]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/sfc/falcon.c
sfc: Work around unreliable legacy interrupt status
[mv-sheeva.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  * @int_error_count: Number of internal errors seen recently
43  * @int_error_expire: Time at which error count will be expired
44  */
45 struct falcon_nic_data {
46         unsigned next_buffer_table;
47         struct pci_dev *pci_dev2;
48         struct i2c_algo_bit_data i2c_data;
49
50         unsigned int_error_count;
51         unsigned long int_error_expire;
52 };
53
54 /**************************************************************************
55  *
56  * Configurable values
57  *
58  **************************************************************************
59  */
60
61 static int disable_dma_stats;
62
63 /* This is set to 16 for a good reason.  In summary, if larger than
64  * 16, the descriptor cache holds more than a default socket
65  * buffer's worth of packets (for UDP we can only have at most one
66  * socket buffer's worth outstanding).  This combined with the fact
67  * that we only get 1 TX event per descriptor cache means the NIC
68  * goes idle.
69  */
70 #define TX_DC_ENTRIES 16
71 #define TX_DC_ENTRIES_ORDER 0
72 #define TX_DC_BASE 0x130000
73
74 #define RX_DC_ENTRIES 64
75 #define RX_DC_ENTRIES_ORDER 2
76 #define RX_DC_BASE 0x100000
77
78 static const unsigned int
79 /* "Large" EEPROM device: Atmel AT25640 or similar
80  * 8 KB, 16-bit address, 32 B write block */
81 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
82                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
83                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
84 /* Default flash device: Atmel AT25F1024
85  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
86 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
87                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
88                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
89                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
90                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
91
92 /* RX FIFO XOFF watermark
93  *
94  * When the amount of the RX FIFO increases used increases past this
95  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
96  * This also has an effect on RX/TX arbitration
97  */
98 static int rx_xoff_thresh_bytes = -1;
99 module_param(rx_xoff_thresh_bytes, int, 0644);
100 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
101
102 /* RX FIFO XON watermark
103  *
104  * When the amount of the RX FIFO used decreases below this
105  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
106  * This also has an effect on RX/TX arbitration
107  */
108 static int rx_xon_thresh_bytes = -1;
109 module_param(rx_xon_thresh_bytes, int, 0644);
110 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
111
112 /* TX descriptor ring size - min 512 max 4k */
113 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
114 #define FALCON_TXD_RING_SIZE 1024
115 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
116
117 /* RX descriptor ring size - min 512 max 4k */
118 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
119 #define FALCON_RXD_RING_SIZE 1024
120 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
121
122 /* Event queue size - max 32k */
123 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
124 #define FALCON_EVQ_SIZE 4096
125 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
126
127 /* If FALCON_MAX_INT_ERRORS internal errors occur within
128  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
129  * disable it.
130  */
131 #define FALCON_INT_ERROR_EXPIRE 3600
132 #define FALCON_MAX_INT_ERRORS 5
133
134 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
135  */
136 #define FALCON_FLUSH_INTERVAL 10
137 #define FALCON_FLUSH_POLL_COUNT 100
138
139 /**************************************************************************
140  *
141  * Falcon constants
142  *
143  **************************************************************************
144  */
145
146 /* DMA address mask */
147 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
148
149 /* TX DMA length mask (13-bit) */
150 #define FALCON_TX_DMA_MASK (4096 - 1)
151
152 /* Size and alignment of special buffers (4KB) */
153 #define FALCON_BUF_SIZE 4096
154
155 /* Dummy SRAM size code */
156 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
157
158 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
159 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
160 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
161 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
162 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
163 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
164
165 #define FALCON_IS_DUAL_FUNC(efx)                \
166         (falcon_rev(efx) < FALCON_REV_B0)
167
168 /**************************************************************************
169  *
170  * Falcon hardware access
171  *
172  **************************************************************************/
173
174 /* Read the current event from the event queue */
175 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
176                                         unsigned int index)
177 {
178         return (((efx_qword_t *) (channel->eventq.addr)) + index);
179 }
180
181 /* See if an event is present
182  *
183  * We check both the high and low dword of the event for all ones.  We
184  * wrote all ones when we cleared the event, and no valid event can
185  * have all ones in either its high or low dwords.  This approach is
186  * robust against reordering.
187  *
188  * Note that using a single 64-bit comparison is incorrect; even
189  * though the CPU read will be atomic, the DMA write may not be.
190  */
191 static inline int falcon_event_present(efx_qword_t *event)
192 {
193         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
194                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
195 }
196
197 /**************************************************************************
198  *
199  * I2C bus - this is a bit-bashing interface using GPIO pins
200  * Note that it uses the output enables to tristate the outputs
201  * SDA is the data pin and SCL is the clock
202  *
203  **************************************************************************
204  */
205 static void falcon_setsda(void *data, int state)
206 {
207         struct efx_nic *efx = (struct efx_nic *)data;
208         efx_oword_t reg;
209
210         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
211         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
212         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
213 }
214
215 static void falcon_setscl(void *data, int state)
216 {
217         struct efx_nic *efx = (struct efx_nic *)data;
218         efx_oword_t reg;
219
220         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
221         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
222         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
223 }
224
225 static int falcon_getsda(void *data)
226 {
227         struct efx_nic *efx = (struct efx_nic *)data;
228         efx_oword_t reg;
229
230         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
231         return EFX_OWORD_FIELD(reg, GPIO3_IN);
232 }
233
234 static int falcon_getscl(void *data)
235 {
236         struct efx_nic *efx = (struct efx_nic *)data;
237         efx_oword_t reg;
238
239         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
240         return EFX_OWORD_FIELD(reg, GPIO0_IN);
241 }
242
243 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
244         .setsda         = falcon_setsda,
245         .setscl         = falcon_setscl,
246         .getsda         = falcon_getsda,
247         .getscl         = falcon_getscl,
248         .udelay         = 5,
249         /* Wait up to 50 ms for slave to let us pull SCL high */
250         .timeout        = DIV_ROUND_UP(HZ, 20),
251 };
252
253 /**************************************************************************
254  *
255  * Falcon special buffer handling
256  * Special buffers are used for event queues and the TX and RX
257  * descriptor rings.
258  *
259  *************************************************************************/
260
261 /*
262  * Initialise a Falcon special buffer
263  *
264  * This will define a buffer (previously allocated via
265  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
266  * it to be used for event queues, descriptor rings etc.
267  */
268 static void
269 falcon_init_special_buffer(struct efx_nic *efx,
270                            struct efx_special_buffer *buffer)
271 {
272         efx_qword_t buf_desc;
273         int index;
274         dma_addr_t dma_addr;
275         int i;
276
277         EFX_BUG_ON_PARANOID(!buffer->addr);
278
279         /* Write buffer descriptors to NIC */
280         for (i = 0; i < buffer->entries; i++) {
281                 index = buffer->index + i;
282                 dma_addr = buffer->dma_addr + (i * 4096);
283                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
284                         index, (unsigned long long)dma_addr);
285                 EFX_POPULATE_QWORD_4(buf_desc,
286                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
287                                      BUF_ADR_REGION, 0,
288                                      BUF_ADR_FBUF, (dma_addr >> 12),
289                                      BUF_OWNER_ID_FBUF, 0);
290                 falcon_write_sram(efx, &buf_desc, index);
291         }
292 }
293
294 /* Unmaps a buffer from Falcon and clears the buffer table entries */
295 static void
296 falcon_fini_special_buffer(struct efx_nic *efx,
297                            struct efx_special_buffer *buffer)
298 {
299         efx_oword_t buf_tbl_upd;
300         unsigned int start = buffer->index;
301         unsigned int end = (buffer->index + buffer->entries - 1);
302
303         if (!buffer->entries)
304                 return;
305
306         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
307                 buffer->index, buffer->index + buffer->entries - 1);
308
309         EFX_POPULATE_OWORD_4(buf_tbl_upd,
310                              BUF_UPD_CMD, 0,
311                              BUF_CLR_CMD, 1,
312                              BUF_CLR_END_ID, end,
313                              BUF_CLR_START_ID, start);
314         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
315 }
316
317 /*
318  * Allocate a new Falcon special buffer
319  *
320  * This allocates memory for a new buffer, clears it and allocates a
321  * new buffer ID range.  It does not write into Falcon's buffer table.
322  *
323  * This call will allocate 4KB buffers, since Falcon can't use 8KB
324  * buffers for event queues and descriptor rings.
325  */
326 static int falcon_alloc_special_buffer(struct efx_nic *efx,
327                                        struct efx_special_buffer *buffer,
328                                        unsigned int len)
329 {
330         struct falcon_nic_data *nic_data = efx->nic_data;
331
332         len = ALIGN(len, FALCON_BUF_SIZE);
333
334         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
335                                             &buffer->dma_addr);
336         if (!buffer->addr)
337                 return -ENOMEM;
338         buffer->len = len;
339         buffer->entries = len / FALCON_BUF_SIZE;
340         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
341
342         /* All zeros is a potentially valid event so memset to 0xff */
343         memset(buffer->addr, 0xff, len);
344
345         /* Select new buffer ID */
346         buffer->index = nic_data->next_buffer_table;
347         nic_data->next_buffer_table += buffer->entries;
348
349         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
350                 "(virt %p phys %lx)\n", buffer->index,
351                 buffer->index + buffer->entries - 1,
352                 (unsigned long long)buffer->dma_addr, len,
353                 buffer->addr, virt_to_phys(buffer->addr));
354
355         return 0;
356 }
357
358 static void falcon_free_special_buffer(struct efx_nic *efx,
359                                        struct efx_special_buffer *buffer)
360 {
361         if (!buffer->addr)
362                 return;
363
364         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
365                 "(virt %p phys %lx)\n", buffer->index,
366                 buffer->index + buffer->entries - 1,
367                 (unsigned long long)buffer->dma_addr, buffer->len,
368                 buffer->addr, virt_to_phys(buffer->addr));
369
370         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
371                             buffer->dma_addr);
372         buffer->addr = NULL;
373         buffer->entries = 0;
374 }
375
376 /**************************************************************************
377  *
378  * Falcon generic buffer handling
379  * These buffers are used for interrupt status and MAC stats
380  *
381  **************************************************************************/
382
383 static int falcon_alloc_buffer(struct efx_nic *efx,
384                                struct efx_buffer *buffer, unsigned int len)
385 {
386         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
387                                             &buffer->dma_addr);
388         if (!buffer->addr)
389                 return -ENOMEM;
390         buffer->len = len;
391         memset(buffer->addr, 0, len);
392         return 0;
393 }
394
395 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
396 {
397         if (buffer->addr) {
398                 pci_free_consistent(efx->pci_dev, buffer->len,
399                                     buffer->addr, buffer->dma_addr);
400                 buffer->addr = NULL;
401         }
402 }
403
404 /**************************************************************************
405  *
406  * Falcon TX path
407  *
408  **************************************************************************/
409
410 /* Returns a pointer to the specified transmit descriptor in the TX
411  * descriptor queue belonging to the specified channel.
412  */
413 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
414                                                unsigned int index)
415 {
416         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
417 }
418
419 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
420 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
421 {
422         unsigned write_ptr;
423         efx_dword_t reg;
424
425         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
426         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
427         falcon_writel_page(tx_queue->efx, &reg,
428                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
429 }
430
431
432 /* For each entry inserted into the software descriptor ring, create a
433  * descriptor in the hardware TX descriptor ring (in host memory), and
434  * write a doorbell.
435  */
436 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
437 {
438
439         struct efx_tx_buffer *buffer;
440         efx_qword_t *txd;
441         unsigned write_ptr;
442
443         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
444
445         do {
446                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
447                 buffer = &tx_queue->buffer[write_ptr];
448                 txd = falcon_tx_desc(tx_queue, write_ptr);
449                 ++tx_queue->write_count;
450
451                 /* Create TX descriptor ring entry */
452                 EFX_POPULATE_QWORD_5(*txd,
453                                      TX_KER_PORT, 0,
454                                      TX_KER_CONT, buffer->continuation,
455                                      TX_KER_BYTE_CNT, buffer->len,
456                                      TX_KER_BUF_REGION, 0,
457                                      TX_KER_BUF_ADR, buffer->dma_addr);
458         } while (tx_queue->write_count != tx_queue->insert_count);
459
460         wmb(); /* Ensure descriptors are written before they are fetched */
461         falcon_notify_tx_desc(tx_queue);
462 }
463
464 /* Allocate hardware resources for a TX queue */
465 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
466 {
467         struct efx_nic *efx = tx_queue->efx;
468         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
469                                            FALCON_TXD_RING_SIZE *
470                                            sizeof(efx_qword_t));
471 }
472
473 void falcon_init_tx(struct efx_tx_queue *tx_queue)
474 {
475         efx_oword_t tx_desc_ptr;
476         struct efx_nic *efx = tx_queue->efx;
477
478         tx_queue->flushed = false;
479
480         /* Pin TX descriptor ring */
481         falcon_init_special_buffer(efx, &tx_queue->txd);
482
483         /* Push TX descriptor ring to card */
484         EFX_POPULATE_OWORD_10(tx_desc_ptr,
485                               TX_DESCQ_EN, 1,
486                               TX_ISCSI_DDIG_EN, 0,
487                               TX_ISCSI_HDIG_EN, 0,
488                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
489                               TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
490                               TX_DESCQ_OWNER_ID, 0,
491                               TX_DESCQ_LABEL, tx_queue->queue,
492                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
493                               TX_DESCQ_TYPE, 0,
494                               TX_NON_IP_DROP_DIS_B0, 1);
495
496         if (falcon_rev(efx) >= FALCON_REV_B0) {
497                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
498                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
499                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
500         }
501
502         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
503                            tx_queue->queue);
504
505         if (falcon_rev(efx) < FALCON_REV_B0) {
506                 efx_oword_t reg;
507
508                 /* Only 128 bits in this register */
509                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
510
511                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
512                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
513                         clear_bit_le(tx_queue->queue, (void *)&reg);
514                 else
515                         set_bit_le(tx_queue->queue, (void *)&reg);
516                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
517         }
518 }
519
520 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
521 {
522         struct efx_nic *efx = tx_queue->efx;
523         efx_oword_t tx_flush_descq;
524
525         /* Post a flush command */
526         EFX_POPULATE_OWORD_2(tx_flush_descq,
527                              TX_FLUSH_DESCQ_CMD, 1,
528                              TX_FLUSH_DESCQ, tx_queue->queue);
529         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
530 }
531
532 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
533 {
534         struct efx_nic *efx = tx_queue->efx;
535         efx_oword_t tx_desc_ptr;
536
537         /* The queue should have been flushed */
538         WARN_ON(!tx_queue->flushed);
539
540         /* Remove TX descriptor ring from card */
541         EFX_ZERO_OWORD(tx_desc_ptr);
542         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
543                            tx_queue->queue);
544
545         /* Unpin TX descriptor ring */
546         falcon_fini_special_buffer(efx, &tx_queue->txd);
547 }
548
549 /* Free buffers backing TX queue */
550 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
551 {
552         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
553 }
554
555 /**************************************************************************
556  *
557  * Falcon RX path
558  *
559  **************************************************************************/
560
561 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
562 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
563                                                unsigned int index)
564 {
565         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
566 }
567
568 /* This creates an entry in the RX descriptor queue */
569 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
570                                         unsigned index)
571 {
572         struct efx_rx_buffer *rx_buf;
573         efx_qword_t *rxd;
574
575         rxd = falcon_rx_desc(rx_queue, index);
576         rx_buf = efx_rx_buffer(rx_queue, index);
577         EFX_POPULATE_QWORD_3(*rxd,
578                              RX_KER_BUF_SIZE,
579                              rx_buf->len -
580                              rx_queue->efx->type->rx_buffer_padding,
581                              RX_KER_BUF_REGION, 0,
582                              RX_KER_BUF_ADR, rx_buf->dma_addr);
583 }
584
585 /* This writes to the RX_DESC_WPTR register for the specified receive
586  * descriptor ring.
587  */
588 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
589 {
590         efx_dword_t reg;
591         unsigned write_ptr;
592
593         while (rx_queue->notified_count != rx_queue->added_count) {
594                 falcon_build_rx_desc(rx_queue,
595                                      rx_queue->notified_count &
596                                      FALCON_RXD_RING_MASK);
597                 ++rx_queue->notified_count;
598         }
599
600         wmb();
601         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
602         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
603         falcon_writel_page(rx_queue->efx, &reg,
604                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
605 }
606
607 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
608 {
609         struct efx_nic *efx = rx_queue->efx;
610         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
611                                            FALCON_RXD_RING_SIZE *
612                                            sizeof(efx_qword_t));
613 }
614
615 void falcon_init_rx(struct efx_rx_queue *rx_queue)
616 {
617         efx_oword_t rx_desc_ptr;
618         struct efx_nic *efx = rx_queue->efx;
619         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
620         bool iscsi_digest_en = is_b0;
621
622         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
623                 rx_queue->queue, rx_queue->rxd.index,
624                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
625
626         rx_queue->flushed = false;
627
628         /* Pin RX descriptor ring */
629         falcon_init_special_buffer(efx, &rx_queue->rxd);
630
631         /* Push RX descriptor ring to card */
632         EFX_POPULATE_OWORD_10(rx_desc_ptr,
633                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
634                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
635                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
636                               RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
637                               RX_DESCQ_OWNER_ID, 0,
638                               RX_DESCQ_LABEL, rx_queue->queue,
639                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
640                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
641                               /* For >=B0 this is scatter so disable */
642                               RX_DESCQ_JUMBO, !is_b0,
643                               RX_DESCQ_EN, 1);
644         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
645                            rx_queue->queue);
646 }
647
648 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
649 {
650         struct efx_nic *efx = rx_queue->efx;
651         efx_oword_t rx_flush_descq;
652
653         /* Post a flush command */
654         EFX_POPULATE_OWORD_2(rx_flush_descq,
655                              RX_FLUSH_DESCQ_CMD, 1,
656                              RX_FLUSH_DESCQ, rx_queue->queue);
657         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
658 }
659
660 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
661 {
662         efx_oword_t rx_desc_ptr;
663         struct efx_nic *efx = rx_queue->efx;
664
665         /* The queue should already have been flushed */
666         WARN_ON(!rx_queue->flushed);
667
668         /* Remove RX descriptor ring from card */
669         EFX_ZERO_OWORD(rx_desc_ptr);
670         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
671                            rx_queue->queue);
672
673         /* Unpin RX descriptor ring */
674         falcon_fini_special_buffer(efx, &rx_queue->rxd);
675 }
676
677 /* Free buffers backing RX queue */
678 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
679 {
680         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
681 }
682
683 /**************************************************************************
684  *
685  * Falcon event queue processing
686  * Event queues are processed by per-channel tasklets.
687  *
688  **************************************************************************/
689
690 /* Update a channel's event queue's read pointer (RPTR) register
691  *
692  * This writes the EVQ_RPTR_REG register for the specified channel's
693  * event queue.
694  *
695  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
696  * whereas channel->eventq_read_ptr contains the index of the "next to
697  * read" event.
698  */
699 void falcon_eventq_read_ack(struct efx_channel *channel)
700 {
701         efx_dword_t reg;
702         struct efx_nic *efx = channel->efx;
703
704         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
705         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
706                             channel->channel);
707 }
708
709 /* Use HW to insert a SW defined event */
710 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
711 {
712         efx_oword_t drv_ev_reg;
713
714         EFX_POPULATE_OWORD_2(drv_ev_reg,
715                              DRV_EV_QID, channel->channel,
716                              DRV_EV_DATA,
717                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
718         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
719 }
720
721 /* Handle a transmit completion event
722  *
723  * Falcon batches TX completion events; the message we receive is of
724  * the form "complete all TX events up to this index".
725  */
726 static void falcon_handle_tx_event(struct efx_channel *channel,
727                                    efx_qword_t *event)
728 {
729         unsigned int tx_ev_desc_ptr;
730         unsigned int tx_ev_q_label;
731         struct efx_tx_queue *tx_queue;
732         struct efx_nic *efx = channel->efx;
733
734         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
735                 /* Transmit completion */
736                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
737                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
738                 tx_queue = &efx->tx_queue[tx_ev_q_label];
739                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
740         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
741                 /* Rewrite the FIFO write pointer */
742                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
743                 tx_queue = &efx->tx_queue[tx_ev_q_label];
744
745                 if (efx_dev_registered(efx))
746                         netif_tx_lock(efx->net_dev);
747                 falcon_notify_tx_desc(tx_queue);
748                 if (efx_dev_registered(efx))
749                         netif_tx_unlock(efx->net_dev);
750         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
751                    EFX_WORKAROUND_10727(efx)) {
752                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
753         } else {
754                 EFX_ERR(efx, "channel %d unexpected TX event "
755                         EFX_QWORD_FMT"\n", channel->channel,
756                         EFX_QWORD_VAL(*event));
757         }
758 }
759
760 /* Detect errors included in the rx_evt_pkt_ok bit. */
761 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
762                                     const efx_qword_t *event,
763                                     bool *rx_ev_pkt_ok,
764                                     bool *discard)
765 {
766         struct efx_nic *efx = rx_queue->efx;
767         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
768         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
769         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
770         bool rx_ev_other_err, rx_ev_pause_frm;
771         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
772         unsigned rx_ev_pkt_type;
773
774         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
775         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
776         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
777         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
778         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
779                                                  RX_EV_BUF_OWNER_ID_ERR);
780         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
781         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
782                                                   RX_EV_IP_HDR_CHKSUM_ERR);
783         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
784                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
785         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
786         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
787         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
788                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
789         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
790
791         /* Every error apart from tobe_disc and pause_frm */
792         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
793                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
794                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
795
796         /* Count errors that are not in MAC stats.  Ignore expected
797          * checksum errors during self-test. */
798         if (rx_ev_frm_trunc)
799                 ++rx_queue->channel->n_rx_frm_trunc;
800         else if (rx_ev_tobe_disc)
801                 ++rx_queue->channel->n_rx_tobe_disc;
802         else if (!efx->loopback_selftest) {
803                 if (rx_ev_ip_hdr_chksum_err)
804                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
805                 else if (rx_ev_tcp_udp_chksum_err)
806                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
807         }
808         if (rx_ev_ip_frag_err)
809                 ++rx_queue->channel->n_rx_ip_frag_err;
810
811         /* The frame must be discarded if any of these are true. */
812         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
813                     rx_ev_tobe_disc | rx_ev_pause_frm);
814
815         /* TOBE_DISC is expected on unicast mismatches; don't print out an
816          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
817          * to a FIFO overflow.
818          */
819 #ifdef EFX_ENABLE_DEBUG
820         if (rx_ev_other_err) {
821                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
822                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
823                             rx_queue->queue, EFX_QWORD_VAL(*event),
824                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
825                             rx_ev_ip_hdr_chksum_err ?
826                             " [IP_HDR_CHKSUM_ERR]" : "",
827                             rx_ev_tcp_udp_chksum_err ?
828                             " [TCP_UDP_CHKSUM_ERR]" : "",
829                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
830                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
831                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
832                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
833                             rx_ev_pause_frm ? " [PAUSE]" : "");
834         }
835 #endif
836 }
837
838 /* Handle receive events that are not in-order. */
839 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
840                                        unsigned index)
841 {
842         struct efx_nic *efx = rx_queue->efx;
843         unsigned expected, dropped;
844
845         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
846         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
847                    FALCON_RXD_RING_MASK);
848         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
849                 dropped, index, expected);
850
851         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
852                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
853 }
854
855 /* Handle a packet received event
856  *
857  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
858  * wrong destination address
859  * Also "is multicast" and "matches multicast filter" flags can be used to
860  * discard non-matching multicast packets.
861  */
862 static void falcon_handle_rx_event(struct efx_channel *channel,
863                                    const efx_qword_t *event)
864 {
865         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
866         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
867         unsigned expected_ptr;
868         bool rx_ev_pkt_ok, discard = false, checksummed;
869         struct efx_rx_queue *rx_queue;
870         struct efx_nic *efx = channel->efx;
871
872         /* Basic packet information */
873         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
874         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
875         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
876         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
877         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
878         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
879
880         rx_queue = &efx->rx_queue[channel->channel];
881
882         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
883         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
884         if (unlikely(rx_ev_desc_ptr != expected_ptr))
885                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
886
887         if (likely(rx_ev_pkt_ok)) {
888                 /* If packet is marked as OK and packet type is TCP/IPv4 or
889                  * UDP/IPv4, then we can rely on the hardware checksum.
890                  */
891                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
892         } else {
893                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
894                                         &discard);
895                 checksummed = false;
896         }
897
898         /* Detect multicast packets that didn't match the filter */
899         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
900         if (rx_ev_mcast_pkt) {
901                 unsigned int rx_ev_mcast_hash_match =
902                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
903
904                 if (unlikely(!rx_ev_mcast_hash_match))
905                         discard = true;
906         }
907
908         /* Handle received packet */
909         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
910                       checksummed, discard);
911 }
912
913 /* Global events are basically PHY events */
914 static void falcon_handle_global_event(struct efx_channel *channel,
915                                        efx_qword_t *event)
916 {
917         struct efx_nic *efx = channel->efx;
918         bool handled = false;
919
920         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
921             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
922             EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
923             EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
924                 efx->phy_op->clear_interrupt(efx);
925                 queue_work(efx->workqueue, &efx->phy_work);
926                 handled = true;
927         }
928
929         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
930             EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
931                 queue_work(efx->workqueue, &efx->mac_work);
932                 handled = true;
933         }
934
935         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
936                 EFX_ERR(efx, "channel %d seen global RX_RESET "
937                         "event. Resetting.\n", channel->channel);
938
939                 atomic_inc(&efx->rx_reset);
940                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
941                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
942                 handled = true;
943         }
944
945         if (!handled)
946                 EFX_ERR(efx, "channel %d unknown global event "
947                         EFX_QWORD_FMT "\n", channel->channel,
948                         EFX_QWORD_VAL(*event));
949 }
950
951 static void falcon_handle_driver_event(struct efx_channel *channel,
952                                        efx_qword_t *event)
953 {
954         struct efx_nic *efx = channel->efx;
955         unsigned int ev_sub_code;
956         unsigned int ev_sub_data;
957
958         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
959         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
960
961         switch (ev_sub_code) {
962         case TX_DESCQ_FLS_DONE_EV_DECODE:
963                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
964                           channel->channel, ev_sub_data);
965                 break;
966         case RX_DESCQ_FLS_DONE_EV_DECODE:
967                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
968                           channel->channel, ev_sub_data);
969                 break;
970         case EVQ_INIT_DONE_EV_DECODE:
971                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
972                         channel->channel, ev_sub_data);
973                 break;
974         case SRM_UPD_DONE_EV_DECODE:
975                 EFX_TRACE(efx, "channel %d SRAM update done\n",
976                           channel->channel);
977                 break;
978         case WAKE_UP_EV_DECODE:
979                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
980                           channel->channel, ev_sub_data);
981                 break;
982         case TIMER_EV_DECODE:
983                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
984                           channel->channel, ev_sub_data);
985                 break;
986         case RX_RECOVERY_EV_DECODE:
987                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
988                         "Resetting.\n", channel->channel);
989                 atomic_inc(&efx->rx_reset);
990                 efx_schedule_reset(efx,
991                                    EFX_WORKAROUND_6555(efx) ?
992                                    RESET_TYPE_RX_RECOVERY :
993                                    RESET_TYPE_DISABLE);
994                 break;
995         case RX_DSC_ERROR_EV_DECODE:
996                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
997                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
998                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
999                 break;
1000         case TX_DSC_ERROR_EV_DECODE:
1001                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1002                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1003                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1004                 break;
1005         default:
1006                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1007                           "data %04x\n", channel->channel, ev_sub_code,
1008                           ev_sub_data);
1009                 break;
1010         }
1011 }
1012
1013 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1014 {
1015         unsigned int read_ptr;
1016         efx_qword_t event, *p_event;
1017         int ev_code;
1018         int rx_packets = 0;
1019
1020         read_ptr = channel->eventq_read_ptr;
1021
1022         do {
1023                 p_event = falcon_event(channel, read_ptr);
1024                 event = *p_event;
1025
1026                 if (!falcon_event_present(&event))
1027                         /* End of events */
1028                         break;
1029
1030                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1031                           channel->channel, EFX_QWORD_VAL(event));
1032
1033                 /* Clear this event by marking it all ones */
1034                 EFX_SET_QWORD(*p_event);
1035
1036                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1037
1038                 switch (ev_code) {
1039                 case RX_IP_EV_DECODE:
1040                         falcon_handle_rx_event(channel, &event);
1041                         ++rx_packets;
1042                         break;
1043                 case TX_IP_EV_DECODE:
1044                         falcon_handle_tx_event(channel, &event);
1045                         break;
1046                 case DRV_GEN_EV_DECODE:
1047                         channel->eventq_magic
1048                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1049                         EFX_LOG(channel->efx, "channel %d received generated "
1050                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1051                                 EFX_QWORD_VAL(event));
1052                         break;
1053                 case GLOBAL_EV_DECODE:
1054                         falcon_handle_global_event(channel, &event);
1055                         break;
1056                 case DRIVER_EV_DECODE:
1057                         falcon_handle_driver_event(channel, &event);
1058                         break;
1059                 default:
1060                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1061                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1062                                 ev_code, EFX_QWORD_VAL(event));
1063                 }
1064
1065                 /* Increment read pointer */
1066                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1067
1068         } while (rx_packets < rx_quota);
1069
1070         channel->eventq_read_ptr = read_ptr;
1071         return rx_packets;
1072 }
1073
1074 void falcon_set_int_moderation(struct efx_channel *channel)
1075 {
1076         efx_dword_t timer_cmd;
1077         struct efx_nic *efx = channel->efx;
1078
1079         /* Set timer register */
1080         if (channel->irq_moderation) {
1081                 /* Round to resolution supported by hardware.  The value we
1082                  * program is based at 0.  So actual interrupt moderation
1083                  * achieved is ((x + 1) * res).
1084                  */
1085                 unsigned int res = 5;
1086                 channel->irq_moderation -= (channel->irq_moderation % res);
1087                 if (channel->irq_moderation < res)
1088                         channel->irq_moderation = res;
1089                 EFX_POPULATE_DWORD_2(timer_cmd,
1090                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1091                                      TIMER_VAL,
1092                                      (channel->irq_moderation / res) - 1);
1093         } else {
1094                 EFX_POPULATE_DWORD_2(timer_cmd,
1095                                      TIMER_MODE, TIMER_MODE_DIS,
1096                                      TIMER_VAL, 0);
1097         }
1098         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1099                                   channel->channel);
1100
1101 }
1102
1103 /* Allocate buffer table entries for event queue */
1104 int falcon_probe_eventq(struct efx_channel *channel)
1105 {
1106         struct efx_nic *efx = channel->efx;
1107         unsigned int evq_size;
1108
1109         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1110         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1111 }
1112
1113 void falcon_init_eventq(struct efx_channel *channel)
1114 {
1115         efx_oword_t evq_ptr;
1116         struct efx_nic *efx = channel->efx;
1117
1118         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1119                 channel->channel, channel->eventq.index,
1120                 channel->eventq.index + channel->eventq.entries - 1);
1121
1122         /* Pin event queue buffer */
1123         falcon_init_special_buffer(efx, &channel->eventq);
1124
1125         /* Fill event queue with all ones (i.e. empty events) */
1126         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1127
1128         /* Push event queue to card */
1129         EFX_POPULATE_OWORD_3(evq_ptr,
1130                              EVQ_EN, 1,
1131                              EVQ_SIZE, FALCON_EVQ_ORDER,
1132                              EVQ_BUF_BASE_ID, channel->eventq.index);
1133         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1134                            channel->channel);
1135
1136         falcon_set_int_moderation(channel);
1137 }
1138
1139 void falcon_fini_eventq(struct efx_channel *channel)
1140 {
1141         efx_oword_t eventq_ptr;
1142         struct efx_nic *efx = channel->efx;
1143
1144         /* Remove event queue from card */
1145         EFX_ZERO_OWORD(eventq_ptr);
1146         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1147                            channel->channel);
1148
1149         /* Unpin event queue */
1150         falcon_fini_special_buffer(efx, &channel->eventq);
1151 }
1152
1153 /* Free buffers backing event queue */
1154 void falcon_remove_eventq(struct efx_channel *channel)
1155 {
1156         falcon_free_special_buffer(channel->efx, &channel->eventq);
1157 }
1158
1159
1160 /* Generates a test event on the event queue.  A subsequent call to
1161  * process_eventq() should pick up the event and place the value of
1162  * "magic" into channel->eventq_magic;
1163  */
1164 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1165 {
1166         efx_qword_t test_event;
1167
1168         EFX_POPULATE_QWORD_2(test_event,
1169                              EV_CODE, DRV_GEN_EV_DECODE,
1170                              EVQ_MAGIC, magic);
1171         falcon_generate_event(channel, &test_event);
1172 }
1173
1174 void falcon_sim_phy_event(struct efx_nic *efx)
1175 {
1176         efx_qword_t phy_event;
1177
1178         EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
1179         if (EFX_IS10G(efx))
1180                 EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
1181         else
1182                 EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
1183
1184         falcon_generate_event(&efx->channel[0], &phy_event);
1185 }
1186
1187 /**************************************************************************
1188  *
1189  * Flush handling
1190  *
1191  **************************************************************************/
1192
1193
1194 static void falcon_poll_flush_events(struct efx_nic *efx)
1195 {
1196         struct efx_channel *channel = &efx->channel[0];
1197         struct efx_tx_queue *tx_queue;
1198         struct efx_rx_queue *rx_queue;
1199         unsigned int read_ptr = channel->eventq_read_ptr;
1200         unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
1201
1202         do {
1203                 efx_qword_t *event = falcon_event(channel, read_ptr);
1204                 int ev_code, ev_sub_code, ev_queue;
1205                 bool ev_failed;
1206
1207                 if (!falcon_event_present(event))
1208                         break;
1209
1210                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1211                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1212                 if (ev_code == DRIVER_EV_DECODE &&
1213                     ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) {
1214                         ev_queue = EFX_QWORD_FIELD(*event,
1215                                                    DRIVER_EV_TX_DESCQ_ID);
1216                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1217                                 tx_queue = efx->tx_queue + ev_queue;
1218                                 tx_queue->flushed = true;
1219                         }
1220                 } else if (ev_code == DRIVER_EV_DECODE &&
1221                            ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) {
1222                         ev_queue = EFX_QWORD_FIELD(*event,
1223                                                    DRIVER_EV_RX_DESCQ_ID);
1224                         ev_failed = EFX_QWORD_FIELD(*event,
1225                                                     DRIVER_EV_RX_FLUSH_FAIL);
1226                         if (ev_queue < efx->n_rx_queues) {
1227                                 rx_queue = efx->rx_queue + ev_queue;
1228
1229                                 /* retry the rx flush */
1230                                 if (ev_failed)
1231                                         falcon_flush_rx_queue(rx_queue);
1232                                 else
1233                                         rx_queue->flushed = true;
1234                         }
1235                 }
1236
1237                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1238         } while (read_ptr != end_ptr);
1239 }
1240
1241 /* Handle tx and rx flushes at the same time, since they run in
1242  * parallel in the hardware and there's no reason for us to
1243  * serialise them */
1244 int falcon_flush_queues(struct efx_nic *efx)
1245 {
1246         struct efx_rx_queue *rx_queue;
1247         struct efx_tx_queue *tx_queue;
1248         int i;
1249         bool outstanding;
1250
1251         /* Issue flush requests */
1252         efx_for_each_tx_queue(tx_queue, efx) {
1253                 tx_queue->flushed = false;
1254                 falcon_flush_tx_queue(tx_queue);
1255         }
1256         efx_for_each_rx_queue(rx_queue, efx) {
1257                 rx_queue->flushed = false;
1258                 falcon_flush_rx_queue(rx_queue);
1259         }
1260
1261         /* Poll the evq looking for flush completions. Since we're not pushing
1262          * any more rx or tx descriptors at this point, we're in no danger of
1263          * overflowing the evq whilst we wait */
1264         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1265                 msleep(FALCON_FLUSH_INTERVAL);
1266                 falcon_poll_flush_events(efx);
1267
1268                 /* Check if every queue has been succesfully flushed */
1269                 outstanding = false;
1270                 efx_for_each_tx_queue(tx_queue, efx)
1271                         outstanding |= !tx_queue->flushed;
1272                 efx_for_each_rx_queue(rx_queue, efx)
1273                         outstanding |= !rx_queue->flushed;
1274                 if (!outstanding)
1275                         return 0;
1276         }
1277
1278         /* Mark the queues as all flushed. We're going to return failure
1279          * leading to a reset, or fake up success anyway. "flushed" now
1280          * indicates that we tried to flush. */
1281         efx_for_each_tx_queue(tx_queue, efx) {
1282                 if (!tx_queue->flushed)
1283                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1284                                 tx_queue->queue);
1285                 tx_queue->flushed = true;
1286         }
1287         efx_for_each_rx_queue(rx_queue, efx) {
1288                 if (!rx_queue->flushed)
1289                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1290                                 rx_queue->queue);
1291                 rx_queue->flushed = true;
1292         }
1293
1294         if (EFX_WORKAROUND_7803(efx))
1295                 return 0;
1296
1297         return -ETIMEDOUT;
1298 }
1299
1300 /**************************************************************************
1301  *
1302  * Falcon hardware interrupts
1303  * The hardware interrupt handler does very little work; all the event
1304  * queue processing is carried out by per-channel tasklets.
1305  *
1306  **************************************************************************/
1307
1308 /* Enable/disable/generate Falcon interrupts */
1309 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1310                                      int force)
1311 {
1312         efx_oword_t int_en_reg_ker;
1313
1314         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1315                              KER_INT_KER, force,
1316                              DRV_INT_EN_KER, enabled);
1317         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1318 }
1319
1320 void falcon_enable_interrupts(struct efx_nic *efx)
1321 {
1322         efx_oword_t int_adr_reg_ker;
1323         struct efx_channel *channel;
1324
1325         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1326         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327
1328         /* Program address */
1329         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1330                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1331                              INT_ADR_KER, efx->irq_status.dma_addr);
1332         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1333
1334         /* Enable interrupts */
1335         falcon_interrupts(efx, 1, 0);
1336
1337         /* Force processing of all the channels to get the EVQ RPTRs up to
1338            date */
1339         efx_for_each_channel(channel, efx)
1340                 efx_schedule_channel(channel);
1341 }
1342
1343 void falcon_disable_interrupts(struct efx_nic *efx)
1344 {
1345         /* Disable interrupts */
1346         falcon_interrupts(efx, 0, 0);
1347 }
1348
1349 /* Generate a Falcon test interrupt
1350  * Interrupt must already have been enabled, otherwise nasty things
1351  * may happen.
1352  */
1353 void falcon_generate_interrupt(struct efx_nic *efx)
1354 {
1355         falcon_interrupts(efx, 1, 1);
1356 }
1357
1358 /* Acknowledge a legacy interrupt from Falcon
1359  *
1360  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1361  *
1362  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1363  * BIU. Interrupt acknowledge is read sensitive so must write instead
1364  * (then read to ensure the BIU collector is flushed)
1365  *
1366  * NB most hardware supports MSI interrupts
1367  */
1368 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1369 {
1370         efx_dword_t reg;
1371
1372         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1373         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1374         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1375 }
1376
1377 /* Process a fatal interrupt
1378  * Disable bus mastering ASAP and schedule a reset
1379  */
1380 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1381 {
1382         struct falcon_nic_data *nic_data = efx->nic_data;
1383         efx_oword_t *int_ker = efx->irq_status.addr;
1384         efx_oword_t fatal_intr;
1385         int error, mem_perr;
1386
1387         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1388         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1389
1390         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1391                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1392                 EFX_OWORD_VAL(fatal_intr),
1393                 error ? "disabling bus mastering" : "no recognised error");
1394         if (error == 0)
1395                 goto out;
1396
1397         /* If this is a memory parity error dump which blocks are offending */
1398         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1399         if (mem_perr) {
1400                 efx_oword_t reg;
1401                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1402                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1403                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1404         }
1405
1406         /* Disable both devices */
1407         pci_clear_master(efx->pci_dev);
1408         if (FALCON_IS_DUAL_FUNC(efx))
1409                 pci_clear_master(nic_data->pci_dev2);
1410         falcon_disable_interrupts(efx);
1411
1412         /* Count errors and reset or disable the NIC accordingly */
1413         if (nic_data->int_error_count == 0 ||
1414             time_after(jiffies, nic_data->int_error_expire)) {
1415                 nic_data->int_error_count = 0;
1416                 nic_data->int_error_expire =
1417                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1418         }
1419         if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
1420                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1421                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1422         } else {
1423                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1424                         "NIC will be disabled\n");
1425                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1426         }
1427 out:
1428         return IRQ_HANDLED;
1429 }
1430
1431 /* Handle a legacy interrupt from Falcon
1432  * Acknowledges the interrupt and schedule event queue processing.
1433  */
1434 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1435 {
1436         struct efx_nic *efx = dev_id;
1437         efx_oword_t *int_ker = efx->irq_status.addr;
1438         irqreturn_t result = IRQ_NONE;
1439         struct efx_channel *channel;
1440         efx_dword_t reg;
1441         u32 queues;
1442         int syserr;
1443
1444         /* Read the ISR which also ACKs the interrupts */
1445         falcon_readl(efx, &reg, INT_ISR0_B0);
1446         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1447
1448         /* Check to see if we have a serious error condition */
1449         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1450         if (unlikely(syserr))
1451                 return falcon_fatal_interrupt(efx);
1452
1453         /* Schedule processing of any interrupting queues */
1454         efx_for_each_channel(channel, efx) {
1455                 if ((queues & 1) ||
1456                     falcon_event_present(
1457                             falcon_event(channel, channel->eventq_read_ptr))) {
1458                         efx_schedule_channel(channel);
1459                         result = IRQ_HANDLED;
1460                 }
1461                 queues >>= 1;
1462         }
1463
1464         if (result == IRQ_HANDLED) {
1465                 efx->last_irq_cpu = raw_smp_processor_id();
1466                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1467                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1468         }
1469
1470         return result;
1471 }
1472
1473
1474 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1475 {
1476         struct efx_nic *efx = dev_id;
1477         efx_oword_t *int_ker = efx->irq_status.addr;
1478         struct efx_channel *channel;
1479         int syserr;
1480         int queues;
1481
1482         /* Check to see if this is our interrupt.  If it isn't, we
1483          * exit without having touched the hardware.
1484          */
1485         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1486                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1487                           raw_smp_processor_id());
1488                 return IRQ_NONE;
1489         }
1490         efx->last_irq_cpu = raw_smp_processor_id();
1491         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1492                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1493
1494         /* Check to see if we have a serious error condition */
1495         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1496         if (unlikely(syserr))
1497                 return falcon_fatal_interrupt(efx);
1498
1499         /* Determine interrupting queues, clear interrupt status
1500          * register and acknowledge the device interrupt.
1501          */
1502         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1503         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1504         EFX_ZERO_OWORD(*int_ker);
1505         wmb(); /* Ensure the vector is cleared before interrupt ack */
1506         falcon_irq_ack_a1(efx);
1507
1508         /* Schedule processing of any interrupting queues */
1509         channel = &efx->channel[0];
1510         while (queues) {
1511                 if (queues & 0x01)
1512                         efx_schedule_channel(channel);
1513                 channel++;
1514                 queues >>= 1;
1515         }
1516
1517         return IRQ_HANDLED;
1518 }
1519
1520 /* Handle an MSI interrupt from Falcon
1521  *
1522  * Handle an MSI hardware interrupt.  This routine schedules event
1523  * queue processing.  No interrupt acknowledgement cycle is necessary.
1524  * Also, we never need to check that the interrupt is for us, since
1525  * MSI interrupts cannot be shared.
1526  */
1527 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1528 {
1529         struct efx_channel *channel = dev_id;
1530         struct efx_nic *efx = channel->efx;
1531         efx_oword_t *int_ker = efx->irq_status.addr;
1532         int syserr;
1533
1534         efx->last_irq_cpu = raw_smp_processor_id();
1535         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1536                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1537
1538         /* Check to see if we have a serious error condition */
1539         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1540         if (unlikely(syserr))
1541                 return falcon_fatal_interrupt(efx);
1542
1543         /* Schedule processing of the channel */
1544         efx_schedule_channel(channel);
1545
1546         return IRQ_HANDLED;
1547 }
1548
1549
1550 /* Setup RSS indirection table.
1551  * This maps from the hash value of the packet to RXQ
1552  */
1553 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1554 {
1555         int i = 0;
1556         unsigned long offset;
1557         efx_dword_t dword;
1558
1559         if (falcon_rev(efx) < FALCON_REV_B0)
1560                 return;
1561
1562         for (offset = RX_RSS_INDIR_TBL_B0;
1563              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1564              offset += 0x10) {
1565                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1566                                      i % efx->n_rx_queues);
1567                 falcon_writel(efx, &dword, offset);
1568                 i++;
1569         }
1570 }
1571
1572 /* Hook interrupt handler(s)
1573  * Try MSI and then legacy interrupts.
1574  */
1575 int falcon_init_interrupt(struct efx_nic *efx)
1576 {
1577         struct efx_channel *channel;
1578         int rc;
1579
1580         if (!EFX_INT_MODE_USE_MSI(efx)) {
1581                 irq_handler_t handler;
1582                 if (falcon_rev(efx) >= FALCON_REV_B0)
1583                         handler = falcon_legacy_interrupt_b0;
1584                 else
1585                         handler = falcon_legacy_interrupt_a1;
1586
1587                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1588                                  efx->name, efx);
1589                 if (rc) {
1590                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1591                                 efx->pci_dev->irq);
1592                         goto fail1;
1593                 }
1594                 return 0;
1595         }
1596
1597         /* Hook MSI or MSI-X interrupt */
1598         efx_for_each_channel(channel, efx) {
1599                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1600                                  IRQF_PROBE_SHARED, /* Not shared */
1601                                  channel->name, channel);
1602                 if (rc) {
1603                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1604                         goto fail2;
1605                 }
1606         }
1607
1608         return 0;
1609
1610  fail2:
1611         efx_for_each_channel(channel, efx)
1612                 free_irq(channel->irq, channel);
1613  fail1:
1614         return rc;
1615 }
1616
1617 void falcon_fini_interrupt(struct efx_nic *efx)
1618 {
1619         struct efx_channel *channel;
1620         efx_oword_t reg;
1621
1622         /* Disable MSI/MSI-X interrupts */
1623         efx_for_each_channel(channel, efx) {
1624                 if (channel->irq)
1625                         free_irq(channel->irq, channel);
1626         }
1627
1628         /* ACK legacy interrupt */
1629         if (falcon_rev(efx) >= FALCON_REV_B0)
1630                 falcon_read(efx, &reg, INT_ISR0_B0);
1631         else
1632                 falcon_irq_ack_a1(efx);
1633
1634         /* Disable legacy interrupt */
1635         if (efx->legacy_irq)
1636                 free_irq(efx->legacy_irq, efx);
1637 }
1638
1639 /**************************************************************************
1640  *
1641  * EEPROM/flash
1642  *
1643  **************************************************************************
1644  */
1645
1646 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1647
1648 static int falcon_spi_poll(struct efx_nic *efx)
1649 {
1650         efx_oword_t reg;
1651         falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1652         return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1653 }
1654
1655 /* Wait for SPI command completion */
1656 static int falcon_spi_wait(struct efx_nic *efx)
1657 {
1658         /* Most commands will finish quickly, so we start polling at
1659          * very short intervals.  Sometimes the command may have to
1660          * wait for VPD or expansion ROM access outside of our
1661          * control, so we allow up to 100 ms. */
1662         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1663         int i;
1664
1665         for (i = 0; i < 10; i++) {
1666                 if (!falcon_spi_poll(efx))
1667                         return 0;
1668                 udelay(10);
1669         }
1670
1671         for (;;) {
1672                 if (!falcon_spi_poll(efx))
1673                         return 0;
1674                 if (time_after_eq(jiffies, timeout)) {
1675                         EFX_ERR(efx, "timed out waiting for SPI\n");
1676                         return -ETIMEDOUT;
1677                 }
1678                 schedule_timeout_uninterruptible(1);
1679         }
1680 }
1681
1682 int falcon_spi_cmd(const struct efx_spi_device *spi,
1683                    unsigned int command, int address,
1684                    const void *in, void *out, size_t len)
1685 {
1686         struct efx_nic *efx = spi->efx;
1687         bool addressed = (address >= 0);
1688         bool reading = (out != NULL);
1689         efx_oword_t reg;
1690         int rc;
1691
1692         /* Input validation */
1693         if (len > FALCON_SPI_MAX_LEN)
1694                 return -EINVAL;
1695         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1696
1697         /* Check that previous command is not still running */
1698         rc = falcon_spi_poll(efx);
1699         if (rc)
1700                 return rc;
1701
1702         /* Program address register, if we have an address */
1703         if (addressed) {
1704                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1705                 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1706         }
1707
1708         /* Program data register, if we have data */
1709         if (in != NULL) {
1710                 memcpy(&reg, in, len);
1711                 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1712         }
1713
1714         /* Issue read/write command */
1715         EFX_POPULATE_OWORD_7(reg,
1716                              EE_SPI_HCMD_CMD_EN, 1,
1717                              EE_SPI_HCMD_SF_SEL, spi->device_id,
1718                              EE_SPI_HCMD_DABCNT, len,
1719                              EE_SPI_HCMD_READ, reading,
1720                              EE_SPI_HCMD_DUBCNT, 0,
1721                              EE_SPI_HCMD_ADBCNT,
1722                              (addressed ? spi->addr_len : 0),
1723                              EE_SPI_HCMD_ENC, command);
1724         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1725
1726         /* Wait for read/write to complete */
1727         rc = falcon_spi_wait(efx);
1728         if (rc)
1729                 return rc;
1730
1731         /* Read data */
1732         if (out != NULL) {
1733                 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1734                 memcpy(out, &reg, len);
1735         }
1736
1737         return 0;
1738 }
1739
1740 static size_t
1741 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1742 {
1743         return min(FALCON_SPI_MAX_LEN,
1744                    (spi->block_size - (start & (spi->block_size - 1))));
1745 }
1746
1747 static inline u8
1748 efx_spi_munge_command(const struct efx_spi_device *spi,
1749                       const u8 command, const unsigned int address)
1750 {
1751         return command | (((address >> 8) & spi->munge_address) << 3);
1752 }
1753
1754 /* Wait up to 10 ms for buffered write completion */
1755 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1756 {
1757         struct efx_nic *efx = spi->efx;
1758         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1759         u8 status;
1760         int rc;
1761
1762         for (;;) {
1763                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1764                                     &status, sizeof(status));
1765                 if (rc)
1766                         return rc;
1767                 if (!(status & SPI_STATUS_NRDY))
1768                         return 0;
1769                 if (time_after_eq(jiffies, timeout)) {
1770                         EFX_ERR(efx, "SPI write timeout on device %d"
1771                                 " last status=0x%02x\n",
1772                                 spi->device_id, status);
1773                         return -ETIMEDOUT;
1774                 }
1775                 schedule_timeout_uninterruptible(1);
1776         }
1777 }
1778
1779 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1780                     size_t len, size_t *retlen, u8 *buffer)
1781 {
1782         size_t block_len, pos = 0;
1783         unsigned int command;
1784         int rc = 0;
1785
1786         while (pos < len) {
1787                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1788
1789                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1790                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1791                                     buffer + pos, block_len);
1792                 if (rc)
1793                         break;
1794                 pos += block_len;
1795
1796                 /* Avoid locking up the system */
1797                 cond_resched();
1798                 if (signal_pending(current)) {
1799                         rc = -EINTR;
1800                         break;
1801                 }
1802         }
1803
1804         if (retlen)
1805                 *retlen = pos;
1806         return rc;
1807 }
1808
1809 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1810                      size_t len, size_t *retlen, const u8 *buffer)
1811 {
1812         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1813         size_t block_len, pos = 0;
1814         unsigned int command;
1815         int rc = 0;
1816
1817         while (pos < len) {
1818                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1819                 if (rc)
1820                         break;
1821
1822                 block_len = min(len - pos,
1823                                 falcon_spi_write_limit(spi, start + pos));
1824                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1825                 rc = falcon_spi_cmd(spi, command, start + pos,
1826                                     buffer + pos, NULL, block_len);
1827                 if (rc)
1828                         break;
1829
1830                 rc = falcon_spi_wait_write(spi);
1831                 if (rc)
1832                         break;
1833
1834                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1835                 rc = falcon_spi_cmd(spi, command, start + pos,
1836                                     NULL, verify_buffer, block_len);
1837                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1838                         rc = -EIO;
1839                         break;
1840                 }
1841
1842                 pos += block_len;
1843
1844                 /* Avoid locking up the system */
1845                 cond_resched();
1846                 if (signal_pending(current)) {
1847                         rc = -EINTR;
1848                         break;
1849                 }
1850         }
1851
1852         if (retlen)
1853                 *retlen = pos;
1854         return rc;
1855 }
1856
1857 /**************************************************************************
1858  *
1859  * MAC wrapper
1860  *
1861  **************************************************************************
1862  */
1863
1864 static int falcon_reset_macs(struct efx_nic *efx)
1865 {
1866         efx_oword_t reg;
1867         int count;
1868
1869         if (falcon_rev(efx) < FALCON_REV_B0) {
1870                 /* It's not safe to use GLB_CTL_REG to reset the
1871                  * macs, so instead use the internal MAC resets
1872                  */
1873                 if (!EFX_IS10G(efx)) {
1874                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
1875                         falcon_write(efx, &reg, GM_CFG1_REG);
1876                         udelay(1000);
1877
1878                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
1879                         falcon_write(efx, &reg, GM_CFG1_REG);
1880                         udelay(1000);
1881                         return 0;
1882                 } else {
1883                         EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
1884                         falcon_write(efx, &reg, XM_GLB_CFG_REG);
1885
1886                         for (count = 0; count < 10000; count++) {
1887                                 falcon_read(efx, &reg, XM_GLB_CFG_REG);
1888                                 if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
1889                                         return 0;
1890                                 udelay(10);
1891                         }
1892
1893                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1894                         return -ETIMEDOUT;
1895                 }
1896         }
1897
1898         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1899          * the drain sequence with the statistics fetch */
1900         efx_stats_disable(efx);
1901
1902         falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1903         EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
1904         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1905
1906         falcon_read(efx, &reg, GLB_CTL_REG_KER);
1907         EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
1908         EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
1909         EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
1910         falcon_write(efx, &reg, GLB_CTL_REG_KER);
1911
1912         count = 0;
1913         while (1) {
1914                 falcon_read(efx, &reg, GLB_CTL_REG_KER);
1915                 if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
1916                     !EFX_OWORD_FIELD(reg, RST_XGRX) &&
1917                     !EFX_OWORD_FIELD(reg, RST_EM)) {
1918                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1919                                 count);
1920                         break;
1921                 }
1922                 if (count > 20) {
1923                         EFX_ERR(efx, "MAC reset failed\n");
1924                         break;
1925                 }
1926                 count++;
1927                 udelay(10);
1928         }
1929
1930         efx_stats_enable(efx);
1931
1932         /* If we've reset the EM block and the link is up, then
1933          * we'll have to kick the XAUI link so the PHY can recover */
1934         if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1935                 falcon_reset_xaui(efx);
1936
1937         return 0;
1938 }
1939
1940 void falcon_drain_tx_fifo(struct efx_nic *efx)
1941 {
1942         efx_oword_t reg;
1943
1944         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1945             (efx->loopback_mode != LOOPBACK_NONE))
1946                 return;
1947
1948         falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1949         /* There is no point in draining more than once */
1950         if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
1951                 return;
1952
1953         falcon_reset_macs(efx);
1954 }
1955
1956 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1957 {
1958         efx_oword_t reg;
1959
1960         if (falcon_rev(efx) < FALCON_REV_B0)
1961                 return;
1962
1963         /* Isolate the MAC -> RX */
1964         falcon_read(efx, &reg, RX_CFG_REG_KER);
1965         EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
1966         falcon_write(efx, &reg, RX_CFG_REG_KER);
1967
1968         if (!efx->link_up)
1969                 falcon_drain_tx_fifo(efx);
1970 }
1971
1972 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1973 {
1974         efx_oword_t reg;
1975         int link_speed;
1976         bool tx_fc;
1977
1978         switch (efx->link_speed) {
1979         case 10000: link_speed = 3; break;
1980         case 1000:  link_speed = 2; break;
1981         case 100:   link_speed = 1; break;
1982         default:    link_speed = 0; break;
1983         }
1984         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1985          * as advertised.  Disable to ensure packets are not
1986          * indefinitely held and TX queue can be flushed at any point
1987          * while the link is down. */
1988         EFX_POPULATE_OWORD_5(reg,
1989                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1990                              MAC_BCAD_ACPT, 1,
1991                              MAC_UC_PROM, efx->promiscuous,
1992                              MAC_LINK_STATUS, 1, /* always set */
1993                              MAC_SPEED, link_speed);
1994         /* On B0, MAC backpressure can be disabled and packets get
1995          * discarded. */
1996         if (falcon_rev(efx) >= FALCON_REV_B0) {
1997                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1998                                     !efx->link_up);
1999         }
2000
2001         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
2002
2003         /* Restore the multicast hash registers. */
2004         falcon_set_multicast_hash(efx);
2005
2006         /* Transmission of pause frames when RX crosses the threshold is
2007          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2008          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2009         tx_fc = !!(efx->link_fc & EFX_FC_TX);
2010         falcon_read(efx, &reg, RX_CFG_REG_KER);
2011         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
2012
2013         /* Unisolate the MAC -> RX */
2014         if (falcon_rev(efx) >= FALCON_REV_B0)
2015                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
2016         falcon_write(efx, &reg, RX_CFG_REG_KER);
2017 }
2018
2019 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2020 {
2021         efx_oword_t reg;
2022         u32 *dma_done;
2023         int i;
2024
2025         if (disable_dma_stats)
2026                 return 0;
2027
2028         /* Statistics fetch will fail if the MAC is in TX drain */
2029         if (falcon_rev(efx) >= FALCON_REV_B0) {
2030                 efx_oword_t temp;
2031                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
2032                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
2033                         return 0;
2034         }
2035
2036         dma_done = (efx->stats_buffer.addr + done_offset);
2037         *dma_done = FALCON_STATS_NOT_DONE;
2038         wmb(); /* ensure done flag is clear */
2039
2040         /* Initiate DMA transfer of stats */
2041         EFX_POPULATE_OWORD_2(reg,
2042                              MAC_STAT_DMA_CMD, 1,
2043                              MAC_STAT_DMA_ADR,
2044                              efx->stats_buffer.dma_addr);
2045         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
2046
2047         /* Wait for transfer to complete */
2048         for (i = 0; i < 400; i++) {
2049                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2050                         rmb(); /* Ensure the stats are valid. */
2051                         return 0;
2052                 }
2053                 udelay(10);
2054         }
2055
2056         EFX_ERR(efx, "timed out waiting for statistics\n");
2057         return -ETIMEDOUT;
2058 }
2059
2060 /**************************************************************************
2061  *
2062  * PHY access via GMII
2063  *
2064  **************************************************************************
2065  */
2066
2067 /* Use the top bit of the MII PHY id to indicate the PHY type
2068  * (1G/10G), with the remaining bits as the actual PHY id.
2069  *
2070  * This allows us to avoid leaking information from the mii_if_info
2071  * structure into other data structures.
2072  */
2073 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
2074 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2075 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
2076 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
2077 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
2078
2079
2080 /* Packing the clause 45 port and device fields into a single value */
2081 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2082 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
2083 #define MD_DEV_ADR_COMP_LBN    0
2084 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
2085
2086
2087 /* Wait for GMII access to complete */
2088 static int falcon_gmii_wait(struct efx_nic *efx)
2089 {
2090         efx_dword_t md_stat;
2091         int count;
2092
2093         /* wait upto 50ms - taken max from datasheet */
2094         for (count = 0; count < 5000; count++) {
2095                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2096                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2097                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2098                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2099                                 EFX_ERR(efx, "error from GMII access "
2100                                         EFX_DWORD_FMT"\n",
2101                                         EFX_DWORD_VAL(md_stat));
2102                                 return -EIO;
2103                         }
2104                         return 0;
2105                 }
2106                 udelay(10);
2107         }
2108         EFX_ERR(efx, "timed out waiting for GMII\n");
2109         return -ETIMEDOUT;
2110 }
2111
2112 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2113 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2114                               int addr, int value)
2115 {
2116         struct efx_nic *efx = netdev_priv(net_dev);
2117         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2118         efx_oword_t reg;
2119
2120         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2121          * chosen so that the only current user, Falcon, can take the
2122          * packed value and use them directly.
2123          * Fail to build if this assumption is broken.
2124          */
2125         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2126         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2127         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2128         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2129
2130         if (phy_id2 == PHY_ADDR_INVALID)
2131                 return;
2132
2133         /* See falcon_mdio_read for an explanation. */
2134         if (!(phy_id & FALCON_PHY_ID_10G)) {
2135                 int mmd = ffs(efx->phy_op->mmds) - 1;
2136                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2137                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2138                         & FALCON_PHY_ID_ID_MASK;
2139         }
2140
2141         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2142                     addr, value);
2143
2144         spin_lock_bh(&efx->phy_lock);
2145
2146         /* Check MII not currently being accessed */
2147         if (falcon_gmii_wait(efx) != 0)
2148                 goto out;
2149
2150         /* Write the address/ID register */
2151         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2152         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2153
2154         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2155         falcon_write(efx, &reg, MD_ID_REG_KER);
2156
2157         /* Write data */
2158         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2159         falcon_write(efx, &reg, MD_TXD_REG_KER);
2160
2161         EFX_POPULATE_OWORD_2(reg,
2162                              MD_WRC, 1,
2163                              MD_GC, 0);
2164         falcon_write(efx, &reg, MD_CS_REG_KER);
2165
2166         /* Wait for data to be written */
2167         if (falcon_gmii_wait(efx) != 0) {
2168                 /* Abort the write operation */
2169                 EFX_POPULATE_OWORD_2(reg,
2170                                      MD_WRC, 0,
2171                                      MD_GC, 1);
2172                 falcon_write(efx, &reg, MD_CS_REG_KER);
2173                 udelay(10);
2174         }
2175
2176  out:
2177         spin_unlock_bh(&efx->phy_lock);
2178 }
2179
2180 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2181  * could be read, -1 will be returned. */
2182 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2183 {
2184         struct efx_nic *efx = netdev_priv(net_dev);
2185         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2186         efx_oword_t reg;
2187         int value = -1;
2188
2189         if (phy_addr == PHY_ADDR_INVALID)
2190                 return -1;
2191
2192         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2193          * but the generic Linux code does not make any distinction or have
2194          * any state for this.
2195          * We spot the case where someone tried to talk 22 to a 45 PHY and
2196          * redirect the request to the lowest numbered MMD as a clause45
2197          * request. This is enough to allow simple queries like id and link
2198          * state to succeed. TODO: We may need to do more in future.
2199          */
2200         if (!(phy_id & FALCON_PHY_ID_10G)) {
2201                 int mmd = ffs(efx->phy_op->mmds) - 1;
2202                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2203                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2204                         & FALCON_PHY_ID_ID_MASK;
2205         }
2206
2207         spin_lock_bh(&efx->phy_lock);
2208
2209         /* Check MII not currently being accessed */
2210         if (falcon_gmii_wait(efx) != 0)
2211                 goto out;
2212
2213         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2214         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2215
2216         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2217         falcon_write(efx, &reg, MD_ID_REG_KER);
2218
2219         /* Request data to be read */
2220         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2221         falcon_write(efx, &reg, MD_CS_REG_KER);
2222
2223         /* Wait for data to become available */
2224         value = falcon_gmii_wait(efx);
2225         if (value == 0) {
2226                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2227                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2228                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2229                             phy_id, addr, value);
2230         } else {
2231                 /* Abort the read operation */
2232                 EFX_POPULATE_OWORD_2(reg,
2233                                      MD_RIC, 0,
2234                                      MD_GC, 1);
2235                 falcon_write(efx, &reg, MD_CS_REG_KER);
2236
2237                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2238                         "error %d\n", phy_id, addr, value);
2239         }
2240
2241  out:
2242         spin_unlock_bh(&efx->phy_lock);
2243
2244         return value;
2245 }
2246
2247 static void falcon_init_mdio(struct mii_if_info *gmii)
2248 {
2249         gmii->mdio_read = falcon_mdio_read;
2250         gmii->mdio_write = falcon_mdio_write;
2251         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2252         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2253 }
2254
2255 static int falcon_probe_phy(struct efx_nic *efx)
2256 {
2257         switch (efx->phy_type) {
2258         case PHY_TYPE_SFX7101:
2259                 efx->phy_op = &falcon_sfx7101_phy_ops;
2260                 break;
2261         case PHY_TYPE_SFT9001A:
2262         case PHY_TYPE_SFT9001B:
2263                 efx->phy_op = &falcon_sft9001_phy_ops;
2264                 break;
2265         case PHY_TYPE_QT2022C2:
2266         case PHY_TYPE_QT2025C:
2267                 efx->phy_op = &falcon_xfp_phy_ops;
2268                 break;
2269         default:
2270                 EFX_ERR(efx, "Unknown PHY type %d\n",
2271                         efx->phy_type);
2272                 return -1;
2273         }
2274
2275         if (efx->phy_op->macs & EFX_XMAC)
2276                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2277                                         (1 << LOOPBACK_XGXS) |
2278                                         (1 << LOOPBACK_XAUI));
2279         if (efx->phy_op->macs & EFX_GMAC)
2280                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2281         efx->loopback_modes |= efx->phy_op->loopbacks;
2282
2283         return 0;
2284 }
2285
2286 int falcon_switch_mac(struct efx_nic *efx)
2287 {
2288         struct efx_mac_operations *old_mac_op = efx->mac_op;
2289         efx_oword_t nic_stat;
2290         unsigned strap_val;
2291         int rc = 0;
2292
2293         /* Don't try to fetch MAC stats while we're switching MACs */
2294         efx_stats_disable(efx);
2295
2296         /* Internal loopbacks override the phy speed setting */
2297         if (efx->loopback_mode == LOOPBACK_GMAC) {
2298                 efx->link_speed = 1000;
2299                 efx->link_fd = true;
2300         } else if (LOOPBACK_INTERNAL(efx)) {
2301                 efx->link_speed = 10000;
2302                 efx->link_fd = true;
2303         }
2304
2305         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2306         efx->mac_op = (EFX_IS10G(efx) ?
2307                        &falcon_xmac_operations : &falcon_gmac_operations);
2308
2309         /* Always push the NIC_STAT_REG setting even if the mac hasn't
2310          * changed, because this function is run post online reset */
2311         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2312         strap_val = EFX_IS10G(efx) ? 5 : 3;
2313         if (falcon_rev(efx) >= FALCON_REV_B0) {
2314                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
2315                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
2316                 falcon_write(efx, &nic_stat, NIC_STAT_REG);
2317         } else {
2318                 /* Falcon A1 does not support 1G/10G speed switching
2319                  * and must not be used with a PHY that does. */
2320                 BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
2321         }
2322
2323         if (old_mac_op == efx->mac_op)
2324                 goto out;
2325
2326         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2327         /* Not all macs support a mac-level link state */
2328         efx->mac_up = true;
2329
2330         rc = falcon_reset_macs(efx);
2331 out:
2332         efx_stats_enable(efx);
2333         return rc;
2334 }
2335
2336 /* This call is responsible for hooking in the MAC and PHY operations */
2337 int falcon_probe_port(struct efx_nic *efx)
2338 {
2339         int rc;
2340
2341         /* Hook in PHY operations table */
2342         rc = falcon_probe_phy(efx);
2343         if (rc)
2344                 return rc;
2345
2346         /* Set up GMII structure for PHY */
2347         efx->mii.supports_gmii = true;
2348         falcon_init_mdio(&efx->mii);
2349
2350         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2351         if (falcon_rev(efx) >= FALCON_REV_B0)
2352                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2353         else
2354                 efx->wanted_fc = EFX_FC_RX;
2355
2356         /* Allocate buffer for stats */
2357         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2358                                  FALCON_MAC_STATS_SIZE);
2359         if (rc)
2360                 return rc;
2361         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2362                 (unsigned long long)efx->stats_buffer.dma_addr,
2363                 efx->stats_buffer.addr,
2364                 virt_to_phys(efx->stats_buffer.addr));
2365
2366         return 0;
2367 }
2368
2369 void falcon_remove_port(struct efx_nic *efx)
2370 {
2371         falcon_free_buffer(efx, &efx->stats_buffer);
2372 }
2373
2374 /**************************************************************************
2375  *
2376  * Multicast filtering
2377  *
2378  **************************************************************************
2379  */
2380
2381 void falcon_set_multicast_hash(struct efx_nic *efx)
2382 {
2383         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2384
2385         /* Broadcast packets go through the multicast hash filter.
2386          * ether_crc_le() of the broadcast address is 0xbe2612ff
2387          * so we always add bit 0xff to the mask.
2388          */
2389         set_bit_le(0xff, mc_hash->byte);
2390
2391         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2392         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2393 }
2394
2395
2396 /**************************************************************************
2397  *
2398  * Falcon test code
2399  *
2400  **************************************************************************/
2401
2402 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2403 {
2404         struct falcon_nvconfig *nvconfig;
2405         struct efx_spi_device *spi;
2406         void *region;
2407         int rc, magic_num, struct_ver;
2408         __le16 *word, *limit;
2409         u32 csum;
2410
2411         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2412         if (!spi)
2413                 return -EINVAL;
2414
2415         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2416         if (!region)
2417                 return -ENOMEM;
2418         nvconfig = region + NVCONFIG_OFFSET;
2419
2420         mutex_lock(&efx->spi_lock);
2421         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2422         mutex_unlock(&efx->spi_lock);
2423         if (rc) {
2424                 EFX_ERR(efx, "Failed to read %s\n",
2425                         efx->spi_flash ? "flash" : "EEPROM");
2426                 rc = -EIO;
2427                 goto out;
2428         }
2429
2430         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2431         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2432
2433         rc = -EINVAL;
2434         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2435                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2436                 goto out;
2437         }
2438         if (struct_ver < 2) {
2439                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2440                 goto out;
2441         } else if (struct_ver < 4) {
2442                 word = &nvconfig->board_magic_num;
2443                 limit = (__le16 *) (nvconfig + 1);
2444         } else {
2445                 word = region;
2446                 limit = region + FALCON_NVCONFIG_END;
2447         }
2448         for (csum = 0; word < limit; ++word)
2449                 csum += le16_to_cpu(*word);
2450
2451         if (~csum & 0xffff) {
2452                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2453                 goto out;
2454         }
2455
2456         rc = 0;
2457         if (nvconfig_out)
2458                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2459
2460  out:
2461         kfree(region);
2462         return rc;
2463 }
2464
2465 /* Registers tested in the falcon register test */
2466 static struct {
2467         unsigned address;
2468         efx_oword_t mask;
2469 } efx_test_registers[] = {
2470         { ADR_REGION_REG_KER,
2471           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2472         { RX_CFG_REG_KER,
2473           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2474         { TX_CFG_REG_KER,
2475           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2476         { TX_CFG2_REG_KER,
2477           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2478         { MAC0_CTRL_REG_KER,
2479           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2480         { SRM_TX_DC_CFG_REG_KER,
2481           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2482         { RX_DC_CFG_REG_KER,
2483           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2484         { RX_DC_PF_WM_REG_KER,
2485           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2486         { DP_CTRL_REG,
2487           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2488         { GM_CFG2_REG,
2489           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2490         { GMF_CFG0_REG,
2491           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2492         { XM_GLB_CFG_REG,
2493           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2494         { XM_TX_CFG_REG,
2495           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2496         { XM_RX_CFG_REG,
2497           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2498         { XM_RX_PARAM_REG,
2499           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2500         { XM_FC_REG,
2501           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2502         { XM_ADR_LO_REG,
2503           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2504         { XX_SD_CTL_REG,
2505           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2506 };
2507
2508 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2509                                      const efx_oword_t *mask)
2510 {
2511         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2512                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2513 }
2514
2515 int falcon_test_registers(struct efx_nic *efx)
2516 {
2517         unsigned address = 0, i, j;
2518         efx_oword_t mask, imask, original, reg, buf;
2519
2520         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2521         WARN_ON(!LOOPBACK_INTERNAL(efx));
2522
2523         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2524                 address = efx_test_registers[i].address;
2525                 mask = imask = efx_test_registers[i].mask;
2526                 EFX_INVERT_OWORD(imask);
2527
2528                 falcon_read(efx, &original, address);
2529
2530                 /* bit sweep on and off */
2531                 for (j = 0; j < 128; j++) {
2532                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2533                                 continue;
2534
2535                         /* Test this testable bit can be set in isolation */
2536                         EFX_AND_OWORD(reg, original, mask);
2537                         EFX_SET_OWORD32(reg, j, j, 1);
2538
2539                         falcon_write(efx, &reg, address);
2540                         falcon_read(efx, &buf, address);
2541
2542                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2543                                 goto fail;
2544
2545                         /* Test this testable bit can be cleared in isolation */
2546                         EFX_OR_OWORD(reg, original, mask);
2547                         EFX_SET_OWORD32(reg, j, j, 0);
2548
2549                         falcon_write(efx, &reg, address);
2550                         falcon_read(efx, &buf, address);
2551
2552                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2553                                 goto fail;
2554                 }
2555
2556                 falcon_write(efx, &original, address);
2557         }
2558
2559         return 0;
2560
2561 fail:
2562         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2563                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2564                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2565         return -EIO;
2566 }
2567
2568 /**************************************************************************
2569  *
2570  * Device reset
2571  *
2572  **************************************************************************
2573  */
2574
2575 /* Resets NIC to known state.  This routine must be called in process
2576  * context and is allowed to sleep. */
2577 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2578 {
2579         struct falcon_nic_data *nic_data = efx->nic_data;
2580         efx_oword_t glb_ctl_reg_ker;
2581         int rc;
2582
2583         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2584
2585         /* Initiate device reset */
2586         if (method == RESET_TYPE_WORLD) {
2587                 rc = pci_save_state(efx->pci_dev);
2588                 if (rc) {
2589                         EFX_ERR(efx, "failed to backup PCI state of primary "
2590                                 "function prior to hardware reset\n");
2591                         goto fail1;
2592                 }
2593                 if (FALCON_IS_DUAL_FUNC(efx)) {
2594                         rc = pci_save_state(nic_data->pci_dev2);
2595                         if (rc) {
2596                                 EFX_ERR(efx, "failed to backup PCI state of "
2597                                         "secondary function prior to "
2598                                         "hardware reset\n");
2599                                 goto fail2;
2600                         }
2601                 }
2602
2603                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2604                                      EXT_PHY_RST_DUR, 0x7,
2605                                      SWRST, 1);
2606         } else {
2607                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2608                                  EXCLUDE_FROM_RESET : 0);
2609
2610                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2611                                      EXT_PHY_RST_CTL, reset_phy,
2612                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2613                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2614                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2615                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2616                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2617                                      SWRST, 1);
2618         }
2619         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2620
2621         EFX_LOG(efx, "waiting for hardware reset\n");
2622         schedule_timeout_uninterruptible(HZ / 20);
2623
2624         /* Restore PCI configuration if needed */
2625         if (method == RESET_TYPE_WORLD) {
2626                 if (FALCON_IS_DUAL_FUNC(efx)) {
2627                         rc = pci_restore_state(nic_data->pci_dev2);
2628                         if (rc) {
2629                                 EFX_ERR(efx, "failed to restore PCI config for "
2630                                         "the secondary function\n");
2631                                 goto fail3;
2632                         }
2633                 }
2634                 rc = pci_restore_state(efx->pci_dev);
2635                 if (rc) {
2636                         EFX_ERR(efx, "failed to restore PCI config for the "
2637                                 "primary function\n");
2638                         goto fail4;
2639                 }
2640                 EFX_LOG(efx, "successfully restored PCI config\n");
2641         }
2642
2643         /* Assert that reset complete */
2644         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2645         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2646                 rc = -ETIMEDOUT;
2647                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2648                 goto fail5;
2649         }
2650         EFX_LOG(efx, "hardware reset complete\n");
2651
2652         return 0;
2653
2654         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2655 fail2:
2656 fail3:
2657         pci_restore_state(efx->pci_dev);
2658 fail1:
2659 fail4:
2660 fail5:
2661         return rc;
2662 }
2663
2664 /* Zeroes out the SRAM contents.  This routine must be called in
2665  * process context and is allowed to sleep.
2666  */
2667 static int falcon_reset_sram(struct efx_nic *efx)
2668 {
2669         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2670         int count;
2671
2672         /* Set the SRAM wake/sleep GPIO appropriately. */
2673         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2674         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2675         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2676         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2677
2678         /* Initiate SRAM reset */
2679         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2680                              SRAM_OOB_BT_INIT_EN, 1,
2681                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2682         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2683
2684         /* Wait for SRAM reset to complete */
2685         count = 0;
2686         do {
2687                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2688
2689                 /* SRAM reset is slow; expect around 16ms */
2690                 schedule_timeout_uninterruptible(HZ / 50);
2691
2692                 /* Check for reset complete */
2693                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2694                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2695                         EFX_LOG(efx, "SRAM reset complete\n");
2696
2697                         return 0;
2698                 }
2699         } while (++count < 20); /* wait upto 0.4 sec */
2700
2701         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2702         return -ETIMEDOUT;
2703 }
2704
2705 static int falcon_spi_device_init(struct efx_nic *efx,
2706                                   struct efx_spi_device **spi_device_ret,
2707                                   unsigned int device_id, u32 device_type)
2708 {
2709         struct efx_spi_device *spi_device;
2710
2711         if (device_type != 0) {
2712                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2713                 if (!spi_device)
2714                         return -ENOMEM;
2715                 spi_device->device_id = device_id;
2716                 spi_device->size =
2717                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2718                 spi_device->addr_len =
2719                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2720                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2721                                              spi_device->addr_len == 1);
2722                 spi_device->erase_command =
2723                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2724                 spi_device->erase_size =
2725                         1 << SPI_DEV_TYPE_FIELD(device_type,
2726                                                 SPI_DEV_TYPE_ERASE_SIZE);
2727                 spi_device->block_size =
2728                         1 << SPI_DEV_TYPE_FIELD(device_type,
2729                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2730
2731                 spi_device->efx = efx;
2732         } else {
2733                 spi_device = NULL;
2734         }
2735
2736         kfree(*spi_device_ret);
2737         *spi_device_ret = spi_device;
2738         return 0;
2739 }
2740
2741
2742 static void falcon_remove_spi_devices(struct efx_nic *efx)
2743 {
2744         kfree(efx->spi_eeprom);
2745         efx->spi_eeprom = NULL;
2746         kfree(efx->spi_flash);
2747         efx->spi_flash = NULL;
2748 }
2749
2750 /* Extract non-volatile configuration */
2751 static int falcon_probe_nvconfig(struct efx_nic *efx)
2752 {
2753         struct falcon_nvconfig *nvconfig;
2754         int board_rev;
2755         int rc;
2756
2757         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2758         if (!nvconfig)
2759                 return -ENOMEM;
2760
2761         rc = falcon_read_nvram(efx, nvconfig);
2762         if (rc == -EINVAL) {
2763                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2764                 efx->phy_type = PHY_TYPE_NONE;
2765                 efx->mii.phy_id = PHY_ADDR_INVALID;
2766                 board_rev = 0;
2767                 rc = 0;
2768         } else if (rc) {
2769                 goto fail1;
2770         } else {
2771                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2772                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2773
2774                 efx->phy_type = v2->port0_phy_type;
2775                 efx->mii.phy_id = v2->port0_phy_addr;
2776                 board_rev = le16_to_cpu(v2->board_revision);
2777
2778                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2779                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2780                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2781                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
2782                                                     EE_SPI_FLASH,
2783                                                     le32_to_cpu(fl));
2784                         if (rc)
2785                                 goto fail2;
2786                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2787                                                     EE_SPI_EEPROM,
2788                                                     le32_to_cpu(ee));
2789                         if (rc)
2790                                 goto fail2;
2791                 }
2792         }
2793
2794         /* Read the MAC addresses */
2795         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2796
2797         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2798
2799         efx_set_board_info(efx, board_rev);
2800
2801         kfree(nvconfig);
2802         return 0;
2803
2804  fail2:
2805         falcon_remove_spi_devices(efx);
2806  fail1:
2807         kfree(nvconfig);
2808         return rc;
2809 }
2810
2811 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2812  * count, port speed).  Set workaround and feature flags accordingly.
2813  */
2814 static int falcon_probe_nic_variant(struct efx_nic *efx)
2815 {
2816         efx_oword_t altera_build;
2817         efx_oword_t nic_stat;
2818
2819         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2820         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2821                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2822                 return -ENODEV;
2823         }
2824
2825         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2826
2827         switch (falcon_rev(efx)) {
2828         case FALCON_REV_A0:
2829         case 0xff:
2830                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2831                 return -ENODEV;
2832
2833         case FALCON_REV_A1:
2834                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2835                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2836                         return -ENODEV;
2837                 }
2838                 break;
2839
2840         case FALCON_REV_B0:
2841                 break;
2842
2843         default:
2844                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2845                 return -ENODEV;
2846         }
2847
2848         /* Initial assumed speed */
2849         efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
2850
2851         return 0;
2852 }
2853
2854 /* Probe all SPI devices on the NIC */
2855 static void falcon_probe_spi_devices(struct efx_nic *efx)
2856 {
2857         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2858         int boot_dev;
2859
2860         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2861         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2862         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2863
2864         if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2865                 boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2866                             EE_SPI_FLASH : EE_SPI_EEPROM);
2867                 EFX_LOG(efx, "Booted from %s\n",
2868                         boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2869         } else {
2870                 /* Disable VPD and set clock dividers to safe
2871                  * values for initial programming. */
2872                 boot_dev = -1;
2873                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2874                         " setting SPI config\n");
2875                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2876                                      /* 125 MHz / 7 ~= 20 MHz */
2877                                      EE_SF_CLOCK_DIV, 7,
2878                                      /* 125 MHz / 63 ~= 2 MHz */
2879                                      EE_EE_CLOCK_DIV, 63);
2880                 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2881         }
2882
2883         if (boot_dev == EE_SPI_FLASH)
2884                 falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2885                                        default_flash_type);
2886         if (boot_dev == EE_SPI_EEPROM)
2887                 falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2888                                        large_eeprom_type);
2889 }
2890
2891 int falcon_probe_nic(struct efx_nic *efx)
2892 {
2893         struct falcon_nic_data *nic_data;
2894         int rc;
2895
2896         /* Allocate storage for hardware specific data */
2897         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2898         if (!nic_data)
2899                 return -ENOMEM;
2900         efx->nic_data = nic_data;
2901
2902         /* Determine number of ports etc. */
2903         rc = falcon_probe_nic_variant(efx);
2904         if (rc)
2905                 goto fail1;
2906
2907         /* Probe secondary function if expected */
2908         if (FALCON_IS_DUAL_FUNC(efx)) {
2909                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2910
2911                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2912                                              dev))) {
2913                         if (dev->bus == efx->pci_dev->bus &&
2914                             dev->devfn == efx->pci_dev->devfn + 1) {
2915                                 nic_data->pci_dev2 = dev;
2916                                 break;
2917                         }
2918                 }
2919                 if (!nic_data->pci_dev2) {
2920                         EFX_ERR(efx, "failed to find secondary function\n");
2921                         rc = -ENODEV;
2922                         goto fail2;
2923                 }
2924         }
2925
2926         /* Now we can reset the NIC */
2927         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2928         if (rc) {
2929                 EFX_ERR(efx, "failed to reset NIC\n");
2930                 goto fail3;
2931         }
2932
2933         /* Allocate memory for INT_KER */
2934         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2935         if (rc)
2936                 goto fail4;
2937         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2938
2939         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2940                 (unsigned long long)efx->irq_status.dma_addr,
2941                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2942
2943         falcon_probe_spi_devices(efx);
2944
2945         /* Read in the non-volatile configuration */
2946         rc = falcon_probe_nvconfig(efx);
2947         if (rc)
2948                 goto fail5;
2949
2950         /* Initialise I2C adapter */
2951         efx->i2c_adap.owner = THIS_MODULE;
2952         nic_data->i2c_data = falcon_i2c_bit_operations;
2953         nic_data->i2c_data.data = efx;
2954         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2955         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2956         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2957         rc = i2c_bit_add_bus(&efx->i2c_adap);
2958         if (rc)
2959                 goto fail5;
2960
2961         return 0;
2962
2963  fail5:
2964         falcon_remove_spi_devices(efx);
2965         falcon_free_buffer(efx, &efx->irq_status);
2966  fail4:
2967  fail3:
2968         if (nic_data->pci_dev2) {
2969                 pci_dev_put(nic_data->pci_dev2);
2970                 nic_data->pci_dev2 = NULL;
2971         }
2972  fail2:
2973  fail1:
2974         kfree(efx->nic_data);
2975         return rc;
2976 }
2977
2978 /* This call performs hardware-specific global initialisation, such as
2979  * defining the descriptor cache sizes and number of RSS channels.
2980  * It does not set up any buffers, descriptor rings or event queues.
2981  */
2982 int falcon_init_nic(struct efx_nic *efx)
2983 {
2984         efx_oword_t temp;
2985         unsigned thresh;
2986         int rc;
2987
2988         /* Use on-chip SRAM */
2989         falcon_read(efx, &temp, NIC_STAT_REG);
2990         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2991         falcon_write(efx, &temp, NIC_STAT_REG);
2992
2993         /* Set the source of the GMAC clock */
2994         if (falcon_rev(efx) == FALCON_REV_B0) {
2995                 falcon_read(efx, &temp, GPIO_CTL_REG_KER);
2996                 EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
2997                 falcon_write(efx, &temp, GPIO_CTL_REG_KER);
2998         }
2999
3000         /* Set buffer table mode */
3001         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
3002         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
3003
3004         rc = falcon_reset_sram(efx);
3005         if (rc)
3006                 return rc;
3007
3008         /* Set positions of descriptor caches in SRAM. */
3009         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3010         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
3011         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3012         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
3013
3014         /* Set TX descriptor cache size. */
3015         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3016         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3017         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
3018
3019         /* Set RX descriptor cache size.  Set low watermark to size-8, as
3020          * this allows most efficient prefetching.
3021          */
3022         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3023         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3024         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
3025         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3026         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
3027
3028         /* Clear the parity enables on the TX data fifos as
3029          * they produce false parity errors because of timing issues
3030          */
3031         if (EFX_WORKAROUND_5129(efx)) {
3032                 falcon_read(efx, &temp, SPARE_REG_KER);
3033                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
3034                 falcon_write(efx, &temp, SPARE_REG_KER);
3035         }
3036
3037         /* Enable all the genuinely fatal interrupts.  (They are still
3038          * masked by the overall interrupt mask, controlled by
3039          * falcon_interrupts()).
3040          *
3041          * Note: All other fatal interrupts are enabled
3042          */
3043         EFX_POPULATE_OWORD_3(temp,
3044                              ILL_ADR_INT_KER_EN, 1,
3045                              RBUF_OWN_INT_KER_EN, 1,
3046                              TBUF_OWN_INT_KER_EN, 1);
3047         EFX_INVERT_OWORD(temp);
3048         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
3049
3050         if (EFX_WORKAROUND_7244(efx)) {
3051                 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
3052                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
3053                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
3054                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
3055                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
3056                 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
3057         }
3058
3059         falcon_setup_rss_indir_table(efx);
3060
3061         /* Setup RX.  Wait for descriptor is broken and must
3062          * be disabled.  RXDP recovery shouldn't be needed, but is.
3063          */
3064         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
3065         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
3066         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
3067         if (EFX_WORKAROUND_5583(efx))
3068                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
3069         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
3070
3071         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3072          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3073          */
3074         falcon_read(efx, &temp, TX_CFG2_REG_KER);
3075         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
3076         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
3077         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
3078         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
3079         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
3080         /* Enable SW_EV to inherit in char driver - assume harmless here */
3081         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
3082         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3083         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
3084         /* Squash TX of packets of 16 bytes or less */
3085         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3086                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
3087         falcon_write(efx, &temp, TX_CFG2_REG_KER);
3088
3089         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3090          * descriptors (which is bad).
3091          */
3092         falcon_read(efx, &temp, TX_CFG_REG_KER);
3093         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
3094         falcon_write(efx, &temp, TX_CFG_REG_KER);
3095
3096         /* RX config */
3097         falcon_read(efx, &temp, RX_CFG_REG_KER);
3098         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
3099         if (EFX_WORKAROUND_7575(efx))
3100                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
3101                                         (3 * 4096) / 32);
3102         if (falcon_rev(efx) >= FALCON_REV_B0)
3103                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
3104
3105         /* RX FIFO flow control thresholds */
3106         thresh = ((rx_xon_thresh_bytes >= 0) ?
3107                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3108         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3109         thresh = ((rx_xoff_thresh_bytes >= 0) ?
3110                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3111         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3112         /* RX control FIFO thresholds [32 entries] */
3113         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3114         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3115         falcon_write(efx, &temp, RX_CFG_REG_KER);
3116
3117         /* Set destination of both TX and RX Flush events */
3118         if (falcon_rev(efx) >= FALCON_REV_B0) {
3119                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3120                 falcon_write(efx, &temp, DP_CTRL_REG);
3121         }
3122
3123         return 0;
3124 }
3125
3126 void falcon_remove_nic(struct efx_nic *efx)
3127 {
3128         struct falcon_nic_data *nic_data = efx->nic_data;
3129         int rc;
3130
3131         /* Remove I2C adapter and clear it in preparation for a retry */
3132         rc = i2c_del_adapter(&efx->i2c_adap);
3133         BUG_ON(rc);
3134         memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3135
3136         falcon_remove_spi_devices(efx);
3137         falcon_free_buffer(efx, &efx->irq_status);
3138
3139         falcon_reset_hw(efx, RESET_TYPE_ALL);
3140
3141         /* Release the second function after the reset */
3142         if (nic_data->pci_dev2) {
3143                 pci_dev_put(nic_data->pci_dev2);
3144                 nic_data->pci_dev2 = NULL;
3145         }
3146
3147         /* Tear down the private nic state */
3148         kfree(efx->nic_data);
3149         efx->nic_data = NULL;
3150 }
3151
3152 void falcon_update_nic_stats(struct efx_nic *efx)
3153 {
3154         efx_oword_t cnt;
3155
3156         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3157         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3158 }
3159
3160 /**************************************************************************
3161  *
3162  * Revision-dependent attributes used by efx.c
3163  *
3164  **************************************************************************
3165  */
3166
3167 struct efx_nic_type falcon_a_nic_type = {
3168         .mem_bar = 2,
3169         .mem_map_size = 0x20000,
3170         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3171         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3172         .buf_tbl_base = BUF_TBL_KER_A1,
3173         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3174         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3175         .txd_ring_mask = FALCON_TXD_RING_MASK,
3176         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3177         .evq_size = FALCON_EVQ_SIZE,
3178         .max_dma_mask = FALCON_DMA_MASK,
3179         .tx_dma_mask = FALCON_TX_DMA_MASK,
3180         .bug5391_mask = 0xf,
3181         .rx_xoff_thresh = 2048,
3182         .rx_xon_thresh = 512,
3183         .rx_buffer_padding = 0x24,
3184         .max_interrupt_mode = EFX_INT_MODE_MSI,
3185         .phys_addr_channels = 4,
3186 };
3187
3188 struct efx_nic_type falcon_b_nic_type = {
3189         .mem_bar = 2,
3190         /* Map everything up to and including the RSS indirection
3191          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3192          * requires that they not be mapped.  */
3193         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3194         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3195         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3196         .buf_tbl_base = BUF_TBL_KER_B0,
3197         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3198         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3199         .txd_ring_mask = FALCON_TXD_RING_MASK,
3200         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3201         .evq_size = FALCON_EVQ_SIZE,
3202         .max_dma_mask = FALCON_DMA_MASK,
3203         .tx_dma_mask = FALCON_TX_DMA_MASK,
3204         .bug5391_mask = 0,
3205         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3206         .rx_xon_thresh = 27648,  /* ~3*max MTU */
3207         .rx_buffer_padding = 0,
3208         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3209         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3210                                    * interrupt handler only supports 32
3211                                    * channels */
3212 };
3213