **************************************************************************
3108  */
3109
3110 struct efx_nic_type falcon_a_nic_type = {
3111         .mem_map_size = 0x20000,
3112         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3113         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3114         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3115         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3116         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3117         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3118         .rx_buffer_padding = 0x24,
3119         .max_interrupt_mode = EFX_INT_MODE_MSI,
3120         .phys_addr_channels = 4,
3121 };
3122
3123 struct efx_nic_type falcon_b_nic_type = {
3124         /* Map everything up to and including the RSS indirection
3125          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3126          * requires that they not be mapped.  */
3127         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3128                          FR_BZ_RX_INDIRECTION_TBL_STEP *
3129                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
3130         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3131         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3132         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3133         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3134         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3135         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3136         .rx_buffer_padding = 0,
3137         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3138         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3139                                    * interrupt handler only supports 32
3140                                    * channels */
3141 };
3142