]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/sfc/falcon.c
Merge branch 'master' of git://git.infradead.org/~dwmw2/solos-2.6
[mv-sheeva.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  * @int_error_count: Number of internal errors seen recently
43  * @int_error_expire: Time at which error count will be expired
44  */
45 struct falcon_nic_data {
46         unsigned next_buffer_table;
47         struct pci_dev *pci_dev2;
48         struct i2c_algo_bit_data i2c_data;
49
50         unsigned int_error_count;
51         unsigned long int_error_expire;
52 };
53
54 /**************************************************************************
55  *
56  * Configurable values
57  *
58  **************************************************************************
59  */
60
61 static int disable_dma_stats;
62
63 /* This is set to 16 for a good reason.  In summary, if larger than
64  * 16, the descriptor cache holds more than a default socket
65  * buffer's worth of packets (for UDP we can only have at most one
66  * socket buffer's worth outstanding).  This combined with the fact
67  * that we only get 1 TX event per descriptor cache means the NIC
68  * goes idle.
69  */
70 #define TX_DC_ENTRIES 16
71 #define TX_DC_ENTRIES_ORDER 0
72 #define TX_DC_BASE 0x130000
73
74 #define RX_DC_ENTRIES 64
75 #define RX_DC_ENTRIES_ORDER 2
76 #define RX_DC_BASE 0x100000
77
78 static const unsigned int
79 /* "Large" EEPROM device: Atmel AT25640 or similar
80  * 8 KB, 16-bit address, 32 B write block */
81 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
82                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
83                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
84 /* Default flash device: Atmel AT25F1024
85  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
86 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
87                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
88                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
89                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
90                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
91
92 /* RX FIFO XOFF watermark
93  *
94  * When the amount of the RX FIFO increases used increases past this
95  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
96  * This also has an effect on RX/TX arbitration
97  */
98 static int rx_xoff_thresh_bytes = -1;
99 module_param(rx_xoff_thresh_bytes, int, 0644);
100 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
101
102 /* RX FIFO XON watermark
103  *
104  * When the amount of the RX FIFO used decreases below this
105  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
106  * This also has an effect on RX/TX arbitration
107  */
108 static int rx_xon_thresh_bytes = -1;
109 module_param(rx_xon_thresh_bytes, int, 0644);
110 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
111
112 /* TX descriptor ring size - min 512 max 4k */
113 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
114 #define FALCON_TXD_RING_SIZE 1024
115 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
116
117 /* RX descriptor ring size - min 512 max 4k */
118 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
119 #define FALCON_RXD_RING_SIZE 1024
120 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
121
122 /* Event queue size - max 32k */
123 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
124 #define FALCON_EVQ_SIZE 4096
125 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
126
127 /* If FALCON_MAX_INT_ERRORS internal errors occur within
128  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
129  * disable it.
130  */
131 #define FALCON_INT_ERROR_EXPIRE 3600
132 #define FALCON_MAX_INT_ERRORS 5
133
134 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
135  */
136 #define FALCON_FLUSH_INTERVAL 10
137 #define FALCON_FLUSH_POLL_COUNT 100
138
139 /**************************************************************************
140  *
141  * Falcon constants
142  *
143  **************************************************************************
144  */
145
146 /* DMA address mask */
147 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
148
149 /* TX DMA length mask (13-bit) */
150 #define FALCON_TX_DMA_MASK (4096 - 1)
151
152 /* Size and alignment of special buffers (4KB) */
153 #define FALCON_BUF_SIZE 4096
154
155 /* Dummy SRAM size code */
156 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
157
158 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
159 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
160 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
161 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
162 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
163 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
164
165 #define FALCON_IS_DUAL_FUNC(efx)                \
166         (falcon_rev(efx) < FALCON_REV_B0)
167
168 /**************************************************************************
169  *
170  * Falcon hardware access
171  *
172  **************************************************************************/
173
174 /* Read the current event from the event queue */
175 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
176                                         unsigned int index)
177 {
178         return (((efx_qword_t *) (channel->eventq.addr)) + index);
179 }
180
181 /* See if an event is present
182  *
183  * We check both the high and low dword of the event for all ones.  We
184  * wrote all ones when we cleared the event, and no valid event can
185  * have all ones in either its high or low dwords.  This approach is
186  * robust against reordering.
187  *
188  * Note that using a single 64-bit comparison is incorrect; even
189  * though the CPU read will be atomic, the DMA write may not be.
190  */
191 static inline int falcon_event_present(efx_qword_t *event)
192 {
193         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
194                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
195 }
196
197 /**************************************************************************
198  *
199  * I2C bus - this is a bit-bashing interface using GPIO pins
200  * Note that it uses the output enables to tristate the outputs
201  * SDA is the data pin and SCL is the clock
202  *
203  **************************************************************************
204  */
205 static void falcon_setsda(void *data, int state)
206 {
207         struct efx_nic *efx = (struct efx_nic *)data;
208         efx_oword_t reg;
209
210         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
211         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
212         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
213 }
214
215 static void falcon_setscl(void *data, int state)
216 {
217         struct efx_nic *efx = (struct efx_nic *)data;
218         efx_oword_t reg;
219
220         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
221         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
222         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
223 }
224
225 static int falcon_getsda(void *data)
226 {
227         struct efx_nic *efx = (struct efx_nic *)data;
228         efx_oword_t reg;
229
230         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
231         return EFX_OWORD_FIELD(reg, GPIO3_IN);
232 }
233
234 static int falcon_getscl(void *data)
235 {
236         struct efx_nic *efx = (struct efx_nic *)data;
237         efx_oword_t reg;
238
239         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
240         return EFX_OWORD_FIELD(reg, GPIO0_IN);
241 }
242
243 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
244         .setsda         = falcon_setsda,
245         .setscl         = falcon_setscl,
246         .getsda         = falcon_getsda,
247         .getscl         = falcon_getscl,
248         .udelay         = 5,
249         /* Wait up to 50 ms for slave to let us pull SCL high */
250         .timeout        = DIV_ROUND_UP(HZ, 20),
251 };
252
253 /**************************************************************************
254  *
255  * Falcon special buffer handling
256  * Special buffers are used for event queues and the TX and RX
257  * descriptor rings.
258  *
259  *************************************************************************/
260
261 /*
262  * Initialise a Falcon special buffer
263  *
264  * This will define a buffer (previously allocated via
265  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
266  * it to be used for event queues, descriptor rings etc.
267  */
268 static void
269 falcon_init_special_buffer(struct efx_nic *efx,
270                            struct efx_special_buffer *buffer)
271 {
272         efx_qword_t buf_desc;
273         int index;
274         dma_addr_t dma_addr;
275         int i;
276
277         EFX_BUG_ON_PARANOID(!buffer->addr);
278
279         /* Write buffer descriptors to NIC */
280         for (i = 0; i < buffer->entries; i++) {
281                 index = buffer->index + i;
282                 dma_addr = buffer->dma_addr + (i * 4096);
283                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
284                         index, (unsigned long long)dma_addr);
285                 EFX_POPULATE_QWORD_4(buf_desc,
286                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
287                                      BUF_ADR_REGION, 0,
288                                      BUF_ADR_FBUF, (dma_addr >> 12),
289                                      BUF_OWNER_ID_FBUF, 0);
290                 falcon_write_sram(efx, &buf_desc, index);
291         }
292 }
293
294 /* Unmaps a buffer from Falcon and clears the buffer table entries */
295 static void
296 falcon_fini_special_buffer(struct efx_nic *efx,
297                            struct efx_special_buffer *buffer)
298 {
299         efx_oword_t buf_tbl_upd;
300         unsigned int start = buffer->index;
301         unsigned int end = (buffer->index + buffer->entries - 1);
302
303         if (!buffer->entries)
304                 return;
305
306         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
307                 buffer->index, buffer->index + buffer->entries - 1);
308
309         EFX_POPULATE_OWORD_4(buf_tbl_upd,
310                              BUF_UPD_CMD, 0,
311                              BUF_CLR_CMD, 1,
312                              BUF_CLR_END_ID, end,
313                              BUF_CLR_START_ID, start);
314         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
315 }
316
317 /*
318  * Allocate a new Falcon special buffer
319  *
320  * This allocates memory for a new buffer, clears it and allocates a
321  * new buffer ID range.  It does not write into Falcon's buffer table.
322  *
323  * This call will allocate 4KB buffers, since Falcon can't use 8KB
324  * buffers for event queues and descriptor rings.
325  */
326 static int falcon_alloc_special_buffer(struct efx_nic *efx,
327                                        struct efx_special_buffer *buffer,
328                                        unsigned int len)
329 {
330         struct falcon_nic_data *nic_data = efx->nic_data;
331
332         len = ALIGN(len, FALCON_BUF_SIZE);
333
334         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
335                                             &buffer->dma_addr);
336         if (!buffer->addr)
337                 return -ENOMEM;
338         buffer->len = len;
339         buffer->entries = len / FALCON_BUF_SIZE;
340         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
341
342         /* All zeros is a potentially valid event so memset to 0xff */
343         memset(buffer->addr, 0xff, len);
344
345         /* Select new buffer ID */
346         buffer->index = nic_data->next_buffer_table;
347         nic_data->next_buffer_table += buffer->entries;
348
349         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
350                 "(virt %p phys %lx)\n", buffer->index,
351                 buffer->index + buffer->entries - 1,
352                 (unsigned long long)buffer->dma_addr, len,
353                 buffer->addr, virt_to_phys(buffer->addr));
354
355         return 0;
356 }
357
358 static void falcon_free_special_buffer(struct efx_nic *efx,
359                                        struct efx_special_buffer *buffer)
360 {
361         if (!buffer->addr)
362                 return;
363
364         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
365                 "(virt %p phys %lx)\n", buffer->index,
366                 buffer->index + buffer->entries - 1,
367                 (unsigned long long)buffer->dma_addr, buffer->len,
368                 buffer->addr, virt_to_phys(buffer->addr));
369
370         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
371                             buffer->dma_addr);
372         buffer->addr = NULL;
373         buffer->entries = 0;
374 }
375
376 /**************************************************************************
377  *
378  * Falcon generic buffer handling
379  * These buffers are used for interrupt status and MAC stats
380  *
381  **************************************************************************/
382
383 static int falcon_alloc_buffer(struct efx_nic *efx,
384                                struct efx_buffer *buffer, unsigned int len)
385 {
386         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
387                                             &buffer->dma_addr);
388         if (!buffer->addr)
389                 return -ENOMEM;
390         buffer->len = len;
391         memset(buffer->addr, 0, len);
392         return 0;
393 }
394
395 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
396 {
397         if (buffer->addr) {
398                 pci_free_consistent(efx->pci_dev, buffer->len,
399                                     buffer->addr, buffer->dma_addr);
400                 buffer->addr = NULL;
401         }
402 }
403
404 /**************************************************************************
405  *
406  * Falcon TX path
407  *
408  **************************************************************************/
409
410 /* Returns a pointer to the specified transmit descriptor in the TX
411  * descriptor queue belonging to the specified channel.
412  */
413 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
414                                                unsigned int index)
415 {
416         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
417 }
418
419 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
420 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
421 {
422         unsigned write_ptr;
423         efx_dword_t reg;
424
425         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
426         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
427         falcon_writel_page(tx_queue->efx, &reg,
428                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
429 }
430
431
432 /* For each entry inserted into the software descriptor ring, create a
433  * descriptor in the hardware TX descriptor ring (in host memory), and
434  * write a doorbell.
435  */
436 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
437 {
438
439         struct efx_tx_buffer *buffer;
440         efx_qword_t *txd;
441         unsigned write_ptr;
442
443         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
444
445         do {
446                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
447                 buffer = &tx_queue->buffer[write_ptr];
448                 txd = falcon_tx_desc(tx_queue, write_ptr);
449                 ++tx_queue->write_count;
450
451                 /* Create TX descriptor ring entry */
452                 EFX_POPULATE_QWORD_5(*txd,
453                                      TX_KER_PORT, 0,
454                                      TX_KER_CONT, buffer->continuation,
455                                      TX_KER_BYTE_CNT, buffer->len,
456                                      TX_KER_BUF_REGION, 0,
457                                      TX_KER_BUF_ADR, buffer->dma_addr);
458         } while (tx_queue->write_count != tx_queue->insert_count);
459
460         wmb(); /* Ensure descriptors are written before they are fetched */
461         falcon_notify_tx_desc(tx_queue);
462 }
463
464 /* Allocate hardware resources for a TX queue */
465 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
466 {
467         struct efx_nic *efx = tx_queue->efx;
468         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
469                                            FALCON_TXD_RING_SIZE *
470                                            sizeof(efx_qword_t));
471 }
472
473 void falcon_init_tx(struct efx_tx_queue *tx_queue)
474 {
475         efx_oword_t tx_desc_ptr;
476         struct efx_nic *efx = tx_queue->efx;
477
478         tx_queue->flushed = false;
479
480         /* Pin TX descriptor ring */
481         falcon_init_special_buffer(efx, &tx_queue->txd);
482
483         /* Push TX descriptor ring to card */
484         EFX_POPULATE_OWORD_10(tx_desc_ptr,
485                               TX_DESCQ_EN, 1,
486                               TX_ISCSI_DDIG_EN, 0,
487                               TX_ISCSI_HDIG_EN, 0,
488                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
489                               TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
490                               TX_DESCQ_OWNER_ID, 0,
491                               TX_DESCQ_LABEL, tx_queue->queue,
492                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
493                               TX_DESCQ_TYPE, 0,
494                               TX_NON_IP_DROP_DIS_B0, 1);
495
496         if (falcon_rev(efx) >= FALCON_REV_B0) {
497                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
498                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
499                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
500         }
501
502         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
503                            tx_queue->queue);
504
505         if (falcon_rev(efx) < FALCON_REV_B0) {
506                 efx_oword_t reg;
507
508                 /* Only 128 bits in this register */
509                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
510
511                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
512                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
513                         clear_bit_le(tx_queue->queue, (void *)&reg);
514                 else
515                         set_bit_le(tx_queue->queue, (void *)&reg);
516                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
517         }
518 }
519
520 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
521 {
522         struct efx_nic *efx = tx_queue->efx;
523         efx_oword_t tx_flush_descq;
524
525         /* Post a flush command */
526         EFX_POPULATE_OWORD_2(tx_flush_descq,
527                              TX_FLUSH_DESCQ_CMD, 1,
528                              TX_FLUSH_DESCQ, tx_queue->queue);
529         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
530 }
531
532 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
533 {
534         struct efx_nic *efx = tx_queue->efx;
535         efx_oword_t tx_desc_ptr;
536
537         /* The queue should have been flushed */
538         WARN_ON(!tx_queue->flushed);
539
540         /* Remove TX descriptor ring from card */
541         EFX_ZERO_OWORD(tx_desc_ptr);
542         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
543                            tx_queue->queue);
544
545         /* Unpin TX descriptor ring */
546         falcon_fini_special_buffer(efx, &tx_queue->txd);
547 }
548
549 /* Free buffers backing TX queue */
550 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
551 {
552         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
553 }
554
555 /**************************************************************************
556  *
557  * Falcon RX path
558  *
559  **************************************************************************/
560
561 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
562 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
563                                                unsigned int index)
564 {
565         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
566 }
567
568 /* This creates an entry in the RX descriptor queue */
569 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
570                                         unsigned index)
571 {
572         struct efx_rx_buffer *rx_buf;
573         efx_qword_t *rxd;
574
575         rxd = falcon_rx_desc(rx_queue, index);
576         rx_buf = efx_rx_buffer(rx_queue, index);
577         EFX_POPULATE_QWORD_3(*rxd,
578                              RX_KER_BUF_SIZE,
579                              rx_buf->len -
580                              rx_queue->efx->type->rx_buffer_padding,
581                              RX_KER_BUF_REGION, 0,
582                              RX_KER_BUF_ADR, rx_buf->dma_addr);
583 }
584
585 /* This writes to the RX_DESC_WPTR register for the specified receive
586  * descriptor ring.
587  */
588 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
589 {
590         efx_dword_t reg;
591         unsigned write_ptr;
592
593         while (rx_queue->notified_count != rx_queue->added_count) {
594                 falcon_build_rx_desc(rx_queue,
595                                      rx_queue->notified_count &
596                                      FALCON_RXD_RING_MASK);
597                 ++rx_queue->notified_count;
598         }
599
600         wmb();
601         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
602         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
603         falcon_writel_page(rx_queue->efx, &reg,
604                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
605 }
606
607 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
608 {
609         struct efx_nic *efx = rx_queue->efx;
610         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
611                                            FALCON_RXD_RING_SIZE *
612                                            sizeof(efx_qword_t));
613 }
614
615 void falcon_init_rx(struct efx_rx_queue *rx_queue)
616 {
617         efx_oword_t rx_desc_ptr;
618         struct efx_nic *efx = rx_queue->efx;
619         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
620         bool iscsi_digest_en = is_b0;
621
622         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
623                 rx_queue->queue, rx_queue->rxd.index,
624                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
625
626         rx_queue->flushed = false;
627
628         /* Pin RX descriptor ring */
629         falcon_init_special_buffer(efx, &rx_queue->rxd);
630
631         /* Push RX descriptor ring to card */
632         EFX_POPULATE_OWORD_10(rx_desc_ptr,
633                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
634                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
635                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
636                               RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
637                               RX_DESCQ_OWNER_ID, 0,
638                               RX_DESCQ_LABEL, rx_queue->queue,
639                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
640                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
641                               /* For >=B0 this is scatter so disable */
642                               RX_DESCQ_JUMBO, !is_b0,
643                               RX_DESCQ_EN, 1);
644         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
645                            rx_queue->queue);
646 }
647
648 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
649 {
650         struct efx_nic *efx = rx_queue->efx;
651         efx_oword_t rx_flush_descq;
652
653         /* Post a flush command */
654         EFX_POPULATE_OWORD_2(rx_flush_descq,
655                              RX_FLUSH_DESCQ_CMD, 1,
656                              RX_FLUSH_DESCQ, rx_queue->queue);
657         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
658 }
659
660 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
661 {
662         efx_oword_t rx_desc_ptr;
663         struct efx_nic *efx = rx_queue->efx;
664
665         /* The queue should already have been flushed */
666         WARN_ON(!rx_queue->flushed);
667
668         /* Remove RX descriptor ring from card */
669         EFX_ZERO_OWORD(rx_desc_ptr);
670         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
671                            rx_queue->queue);
672
673         /* Unpin RX descriptor ring */
674         falcon_fini_special_buffer(efx, &rx_queue->rxd);
675 }
676
677 /* Free buffers backing RX queue */
678 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
679 {
680         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
681 }
682
683 /**************************************************************************
684  *
685  * Falcon event queue processing
686  * Event queues are processed by per-channel tasklets.
687  *
688  **************************************************************************/
689
690 /* Update a channel's event queue's read pointer (RPTR) register
691  *
692  * This writes the EVQ_RPTR_REG register for the specified channel's
693  * event queue.
694  *
695  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
696  * whereas channel->eventq_read_ptr contains the index of the "next to
697  * read" event.
698  */
699 void falcon_eventq_read_ack(struct efx_channel *channel)
700 {
701         efx_dword_t reg;
702         struct efx_nic *efx = channel->efx;
703
704         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
705         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
706                             channel->channel);
707 }
708
709 /* Use HW to insert a SW defined event */
710 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
711 {
712         efx_oword_t drv_ev_reg;
713
714         EFX_POPULATE_OWORD_2(drv_ev_reg,
715                              DRV_EV_QID, channel->channel,
716                              DRV_EV_DATA,
717                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
718         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
719 }
720
721 /* Handle a transmit completion event
722  *
723  * Falcon batches TX completion events; the message we receive is of
724  * the form "complete all TX events up to this index".
725  */
726 static void falcon_handle_tx_event(struct efx_channel *channel,
727                                    efx_qword_t *event)
728 {
729         unsigned int tx_ev_desc_ptr;
730         unsigned int tx_ev_q_label;
731         struct efx_tx_queue *tx_queue;
732         struct efx_nic *efx = channel->efx;
733
734         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
735                 /* Transmit completion */
736                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
737                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
738                 tx_queue = &efx->tx_queue[tx_ev_q_label];
739                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
740         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
741                 /* Rewrite the FIFO write pointer */
742                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
743                 tx_queue = &efx->tx_queue[tx_ev_q_label];
744
745                 if (efx_dev_registered(efx))
746                         netif_tx_lock(efx->net_dev);
747                 falcon_notify_tx_desc(tx_queue);
748                 if (efx_dev_registered(efx))
749                         netif_tx_unlock(efx->net_dev);
750         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
751                    EFX_WORKAROUND_10727(efx)) {
752                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
753         } else {
754                 EFX_ERR(efx, "channel %d unexpected TX event "
755                         EFX_QWORD_FMT"\n", channel->channel,
756                         EFX_QWORD_VAL(*event));
757         }
758 }
759
760 /* Detect errors included in the rx_evt_pkt_ok bit. */
761 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
762                                     const efx_qword_t *event,
763                                     bool *rx_ev_pkt_ok,
764                                     bool *discard)
765 {
766         struct efx_nic *efx = rx_queue->efx;
767         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
768         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
769         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
770         bool rx_ev_other_err, rx_ev_pause_frm;
771         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
772         unsigned rx_ev_pkt_type;
773
774         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
775         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
776         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
777         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
778         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
779                                                  RX_EV_BUF_OWNER_ID_ERR);
780         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
781         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
782                                                   RX_EV_IP_HDR_CHKSUM_ERR);
783         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
784                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
785         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
786         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
787         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
788                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
789         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
790
791         /* Every error apart from tobe_disc and pause_frm */
792         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
793                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
794                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
795
796         /* Count errors that are not in MAC stats.  Ignore expected
797          * checksum errors during self-test. */
798         if (rx_ev_frm_trunc)
799                 ++rx_queue->channel->n_rx_frm_trunc;
800         else if (rx_ev_tobe_disc)
801                 ++rx_queue->channel->n_rx_tobe_disc;
802         else if (!efx->loopback_selftest) {
803                 if (rx_ev_ip_hdr_chksum_err)
804                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
805                 else if (rx_ev_tcp_udp_chksum_err)
806                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
807         }
808         if (rx_ev_ip_frag_err)
809                 ++rx_queue->channel->n_rx_ip_frag_err;
810
811         /* The frame must be discarded if any of these are true. */
812         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
813                     rx_ev_tobe_disc | rx_ev_pause_frm);
814
815         /* TOBE_DISC is expected on unicast mismatches; don't print out an
816          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
817          * to a FIFO overflow.
818          */
819 #ifdef EFX_ENABLE_DEBUG
820         if (rx_ev_other_err) {
821                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
822                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
823                             rx_queue->queue, EFX_QWORD_VAL(*event),
824                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
825                             rx_ev_ip_hdr_chksum_err ?
826                             " [IP_HDR_CHKSUM_ERR]" : "",
827                             rx_ev_tcp_udp_chksum_err ?
828                             " [TCP_UDP_CHKSUM_ERR]" : "",
829                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
830                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
831                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
832                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
833                             rx_ev_pause_frm ? " [PAUSE]" : "");
834         }
835 #endif
836 }
837
838 /* Handle receive events that are not in-order. */
839 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
840                                        unsigned index)
841 {
842         struct efx_nic *efx = rx_queue->efx;
843         unsigned expected, dropped;
844
845         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
846         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
847                    FALCON_RXD_RING_MASK);
848         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
849                 dropped, index, expected);
850
851         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
852                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
853 }
854
855 /* Handle a packet received event
856  *
857  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
858  * wrong destination address
859  * Also "is multicast" and "matches multicast filter" flags can be used to
860  * discard non-matching multicast packets.
861  */
862 static void falcon_handle_rx_event(struct efx_channel *channel,
863                                    const efx_qword_t *event)
864 {
865         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
866         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
867         unsigned expected_ptr;
868         bool rx_ev_pkt_ok, discard = false, checksummed;
869         struct efx_rx_queue *rx_queue;
870         struct efx_nic *efx = channel->efx;
871
872         /* Basic packet information */
873         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
874         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
875         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
876         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
877         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
878         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
879
880         rx_queue = &efx->rx_queue[channel->channel];
881
882         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
883         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
884         if (unlikely(rx_ev_desc_ptr != expected_ptr))
885                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
886
887         if (likely(rx_ev_pkt_ok)) {
888                 /* If packet is marked as OK and packet type is TCP/IPv4 or
889                  * UDP/IPv4, then we can rely on the hardware checksum.
890                  */
891                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
892         } else {
893                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
894                                         &discard);
895                 checksummed = false;
896         }
897
898         /* Detect multicast packets that didn't match the filter */
899         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
900         if (rx_ev_mcast_pkt) {
901                 unsigned int rx_ev_mcast_hash_match =
902                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
903
904                 if (unlikely(!rx_ev_mcast_hash_match))
905                         discard = true;
906         }
907
908         /* Handle received packet */
909         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
910                       checksummed, discard);
911 }
912
913 /* Global events are basically PHY events */
914 static void falcon_handle_global_event(struct efx_channel *channel,
915                                        efx_qword_t *event)
916 {
917         struct efx_nic *efx = channel->efx;
918         bool handled = false;
919
920         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
921             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
922             EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
923             EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
924                 efx->phy_op->clear_interrupt(efx);
925                 queue_work(efx->workqueue, &efx->phy_work);
926                 handled = true;
927         }
928
929         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
930             EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
931                 queue_work(efx->workqueue, &efx->mac_work);
932                 handled = true;
933         }
934
935         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
936                 EFX_ERR(efx, "channel %d seen global RX_RESET "
937                         "event. Resetting.\n", channel->channel);
938
939                 atomic_inc(&efx->rx_reset);
940                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
941                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
942                 handled = true;
943         }
944
945         if (!handled)
946                 EFX_ERR(efx, "channel %d unknown global event "
947                         EFX_QWORD_FMT "\n", channel->channel,
948                         EFX_QWORD_VAL(*event));
949 }
950
951 static void falcon_handle_driver_event(struct efx_channel *channel,
952                                        efx_qword_t *event)
953 {
954         struct efx_nic *efx = channel->efx;
955         unsigned int ev_sub_code;
956         unsigned int ev_sub_data;
957
958         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
959         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
960
961         switch (ev_sub_code) {
962         case TX_DESCQ_FLS_DONE_EV_DECODE:
963                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
964                           channel->channel, ev_sub_data);
965                 break;
966         case RX_DESCQ_FLS_DONE_EV_DECODE:
967                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
968                           channel->channel, ev_sub_data);
969                 break;
970         case EVQ_INIT_DONE_EV_DECODE:
971                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
972                         channel->channel, ev_sub_data);
973                 break;
974         case SRM_UPD_DONE_EV_DECODE:
975                 EFX_TRACE(efx, "channel %d SRAM update done\n",
976                           channel->channel);
977                 break;
978         case WAKE_UP_EV_DECODE:
979                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
980                           channel->channel, ev_sub_data);
981                 break;
982         case TIMER_EV_DECODE:
983                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
984                           channel->channel, ev_sub_data);
985                 break;
986         case RX_RECOVERY_EV_DECODE:
987                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
988                         "Resetting.\n", channel->channel);
989                 atomic_inc(&efx->rx_reset);
990                 efx_schedule_reset(efx,
991                                    EFX_WORKAROUND_6555(efx) ?
992                                    RESET_TYPE_RX_RECOVERY :
993                                    RESET_TYPE_DISABLE);
994                 break;
995         case RX_DSC_ERROR_EV_DECODE:
996                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
997                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
998                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
999                 break;
1000         case TX_DSC_ERROR_EV_DECODE:
1001                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1002                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1003                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1004                 break;
1005         default:
1006                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1007                           "data %04x\n", channel->channel, ev_sub_code,
1008                           ev_sub_data);
1009                 break;
1010         }
1011 }
1012
1013 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1014 {
1015         unsigned int read_ptr;
1016         efx_qword_t event, *p_event;
1017         int ev_code;
1018         int rx_packets = 0;
1019
1020         read_ptr = channel->eventq_read_ptr;
1021
1022         do {
1023                 p_event = falcon_event(channel, read_ptr);
1024                 event = *p_event;
1025
1026                 if (!falcon_event_present(&event))
1027                         /* End of events */
1028                         break;
1029
1030                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1031                           channel->channel, EFX_QWORD_VAL(event));
1032
1033                 /* Clear this event by marking it all ones */
1034                 EFX_SET_QWORD(*p_event);
1035
1036                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1037
1038                 switch (ev_code) {
1039                 case RX_IP_EV_DECODE:
1040                         falcon_handle_rx_event(channel, &event);
1041                         ++rx_packets;
1042                         break;
1043                 case TX_IP_EV_DECODE:
1044                         falcon_handle_tx_event(channel, &event);
1045                         break;
1046                 case DRV_GEN_EV_DECODE:
1047                         channel->eventq_magic
1048                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1049                         EFX_LOG(channel->efx, "channel %d received generated "
1050                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1051                                 EFX_QWORD_VAL(event));
1052                         break;
1053                 case GLOBAL_EV_DECODE:
1054                         falcon_handle_global_event(channel, &event);
1055                         break;
1056                 case DRIVER_EV_DECODE:
1057                         falcon_handle_driver_event(channel, &event);
1058                         break;
1059                 default:
1060                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1061                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1062                                 ev_code, EFX_QWORD_VAL(event));
1063                 }
1064
1065                 /* Increment read pointer */
1066                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1067
1068         } while (rx_packets < rx_quota);
1069
1070         channel->eventq_read_ptr = read_ptr;
1071         return rx_packets;
1072 }
1073
1074 void falcon_set_int_moderation(struct efx_channel *channel)
1075 {
1076         efx_dword_t timer_cmd;
1077         struct efx_nic *efx = channel->efx;
1078
1079         /* Set timer register */
1080         if (channel->irq_moderation) {
1081                 /* Round to resolution supported by hardware.  The value we
1082                  * program is based at 0.  So actual interrupt moderation
1083                  * achieved is ((x + 1) * res).
1084                  */
1085                 unsigned int res = 5;
1086                 channel->irq_moderation -= (channel->irq_moderation % res);
1087                 if (channel->irq_moderation < res)
1088                         channel->irq_moderation = res;
1089                 EFX_POPULATE_DWORD_2(timer_cmd,
1090                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1091                                      TIMER_VAL,
1092                                      (channel->irq_moderation / res) - 1);
1093         } else {
1094                 EFX_POPULATE_DWORD_2(timer_cmd,
1095                                      TIMER_MODE, TIMER_MODE_DIS,
1096                                      TIMER_VAL, 0);
1097         }
1098         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1099                                   channel->channel);
1100
1101 }
1102
1103 /* Allocate buffer table entries for event queue */
1104 int falcon_probe_eventq(struct efx_channel *channel)
1105 {
1106         struct efx_nic *efx = channel->efx;
1107         unsigned int evq_size;
1108
1109         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1110         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1111 }
1112
1113 void falcon_init_eventq(struct efx_channel *channel)
1114 {
1115         efx_oword_t evq_ptr;
1116         struct efx_nic *efx = channel->efx;
1117
1118         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1119                 channel->channel, channel->eventq.index,
1120                 channel->eventq.index + channel->eventq.entries - 1);
1121
1122         /* Pin event queue buffer */
1123         falcon_init_special_buffer(efx, &channel->eventq);
1124
1125         /* Fill event queue with all ones (i.e. empty events) */
1126         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1127
1128         /* Push event queue to card */
1129         EFX_POPULATE_OWORD_3(evq_ptr,
1130                              EVQ_EN, 1,
1131                              EVQ_SIZE, FALCON_EVQ_ORDER,
1132                              EVQ_BUF_BASE_ID, channel->eventq.index);
1133         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1134                            channel->channel);
1135
1136         falcon_set_int_moderation(channel);
1137 }
1138
1139 void falcon_fini_eventq(struct efx_channel *channel)
1140 {
1141         efx_oword_t eventq_ptr;
1142         struct efx_nic *efx = channel->efx;
1143
1144         /* Remove event queue from card */
1145         EFX_ZERO_OWORD(eventq_ptr);
1146         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1147                            channel->channel);
1148
1149         /* Unpin event queue */
1150         falcon_fini_special_buffer(efx, &channel->eventq);
1151 }
1152
1153 /* Free buffers backing event queue */
1154 void falcon_remove_eventq(struct efx_channel *channel)
1155 {
1156         falcon_free_special_buffer(channel->efx, &channel->eventq);
1157 }
1158
1159
1160 /* Generates a test event on the event queue.  A subsequent call to
1161  * process_eventq() should pick up the event and place the value of
1162  * "magic" into channel->eventq_magic;
1163  */
1164 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1165 {
1166         efx_qword_t test_event;
1167
1168         EFX_POPULATE_QWORD_2(test_event,
1169                              EV_CODE, DRV_GEN_EV_DECODE,
1170                              EVQ_MAGIC, magic);
1171         falcon_generate_event(channel, &test_event);
1172 }
1173
1174 void falcon_sim_phy_event(struct efx_nic *efx)
1175 {
1176         efx_qword_t phy_event;
1177
1178         EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
1179         if (EFX_IS10G(efx))
1180                 EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
1181         else
1182                 EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
1183
1184         falcon_generate_event(&efx->channel[0], &phy_event);
1185 }
1186
1187 /**************************************************************************
1188  *
1189  * Flush handling
1190  *
1191  **************************************************************************/
1192
1193
1194 static void falcon_poll_flush_events(struct efx_nic *efx)
1195 {
1196         struct efx_channel *channel = &efx->channel[0];
1197         struct efx_tx_queue *tx_queue;
1198         struct efx_rx_queue *rx_queue;
1199         unsigned int read_ptr = channel->eventq_read_ptr;
1200         unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
1201
1202         do {
1203                 efx_qword_t *event = falcon_event(channel, read_ptr);
1204                 int ev_code, ev_sub_code, ev_queue;
1205                 bool ev_failed;
1206
1207                 if (!falcon_event_present(event))
1208                         break;
1209
1210                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1211                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1212                 if (ev_code == DRIVER_EV_DECODE &&
1213                     ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) {
1214                         ev_queue = EFX_QWORD_FIELD(*event,
1215                                                    DRIVER_EV_TX_DESCQ_ID);
1216                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1217                                 tx_queue = efx->tx_queue + ev_queue;
1218                                 tx_queue->flushed = true;
1219                         }
1220                 } else if (ev_code == DRIVER_EV_DECODE &&
1221                            ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) {
1222                         ev_queue = EFX_QWORD_FIELD(*event,
1223                                                    DRIVER_EV_RX_DESCQ_ID);
1224                         ev_failed = EFX_QWORD_FIELD(*event,
1225                                                     DRIVER_EV_RX_FLUSH_FAIL);
1226                         if (ev_queue < efx->n_rx_queues) {
1227                                 rx_queue = efx->rx_queue + ev_queue;
1228
1229                                 /* retry the rx flush */
1230                                 if (ev_failed)
1231                                         falcon_flush_rx_queue(rx_queue);
1232                                 else
1233                                         rx_queue->flushed = true;
1234                         }
1235                 }
1236
1237                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1238         } while (read_ptr != end_ptr);
1239 }
1240
1241 /* Handle tx and rx flushes at the same time, since they run in
1242  * parallel in the hardware and there's no reason for us to
1243  * serialise them */
1244 int falcon_flush_queues(struct efx_nic *efx)
1245 {
1246         struct efx_rx_queue *rx_queue;
1247         struct efx_tx_queue *tx_queue;
1248         int i;
1249         bool outstanding;
1250
1251         /* Issue flush requests */
1252         efx_for_each_tx_queue(tx_queue, efx) {
1253                 tx_queue->flushed = false;
1254                 falcon_flush_tx_queue(tx_queue);
1255         }
1256         efx_for_each_rx_queue(rx_queue, efx) {
1257                 rx_queue->flushed = false;
1258                 falcon_flush_rx_queue(rx_queue);
1259         }
1260
1261         /* Poll the evq looking for flush completions. Since we're not pushing
1262          * any more rx or tx descriptors at this point, we're in no danger of
1263          * overflowing the evq whilst we wait */
1264         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1265                 msleep(FALCON_FLUSH_INTERVAL);
1266                 falcon_poll_flush_events(efx);
1267
1268                 /* Check if every queue has been succesfully flushed */
1269                 outstanding = false;
1270                 efx_for_each_tx_queue(tx_queue, efx)
1271                         outstanding |= !tx_queue->flushed;
1272                 efx_for_each_rx_queue(rx_queue, efx)
1273                         outstanding |= !rx_queue->flushed;
1274                 if (!outstanding)
1275                         return 0;
1276         }
1277
1278         /* Mark the queues as all flushed. We're going to return failure
1279          * leading to a reset, or fake up success anyway. "flushed" now
1280          * indicates that we tried to flush. */
1281         efx_for_each_tx_queue(tx_queue, efx) {
1282                 if (!tx_queue->flushed)
1283                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1284                                 tx_queue->queue);
1285                 tx_queue->flushed = true;
1286         }
1287         efx_for_each_rx_queue(rx_queue, efx) {
1288                 if (!rx_queue->flushed)
1289                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1290                                 rx_queue->queue);
1291                 rx_queue->flushed = true;
1292         }
1293
1294         if (EFX_WORKAROUND_7803(efx))
1295                 return 0;
1296
1297         return -ETIMEDOUT;
1298 }
1299
1300 /**************************************************************************
1301  *
1302  * Falcon hardware interrupts
1303  * The hardware interrupt handler does very little work; all the event
1304  * queue processing is carried out by per-channel tasklets.
1305  *
1306  **************************************************************************/
1307
1308 /* Enable/disable/generate Falcon interrupts */
1309 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1310                                      int force)
1311 {
1312         efx_oword_t int_en_reg_ker;
1313
1314         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1315                              KER_INT_KER, force,
1316                              DRV_INT_EN_KER, enabled);
1317         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1318 }
1319
1320 void falcon_enable_interrupts(struct efx_nic *efx)
1321 {
1322         efx_oword_t int_adr_reg_ker;
1323         struct efx_channel *channel;
1324
1325         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1326         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327
1328         /* Program address */
1329         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1330                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1331                              INT_ADR_KER, efx->irq_status.dma_addr);
1332         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1333
1334         /* Enable interrupts */
1335         falcon_interrupts(efx, 1, 0);
1336
1337         /* Force processing of all the channels to get the EVQ RPTRs up to
1338            date */
1339         efx_for_each_channel(channel, efx)
1340                 efx_schedule_channel(channel);
1341 }
1342
1343 void falcon_disable_interrupts(struct efx_nic *efx)
1344 {
1345         /* Disable interrupts */
1346         falcon_interrupts(efx, 0, 0);
1347 }
1348
1349 /* Generate a Falcon test interrupt
1350  * Interrupt must already have been enabled, otherwise nasty things
1351  * may happen.
1352  */
1353 void falcon_generate_interrupt(struct efx_nic *efx)
1354 {
1355         falcon_interrupts(efx, 1, 1);
1356 }
1357
1358 /* Acknowledge a legacy interrupt from Falcon
1359  *
1360  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1361  *
1362  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1363  * BIU. Interrupt acknowledge is read sensitive so must write instead
1364  * (then read to ensure the BIU collector is flushed)
1365  *
1366  * NB most hardware supports MSI interrupts
1367  */
1368 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1369 {
1370         efx_dword_t reg;
1371
1372         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1373         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1374         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1375 }
1376
1377 /* Process a fatal interrupt
1378  * Disable bus mastering ASAP and schedule a reset
1379  */
1380 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1381 {
1382         struct falcon_nic_data *nic_data = efx->nic_data;
1383         efx_oword_t *int_ker = efx->irq_status.addr;
1384         efx_oword_t fatal_intr;
1385         int error, mem_perr;
1386
1387         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1388         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1389
1390         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1391                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1392                 EFX_OWORD_VAL(fatal_intr),
1393                 error ? "disabling bus mastering" : "no recognised error");
1394         if (error == 0)
1395                 goto out;
1396
1397         /* If this is a memory parity error dump which blocks are offending */
1398         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1399         if (mem_perr) {
1400                 efx_oword_t reg;
1401                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1402                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1403                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1404         }
1405
1406         /* Disable both devices */
1407         pci_clear_master(efx->pci_dev);
1408         if (FALCON_IS_DUAL_FUNC(efx))
1409                 pci_clear_master(nic_data->pci_dev2);
1410         falcon_disable_interrupts(efx);
1411
1412         /* Count errors and reset or disable the NIC accordingly */
1413         if (nic_data->int_error_count == 0 ||
1414             time_after(jiffies, nic_data->int_error_expire)) {
1415                 nic_data->int_error_count = 0;
1416                 nic_data->int_error_expire =
1417                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1418         }
1419         if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
1420                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1421                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1422         } else {
1423                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1424                         "NIC will be disabled\n");
1425                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1426         }
1427 out:
1428         return IRQ_HANDLED;
1429 }
1430
1431 /* Handle a legacy interrupt from Falcon
1432  * Acknowledges the interrupt and schedule event queue processing.
1433  */
1434 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1435 {
1436         struct efx_nic *efx = dev_id;
1437         efx_oword_t *int_ker = efx->irq_status.addr;
1438         struct efx_channel *channel;
1439         efx_dword_t reg;
1440         u32 queues;
1441         int syserr;
1442
1443         /* Read the ISR which also ACKs the interrupts */
1444         falcon_readl(efx, &reg, INT_ISR0_B0);
1445         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1446
1447         /* Check to see if we have a serious error condition */
1448         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1449         if (unlikely(syserr))
1450                 return falcon_fatal_interrupt(efx);
1451
1452         if (queues == 0)
1453                 return IRQ_NONE;
1454
1455         efx->last_irq_cpu = raw_smp_processor_id();
1456         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1457                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1458
1459         /* Schedule processing of any interrupting queues */
1460         channel = &efx->channel[0];
1461         while (queues) {
1462                 if (queues & 0x01)
1463                         efx_schedule_channel(channel);
1464                 channel++;
1465                 queues >>= 1;
1466         }
1467
1468         return IRQ_HANDLED;
1469 }
1470
1471
1472 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1473 {
1474         struct efx_nic *efx = dev_id;
1475         efx_oword_t *int_ker = efx->irq_status.addr;
1476         struct efx_channel *channel;
1477         int syserr;
1478         int queues;
1479
1480         /* Check to see if this is our interrupt.  If it isn't, we
1481          * exit without having touched the hardware.
1482          */
1483         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1484                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1485                           raw_smp_processor_id());
1486                 return IRQ_NONE;
1487         }
1488         efx->last_irq_cpu = raw_smp_processor_id();
1489         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1490                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1491
1492         /* Check to see if we have a serious error condition */
1493         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1494         if (unlikely(syserr))
1495                 return falcon_fatal_interrupt(efx);
1496
1497         /* Determine interrupting queues, clear interrupt status
1498          * register and acknowledge the device interrupt.
1499          */
1500         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1501         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1502         EFX_ZERO_OWORD(*int_ker);
1503         wmb(); /* Ensure the vector is cleared before interrupt ack */
1504         falcon_irq_ack_a1(efx);
1505
1506         /* Schedule processing of any interrupting queues */
1507         channel = &efx->channel[0];
1508         while (queues) {
1509                 if (queues & 0x01)
1510                         efx_schedule_channel(channel);
1511                 channel++;
1512                 queues >>= 1;
1513         }
1514
1515         return IRQ_HANDLED;
1516 }
1517
1518 /* Handle an MSI interrupt from Falcon
1519  *
1520  * Handle an MSI hardware interrupt.  This routine schedules event
1521  * queue processing.  No interrupt acknowledgement cycle is necessary.
1522  * Also, we never need to check that the interrupt is for us, since
1523  * MSI interrupts cannot be shared.
1524  */
1525 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1526 {
1527         struct efx_channel *channel = dev_id;
1528         struct efx_nic *efx = channel->efx;
1529         efx_oword_t *int_ker = efx->irq_status.addr;
1530         int syserr;
1531
1532         efx->last_irq_cpu = raw_smp_processor_id();
1533         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1534                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1535
1536         /* Check to see if we have a serious error condition */
1537         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1538         if (unlikely(syserr))
1539                 return falcon_fatal_interrupt(efx);
1540
1541         /* Schedule processing of the channel */
1542         efx_schedule_channel(channel);
1543
1544         return IRQ_HANDLED;
1545 }
1546
1547
1548 /* Setup RSS indirection table.
1549  * This maps from the hash value of the packet to RXQ
1550  */
1551 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1552 {
1553         int i = 0;
1554         unsigned long offset;
1555         efx_dword_t dword;
1556
1557         if (falcon_rev(efx) < FALCON_REV_B0)
1558                 return;
1559
1560         for (offset = RX_RSS_INDIR_TBL_B0;
1561              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1562              offset += 0x10) {
1563                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1564                                      i % efx->n_rx_queues);
1565                 falcon_writel(efx, &dword, offset);
1566                 i++;
1567         }
1568 }
1569
1570 /* Hook interrupt handler(s)
1571  * Try MSI and then legacy interrupts.
1572  */
1573 int falcon_init_interrupt(struct efx_nic *efx)
1574 {
1575         struct efx_channel *channel;
1576         int rc;
1577
1578         if (!EFX_INT_MODE_USE_MSI(efx)) {
1579                 irq_handler_t handler;
1580                 if (falcon_rev(efx) >= FALCON_REV_B0)
1581                         handler = falcon_legacy_interrupt_b0;
1582                 else
1583                         handler = falcon_legacy_interrupt_a1;
1584
1585                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1586                                  efx->name, efx);
1587                 if (rc) {
1588                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1589                                 efx->pci_dev->irq);
1590                         goto fail1;
1591                 }
1592                 return 0;
1593         }
1594
1595         /* Hook MSI or MSI-X interrupt */
1596         efx_for_each_channel(channel, efx) {
1597                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1598                                  IRQF_PROBE_SHARED, /* Not shared */
1599                                  channel->name, channel);
1600                 if (rc) {
1601                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1602                         goto fail2;
1603                 }
1604         }
1605
1606         return 0;
1607
1608  fail2:
1609         efx_for_each_channel(channel, efx)
1610                 free_irq(channel->irq, channel);
1611  fail1:
1612         return rc;
1613 }
1614
1615 void falcon_fini_interrupt(struct efx_nic *efx)
1616 {
1617         struct efx_channel *channel;
1618         efx_oword_t reg;
1619
1620         /* Disable MSI/MSI-X interrupts */
1621         efx_for_each_channel(channel, efx) {
1622                 if (channel->irq)
1623                         free_irq(channel->irq, channel);
1624         }
1625
1626         /* ACK legacy interrupt */
1627         if (falcon_rev(efx) >= FALCON_REV_B0)
1628                 falcon_read(efx, &reg, INT_ISR0_B0);
1629         else
1630                 falcon_irq_ack_a1(efx);
1631
1632         /* Disable legacy interrupt */
1633         if (efx->legacy_irq)
1634                 free_irq(efx->legacy_irq, efx);
1635 }
1636
1637 /**************************************************************************
1638  *
1639  * EEPROM/flash
1640  *
1641  **************************************************************************
1642  */
1643
1644 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1645
1646 static int falcon_spi_poll(struct efx_nic *efx)
1647 {
1648         efx_oword_t reg;
1649         falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1650         return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1651 }
1652
1653 /* Wait for SPI command completion */
1654 static int falcon_spi_wait(struct efx_nic *efx)
1655 {
1656         /* Most commands will finish quickly, so we start polling at
1657          * very short intervals.  Sometimes the command may have to
1658          * wait for VPD or expansion ROM access outside of our
1659          * control, so we allow up to 100 ms. */
1660         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1661         int i;
1662
1663         for (i = 0; i < 10; i++) {
1664                 if (!falcon_spi_poll(efx))
1665                         return 0;
1666                 udelay(10);
1667         }
1668
1669         for (;;) {
1670                 if (!falcon_spi_poll(efx))
1671                         return 0;
1672                 if (time_after_eq(jiffies, timeout)) {
1673                         EFX_ERR(efx, "timed out waiting for SPI\n");
1674                         return -ETIMEDOUT;
1675                 }
1676                 schedule_timeout_uninterruptible(1);
1677         }
1678 }
1679
1680 int falcon_spi_cmd(const struct efx_spi_device *spi,
1681                    unsigned int command, int address,
1682                    const void *in, void *out, size_t len)
1683 {
1684         struct efx_nic *efx = spi->efx;
1685         bool addressed = (address >= 0);
1686         bool reading = (out != NULL);
1687         efx_oword_t reg;
1688         int rc;
1689
1690         /* Input validation */
1691         if (len > FALCON_SPI_MAX_LEN)
1692                 return -EINVAL;
1693         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1694
1695         /* Check that previous command is not still running */
1696         rc = falcon_spi_poll(efx);
1697         if (rc)
1698                 return rc;
1699
1700         /* Program address register, if we have an address */
1701         if (addressed) {
1702                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1703                 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1704         }
1705
1706         /* Program data register, if we have data */
1707         if (in != NULL) {
1708                 memcpy(&reg, in, len);
1709                 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1710         }
1711
1712         /* Issue read/write command */
1713         EFX_POPULATE_OWORD_7(reg,
1714                              EE_SPI_HCMD_CMD_EN, 1,
1715                              EE_SPI_HCMD_SF_SEL, spi->device_id,
1716                              EE_SPI_HCMD_DABCNT, len,
1717                              EE_SPI_HCMD_READ, reading,
1718                              EE_SPI_HCMD_DUBCNT, 0,
1719                              EE_SPI_HCMD_ADBCNT,
1720                              (addressed ? spi->addr_len : 0),
1721                              EE_SPI_HCMD_ENC, command);
1722         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1723
1724         /* Wait for read/write to complete */
1725         rc = falcon_spi_wait(efx);
1726         if (rc)
1727                 return rc;
1728
1729         /* Read data */
1730         if (out != NULL) {
1731                 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1732                 memcpy(out, &reg, len);
1733         }
1734
1735         return 0;
1736 }
1737
1738 static size_t
1739 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1740 {
1741         return min(FALCON_SPI_MAX_LEN,
1742                    (spi->block_size - (start & (spi->block_size - 1))));
1743 }
1744
1745 static inline u8
1746 efx_spi_munge_command(const struct efx_spi_device *spi,
1747                       const u8 command, const unsigned int address)
1748 {
1749         return command | (((address >> 8) & spi->munge_address) << 3);
1750 }
1751
1752 /* Wait up to 10 ms for buffered write completion */
1753 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1754 {
1755         struct efx_nic *efx = spi->efx;
1756         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1757         u8 status;
1758         int rc;
1759
1760         for (;;) {
1761                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1762                                     &status, sizeof(status));
1763                 if (rc)
1764                         return rc;
1765                 if (!(status & SPI_STATUS_NRDY))
1766                         return 0;
1767                 if (time_after_eq(jiffies, timeout)) {
1768                         EFX_ERR(efx, "SPI write timeout on device %d"
1769                                 " last status=0x%02x\n",
1770                                 spi->device_id, status);
1771                         return -ETIMEDOUT;
1772                 }
1773                 schedule_timeout_uninterruptible(1);
1774         }
1775 }
1776
1777 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1778                     size_t len, size_t *retlen, u8 *buffer)
1779 {
1780         size_t block_len, pos = 0;
1781         unsigned int command;
1782         int rc = 0;
1783
1784         while (pos < len) {
1785                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1786
1787                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1788                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1789                                     buffer + pos, block_len);
1790                 if (rc)
1791                         break;
1792                 pos += block_len;
1793
1794                 /* Avoid locking up the system */
1795                 cond_resched();
1796                 if (signal_pending(current)) {
1797                         rc = -EINTR;
1798                         break;
1799                 }
1800         }
1801
1802         if (retlen)
1803                 *retlen = pos;
1804         return rc;
1805 }
1806
1807 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1808                      size_t len, size_t *retlen, const u8 *buffer)
1809 {
1810         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1811         size_t block_len, pos = 0;
1812         unsigned int command;
1813         int rc = 0;
1814
1815         while (pos < len) {
1816                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1817                 if (rc)
1818                         break;
1819
1820                 block_len = min(len - pos,
1821                                 falcon_spi_write_limit(spi, start + pos));
1822                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1823                 rc = falcon_spi_cmd(spi, command, start + pos,
1824                                     buffer + pos, NULL, block_len);
1825                 if (rc)
1826                         break;
1827
1828                 rc = falcon_spi_wait_write(spi);
1829                 if (rc)
1830                         break;
1831
1832                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1833                 rc = falcon_spi_cmd(spi, command, start + pos,
1834                                     NULL, verify_buffer, block_len);
1835                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1836                         rc = -EIO;
1837                         break;
1838                 }
1839
1840                 pos += block_len;
1841
1842                 /* Avoid locking up the system */
1843                 cond_resched();
1844                 if (signal_pending(current)) {
1845                         rc = -EINTR;
1846                         break;
1847                 }
1848         }
1849
1850         if (retlen)
1851                 *retlen = pos;
1852         return rc;
1853 }
1854
1855 /**************************************************************************
1856  *
1857  * MAC wrapper
1858  *
1859  **************************************************************************
1860  */
1861
1862 static int falcon_reset_macs(struct efx_nic *efx)
1863 {
1864         efx_oword_t reg;
1865         int count;
1866
1867         if (falcon_rev(efx) < FALCON_REV_B0) {
1868                 /* It's not safe to use GLB_CTL_REG to reset the
1869                  * macs, so instead use the internal MAC resets
1870                  */
1871                 if (!EFX_IS10G(efx)) {
1872                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
1873                         falcon_write(efx, &reg, GM_CFG1_REG);
1874                         udelay(1000);
1875
1876                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
1877                         falcon_write(efx, &reg, GM_CFG1_REG);
1878                         udelay(1000);
1879                         return 0;
1880                 } else {
1881                         EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
1882                         falcon_write(efx, &reg, XM_GLB_CFG_REG);
1883
1884                         for (count = 0; count < 10000; count++) {
1885                                 falcon_read(efx, &reg, XM_GLB_CFG_REG);
1886                                 if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
1887                                         return 0;
1888                                 udelay(10);
1889                         }
1890
1891                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1892                         return -ETIMEDOUT;
1893                 }
1894         }
1895
1896         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1897          * the drain sequence with the statistics fetch */
1898         efx_stats_disable(efx);
1899
1900         falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1901         EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
1902         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1903
1904         falcon_read(efx, &reg, GLB_CTL_REG_KER);
1905         EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
1906         EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
1907         EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
1908         falcon_write(efx, &reg, GLB_CTL_REG_KER);
1909
1910         count = 0;
1911         while (1) {
1912                 falcon_read(efx, &reg, GLB_CTL_REG_KER);
1913                 if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
1914                     !EFX_OWORD_FIELD(reg, RST_XGRX) &&
1915                     !EFX_OWORD_FIELD(reg, RST_EM)) {
1916                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1917                                 count);
1918                         break;
1919                 }
1920                 if (count > 20) {
1921                         EFX_ERR(efx, "MAC reset failed\n");
1922                         break;
1923                 }
1924                 count++;
1925                 udelay(10);
1926         }
1927
1928         efx_stats_enable(efx);
1929
1930         /* If we've reset the EM block and the link is up, then
1931          * we'll have to kick the XAUI link so the PHY can recover */
1932         if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1933                 falcon_reset_xaui(efx);
1934
1935         return 0;
1936 }
1937
1938 void falcon_drain_tx_fifo(struct efx_nic *efx)
1939 {
1940         efx_oword_t reg;
1941
1942         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1943             (efx->loopback_mode != LOOPBACK_NONE))
1944                 return;
1945
1946         falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1947         /* There is no point in draining more than once */
1948         if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
1949                 return;
1950
1951         falcon_reset_macs(efx);
1952 }
1953
1954 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1955 {
1956         efx_oword_t reg;
1957
1958         if (falcon_rev(efx) < FALCON_REV_B0)
1959                 return;
1960
1961         /* Isolate the MAC -> RX */
1962         falcon_read(efx, &reg, RX_CFG_REG_KER);
1963         EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
1964         falcon_write(efx, &reg, RX_CFG_REG_KER);
1965
1966         if (!efx->link_up)
1967                 falcon_drain_tx_fifo(efx);
1968 }
1969
1970 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1971 {
1972         efx_oword_t reg;
1973         int link_speed;
1974         bool tx_fc;
1975
1976         switch (efx->link_speed) {
1977         case 10000: link_speed = 3; break;
1978         case 1000:  link_speed = 2; break;
1979         case 100:   link_speed = 1; break;
1980         default:    link_speed = 0; break;
1981         }
1982         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1983          * as advertised.  Disable to ensure packets are not
1984          * indefinitely held and TX queue can be flushed at any point
1985          * while the link is down. */
1986         EFX_POPULATE_OWORD_5(reg,
1987                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1988                              MAC_BCAD_ACPT, 1,
1989                              MAC_UC_PROM, efx->promiscuous,
1990                              MAC_LINK_STATUS, 1, /* always set */
1991                              MAC_SPEED, link_speed);
1992         /* On B0, MAC backpressure can be disabled and packets get
1993          * discarded. */
1994         if (falcon_rev(efx) >= FALCON_REV_B0) {
1995                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1996                                     !efx->link_up);
1997         }
1998
1999         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
2000
2001         /* Restore the multicast hash registers. */
2002         falcon_set_multicast_hash(efx);
2003
2004         /* Transmission of pause frames when RX crosses the threshold is
2005          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2006          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2007         tx_fc = !!(efx->link_fc & EFX_FC_TX);
2008         falcon_read(efx, &reg, RX_CFG_REG_KER);
2009         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
2010
2011         /* Unisolate the MAC -> RX */
2012         if (falcon_rev(efx) >= FALCON_REV_B0)
2013                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
2014         falcon_write(efx, &reg, RX_CFG_REG_KER);
2015 }
2016
2017 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2018 {
2019         efx_oword_t reg;
2020         u32 *dma_done;
2021         int i;
2022
2023         if (disable_dma_stats)
2024                 return 0;
2025
2026         /* Statistics fetch will fail if the MAC is in TX drain */
2027         if (falcon_rev(efx) >= FALCON_REV_B0) {
2028                 efx_oword_t temp;
2029                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
2030                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
2031                         return 0;
2032         }
2033
2034         dma_done = (efx->stats_buffer.addr + done_offset);
2035         *dma_done = FALCON_STATS_NOT_DONE;
2036         wmb(); /* ensure done flag is clear */
2037
2038         /* Initiate DMA transfer of stats */
2039         EFX_POPULATE_OWORD_2(reg,
2040                              MAC_STAT_DMA_CMD, 1,
2041                              MAC_STAT_DMA_ADR,
2042                              efx->stats_buffer.dma_addr);
2043         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
2044
2045         /* Wait for transfer to complete */
2046         for (i = 0; i < 400; i++) {
2047                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2048                         rmb(); /* Ensure the stats are valid. */
2049                         return 0;
2050                 }
2051                 udelay(10);
2052         }
2053
2054         EFX_ERR(efx, "timed out waiting for statistics\n");
2055         return -ETIMEDOUT;
2056 }
2057
2058 /**************************************************************************
2059  *
2060  * PHY access via GMII
2061  *
2062  **************************************************************************
2063  */
2064
2065 /* Use the top bit of the MII PHY id to indicate the PHY type
2066  * (1G/10G), with the remaining bits as the actual PHY id.
2067  *
2068  * This allows us to avoid leaking information from the mii_if_info
2069  * structure into other data structures.
2070  */
2071 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
2072 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2073 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
2074 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
2075 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
2076
2077
2078 /* Packing the clause 45 port and device fields into a single value */
2079 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2080 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
2081 #define MD_DEV_ADR_COMP_LBN    0
2082 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
2083
2084
2085 /* Wait for GMII access to complete */
2086 static int falcon_gmii_wait(struct efx_nic *efx)
2087 {
2088         efx_dword_t md_stat;
2089         int count;
2090
2091         /* wait upto 50ms - taken max from datasheet */
2092         for (count = 0; count < 5000; count++) {
2093                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2094                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2095                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2096                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2097                                 EFX_ERR(efx, "error from GMII access "
2098                                         EFX_DWORD_FMT"\n",
2099                                         EFX_DWORD_VAL(md_stat));
2100                                 return -EIO;
2101                         }
2102                         return 0;
2103                 }
2104                 udelay(10);
2105         }
2106         EFX_ERR(efx, "timed out waiting for GMII\n");
2107         return -ETIMEDOUT;
2108 }
2109
2110 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2111 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2112                               int addr, int value)
2113 {
2114         struct efx_nic *efx = netdev_priv(net_dev);
2115         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2116         efx_oword_t reg;
2117
2118         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2119          * chosen so that the only current user, Falcon, can take the
2120          * packed value and use them directly.
2121          * Fail to build if this assumption is broken.
2122          */
2123         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2124         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2125         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2126         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2127
2128         if (phy_id2 == PHY_ADDR_INVALID)
2129                 return;
2130
2131         /* See falcon_mdio_read for an explanation. */
2132         if (!(phy_id & FALCON_PHY_ID_10G)) {
2133                 int mmd = ffs(efx->phy_op->mmds) - 1;
2134                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2135                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2136                         & FALCON_PHY_ID_ID_MASK;
2137         }
2138
2139         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2140                     addr, value);
2141
2142         spin_lock_bh(&efx->phy_lock);
2143
2144         /* Check MII not currently being accessed */
2145         if (falcon_gmii_wait(efx) != 0)
2146                 goto out;
2147
2148         /* Write the address/ID register */
2149         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2150         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2151
2152         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2153         falcon_write(efx, &reg, MD_ID_REG_KER);
2154
2155         /* Write data */
2156         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2157         falcon_write(efx, &reg, MD_TXD_REG_KER);
2158
2159         EFX_POPULATE_OWORD_2(reg,
2160                              MD_WRC, 1,
2161                              MD_GC, 0);
2162         falcon_write(efx, &reg, MD_CS_REG_KER);
2163
2164         /* Wait for data to be written */
2165         if (falcon_gmii_wait(efx) != 0) {
2166                 /* Abort the write operation */
2167                 EFX_POPULATE_OWORD_2(reg,
2168                                      MD_WRC, 0,
2169                                      MD_GC, 1);
2170                 falcon_write(efx, &reg, MD_CS_REG_KER);
2171                 udelay(10);
2172         }
2173
2174  out:
2175         spin_unlock_bh(&efx->phy_lock);
2176 }
2177
2178 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2179  * could be read, -1 will be returned. */
2180 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2181 {
2182         struct efx_nic *efx = netdev_priv(net_dev);
2183         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2184         efx_oword_t reg;
2185         int value = -1;
2186
2187         if (phy_addr == PHY_ADDR_INVALID)
2188                 return -1;
2189
2190         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2191          * but the generic Linux code does not make any distinction or have
2192          * any state for this.
2193          * We spot the case where someone tried to talk 22 to a 45 PHY and
2194          * redirect the request to the lowest numbered MMD as a clause45
2195          * request. This is enough to allow simple queries like id and link
2196          * state to succeed. TODO: We may need to do more in future.
2197          */
2198         if (!(phy_id & FALCON_PHY_ID_10G)) {
2199                 int mmd = ffs(efx->phy_op->mmds) - 1;
2200                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2201                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2202                         & FALCON_PHY_ID_ID_MASK;
2203         }
2204
2205         spin_lock_bh(&efx->phy_lock);
2206
2207         /* Check MII not currently being accessed */
2208         if (falcon_gmii_wait(efx) != 0)
2209                 goto out;
2210
2211         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2212         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2213
2214         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2215         falcon_write(efx, &reg, MD_ID_REG_KER);
2216
2217         /* Request data to be read */
2218         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2219         falcon_write(efx, &reg, MD_CS_REG_KER);
2220
2221         /* Wait for data to become available */
2222         value = falcon_gmii_wait(efx);
2223         if (value == 0) {
2224                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2225                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2226                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2227                             phy_id, addr, value);
2228         } else {
2229                 /* Abort the read operation */
2230                 EFX_POPULATE_OWORD_2(reg,
2231                                      MD_RIC, 0,
2232                                      MD_GC, 1);
2233                 falcon_write(efx, &reg, MD_CS_REG_KER);
2234
2235                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2236                         "error %d\n", phy_id, addr, value);
2237         }
2238
2239  out:
2240         spin_unlock_bh(&efx->phy_lock);
2241
2242         return value;
2243 }
2244
2245 static void falcon_init_mdio(struct mii_if_info *gmii)
2246 {
2247         gmii->mdio_read = falcon_mdio_read;
2248         gmii->mdio_write = falcon_mdio_write;
2249         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2250         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2251 }
2252
2253 static int falcon_probe_phy(struct efx_nic *efx)
2254 {
2255         switch (efx->phy_type) {
2256         case PHY_TYPE_SFX7101:
2257                 efx->phy_op = &falcon_sfx7101_phy_ops;
2258                 break;
2259         case PHY_TYPE_SFT9001A:
2260         case PHY_TYPE_SFT9001B:
2261                 efx->phy_op = &falcon_sft9001_phy_ops;
2262                 break;
2263         case PHY_TYPE_QT2022C2:
2264         case PHY_TYPE_QT2025C:
2265                 efx->phy_op = &falcon_xfp_phy_ops;
2266                 break;
2267         default:
2268                 EFX_ERR(efx, "Unknown PHY type %d\n",
2269                         efx->phy_type);
2270                 return -1;
2271         }
2272
2273         if (efx->phy_op->macs & EFX_XMAC)
2274                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2275                                         (1 << LOOPBACK_XGXS) |
2276                                         (1 << LOOPBACK_XAUI));
2277         if (efx->phy_op->macs & EFX_GMAC)
2278                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2279         efx->loopback_modes |= efx->phy_op->loopbacks;
2280
2281         return 0;
2282 }
2283
2284 int falcon_switch_mac(struct efx_nic *efx)
2285 {
2286         struct efx_mac_operations *old_mac_op = efx->mac_op;
2287         efx_oword_t nic_stat;
2288         unsigned strap_val;
2289         int rc = 0;
2290
2291         /* Don't try to fetch MAC stats while we're switching MACs */
2292         efx_stats_disable(efx);
2293
2294         /* Internal loopbacks override the phy speed setting */
2295         if (efx->loopback_mode == LOOPBACK_GMAC) {
2296                 efx->link_speed = 1000;
2297                 efx->link_fd = true;
2298         } else if (LOOPBACK_INTERNAL(efx)) {
2299                 efx->link_speed = 10000;
2300                 efx->link_fd = true;
2301         }
2302
2303         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2304         efx->mac_op = (EFX_IS10G(efx) ?
2305                        &falcon_xmac_operations : &falcon_gmac_operations);
2306
2307         /* Always push the NIC_STAT_REG setting even if the mac hasn't
2308          * changed, because this function is run post online reset */
2309         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2310         strap_val = EFX_IS10G(efx) ? 5 : 3;
2311         if (falcon_rev(efx) >= FALCON_REV_B0) {
2312                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
2313                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
2314                 falcon_write(efx, &nic_stat, NIC_STAT_REG);
2315         } else {
2316                 /* Falcon A1 does not support 1G/10G speed switching
2317                  * and must not be used with a PHY that does. */
2318                 BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
2319         }
2320
2321         if (old_mac_op == efx->mac_op)
2322                 goto out;
2323
2324         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2325         /* Not all macs support a mac-level link state */
2326         efx->mac_up = true;
2327
2328         rc = falcon_reset_macs(efx);
2329 out:
2330         efx_stats_enable(efx);
2331         return rc;
2332 }
2333
2334 /* This call is responsible for hooking in the MAC and PHY operations */
2335 int falcon_probe_port(struct efx_nic *efx)
2336 {
2337         int rc;
2338
2339         /* Hook in PHY operations table */
2340         rc = falcon_probe_phy(efx);
2341         if (rc)
2342                 return rc;
2343
2344         /* Set up GMII structure for PHY */
2345         efx->mii.supports_gmii = true;
2346         falcon_init_mdio(&efx->mii);
2347
2348         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2349         if (falcon_rev(efx) >= FALCON_REV_B0)
2350                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2351         else
2352                 efx->wanted_fc = EFX_FC_RX;
2353
2354         /* Allocate buffer for stats */
2355         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2356                                  FALCON_MAC_STATS_SIZE);
2357         if (rc)
2358                 return rc;
2359         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2360                 (unsigned long long)efx->stats_buffer.dma_addr,
2361                 efx->stats_buffer.addr,
2362                 virt_to_phys(efx->stats_buffer.addr));
2363
2364         return 0;
2365 }
2366
2367 void falcon_remove_port(struct efx_nic *efx)
2368 {
2369         falcon_free_buffer(efx, &efx->stats_buffer);
2370 }
2371
2372 /**************************************************************************
2373  *
2374  * Multicast filtering
2375  *
2376  **************************************************************************
2377  */
2378
2379 void falcon_set_multicast_hash(struct efx_nic *efx)
2380 {
2381         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2382
2383         /* Broadcast packets go through the multicast hash filter.
2384          * ether_crc_le() of the broadcast address is 0xbe2612ff
2385          * so we always add bit 0xff to the mask.
2386          */
2387         set_bit_le(0xff, mc_hash->byte);
2388
2389         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2390         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2391 }
2392
2393
2394 /**************************************************************************
2395  *
2396  * Falcon test code
2397  *
2398  **************************************************************************/
2399
2400 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2401 {
2402         struct falcon_nvconfig *nvconfig;
2403         struct efx_spi_device *spi;
2404         void *region;
2405         int rc, magic_num, struct_ver;
2406         __le16 *word, *limit;
2407         u32 csum;
2408
2409         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2410         if (!spi)
2411                 return -EINVAL;
2412
2413         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2414         if (!region)
2415                 return -ENOMEM;
2416         nvconfig = region + NVCONFIG_OFFSET;
2417
2418         mutex_lock(&efx->spi_lock);
2419         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2420         mutex_unlock(&efx->spi_lock);
2421         if (rc) {
2422                 EFX_ERR(efx, "Failed to read %s\n",
2423                         efx->spi_flash ? "flash" : "EEPROM");
2424                 rc = -EIO;
2425                 goto out;
2426         }
2427
2428         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2429         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2430
2431         rc = -EINVAL;
2432         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2433                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2434                 goto out;
2435         }
2436         if (struct_ver < 2) {
2437                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2438                 goto out;
2439         } else if (struct_ver < 4) {
2440                 word = &nvconfig->board_magic_num;
2441                 limit = (__le16 *) (nvconfig + 1);
2442         } else {
2443                 word = region;
2444                 limit = region + FALCON_NVCONFIG_END;
2445         }
2446         for (csum = 0; word < limit; ++word)
2447                 csum += le16_to_cpu(*word);
2448
2449         if (~csum & 0xffff) {
2450                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2451                 goto out;
2452         }
2453
2454         rc = 0;
2455         if (nvconfig_out)
2456                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2457
2458  out:
2459         kfree(region);
2460         return rc;
2461 }
2462
2463 /* Registers tested in the falcon register test */
2464 static struct {
2465         unsigned address;
2466         efx_oword_t mask;
2467 } efx_test_registers[] = {
2468         { ADR_REGION_REG_KER,
2469           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2470         { RX_CFG_REG_KER,
2471           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2472         { TX_CFG_REG_KER,
2473           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2474         { TX_CFG2_REG_KER,
2475           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2476         { MAC0_CTRL_REG_KER,
2477           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2478         { SRM_TX_DC_CFG_REG_KER,
2479           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2480         { RX_DC_CFG_REG_KER,
2481           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2482         { RX_DC_PF_WM_REG_KER,
2483           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2484         { DP_CTRL_REG,
2485           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2486         { GM_CFG2_REG,
2487           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2488         { GMF_CFG0_REG,
2489           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2490         { XM_GLB_CFG_REG,
2491           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2492         { XM_TX_CFG_REG,
2493           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2494         { XM_RX_CFG_REG,
2495           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2496         { XM_RX_PARAM_REG,
2497           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2498         { XM_FC_REG,
2499           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2500         { XM_ADR_LO_REG,
2501           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2502         { XX_SD_CTL_REG,
2503           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2504 };
2505
2506 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2507                                      const efx_oword_t *mask)
2508 {
2509         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2510                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2511 }
2512
2513 int falcon_test_registers(struct efx_nic *efx)
2514 {
2515         unsigned address = 0, i, j;
2516         efx_oword_t mask, imask, original, reg, buf;
2517
2518         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2519         WARN_ON(!LOOPBACK_INTERNAL(efx));
2520
2521         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2522                 address = efx_test_registers[i].address;
2523                 mask = imask = efx_test_registers[i].mask;
2524                 EFX_INVERT_OWORD(imask);
2525
2526                 falcon_read(efx, &original, address);
2527
2528                 /* bit sweep on and off */
2529                 for (j = 0; j < 128; j++) {
2530                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2531                                 continue;
2532
2533                         /* Test this testable bit can be set in isolation */
2534                         EFX_AND_OWORD(reg, original, mask);
2535                         EFX_SET_OWORD32(reg, j, j, 1);
2536
2537                         falcon_write(efx, &reg, address);
2538                         falcon_read(efx, &buf, address);
2539
2540                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2541                                 goto fail;
2542
2543                         /* Test this testable bit can be cleared in isolation */
2544                         EFX_OR_OWORD(reg, original, mask);
2545                         EFX_SET_OWORD32(reg, j, j, 0);
2546
2547                         falcon_write(efx, &reg, address);
2548                         falcon_read(efx, &buf, address);
2549
2550                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2551                                 goto fail;
2552                 }
2553
2554                 falcon_write(efx, &original, address);
2555         }
2556
2557         return 0;
2558
2559 fail:
2560         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2561                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2562                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2563         return -EIO;
2564 }
2565
2566 /**************************************************************************
2567  *
2568  * Device reset
2569  *
2570  **************************************************************************
2571  */
2572
2573 /* Resets NIC to known state.  This routine must be called in process
2574  * context and is allowed to sleep. */
2575 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2576 {
2577         struct falcon_nic_data *nic_data = efx->nic_data;
2578         efx_oword_t glb_ctl_reg_ker;
2579         int rc;
2580
2581         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2582
2583         /* Initiate device reset */
2584         if (method == RESET_TYPE_WORLD) {
2585                 rc = pci_save_state(efx->pci_dev);
2586                 if (rc) {
2587                         EFX_ERR(efx, "failed to backup PCI state of primary "
2588                                 "function prior to hardware reset\n");
2589                         goto fail1;
2590                 }
2591                 if (FALCON_IS_DUAL_FUNC(efx)) {
2592                         rc = pci_save_state(nic_data->pci_dev2);
2593                         if (rc) {
2594                                 EFX_ERR(efx, "failed to backup PCI state of "
2595                                         "secondary function prior to "
2596                                         "hardware reset\n");
2597                                 goto fail2;
2598                         }
2599                 }
2600
2601                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2602                                      EXT_PHY_RST_DUR, 0x7,
2603                                      SWRST, 1);
2604         } else {
2605                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2606                                  EXCLUDE_FROM_RESET : 0);
2607
2608                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2609                                      EXT_PHY_RST_CTL, reset_phy,
2610                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2611                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2612                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2613                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2614                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2615                                      SWRST, 1);
2616         }
2617         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2618
2619         EFX_LOG(efx, "waiting for hardware reset\n");
2620         schedule_timeout_uninterruptible(HZ / 20);
2621
2622         /* Restore PCI configuration if needed */
2623         if (method == RESET_TYPE_WORLD) {
2624                 if (FALCON_IS_DUAL_FUNC(efx)) {
2625                         rc = pci_restore_state(nic_data->pci_dev2);
2626                         if (rc) {
2627                                 EFX_ERR(efx, "failed to restore PCI config for "
2628                                         "the secondary function\n");
2629                                 goto fail3;
2630                         }
2631                 }
2632                 rc = pci_restore_state(efx->pci_dev);
2633                 if (rc) {
2634                         EFX_ERR(efx, "failed to restore PCI config for the "
2635                                 "primary function\n");
2636                         goto fail4;
2637                 }
2638                 EFX_LOG(efx, "successfully restored PCI config\n");
2639         }
2640
2641         /* Assert that reset complete */
2642         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2643         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2644                 rc = -ETIMEDOUT;
2645                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2646                 goto fail5;
2647         }
2648         EFX_LOG(efx, "hardware reset complete\n");
2649
2650         return 0;
2651
2652         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2653 fail2:
2654 fail3:
2655         pci_restore_state(efx->pci_dev);
2656 fail1:
2657 fail4:
2658 fail5:
2659         return rc;
2660 }
2661
2662 /* Zeroes out the SRAM contents.  This routine must be called in
2663  * process context and is allowed to sleep.
2664  */
2665 static int falcon_reset_sram(struct efx_nic *efx)
2666 {
2667         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2668         int count;
2669
2670         /* Set the SRAM wake/sleep GPIO appropriately. */
2671         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2672         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2673         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2674         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2675
2676         /* Initiate SRAM reset */
2677         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2678                              SRAM_OOB_BT_INIT_EN, 1,
2679                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2680         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2681
2682         /* Wait for SRAM reset to complete */
2683         count = 0;
2684         do {
2685                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2686
2687                 /* SRAM reset is slow; expect around 16ms */
2688                 schedule_timeout_uninterruptible(HZ / 50);
2689
2690                 /* Check for reset complete */
2691                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2692                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2693                         EFX_LOG(efx, "SRAM reset complete\n");
2694
2695                         return 0;
2696                 }
2697         } while (++count < 20); /* wait upto 0.4 sec */
2698
2699         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2700         return -ETIMEDOUT;
2701 }
2702
2703 static int falcon_spi_device_init(struct efx_nic *efx,
2704                                   struct efx_spi_device **spi_device_ret,
2705                                   unsigned int device_id, u32 device_type)
2706 {
2707         struct efx_spi_device *spi_device;
2708
2709         if (device_type != 0) {
2710                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2711                 if (!spi_device)
2712                         return -ENOMEM;
2713                 spi_device->device_id = device_id;
2714                 spi_device->size =
2715                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2716                 spi_device->addr_len =
2717                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2718                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2719                                              spi_device->addr_len == 1);
2720                 spi_device->erase_command =
2721                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2722                 spi_device->erase_size =
2723                         1 << SPI_DEV_TYPE_FIELD(device_type,
2724                                                 SPI_DEV_TYPE_ERASE_SIZE);
2725                 spi_device->block_size =
2726                         1 << SPI_DEV_TYPE_FIELD(device_type,
2727                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2728
2729                 spi_device->efx = efx;
2730         } else {
2731                 spi_device = NULL;
2732         }
2733
2734         kfree(*spi_device_ret);
2735         *spi_device_ret = spi_device;
2736         return 0;
2737 }
2738
2739
2740 static void falcon_remove_spi_devices(struct efx_nic *efx)
2741 {
2742         kfree(efx->spi_eeprom);
2743         efx->spi_eeprom = NULL;
2744         kfree(efx->spi_flash);
2745         efx->spi_flash = NULL;
2746 }
2747
2748 /* Extract non-volatile configuration */
2749 static int falcon_probe_nvconfig(struct efx_nic *efx)
2750 {
2751         struct falcon_nvconfig *nvconfig;
2752         int board_rev;
2753         int rc;
2754
2755         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2756         if (!nvconfig)
2757                 return -ENOMEM;
2758
2759         rc = falcon_read_nvram(efx, nvconfig);
2760         if (rc == -EINVAL) {
2761                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2762                 efx->phy_type = PHY_TYPE_NONE;
2763                 efx->mii.phy_id = PHY_ADDR_INVALID;
2764                 board_rev = 0;
2765                 rc = 0;
2766         } else if (rc) {
2767                 goto fail1;
2768         } else {
2769                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2770                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2771
2772                 efx->phy_type = v2->port0_phy_type;
2773                 efx->mii.phy_id = v2->port0_phy_addr;
2774                 board_rev = le16_to_cpu(v2->board_revision);
2775
2776                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2777                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2778                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2779                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
2780                                                     EE_SPI_FLASH,
2781                                                     le32_to_cpu(fl));
2782                         if (rc)
2783                                 goto fail2;
2784                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2785                                                     EE_SPI_EEPROM,
2786                                                     le32_to_cpu(ee));
2787                         if (rc)
2788                                 goto fail2;
2789                 }
2790         }
2791
2792         /* Read the MAC addresses */
2793         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2794
2795         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2796
2797         efx_set_board_info(efx, board_rev);
2798
2799         kfree(nvconfig);
2800         return 0;
2801
2802  fail2:
2803         falcon_remove_spi_devices(efx);
2804  fail1:
2805         kfree(nvconfig);
2806         return rc;
2807 }
2808
2809 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2810  * count, port speed).  Set workaround and feature flags accordingly.
2811  */
2812 static int falcon_probe_nic_variant(struct efx_nic *efx)
2813 {
2814         efx_oword_t altera_build;
2815         efx_oword_t nic_stat;
2816
2817         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2818         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2819                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2820                 return -ENODEV;
2821         }
2822
2823         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2824
2825         switch (falcon_rev(efx)) {
2826         case FALCON_REV_A0:
2827         case 0xff:
2828                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2829                 return -ENODEV;
2830
2831         case FALCON_REV_A1:
2832                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2833                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2834                         return -ENODEV;
2835                 }
2836                 break;
2837
2838         case FALCON_REV_B0:
2839                 break;
2840
2841         default:
2842                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2843                 return -ENODEV;
2844         }
2845
2846         /* Initial assumed speed */
2847         efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
2848
2849         return 0;
2850 }
2851
2852 /* Probe all SPI devices on the NIC */
2853 static void falcon_probe_spi_devices(struct efx_nic *efx)
2854 {
2855         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2856         int boot_dev;
2857
2858         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2859         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2860         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2861
2862         if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2863                 boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2864                             EE_SPI_FLASH : EE_SPI_EEPROM);
2865                 EFX_LOG(efx, "Booted from %s\n",
2866                         boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2867         } else {
2868                 /* Disable VPD and set clock dividers to safe
2869                  * values for initial programming. */
2870                 boot_dev = -1;
2871                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2872                         " setting SPI config\n");
2873                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2874                                      /* 125 MHz / 7 ~= 20 MHz */
2875                                      EE_SF_CLOCK_DIV, 7,
2876                                      /* 125 MHz / 63 ~= 2 MHz */
2877                                      EE_EE_CLOCK_DIV, 63);
2878                 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2879         }
2880
2881         if (boot_dev == EE_SPI_FLASH)
2882                 falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2883                                        default_flash_type);
2884         if (boot_dev == EE_SPI_EEPROM)
2885                 falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2886                                        large_eeprom_type);
2887 }
2888
2889 int falcon_probe_nic(struct efx_nic *efx)
2890 {
2891         struct falcon_nic_data *nic_data;
2892         int rc;
2893
2894         /* Allocate storage for hardware specific data */
2895         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2896         if (!nic_data)
2897                 return -ENOMEM;
2898         efx->nic_data = nic_data;
2899
2900         /* Determine number of ports etc. */
2901         rc = falcon_probe_nic_variant(efx);
2902         if (rc)
2903                 goto fail1;
2904
2905         /* Probe secondary function if expected */
2906         if (FALCON_IS_DUAL_FUNC(efx)) {
2907                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2908
2909                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2910                                              dev))) {
2911                         if (dev->bus == efx->pci_dev->bus &&
2912                             dev->devfn == efx->pci_dev->devfn + 1) {
2913                                 nic_data->pci_dev2 = dev;
2914                                 break;
2915                         }
2916                 }
2917                 if (!nic_data->pci_dev2) {
2918                         EFX_ERR(efx, "failed to find secondary function\n");
2919                         rc = -ENODEV;
2920                         goto fail2;
2921                 }
2922         }
2923
2924         /* Now we can reset the NIC */
2925         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2926         if (rc) {
2927                 EFX_ERR(efx, "failed to reset NIC\n");
2928                 goto fail3;
2929         }
2930
2931         /* Allocate memory for INT_KER */
2932         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2933         if (rc)
2934                 goto fail4;
2935         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2936
2937         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2938                 (unsigned long long)efx->irq_status.dma_addr,
2939                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2940
2941         falcon_probe_spi_devices(efx);
2942
2943         /* Read in the non-volatile configuration */
2944         rc = falcon_probe_nvconfig(efx);
2945         if (rc)
2946                 goto fail5;
2947
2948         /* Initialise I2C adapter */
2949         efx->i2c_adap.owner = THIS_MODULE;
2950         nic_data->i2c_data = falcon_i2c_bit_operations;
2951         nic_data->i2c_data.data = efx;
2952         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2953         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2954         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2955         rc = i2c_bit_add_bus(&efx->i2c_adap);
2956         if (rc)
2957                 goto fail5;
2958
2959         return 0;
2960
2961  fail5:
2962         falcon_remove_spi_devices(efx);
2963         falcon_free_buffer(efx, &efx->irq_status);
2964  fail4:
2965  fail3:
2966         if (nic_data->pci_dev2) {
2967                 pci_dev_put(nic_data->pci_dev2);
2968                 nic_data->pci_dev2 = NULL;
2969         }
2970  fail2:
2971  fail1:
2972         kfree(efx->nic_data);
2973         return rc;
2974 }
2975
2976 /* This call performs hardware-specific global initialisation, such as
2977  * defining the descriptor cache sizes and number of RSS channels.
2978  * It does not set up any buffers, descriptor rings or event queues.
2979  */
2980 int falcon_init_nic(struct efx_nic *efx)
2981 {
2982         efx_oword_t temp;
2983         unsigned thresh;
2984         int rc;
2985
2986         /* Use on-chip SRAM */
2987         falcon_read(efx, &temp, NIC_STAT_REG);
2988         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2989         falcon_write(efx, &temp, NIC_STAT_REG);
2990
2991         /* Set the source of the GMAC clock */
2992         if (falcon_rev(efx) == FALCON_REV_B0) {
2993                 falcon_read(efx, &temp, GPIO_CTL_REG_KER);
2994                 EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
2995                 falcon_write(efx, &temp, GPIO_CTL_REG_KER);
2996         }
2997
2998         /* Set buffer table mode */
2999         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
3000         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
3001
3002         rc = falcon_reset_sram(efx);
3003         if (rc)
3004                 return rc;
3005
3006         /* Set positions of descriptor caches in SRAM. */
3007         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
3008         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
3009         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
3010         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
3011
3012         /* Set TX descriptor cache size. */
3013         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3014         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3015         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
3016
3017         /* Set RX descriptor cache size.  Set low watermark to size-8, as
3018          * this allows most efficient prefetching.
3019          */
3020         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3021         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3022         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
3023         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3024         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
3025
3026         /* Clear the parity enables on the TX data fifos as
3027          * they produce false parity errors because of timing issues
3028          */
3029         if (EFX_WORKAROUND_5129(efx)) {
3030                 falcon_read(efx, &temp, SPARE_REG_KER);
3031                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
3032                 falcon_write(efx, &temp, SPARE_REG_KER);
3033         }
3034
3035         /* Enable all the genuinely fatal interrupts.  (They are still
3036          * masked by the overall interrupt mask, controlled by
3037          * falcon_interrupts()).
3038          *
3039          * Note: All other fatal interrupts are enabled
3040          */
3041         EFX_POPULATE_OWORD_3(temp,
3042                              ILL_ADR_INT_KER_EN, 1,
3043                              RBUF_OWN_INT_KER_EN, 1,
3044                              TBUF_OWN_INT_KER_EN, 1);
3045         EFX_INVERT_OWORD(temp);
3046         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
3047
3048         if (EFX_WORKAROUND_7244(efx)) {
3049                 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
3050                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
3051                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
3052                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
3053                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
3054                 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
3055         }
3056
3057         falcon_setup_rss_indir_table(efx);
3058
3059         /* Setup RX.  Wait for descriptor is broken and must
3060          * be disabled.  RXDP recovery shouldn't be needed, but is.
3061          */
3062         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
3063         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
3064         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
3065         if (EFX_WORKAROUND_5583(efx))
3066                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
3067         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
3068
3069         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3070          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3071          */
3072         falcon_read(efx, &temp, TX_CFG2_REG_KER);
3073         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
3074         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
3075         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
3076         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
3077         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
3078         /* Enable SW_EV to inherit in char driver - assume harmless here */
3079         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
3080         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3081         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
3082         /* Squash TX of packets of 16 bytes or less */
3083         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3084                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
3085         falcon_write(efx, &temp, TX_CFG2_REG_KER);
3086
3087         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3088          * descriptors (which is bad).
3089          */
3090         falcon_read(efx, &temp, TX_CFG_REG_KER);
3091         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
3092         falcon_write(efx, &temp, TX_CFG_REG_KER);
3093
3094         /* RX config */
3095         falcon_read(efx, &temp, RX_CFG_REG_KER);
3096         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
3097         if (EFX_WORKAROUND_7575(efx))
3098                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
3099                                         (3 * 4096) / 32);
3100         if (falcon_rev(efx) >= FALCON_REV_B0)
3101                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
3102
3103         /* RX FIFO flow control thresholds */
3104         thresh = ((rx_xon_thresh_bytes >= 0) ?
3105                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3106         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3107         thresh = ((rx_xoff_thresh_bytes >= 0) ?
3108                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3109         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3110         /* RX control FIFO thresholds [32 entries] */
3111         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3112         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3113         falcon_write(efx, &temp, RX_CFG_REG_KER);
3114
3115         /* Set destination of both TX and RX Flush events */
3116         if (falcon_rev(efx) >= FALCON_REV_B0) {
3117                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3118                 falcon_write(efx, &temp, DP_CTRL_REG);
3119         }
3120
3121         return 0;
3122 }
3123
3124 void falcon_remove_nic(struct efx_nic *efx)
3125 {
3126         struct falcon_nic_data *nic_data = efx->nic_data;
3127         int rc;
3128
3129         /* Remove I2C adapter and clear it in preparation for a retry */
3130         rc = i2c_del_adapter(&efx->i2c_adap);
3131         BUG_ON(rc);
3132         memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3133
3134         falcon_remove_spi_devices(efx);
3135         falcon_free_buffer(efx, &efx->irq_status);
3136
3137         falcon_reset_hw(efx, RESET_TYPE_ALL);
3138
3139         /* Release the second function after the reset */
3140         if (nic_data->pci_dev2) {
3141                 pci_dev_put(nic_data->pci_dev2);
3142                 nic_data->pci_dev2 = NULL;
3143         }
3144
3145         /* Tear down the private nic state */
3146         kfree(efx->nic_data);
3147         efx->nic_data = NULL;
3148 }
3149
3150 void falcon_update_nic_stats(struct efx_nic *efx)
3151 {
3152         efx_oword_t cnt;
3153
3154         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3155         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3156 }
3157
3158 /**************************************************************************
3159  *
3160  * Revision-dependent attributes used by efx.c
3161  *
3162  **************************************************************************
3163  */
3164
3165 struct efx_nic_type falcon_a_nic_type = {
3166         .mem_bar = 2,
3167         .mem_map_size = 0x20000,
3168         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3169         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3170         .buf_tbl_base = BUF_TBL_KER_A1,
3171         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3172         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3173         .txd_ring_mask = FALCON_TXD_RING_MASK,
3174         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3175         .evq_size = FALCON_EVQ_SIZE,
3176         .max_dma_mask = FALCON_DMA_MASK,
3177         .tx_dma_mask = FALCON_TX_DMA_MASK,
3178         .bug5391_mask = 0xf,
3179         .rx_xoff_thresh = 2048,
3180         .rx_xon_thresh = 512,
3181         .rx_buffer_padding = 0x24,
3182         .max_interrupt_mode = EFX_INT_MODE_MSI,
3183         .phys_addr_channels = 4,
3184 };
3185
3186 struct efx_nic_type falcon_b_nic_type = {
3187         .mem_bar = 2,
3188         /* Map everything up to and including the RSS indirection
3189          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3190          * requires that they not be mapped.  */
3191         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3192         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3193         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3194         .buf_tbl_base = BUF_TBL_KER_B0,
3195         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3196         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3197         .txd_ring_mask = FALCON_TXD_RING_MASK,
3198         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3199         .evq_size = FALCON_EVQ_SIZE,
3200         .max_dma_mask = FALCON_DMA_MASK,
3201         .tx_dma_mask = FALCON_TX_DMA_MASK,
3202         .bug5391_mask = 0,
3203         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3204         .rx_xon_thresh = 27648,  /* ~3*max MTU */
3205         .rx_buffer_padding = 0,
3206         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3207         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3208                                    * interrupt handler only supports 32
3209                                    * channels */
3210 };
3211