]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/tc35815.c
nilfs2: add routines to save and restore bmap state
[mv-sheeva.git] / drivers / net / tc35815.c
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *      -----<snip>-----
9  *      Copyright 2001 MontaVista Software Inc.
10  *      Author: MontaVista Software, Inc.
11  *              ahennessy@mvista.com
12  *      Copyright (C) 2000-2001 Toshiba Corporation
13  *      static const char *version =
14  *              "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *      -----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24
25 #define DRV_VERSION     "1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME                 "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/init.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/skbuff.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
47 #include <linux/phy.h>
48 #include <linux/workqueue.h>
49 #include <linux/platform_device.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54         TC35815CF = 0,
55         TC35815_NWU,
56         TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61         const char *name;
62 } chip_info[] __devinitdata = {
63         { "TOSHIBA TC35815CF 10/100BaseTX" },
64         { "TOSHIBA TC35815 with Wake on LAN" },
65         { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static DEFINE_PCI_DEVICE_TABLE(tc35815_pci_tbl) = {
69         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72         {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78         int speed;
79         int duplex;
80 } options;
81
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86         __u32 DMA_Ctl;          /* 0x00 */
87         __u32 TxFrmPtr;
88         __u32 TxThrsh;
89         __u32 TxPollCtr;
90         __u32 BLFrmPtr;
91         __u32 RxFragSize;
92         __u32 Int_En;
93         __u32 FDA_Bas;
94         __u32 FDA_Lim;          /* 0x20 */
95         __u32 Int_Src;
96         __u32 unused0[2];
97         __u32 PauseCnt;
98         __u32 RemPauCnt;
99         __u32 TxCtlFrmStat;
100         __u32 unused1;
101         __u32 MAC_Ctl;          /* 0x40 */
102         __u32 CAM_Ctl;
103         __u32 Tx_Ctl;
104         __u32 Tx_Stat;
105         __u32 Rx_Ctl;
106         __u32 Rx_Stat;
107         __u32 MD_Data;
108         __u32 MD_CA;
109         __u32 CAM_Adr;          /* 0x60 */
110         __u32 CAM_Data;
111         __u32 CAM_Ena;
112         __u32 PROM_Ctl;
113         __u32 PROM_Data;
114         __u32 Algn_Cnt;
115         __u32 CRC_Cnt;
116         __u32 Miss_Cnt;
117 };
118
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit asign ------------------------------------------------------- */
123 #define DMA_RxAlign            0x00c00000 /* 1:Reception Alignment           */
124 #define DMA_RxAlign_1          0x00400000
125 #define DMA_RxAlign_2          0x00800000
126 #define DMA_RxAlign_3          0x00c00000
127 #define DMA_M66EnStat          0x00080000 /* 1:66MHz Enable State            */
128 #define DMA_IntMask            0x00040000 /* 1:Interupt mask                 */
129 #define DMA_SWIntReq           0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp           0x00010000 /* 1:Transmit Wake Up              */
131 #define DMA_RxBigE             0x00008000 /* 1:Receive Big Endian            */
132 #define DMA_TxBigE             0x00004000 /* 1:Transmit Big Endian           */
133 #define DMA_TestMode           0x00002000 /* 1:Test Mode                     */
134 #define DMA_PowrMgmnt          0x00001000 /* 1:Power Management              */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size                  */
136
137 /* RxFragSize bit asign ---------------------------------------------------- */
138 #define RxFrag_EnPack          0x00008000 /* 1:Enable Packing                */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment                */
140
141 /* MAC_Ctl bit asign ------------------------------------------------------- */
142 #define MAC_Link10             0x00008000 /* 1:Link Status 10Mbits           */
143 #define MAC_EnMissRoll         0x00002000 /* 1:Enable Missed Roll            */
144 #define MAC_MissRoll           0x00000400 /* 1:Missed Roll                   */
145 #define MAC_Loop10             0x00000080 /* 1:Loop 10 Mbps                  */
146 #define MAC_Conn_Auto          0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M           0x00000020 /*01:                (10Mbps endec)*/
148 #define MAC_Conn_Mll           0x00000040 /*10:                (Mll clock)   */
149 #define MAC_MacLoop            0x00000010 /* 1:MAC Loopback                  */
150 #define MAC_FullDup            0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset              0x00000004 /* 1:Software Reset                */
152 #define MAC_HaltImm            0x00000002 /* 1:Halt Immediate                */
153 #define MAC_HaltReq            0x00000001 /* 1:Halt request                  */
154
155 /* PROM_Ctl bit asign ------------------------------------------------------ */
156 #define PROM_Busy              0x00008000 /* 1:Busy (Start Operation)        */
157 #define PROM_Read              0x00004000 /*10:Read operation                */
158 #define PROM_Write             0x00002000 /*01:Write operation               */
159 #define PROM_Erase             0x00006000 /*11:Erase operation               */
160                                           /*00:Enable or Disable Writting,   */
161                                           /*      as specified in PROM_Addr. */
162 #define PROM_Addr_Ena          0x00000030 /*11xxxx:PROM Write enable         */
163                                           /*00xxxx:           disable        */
164
165 /* CAM_Ctl bit asign ------------------------------------------------------- */
166 #define CAM_CompEn             0x00000010 /* 1:CAM Compare Enable            */
167 #define CAM_NegCAM             0x00000008 /* 1:Reject packets CAM recognizes,*/
168                                           /*                    accept other */
169 #define CAM_BroadAcc           0x00000004 /* 1:Broadcast assept              */
170 #define CAM_GroupAcc           0x00000002 /* 1:Multicast assept              */
171 #define CAM_StationAcc         0x00000001 /* 1:unicast accept                */
172
173 /* CAM_Ena bit asign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX                  21   /* CAM Data entry max count      */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)      (1 << (index))
177 #define CAM_ENTRY_DESTINATION   0
178 #define CAM_ENTRY_SOURCE        1
179 #define CAM_ENTRY_MACCTL        20
180
181 /* Tx_Ctl bit asign -------------------------------------------------------- */
182 #define Tx_En                  0x00000001 /* 1:Transmit enable               */
183 #define Tx_TxHalt              0x00000002 /* 1:Transmit Halt Request         */
184 #define Tx_NoPad               0x00000004 /* 1:Suppress Padding              */
185 #define Tx_NoCRC               0x00000008 /* 1:Suppress Padding              */
186 #define Tx_FBack               0x00000010 /* 1:Fast Back-off                 */
187 #define Tx_EnUnder             0x00000100 /* 1:Enable Underrun               */
188 #define Tx_EnExDefer           0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr             0x00000400 /* 1:Enable Lost Carrier           */
190 #define Tx_EnExColl            0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl          0x00001000 /* 1:Enable Late Collision         */
192 #define Tx_EnTxPar             0x00002000 /* 1:Enable Transmit Parity        */
193 #define Tx_EnComp              0x00004000 /* 1:Enable Completion             */
194
195 /* Tx_Stat bit asign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK         0x0000000F /* Tx Collision Count              */
197 #define Tx_ExColl              0x00000010 /* Excessive Collision             */
198 #define Tx_TXDefer             0x00000020 /* Transmit Defered                */
199 #define Tx_Paused              0x00000040 /* Transmit Paused                 */
200 #define Tx_IntTx               0x00000080 /* Interrupt on Tx                 */
201 #define Tx_Under               0x00000100 /* Underrun                        */
202 #define Tx_Defer               0x00000200 /* Deferral                        */
203 #define Tx_NCarr               0x00000400 /* No Carrier                      */
204 #define Tx_10Stat              0x00000800 /* 10Mbps Status                   */
205 #define Tx_LateColl            0x00001000 /* Late Collision                  */
206 #define Tx_TxPar               0x00002000 /* Tx Parity Error                 */
207 #define Tx_Comp                0x00004000 /* Completion                      */
208 #define Tx_Halted              0x00008000 /* Tx Halted                       */
209 #define Tx_SQErr               0x00010000 /* Signal Quality Error(SQE)       */
210
211 /* Rx_Ctl bit asign -------------------------------------------------------- */
212 #define Rx_EnGood              0x00004000 /* 1:Enable Good                   */
213 #define Rx_EnRxPar             0x00002000 /* 1:Enable Receive Parity         */
214 #define Rx_EnLongErr           0x00000800 /* 1:Enable Long Error             */
215 #define Rx_EnOver              0x00000400 /* 1:Enable OverFlow               */
216 #define Rx_EnCRCErr            0x00000200 /* 1:Enable CRC Error              */
217 #define Rx_EnAlign             0x00000100 /* 1:Enable Alignment              */
218 #define Rx_IgnoreCRC           0x00000040 /* 1:Ignore CRC Value              */
219 #define Rx_StripCRC            0x00000010 /* 1:Strip CRC Value               */
220 #define Rx_ShortEn             0x00000008 /* 1:Short Enable                  */
221 #define Rx_LongEn              0x00000004 /* 1:Long Enable                   */
222 #define Rx_RxHalt              0x00000002 /* 1:Receive Halt Request          */
223 #define Rx_RxEn                0x00000001 /* 1:Receive Intrrupt Enable       */
224
225 /* Rx_Stat bit asign ------------------------------------------------------- */
226 #define Rx_Halted              0x00008000 /* Rx Halted                       */
227 #define Rx_Good                0x00004000 /* Rx Good                         */
228 #define Rx_RxPar               0x00002000 /* Rx Parity Error                 */
229 #define Rx_TypePkt             0x00001000 /* Rx Type Packet                  */
230 #define Rx_LongErr             0x00000800 /* Rx Long Error                   */
231 #define Rx_Over                0x00000400 /* Rx Overflow                     */
232 #define Rx_CRCErr              0x00000200 /* Rx CRC Error                    */
233 #define Rx_Align               0x00000100 /* Rx Alignment Error              */
234 #define Rx_10Stat              0x00000080 /* Rx 10Mbps Status                */
235 #define Rx_IntRx               0x00000040 /* Rx Interrupt                    */
236 #define Rx_CtlRecd             0x00000020 /* Rx Control Receive              */
237 #define Rx_InLenErr            0x00000010 /* Rx In Range Frame Length Error  */
238
239 #define Rx_Stat_Mask           0x0000FFF0 /* Rx All Status Mask              */
240
241 /* Int_En bit asign -------------------------------------------------------- */
242 #define Int_NRAbtEn            0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn         0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn         0x00000200 /* 1:DMA Parity Error Enable       */
245 #define Int_DParDEn            0x00000100 /* 1:Data Parity Error Enable      */
246 #define Int_EarNotEn           0x00000080 /* 1:Early Notify Enable           */
247 #define Int_DParErrEn          0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn          0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn          0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn         0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn         0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn             0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn            0x00000001 /* 1:Free Descriptor Area          */
254                                           /*               Exhausted Enable  */
255
256 /* Int_Src bit asign ------------------------------------------------------- */
257 #define Int_NRabt              0x00004000 /* 1:Non Recoverable error         */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear      */
259 #define Int_BLEx               0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx              0x00000800 /* 1:FDA Empty & Clear             */
261 #define Int_IntNRAbt           0x00000400 /* 1:Non Recoverable Abort         */
262 #define Int_IntCmp             0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD            0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr           0x00000080 /* 1:DMA Parity Error & Clear      */
265 #define Int_IntEarNot          0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt              0x00000020 /* 1:Software request & Clear      */
267 #define Int_IntBLEx            0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx           0x00000008 /* 1:FDA Empty & Clear             */
269 #define Int_IntPCI             0x00000004 /* 1:PCI controller & Clear        */
270 #define Int_IntMacRx           0x00000002 /* 1:Rx controller & Clear         */
271 #define Int_IntMacTx           0x00000001 /* 1:Tx controller & Clear         */
272
273 /* MD_CA bit asign --------------------------------------------------------- */
274 #define MD_CA_PreSup           0x00001000 /* 1:Preamble Supress              */
275 #define MD_CA_Busy             0x00000800 /* 1:Busy (Start Operation)        */
276 #define MD_CA_Wr               0x00000400 /* 1:Write 0:Read                  */
277
278
279 /*
280  * Descriptors
281  */
282
283 /* Frame descripter */
284 struct FDesc {
285         volatile __u32 FDNext;
286         volatile __u32 FDSystem;
287         volatile __u32 FDStat;
288         volatile __u32 FDCtl;
289 };
290
291 /* Buffer descripter */
292 struct BDesc {
293         volatile __u32 BuffData;
294         volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN        16
298
299 /* Frame Descripter bit asign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK                     */
301 #define FD_BDCnt_MASK          0x001F0000 /* BD count MASK in FD             */
302 #define FD_FrmOpt_MASK         0x7C000000 /* Frame option MASK               */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx        0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC        0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD             0x80000000 /* FD Controller owner bit         */
309 #define FD_Next_EOL            0x00000001 /* FD EOL indicator                */
310 #define FD_BDCnt_SHIFT         16
311
312 /* Buffer Descripter bit asign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Recieve Data Size               */
314 #define BD_RxBDID_MASK         0x00FF0000 /* BD ID Number MASK               */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number           */
316 #define BD_CownsBD             0x80000000 /* BD Controller owner bit         */
317 #define BD_RxBDID_SHIFT        16
318 #define BD_RxBDSeqN_SHIFT      24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD      (Tx_EnTxPar | Tx_EnLateColl | \
324         Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325         Tx_En)  /* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD      (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328         | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330         Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331         Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332         Int_STargAbtEn | \
333         Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD     DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)    likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE  32
339 #define TX_THRESHOLD    1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occured this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM      128     /* < 256 */
348 #define RX_FD_NUM       256     /* >= 32 */
349 #define TX_FD_NUM       128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE     PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE     \
354         L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE     \
357         L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE   (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT     16
361
362 struct TxFD {
363         struct FDesc fd;
364         struct BDesc bd;
365         struct BDesc unused;
366 };
367
368 struct RxFD {
369         struct FDesc fd;
370         struct BDesc bd[0];     /* variable length */
371 };
372
373 struct FrFD {
374         struct FDesc fd;
375         struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr)  ioread32(addr)
380 #define tc_writel(d, addr)      iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386         struct pci_dev *pci_dev;
387
388         struct net_device *dev;
389         struct napi_struct napi;
390
391         /* statistics */
392         struct {
393                 int max_tx_qlen;
394                 int tx_ints;
395                 int rx_ints;
396                 int tx_underrun;
397         } lstats;
398
399         /* Tx control lock.  This protects the transmit buffer ring
400          * state along with the "tx full" state of the driver.  This
401          * means all netif_queue flow control actions are protected
402          * by this lock as well.
403          */
404         spinlock_t lock;
405         spinlock_t rx_lock;
406
407         struct mii_bus *mii_bus;
408         struct phy_device *phy_dev;
409         int duplex;
410         int speed;
411         int link;
412         struct work_struct restart_work;
413
414         /*
415          * Transmitting: Batch Mode.
416          *      1 BD in 1 TxFD.
417          * Receiving: Non-Packing Mode.
418          *      1 circular FD for Free Buffer List.
419          *      RX_BUF_NUM BD in Free Buffer FD.
420          *      One Free Buffer BD has ETH_FRAME_LEN data buffer.
421          */
422         void *fd_buf;   /* for TxFD, RxFD, FrFD */
423         dma_addr_t fd_buf_dma;
424         struct TxFD *tfd_base;
425         unsigned int tfd_start;
426         unsigned int tfd_end;
427         struct RxFD *rfd_base;
428         struct RxFD *rfd_limit;
429         struct RxFD *rfd_cur;
430         struct FrFD *fbl_ptr;
431         unsigned int fbl_count;
432         struct {
433                 struct sk_buff *skb;
434                 dma_addr_t skb_dma;
435         } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
436         u32 msg_enable;
437         enum tc35815_chiptype chiptype;
438 };
439
440 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
441 {
442         return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
443 }
444 #ifdef DEBUG
445 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
446 {
447         return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
448 }
449 #endif
450 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
451                                        struct pci_dev *hwdev,
452                                        dma_addr_t *dma_handle)
453 {
454         struct sk_buff *skb;
455         skb = dev_alloc_skb(RX_BUF_SIZE);
456         if (!skb)
457                 return NULL;
458         *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
459                                      PCI_DMA_FROMDEVICE);
460         if (pci_dma_mapping_error(hwdev, *dma_handle)) {
461                 dev_kfree_skb_any(skb);
462                 return NULL;
463         }
464         skb_reserve(skb, 2);    /* make IP header 4byte aligned */
465         return skb;
466 }
467
468 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
469 {
470         pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
471                          PCI_DMA_FROMDEVICE);
472         dev_kfree_skb_any(skb);
473 }
474
475 /* Index to functions, as function prototypes. */
476
477 static int      tc35815_open(struct net_device *dev);
478 static int      tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
479 static irqreturn_t      tc35815_interrupt(int irq, void *dev_id);
480 static int      tc35815_rx(struct net_device *dev, int limit);
481 static int      tc35815_poll(struct napi_struct *napi, int budget);
482 static void     tc35815_txdone(struct net_device *dev);
483 static int      tc35815_close(struct net_device *dev);
484 static struct   net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void     tc35815_set_multicast_list(struct net_device *dev);
486 static void     tc35815_tx_timeout(struct net_device *dev);
487 static int      tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
488 #ifdef CONFIG_NET_POLL_CONTROLLER
489 static void     tc35815_poll_controller(struct net_device *dev);
490 #endif
491 static const struct ethtool_ops tc35815_ethtool_ops;
492
493 /* Example routines you must write ;->. */
494 static void     tc35815_chip_reset(struct net_device *dev);
495 static void     tc35815_chip_init(struct net_device *dev);
496
497 #ifdef DEBUG
498 static void     panic_queues(struct net_device *dev);
499 #endif
500
501 static void tc35815_restart_work(struct work_struct *work);
502
503 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
504 {
505         struct net_device *dev = bus->priv;
506         struct tc35815_regs __iomem *tr =
507                 (struct tc35815_regs __iomem *)dev->base_addr;
508         unsigned long timeout = jiffies + HZ;
509
510         tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
511         udelay(12); /* it takes 32 x 400ns at least */
512         while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
513                 if (time_after(jiffies, timeout))
514                         return -EIO;
515                 cpu_relax();
516         }
517         return tc_readl(&tr->MD_Data) & 0xffff;
518 }
519
520 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
521 {
522         struct net_device *dev = bus->priv;
523         struct tc35815_regs __iomem *tr =
524                 (struct tc35815_regs __iomem *)dev->base_addr;
525         unsigned long timeout = jiffies + HZ;
526
527         tc_writel(val, &tr->MD_Data);
528         tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
529                   &tr->MD_CA);
530         udelay(12); /* it takes 32 x 400ns at least */
531         while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
532                 if (time_after(jiffies, timeout))
533                         return -EIO;
534                 cpu_relax();
535         }
536         return 0;
537 }
538
539 static void tc_handle_link_change(struct net_device *dev)
540 {
541         struct tc35815_local *lp = netdev_priv(dev);
542         struct phy_device *phydev = lp->phy_dev;
543         unsigned long flags;
544         int status_change = 0;
545
546         spin_lock_irqsave(&lp->lock, flags);
547         if (phydev->link &&
548             (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
549                 struct tc35815_regs __iomem *tr =
550                         (struct tc35815_regs __iomem *)dev->base_addr;
551                 u32 reg;
552
553                 reg = tc_readl(&tr->MAC_Ctl);
554                 reg |= MAC_HaltReq;
555                 tc_writel(reg, &tr->MAC_Ctl);
556                 if (phydev->duplex == DUPLEX_FULL)
557                         reg |= MAC_FullDup;
558                 else
559                         reg &= ~MAC_FullDup;
560                 tc_writel(reg, &tr->MAC_Ctl);
561                 reg &= ~MAC_HaltReq;
562                 tc_writel(reg, &tr->MAC_Ctl);
563
564                 /*
565                  * TX4939 PCFG.SPEEDn bit will be changed on
566                  * NETDEV_CHANGE event.
567                  */
568                 /*
569                  * WORKAROUND: enable LostCrS only if half duplex
570                  * operation.
571                  * (TX4939 does not have EnLCarr)
572                  */
573                 if (phydev->duplex == DUPLEX_HALF &&
574                     lp->chiptype != TC35815_TX4939)
575                         tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
576                                   &tr->Tx_Ctl);
577
578                 lp->speed = phydev->speed;
579                 lp->duplex = phydev->duplex;
580                 status_change = 1;
581         }
582
583         if (phydev->link != lp->link) {
584                 if (phydev->link) {
585                         /* delayed promiscuous enabling */
586                         if (dev->flags & IFF_PROMISC)
587                                 tc35815_set_multicast_list(dev);
588                 } else {
589                         lp->speed = 0;
590                         lp->duplex = -1;
591                 }
592                 lp->link = phydev->link;
593
594                 status_change = 1;
595         }
596         spin_unlock_irqrestore(&lp->lock, flags);
597
598         if (status_change && netif_msg_link(lp)) {
599                 phy_print_status(phydev);
600                 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
601                          dev->name,
602                          phy_read(phydev, MII_BMCR),
603                          phy_read(phydev, MII_BMSR),
604                          phy_read(phydev, MII_LPA));
605         }
606 }
607
608 static int tc_mii_probe(struct net_device *dev)
609 {
610         struct tc35815_local *lp = netdev_priv(dev);
611         struct phy_device *phydev = NULL;
612         int phy_addr;
613         u32 dropmask;
614
615         /* find the first phy */
616         for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
617                 if (lp->mii_bus->phy_map[phy_addr]) {
618                         if (phydev) {
619                                 printk(KERN_ERR "%s: multiple PHYs found\n",
620                                        dev->name);
621                                 return -EINVAL;
622                         }
623                         phydev = lp->mii_bus->phy_map[phy_addr];
624                         break;
625                 }
626         }
627
628         if (!phydev) {
629                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
630                 return -ENODEV;
631         }
632
633         /* attach the mac to the phy */
634         phydev = phy_connect(dev, dev_name(&phydev->dev),
635                              &tc_handle_link_change, 0,
636                              lp->chiptype == TC35815_TX4939 ?
637                              PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
638         if (IS_ERR(phydev)) {
639                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
640                 return PTR_ERR(phydev);
641         }
642         printk(KERN_INFO "%s: attached PHY driver [%s] "
643                 "(mii_bus:phy_addr=%s, id=%x)\n",
644                 dev->name, phydev->drv->name, dev_name(&phydev->dev),
645                 phydev->phy_id);
646
647         /* mask with MAC supported features */
648         phydev->supported &= PHY_BASIC_FEATURES;
649         dropmask = 0;
650         if (options.speed == 10)
651                 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
652         else if (options.speed == 100)
653                 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
654         if (options.duplex == 1)
655                 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
656         else if (options.duplex == 2)
657                 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
658         phydev->supported &= ~dropmask;
659         phydev->advertising = phydev->supported;
660
661         lp->link = 0;
662         lp->speed = 0;
663         lp->duplex = -1;
664         lp->phy_dev = phydev;
665
666         return 0;
667 }
668
669 static int tc_mii_init(struct net_device *dev)
670 {
671         struct tc35815_local *lp = netdev_priv(dev);
672         int err;
673         int i;
674
675         lp->mii_bus = mdiobus_alloc();
676         if (lp->mii_bus == NULL) {
677                 err = -ENOMEM;
678                 goto err_out;
679         }
680
681         lp->mii_bus->name = "tc35815_mii_bus";
682         lp->mii_bus->read = tc_mdio_read;
683         lp->mii_bus->write = tc_mdio_write;
684         snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
685                  (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
686         lp->mii_bus->priv = dev;
687         lp->mii_bus->parent = &lp->pci_dev->dev;
688         lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
689         if (!lp->mii_bus->irq) {
690                 err = -ENOMEM;
691                 goto err_out_free_mii_bus;
692         }
693
694         for (i = 0; i < PHY_MAX_ADDR; i++)
695                 lp->mii_bus->irq[i] = PHY_POLL;
696
697         err = mdiobus_register(lp->mii_bus);
698         if (err)
699                 goto err_out_free_mdio_irq;
700         err = tc_mii_probe(dev);
701         if (err)
702                 goto err_out_unregister_bus;
703         return 0;
704
705 err_out_unregister_bus:
706         mdiobus_unregister(lp->mii_bus);
707 err_out_free_mdio_irq:
708         kfree(lp->mii_bus->irq);
709 err_out_free_mii_bus:
710         mdiobus_free(lp->mii_bus);
711 err_out:
712         return err;
713 }
714
715 #ifdef CONFIG_CPU_TX49XX
716 /*
717  * Find a platform_device providing a MAC address.  The platform code
718  * should provide a "tc35815-mac" device with a MAC address in its
719  * platform_data.
720  */
721 static int __devinit tc35815_mac_match(struct device *dev, void *data)
722 {
723         struct platform_device *plat_dev = to_platform_device(dev);
724         struct pci_dev *pci_dev = data;
725         unsigned int id = pci_dev->irq;
726         return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
727 }
728
729 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
730 {
731         struct tc35815_local *lp = netdev_priv(dev);
732         struct device *pd = bus_find_device(&platform_bus_type, NULL,
733                                             lp->pci_dev, tc35815_mac_match);
734         if (pd) {
735                 if (pd->platform_data)
736                         memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
737                 put_device(pd);
738                 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
739         }
740         return -ENODEV;
741 }
742 #else
743 static int __devinit tc35815_read_plat_dev_addr(struct net_device *dev)
744 {
745         return -ENODEV;
746 }
747 #endif
748
749 static int __devinit tc35815_init_dev_addr(struct net_device *dev)
750 {
751         struct tc35815_regs __iomem *tr =
752                 (struct tc35815_regs __iomem *)dev->base_addr;
753         int i;
754
755         while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
756                 ;
757         for (i = 0; i < 6; i += 2) {
758                 unsigned short data;
759                 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
760                 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
761                         ;
762                 data = tc_readl(&tr->PROM_Data);
763                 dev->dev_addr[i] = data & 0xff;
764                 dev->dev_addr[i+1] = data >> 8;
765         }
766         if (!is_valid_ether_addr(dev->dev_addr))
767                 return tc35815_read_plat_dev_addr(dev);
768         return 0;
769 }
770
771 static const struct net_device_ops tc35815_netdev_ops = {
772         .ndo_open               = tc35815_open,
773         .ndo_stop               = tc35815_close,
774         .ndo_start_xmit         = tc35815_send_packet,
775         .ndo_get_stats          = tc35815_get_stats,
776         .ndo_set_multicast_list = tc35815_set_multicast_list,
777         .ndo_tx_timeout         = tc35815_tx_timeout,
778         .ndo_do_ioctl           = tc35815_ioctl,
779         .ndo_validate_addr      = eth_validate_addr,
780         .ndo_change_mtu         = eth_change_mtu,
781         .ndo_set_mac_address    = eth_mac_addr,
782 #ifdef CONFIG_NET_POLL_CONTROLLER
783         .ndo_poll_controller    = tc35815_poll_controller,
784 #endif
785 };
786
787 static int __devinit tc35815_init_one(struct pci_dev *pdev,
788                                       const struct pci_device_id *ent)
789 {
790         void __iomem *ioaddr = NULL;
791         struct net_device *dev;
792         struct tc35815_local *lp;
793         int rc;
794
795         static int printed_version;
796         if (!printed_version++) {
797                 printk(version);
798                 dev_printk(KERN_DEBUG, &pdev->dev,
799                            "speed:%d duplex:%d\n",
800                            options.speed, options.duplex);
801         }
802
803         if (!pdev->irq) {
804                 dev_warn(&pdev->dev, "no IRQ assigned.\n");
805                 return -ENODEV;
806         }
807
808         /* dev zeroed in alloc_etherdev */
809         dev = alloc_etherdev(sizeof(*lp));
810         if (dev == NULL) {
811                 dev_err(&pdev->dev, "unable to alloc new ethernet\n");
812                 return -ENOMEM;
813         }
814         SET_NETDEV_DEV(dev, &pdev->dev);
815         lp = netdev_priv(dev);
816         lp->dev = dev;
817
818         /* enable device (incl. PCI PM wakeup), and bus-mastering */
819         rc = pcim_enable_device(pdev);
820         if (rc)
821                 goto err_out;
822         rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
823         if (rc)
824                 goto err_out;
825         pci_set_master(pdev);
826         ioaddr = pcim_iomap_table(pdev)[1];
827
828         /* Initialize the device structure. */
829         dev->netdev_ops = &tc35815_netdev_ops;
830         dev->ethtool_ops = &tc35815_ethtool_ops;
831         dev->watchdog_timeo = TC35815_TX_TIMEOUT;
832         netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
833
834         dev->irq = pdev->irq;
835         dev->base_addr = (unsigned long)ioaddr;
836
837         INIT_WORK(&lp->restart_work, tc35815_restart_work);
838         spin_lock_init(&lp->lock);
839         spin_lock_init(&lp->rx_lock);
840         lp->pci_dev = pdev;
841         lp->chiptype = ent->driver_data;
842
843         lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
844         pci_set_drvdata(pdev, dev);
845
846         /* Soft reset the chip. */
847         tc35815_chip_reset(dev);
848
849         /* Retrieve the ethernet address. */
850         if (tc35815_init_dev_addr(dev)) {
851                 dev_warn(&pdev->dev, "not valid ether addr\n");
852                 random_ether_addr(dev->dev_addr);
853         }
854
855         rc = register_netdev(dev);
856         if (rc)
857                 goto err_out;
858
859         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
860         printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
861                 dev->name,
862                 chip_info[ent->driver_data].name,
863                 dev->base_addr,
864                 dev->dev_addr,
865                 dev->irq);
866
867         rc = tc_mii_init(dev);
868         if (rc)
869                 goto err_out_unregister;
870
871         return 0;
872
873 err_out_unregister:
874         unregister_netdev(dev);
875 err_out:
876         free_netdev(dev);
877         return rc;
878 }
879
880
881 static void __devexit tc35815_remove_one(struct pci_dev *pdev)
882 {
883         struct net_device *dev = pci_get_drvdata(pdev);
884         struct tc35815_local *lp = netdev_priv(dev);
885
886         phy_disconnect(lp->phy_dev);
887         mdiobus_unregister(lp->mii_bus);
888         kfree(lp->mii_bus->irq);
889         mdiobus_free(lp->mii_bus);
890         unregister_netdev(dev);
891         free_netdev(dev);
892         pci_set_drvdata(pdev, NULL);
893 }
894
895 static int
896 tc35815_init_queues(struct net_device *dev)
897 {
898         struct tc35815_local *lp = netdev_priv(dev);
899         int i;
900         unsigned long fd_addr;
901
902         if (!lp->fd_buf) {
903                 BUG_ON(sizeof(struct FDesc) +
904                        sizeof(struct BDesc) * RX_BUF_NUM +
905                        sizeof(struct FDesc) * RX_FD_NUM +
906                        sizeof(struct TxFD) * TX_FD_NUM >
907                        PAGE_SIZE * FD_PAGE_NUM);
908
909                 lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
910                                                   PAGE_SIZE * FD_PAGE_NUM,
911                                                   &lp->fd_buf_dma);
912                 if (!lp->fd_buf)
913                         return -ENOMEM;
914                 for (i = 0; i < RX_BUF_NUM; i++) {
915                         lp->rx_skbs[i].skb =
916                                 alloc_rxbuf_skb(dev, lp->pci_dev,
917                                                 &lp->rx_skbs[i].skb_dma);
918                         if (!lp->rx_skbs[i].skb) {
919                                 while (--i >= 0) {
920                                         free_rxbuf_skb(lp->pci_dev,
921                                                        lp->rx_skbs[i].skb,
922                                                        lp->rx_skbs[i].skb_dma);
923                                         lp->rx_skbs[i].skb = NULL;
924                                 }
925                                 pci_free_consistent(lp->pci_dev,
926                                                     PAGE_SIZE * FD_PAGE_NUM,
927                                                     lp->fd_buf,
928                                                     lp->fd_buf_dma);
929                                 lp->fd_buf = NULL;
930                                 return -ENOMEM;
931                         }
932                 }
933                 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
934                        dev->name, lp->fd_buf);
935                 printk("\n");
936         } else {
937                 for (i = 0; i < FD_PAGE_NUM; i++)
938                         clear_page((void *)((unsigned long)lp->fd_buf +
939                                             i * PAGE_SIZE));
940         }
941         fd_addr = (unsigned long)lp->fd_buf;
942
943         /* Free Descriptors (for Receive) */
944         lp->rfd_base = (struct RxFD *)fd_addr;
945         fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
946         for (i = 0; i < RX_FD_NUM; i++)
947                 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
948         lp->rfd_cur = lp->rfd_base;
949         lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
950
951         /* Transmit Descriptors */
952         lp->tfd_base = (struct TxFD *)fd_addr;
953         fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
954         for (i = 0; i < TX_FD_NUM; i++) {
955                 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
956                 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
957                 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
958         }
959         lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
960         lp->tfd_start = 0;
961         lp->tfd_end = 0;
962
963         /* Buffer List (for Receive) */
964         lp->fbl_ptr = (struct FrFD *)fd_addr;
965         lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
966         lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
967         /*
968          * move all allocated skbs to head of rx_skbs[] array.
969          * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
970          * tc35815_rx() had failed.
971          */
972         lp->fbl_count = 0;
973         for (i = 0; i < RX_BUF_NUM; i++) {
974                 if (lp->rx_skbs[i].skb) {
975                         if (i != lp->fbl_count) {
976                                 lp->rx_skbs[lp->fbl_count].skb =
977                                         lp->rx_skbs[i].skb;
978                                 lp->rx_skbs[lp->fbl_count].skb_dma =
979                                         lp->rx_skbs[i].skb_dma;
980                         }
981                         lp->fbl_count++;
982                 }
983         }
984         for (i = 0; i < RX_BUF_NUM; i++) {
985                 if (i >= lp->fbl_count) {
986                         lp->fbl_ptr->bd[i].BuffData = 0;
987                         lp->fbl_ptr->bd[i].BDCtl = 0;
988                         continue;
989                 }
990                 lp->fbl_ptr->bd[i].BuffData =
991                         cpu_to_le32(lp->rx_skbs[i].skb_dma);
992                 /* BDID is index of FrFD.bd[] */
993                 lp->fbl_ptr->bd[i].BDCtl =
994                         cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
995                                     RX_BUF_SIZE);
996         }
997
998         printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
999                dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
1000         return 0;
1001 }
1002
1003 static void
1004 tc35815_clear_queues(struct net_device *dev)
1005 {
1006         struct tc35815_local *lp = netdev_priv(dev);
1007         int i;
1008
1009         for (i = 0; i < TX_FD_NUM; i++) {
1010                 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1011                 struct sk_buff *skb =
1012                         fdsystem != 0xffffffff ?
1013                         lp->tx_skbs[fdsystem].skb : NULL;
1014 #ifdef DEBUG
1015                 if (lp->tx_skbs[i].skb != skb) {
1016                         printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1017                         panic_queues(dev);
1018                 }
1019 #else
1020                 BUG_ON(lp->tx_skbs[i].skb != skb);
1021 #endif
1022                 if (skb) {
1023                         pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1024                         lp->tx_skbs[i].skb = NULL;
1025                         lp->tx_skbs[i].skb_dma = 0;
1026                         dev_kfree_skb_any(skb);
1027                 }
1028                 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1029         }
1030
1031         tc35815_init_queues(dev);
1032 }
1033
1034 static void
1035 tc35815_free_queues(struct net_device *dev)
1036 {
1037         struct tc35815_local *lp = netdev_priv(dev);
1038         int i;
1039
1040         if (lp->tfd_base) {
1041                 for (i = 0; i < TX_FD_NUM; i++) {
1042                         u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1043                         struct sk_buff *skb =
1044                                 fdsystem != 0xffffffff ?
1045                                 lp->tx_skbs[fdsystem].skb : NULL;
1046 #ifdef DEBUG
1047                         if (lp->tx_skbs[i].skb != skb) {
1048                                 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1049                                 panic_queues(dev);
1050                         }
1051 #else
1052                         BUG_ON(lp->tx_skbs[i].skb != skb);
1053 #endif
1054                         if (skb) {
1055                                 dev_kfree_skb(skb);
1056                                 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1057                                 lp->tx_skbs[i].skb = NULL;
1058                                 lp->tx_skbs[i].skb_dma = 0;
1059                         }
1060                         lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1061                 }
1062         }
1063
1064         lp->rfd_base = NULL;
1065         lp->rfd_limit = NULL;
1066         lp->rfd_cur = NULL;
1067         lp->fbl_ptr = NULL;
1068
1069         for (i = 0; i < RX_BUF_NUM; i++) {
1070                 if (lp->rx_skbs[i].skb) {
1071                         free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1072                                        lp->rx_skbs[i].skb_dma);
1073                         lp->rx_skbs[i].skb = NULL;
1074                 }
1075         }
1076         if (lp->fd_buf) {
1077                 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1078                                     lp->fd_buf, lp->fd_buf_dma);
1079                 lp->fd_buf = NULL;
1080         }
1081 }
1082
1083 static void
1084 dump_txfd(struct TxFD *fd)
1085 {
1086         printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1087                le32_to_cpu(fd->fd.FDNext),
1088                le32_to_cpu(fd->fd.FDSystem),
1089                le32_to_cpu(fd->fd.FDStat),
1090                le32_to_cpu(fd->fd.FDCtl));
1091         printk("BD: ");
1092         printk(" %08x %08x",
1093                le32_to_cpu(fd->bd.BuffData),
1094                le32_to_cpu(fd->bd.BDCtl));
1095         printk("\n");
1096 }
1097
1098 static int
1099 dump_rxfd(struct RxFD *fd)
1100 {
1101         int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1102         if (bd_count > 8)
1103                 bd_count = 8;
1104         printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1105                le32_to_cpu(fd->fd.FDNext),
1106                le32_to_cpu(fd->fd.FDSystem),
1107                le32_to_cpu(fd->fd.FDStat),
1108                le32_to_cpu(fd->fd.FDCtl));
1109         if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1110                 return 0;
1111         printk("BD: ");
1112         for (i = 0; i < bd_count; i++)
1113                 printk(" %08x %08x",
1114                        le32_to_cpu(fd->bd[i].BuffData),
1115                        le32_to_cpu(fd->bd[i].BDCtl));
1116         printk("\n");
1117         return bd_count;
1118 }
1119
1120 #ifdef DEBUG
1121 static void
1122 dump_frfd(struct FrFD *fd)
1123 {
1124         int i;
1125         printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1126                le32_to_cpu(fd->fd.FDNext),
1127                le32_to_cpu(fd->fd.FDSystem),
1128                le32_to_cpu(fd->fd.FDStat),
1129                le32_to_cpu(fd->fd.FDCtl));
1130         printk("BD: ");
1131         for (i = 0; i < RX_BUF_NUM; i++)
1132                 printk(" %08x %08x",
1133                        le32_to_cpu(fd->bd[i].BuffData),
1134                        le32_to_cpu(fd->bd[i].BDCtl));
1135         printk("\n");
1136 }
1137
1138 static void
1139 panic_queues(struct net_device *dev)
1140 {
1141         struct tc35815_local *lp = netdev_priv(dev);
1142         int i;
1143
1144         printk("TxFD base %p, start %u, end %u\n",
1145                lp->tfd_base, lp->tfd_start, lp->tfd_end);
1146         printk("RxFD base %p limit %p cur %p\n",
1147                lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1148         printk("FrFD %p\n", lp->fbl_ptr);
1149         for (i = 0; i < TX_FD_NUM; i++)
1150                 dump_txfd(&lp->tfd_base[i]);
1151         for (i = 0; i < RX_FD_NUM; i++) {
1152                 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1153                 i += (bd_count + 1) / 2;        /* skip BDs */
1154         }
1155         dump_frfd(lp->fbl_ptr);
1156         panic("%s: Illegal queue state.", dev->name);
1157 }
1158 #endif
1159
1160 static void print_eth(const u8 *add)
1161 {
1162         printk(KERN_DEBUG "print_eth(%p)\n", add);
1163         printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1164                 add + 6, add, add[12], add[13]);
1165 }
1166
1167 static int tc35815_tx_full(struct net_device *dev)
1168 {
1169         struct tc35815_local *lp = netdev_priv(dev);
1170         return ((lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end);
1171 }
1172
1173 static void tc35815_restart(struct net_device *dev)
1174 {
1175         struct tc35815_local *lp = netdev_priv(dev);
1176
1177         if (lp->phy_dev) {
1178                 int timeout;
1179
1180                 phy_write(lp->phy_dev, MII_BMCR, BMCR_RESET);
1181                 timeout = 100;
1182                 while (--timeout) {
1183                         if (!(phy_read(lp->phy_dev, MII_BMCR) & BMCR_RESET))
1184                                 break;
1185                         udelay(1);
1186                 }
1187                 if (!timeout)
1188                         printk(KERN_ERR "%s: BMCR reset failed.\n", dev->name);
1189         }
1190
1191         spin_lock_bh(&lp->rx_lock);
1192         spin_lock_irq(&lp->lock);
1193         tc35815_chip_reset(dev);
1194         tc35815_clear_queues(dev);
1195         tc35815_chip_init(dev);
1196         /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1197         tc35815_set_multicast_list(dev);
1198         spin_unlock_irq(&lp->lock);
1199         spin_unlock_bh(&lp->rx_lock);
1200
1201         netif_wake_queue(dev);
1202 }
1203
1204 static void tc35815_restart_work(struct work_struct *work)
1205 {
1206         struct tc35815_local *lp =
1207                 container_of(work, struct tc35815_local, restart_work);
1208         struct net_device *dev = lp->dev;
1209
1210         tc35815_restart(dev);
1211 }
1212
1213 static void tc35815_schedule_restart(struct net_device *dev)
1214 {
1215         struct tc35815_local *lp = netdev_priv(dev);
1216         struct tc35815_regs __iomem *tr =
1217                 (struct tc35815_regs __iomem *)dev->base_addr;
1218         unsigned long flags;
1219
1220         /* disable interrupts */
1221         spin_lock_irqsave(&lp->lock, flags);
1222         tc_writel(0, &tr->Int_En);
1223         tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1224         schedule_work(&lp->restart_work);
1225         spin_unlock_irqrestore(&lp->lock, flags);
1226 }
1227
1228 static void tc35815_tx_timeout(struct net_device *dev)
1229 {
1230         struct tc35815_regs __iomem *tr =
1231                 (struct tc35815_regs __iomem *)dev->base_addr;
1232
1233         printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1234                dev->name, tc_readl(&tr->Tx_Stat));
1235
1236         /* Try to restart the adaptor. */
1237         tc35815_schedule_restart(dev);
1238         dev->stats.tx_errors++;
1239 }
1240
1241 /*
1242  * Open/initialize the controller. This is called (in the current kernel)
1243  * sometime after booting when the 'ifconfig' program is run.
1244  *
1245  * This routine should set everything up anew at each open, even
1246  * registers that "should" only need to be set once at boot, so that
1247  * there is non-reboot way to recover if something goes wrong.
1248  */
1249 static int
1250 tc35815_open(struct net_device *dev)
1251 {
1252         struct tc35815_local *lp = netdev_priv(dev);
1253
1254         /*
1255          * This is used if the interrupt line can turned off (shared).
1256          * See 3c503.c for an example of selecting the IRQ at config-time.
1257          */
1258         if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1259                         dev->name, dev))
1260                 return -EAGAIN;
1261
1262         tc35815_chip_reset(dev);
1263
1264         if (tc35815_init_queues(dev) != 0) {
1265                 free_irq(dev->irq, dev);
1266                 return -EAGAIN;
1267         }
1268
1269         napi_enable(&lp->napi);
1270
1271         /* Reset the hardware here. Don't forget to set the station address. */
1272         spin_lock_irq(&lp->lock);
1273         tc35815_chip_init(dev);
1274         spin_unlock_irq(&lp->lock);
1275
1276         netif_carrier_off(dev);
1277         /* schedule a link state check */
1278         phy_start(lp->phy_dev);
1279
1280         /* We are now ready to accept transmit requeusts from
1281          * the queueing layer of the networking.
1282          */
1283         netif_start_queue(dev);
1284
1285         return 0;
1286 }
1287
1288 /* This will only be invoked if your driver is _not_ in XOFF state.
1289  * What this means is that you need not check it, and that this
1290  * invariant will hold if you make sure that the netif_*_queue()
1291  * calls are done at the proper times.
1292  */
1293 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1294 {
1295         struct tc35815_local *lp = netdev_priv(dev);
1296         struct TxFD *txfd;
1297         unsigned long flags;
1298
1299         /* If some error occurs while trying to transmit this
1300          * packet, you should return '1' from this function.
1301          * In such a case you _may not_ do anything to the
1302          * SKB, it is still owned by the network queueing
1303          * layer when an error is returned.  This means you
1304          * may not modify any SKB fields, you may not free
1305          * the SKB, etc.
1306          */
1307
1308         /* This is the most common case for modern hardware.
1309          * The spinlock protects this code from the TX complete
1310          * hardware interrupt handler.  Queue flow control is
1311          * thus managed under this lock as well.
1312          */
1313         spin_lock_irqsave(&lp->lock, flags);
1314
1315         /* failsafe... (handle txdone now if half of FDs are used) */
1316         if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1317             TX_FD_NUM / 2)
1318                 tc35815_txdone(dev);
1319
1320         if (netif_msg_pktdata(lp))
1321                 print_eth(skb->data);
1322 #ifdef DEBUG
1323         if (lp->tx_skbs[lp->tfd_start].skb) {
1324                 printk("%s: tx_skbs conflict.\n", dev->name);
1325                 panic_queues(dev);
1326         }
1327 #else
1328         BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1329 #endif
1330         lp->tx_skbs[lp->tfd_start].skb = skb;
1331         lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1332
1333         /*add to ring */
1334         txfd = &lp->tfd_base[lp->tfd_start];
1335         txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1336         txfd->bd.BDCtl = cpu_to_le32(skb->len);
1337         txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1338         txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1339
1340         if (lp->tfd_start == lp->tfd_end) {
1341                 struct tc35815_regs __iomem *tr =
1342                         (struct tc35815_regs __iomem *)dev->base_addr;
1343                 /* Start DMA Transmitter. */
1344                 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1345                 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1346                 if (netif_msg_tx_queued(lp)) {
1347                         printk("%s: starting TxFD.\n", dev->name);
1348                         dump_txfd(txfd);
1349                 }
1350                 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1351         } else {
1352                 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1353                 if (netif_msg_tx_queued(lp)) {
1354                         printk("%s: queueing TxFD.\n", dev->name);
1355                         dump_txfd(txfd);
1356                 }
1357         }
1358         lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1359
1360         /* If we just used up the very last entry in the
1361          * TX ring on this device, tell the queueing
1362          * layer to send no more.
1363          */
1364         if (tc35815_tx_full(dev)) {
1365                 if (netif_msg_tx_queued(lp))
1366                         printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1367                 netif_stop_queue(dev);
1368         }
1369
1370         /* When the TX completion hw interrupt arrives, this
1371          * is when the transmit statistics are updated.
1372          */
1373
1374         spin_unlock_irqrestore(&lp->lock, flags);
1375         return NETDEV_TX_OK;
1376 }
1377
1378 #define FATAL_ERROR_INT \
1379         (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1380 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1381 {
1382         static int count;
1383         printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1384                dev->name, status);
1385         if (status & Int_IntPCI)
1386                 printk(" IntPCI");
1387         if (status & Int_DmParErr)
1388                 printk(" DmParErr");
1389         if (status & Int_IntNRAbt)
1390                 printk(" IntNRAbt");
1391         printk("\n");
1392         if (count++ > 100)
1393                 panic("%s: Too many fatal errors.", dev->name);
1394         printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1395         /* Try to restart the adaptor. */
1396         tc35815_schedule_restart(dev);
1397 }
1398
1399 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1400 {
1401         struct tc35815_local *lp = netdev_priv(dev);
1402         int ret = -1;
1403
1404         /* Fatal errors... */
1405         if (status & FATAL_ERROR_INT) {
1406                 tc35815_fatal_error_interrupt(dev, status);
1407                 return 0;
1408         }
1409         /* recoverable errors */
1410         if (status & Int_IntFDAEx) {
1411                 if (netif_msg_rx_err(lp))
1412                         dev_warn(&dev->dev,
1413                                  "Free Descriptor Area Exhausted (%#x).\n",
1414                                  status);
1415                 dev->stats.rx_dropped++;
1416                 ret = 0;
1417         }
1418         if (status & Int_IntBLEx) {
1419                 if (netif_msg_rx_err(lp))
1420                         dev_warn(&dev->dev,
1421                                  "Buffer List Exhausted (%#x).\n",
1422                                  status);
1423                 dev->stats.rx_dropped++;
1424                 ret = 0;
1425         }
1426         if (status & Int_IntExBD) {
1427                 if (netif_msg_rx_err(lp))
1428                         dev_warn(&dev->dev,
1429                                  "Excessive Buffer Descriptiors (%#x).\n",
1430                                  status);
1431                 dev->stats.rx_length_errors++;
1432                 ret = 0;
1433         }
1434
1435         /* normal notification */
1436         if (status & Int_IntMacRx) {
1437                 /* Got a packet(s). */
1438                 ret = tc35815_rx(dev, limit);
1439                 lp->lstats.rx_ints++;
1440         }
1441         if (status & Int_IntMacTx) {
1442                 /* Transmit complete. */
1443                 lp->lstats.tx_ints++;
1444                 spin_lock_irq(&lp->lock);
1445                 tc35815_txdone(dev);
1446                 spin_unlock_irq(&lp->lock);
1447                 if (ret < 0)
1448                         ret = 0;
1449         }
1450         return ret;
1451 }
1452
1453 /*
1454  * The typical workload of the driver:
1455  * Handle the network interface interrupts.
1456  */
1457 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1458 {
1459         struct net_device *dev = dev_id;
1460         struct tc35815_local *lp = netdev_priv(dev);
1461         struct tc35815_regs __iomem *tr =
1462                 (struct tc35815_regs __iomem *)dev->base_addr;
1463         u32 dmactl = tc_readl(&tr->DMA_Ctl);
1464
1465         if (!(dmactl & DMA_IntMask)) {
1466                 /* disable interrupts */
1467                 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1468                 if (napi_schedule_prep(&lp->napi))
1469                         __napi_schedule(&lp->napi);
1470                 else {
1471                         printk(KERN_ERR "%s: interrupt taken in poll\n",
1472                                dev->name);
1473                         BUG();
1474                 }
1475                 (void)tc_readl(&tr->Int_Src);   /* flush */
1476                 return IRQ_HANDLED;
1477         }
1478         return IRQ_NONE;
1479 }
1480
1481 #ifdef CONFIG_NET_POLL_CONTROLLER
1482 static void tc35815_poll_controller(struct net_device *dev)
1483 {
1484         disable_irq(dev->irq);
1485         tc35815_interrupt(dev->irq, dev);
1486         enable_irq(dev->irq);
1487 }
1488 #endif
1489
1490 /* We have a good packet(s), get it/them out of the buffers. */
1491 static int
1492 tc35815_rx(struct net_device *dev, int limit)
1493 {
1494         struct tc35815_local *lp = netdev_priv(dev);
1495         unsigned int fdctl;
1496         int i;
1497         int received = 0;
1498
1499         while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1500                 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1501                 int pkt_len = fdctl & FD_FDLength_MASK;
1502                 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1503 #ifdef DEBUG
1504                 struct RxFD *next_rfd;
1505 #endif
1506 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1507                 pkt_len -= ETH_FCS_LEN;
1508 #endif
1509
1510                 if (netif_msg_rx_status(lp))
1511                         dump_rxfd(lp->rfd_cur);
1512                 if (status & Rx_Good) {
1513                         struct sk_buff *skb;
1514                         unsigned char *data;
1515                         int cur_bd;
1516
1517                         if (--limit < 0)
1518                                 break;
1519                         BUG_ON(bd_count > 1);
1520                         cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1521                                   & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1522 #ifdef DEBUG
1523                         if (cur_bd >= RX_BUF_NUM) {
1524                                 printk("%s: invalid BDID.\n", dev->name);
1525                                 panic_queues(dev);
1526                         }
1527                         BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1528                                (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1529                         if (!lp->rx_skbs[cur_bd].skb) {
1530                                 printk("%s: NULL skb.\n", dev->name);
1531                                 panic_queues(dev);
1532                         }
1533 #else
1534                         BUG_ON(cur_bd >= RX_BUF_NUM);
1535 #endif
1536                         skb = lp->rx_skbs[cur_bd].skb;
1537                         prefetch(skb->data);
1538                         lp->rx_skbs[cur_bd].skb = NULL;
1539                         pci_unmap_single(lp->pci_dev,
1540                                          lp->rx_skbs[cur_bd].skb_dma,
1541                                          RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1542                         if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1543                                 memmove(skb->data, skb->data - NET_IP_ALIGN,
1544                                         pkt_len);
1545                         data = skb_put(skb, pkt_len);
1546                         if (netif_msg_pktdata(lp))
1547                                 print_eth(data);
1548                         skb->protocol = eth_type_trans(skb, dev);
1549                         netif_receive_skb(skb);
1550                         received++;
1551                         dev->stats.rx_packets++;
1552                         dev->stats.rx_bytes += pkt_len;
1553                 } else {
1554                         dev->stats.rx_errors++;
1555                         if (netif_msg_rx_err(lp))
1556                                 dev_info(&dev->dev, "Rx error (status %x)\n",
1557                                          status & Rx_Stat_Mask);
1558                         /* WORKAROUND: LongErr and CRCErr means Overflow. */
1559                         if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1560                                 status &= ~(Rx_LongErr|Rx_CRCErr);
1561                                 status |= Rx_Over;
1562                         }
1563                         if (status & Rx_LongErr)
1564                                 dev->stats.rx_length_errors++;
1565                         if (status & Rx_Over)
1566                                 dev->stats.rx_fifo_errors++;
1567                         if (status & Rx_CRCErr)
1568                                 dev->stats.rx_crc_errors++;
1569                         if (status & Rx_Align)
1570                                 dev->stats.rx_frame_errors++;
1571                 }
1572
1573                 if (bd_count > 0) {
1574                         /* put Free Buffer back to controller */
1575                         int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1576                         unsigned char id =
1577                                 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1578 #ifdef DEBUG
1579                         if (id >= RX_BUF_NUM) {
1580                                 printk("%s: invalid BDID.\n", dev->name);
1581                                 panic_queues(dev);
1582                         }
1583 #else
1584                         BUG_ON(id >= RX_BUF_NUM);
1585 #endif
1586                         /* free old buffers */
1587                         lp->fbl_count--;
1588                         while (lp->fbl_count < RX_BUF_NUM)
1589                         {
1590                                 unsigned char curid =
1591                                         (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1592                                 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1593 #ifdef DEBUG
1594                                 bdctl = le32_to_cpu(bd->BDCtl);
1595                                 if (bdctl & BD_CownsBD) {
1596                                         printk("%s: Freeing invalid BD.\n",
1597                                                dev->name);
1598                                         panic_queues(dev);
1599                                 }
1600 #endif
1601                                 /* pass BD to controller */
1602                                 if (!lp->rx_skbs[curid].skb) {
1603                                         lp->rx_skbs[curid].skb =
1604                                                 alloc_rxbuf_skb(dev,
1605                                                                 lp->pci_dev,
1606                                                                 &lp->rx_skbs[curid].skb_dma);
1607                                         if (!lp->rx_skbs[curid].skb)
1608                                                 break; /* try on next reception */
1609                                         bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1610                                 }
1611                                 /* Note: BDLength was modified by chip. */
1612                                 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1613                                                         (curid << BD_RxBDID_SHIFT) |
1614                                                         RX_BUF_SIZE);
1615                                 lp->fbl_count++;
1616                         }
1617                 }
1618
1619                 /* put RxFD back to controller */
1620 #ifdef DEBUG
1621                 next_rfd = fd_bus_to_virt(lp,
1622                                           le32_to_cpu(lp->rfd_cur->fd.FDNext));
1623                 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1624                         printk("%s: RxFD FDNext invalid.\n", dev->name);
1625                         panic_queues(dev);
1626                 }
1627 #endif
1628                 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1629                         /* pass FD to controller */
1630 #ifdef DEBUG
1631                         lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1632 #else
1633                         lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1634 #endif
1635                         lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1636                         lp->rfd_cur++;
1637                 }
1638                 if (lp->rfd_cur > lp->rfd_limit)
1639                         lp->rfd_cur = lp->rfd_base;
1640 #ifdef DEBUG
1641                 if (lp->rfd_cur != next_rfd)
1642                         printk("rfd_cur = %p, next_rfd %p\n",
1643                                lp->rfd_cur, next_rfd);
1644 #endif
1645         }
1646
1647         return received;
1648 }
1649
1650 static int tc35815_poll(struct napi_struct *napi, int budget)
1651 {
1652         struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1653         struct net_device *dev = lp->dev;
1654         struct tc35815_regs __iomem *tr =
1655                 (struct tc35815_regs __iomem *)dev->base_addr;
1656         int received = 0, handled;
1657         u32 status;
1658
1659         spin_lock(&lp->rx_lock);
1660         status = tc_readl(&tr->Int_Src);
1661         do {
1662                 /* BLEx, FDAEx will be cleared later */
1663                 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1664                           &tr->Int_Src);        /* write to clear */
1665
1666                 handled = tc35815_do_interrupt(dev, status, budget - received);
1667                 if (status & (Int_BLEx | Int_FDAEx))
1668                         tc_writel(status & (Int_BLEx | Int_FDAEx),
1669                                   &tr->Int_Src);
1670                 if (handled >= 0) {
1671                         received += handled;
1672                         if (received >= budget)
1673                                 break;
1674                 }
1675                 status = tc_readl(&tr->Int_Src);
1676         } while (status);
1677         spin_unlock(&lp->rx_lock);
1678
1679         if (received < budget) {
1680                 napi_complete(napi);
1681                 /* enable interrupts */
1682                 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1683         }
1684         return received;
1685 }
1686
1687 #define TX_STA_ERR      (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1688
1689 static void
1690 tc35815_check_tx_stat(struct net_device *dev, int status)
1691 {
1692         struct tc35815_local *lp = netdev_priv(dev);
1693         const char *msg = NULL;
1694
1695         /* count collisions */
1696         if (status & Tx_ExColl)
1697                 dev->stats.collisions += 16;
1698         if (status & Tx_TxColl_MASK)
1699                 dev->stats.collisions += status & Tx_TxColl_MASK;
1700
1701         /* TX4939 does not have NCarr */
1702         if (lp->chiptype == TC35815_TX4939)
1703                 status &= ~Tx_NCarr;
1704         /* WORKAROUND: ignore LostCrS in full duplex operation */
1705         if (!lp->link || lp->duplex == DUPLEX_FULL)
1706                 status &= ~Tx_NCarr;
1707
1708         if (!(status & TX_STA_ERR)) {
1709                 /* no error. */
1710                 dev->stats.tx_packets++;
1711                 return;
1712         }
1713
1714         dev->stats.tx_errors++;
1715         if (status & Tx_ExColl) {
1716                 dev->stats.tx_aborted_errors++;
1717                 msg = "Excessive Collision.";
1718         }
1719         if (status & Tx_Under) {
1720                 dev->stats.tx_fifo_errors++;
1721                 msg = "Tx FIFO Underrun.";
1722                 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1723                         lp->lstats.tx_underrun++;
1724                         if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1725                                 struct tc35815_regs __iomem *tr =
1726                                         (struct tc35815_regs __iomem *)dev->base_addr;
1727                                 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1728                                 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1729                         }
1730                 }
1731         }
1732         if (status & Tx_Defer) {
1733                 dev->stats.tx_fifo_errors++;
1734                 msg = "Excessive Deferral.";
1735         }
1736         if (status & Tx_NCarr) {
1737                 dev->stats.tx_carrier_errors++;
1738                 msg = "Lost Carrier Sense.";
1739         }
1740         if (status & Tx_LateColl) {
1741                 dev->stats.tx_aborted_errors++;
1742                 msg = "Late Collision.";
1743         }
1744         if (status & Tx_TxPar) {
1745                 dev->stats.tx_fifo_errors++;
1746                 msg = "Transmit Parity Error.";
1747         }
1748         if (status & Tx_SQErr) {
1749                 dev->stats.tx_heartbeat_errors++;
1750                 msg = "Signal Quality Error.";
1751         }
1752         if (msg && netif_msg_tx_err(lp))
1753                 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1754 }
1755
1756 /* This handles TX complete events posted by the device
1757  * via interrupts.
1758  */
1759 static void
1760 tc35815_txdone(struct net_device *dev)
1761 {
1762         struct tc35815_local *lp = netdev_priv(dev);
1763         struct TxFD *txfd;
1764         unsigned int fdctl;
1765
1766         txfd = &lp->tfd_base[lp->tfd_end];
1767         while (lp->tfd_start != lp->tfd_end &&
1768                !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1769                 int status = le32_to_cpu(txfd->fd.FDStat);
1770                 struct sk_buff *skb;
1771                 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1772                 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1773
1774                 if (netif_msg_tx_done(lp)) {
1775                         printk("%s: complete TxFD.\n", dev->name);
1776                         dump_txfd(txfd);
1777                 }
1778                 tc35815_check_tx_stat(dev, status);
1779
1780                 skb = fdsystem != 0xffffffff ?
1781                         lp->tx_skbs[fdsystem].skb : NULL;
1782 #ifdef DEBUG
1783                 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1784                         printk("%s: tx_skbs mismatch.\n", dev->name);
1785                         panic_queues(dev);
1786                 }
1787 #else
1788                 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1789 #endif
1790                 if (skb) {
1791                         dev->stats.tx_bytes += skb->len;
1792                         pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1793                         lp->tx_skbs[lp->tfd_end].skb = NULL;
1794                         lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1795                         dev_kfree_skb_any(skb);
1796                 }
1797                 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1798
1799                 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1800                 txfd = &lp->tfd_base[lp->tfd_end];
1801 #ifdef DEBUG
1802                 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1803                         printk("%s: TxFD FDNext invalid.\n", dev->name);
1804                         panic_queues(dev);
1805                 }
1806 #endif
1807                 if (fdnext & FD_Next_EOL) {
1808                         /* DMA Transmitter has been stopping... */
1809                         if (lp->tfd_end != lp->tfd_start) {
1810                                 struct tc35815_regs __iomem *tr =
1811                                         (struct tc35815_regs __iomem *)dev->base_addr;
1812                                 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1813                                 struct TxFD *txhead = &lp->tfd_base[head];
1814                                 int qlen = (lp->tfd_start + TX_FD_NUM
1815                                             - lp->tfd_end) % TX_FD_NUM;
1816
1817 #ifdef DEBUG
1818                                 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1819                                         printk("%s: TxFD FDCtl invalid.\n", dev->name);
1820                                         panic_queues(dev);
1821                                 }
1822 #endif
1823                                 /* log max queue length */
1824                                 if (lp->lstats.max_tx_qlen < qlen)
1825                                         lp->lstats.max_tx_qlen = qlen;
1826
1827
1828                                 /* start DMA Transmitter again */
1829                                 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1830                                 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1831                                 if (netif_msg_tx_queued(lp)) {
1832                                         printk("%s: start TxFD on queue.\n",
1833                                                dev->name);
1834                                         dump_txfd(txfd);
1835                                 }
1836                                 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1837                         }
1838                         break;
1839                 }
1840         }
1841
1842         /* If we had stopped the queue due to a "tx full"
1843          * condition, and space has now been made available,
1844          * wake up the queue.
1845          */
1846         if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1847                 netif_wake_queue(dev);
1848 }
1849
1850 /* The inverse routine to tc35815_open(). */
1851 static int
1852 tc35815_close(struct net_device *dev)
1853 {
1854         struct tc35815_local *lp = netdev_priv(dev);
1855
1856         netif_stop_queue(dev);
1857         napi_disable(&lp->napi);
1858         if (lp->phy_dev)
1859                 phy_stop(lp->phy_dev);
1860         cancel_work_sync(&lp->restart_work);
1861
1862         /* Flush the Tx and disable Rx here. */
1863         tc35815_chip_reset(dev);
1864         free_irq(dev->irq, dev);
1865
1866         tc35815_free_queues(dev);
1867
1868         return 0;
1869
1870 }
1871
1872 /*
1873  * Get the current statistics.
1874  * This may be called with the card open or closed.
1875  */
1876 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1877 {
1878         struct tc35815_regs __iomem *tr =
1879                 (struct tc35815_regs __iomem *)dev->base_addr;
1880         if (netif_running(dev))
1881                 /* Update the statistics from the device registers. */
1882                 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1883
1884         return &dev->stats;
1885 }
1886
1887 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1888 {
1889         struct tc35815_local *lp = netdev_priv(dev);
1890         struct tc35815_regs __iomem *tr =
1891                 (struct tc35815_regs __iomem *)dev->base_addr;
1892         int cam_index = index * 6;
1893         u32 cam_data;
1894         u32 saved_addr;
1895
1896         saved_addr = tc_readl(&tr->CAM_Adr);
1897
1898         if (netif_msg_hw(lp))
1899                 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1900                         dev->name, index, addr);
1901         if (index & 1) {
1902                 /* read modify write */
1903                 tc_writel(cam_index - 2, &tr->CAM_Adr);
1904                 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1905                 cam_data |= addr[0] << 8 | addr[1];
1906                 tc_writel(cam_data, &tr->CAM_Data);
1907                 /* write whole word */
1908                 tc_writel(cam_index + 2, &tr->CAM_Adr);
1909                 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1910                 tc_writel(cam_data, &tr->CAM_Data);
1911         } else {
1912                 /* write whole word */
1913                 tc_writel(cam_index, &tr->CAM_Adr);
1914                 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1915                 tc_writel(cam_data, &tr->CAM_Data);
1916                 /* read modify write */
1917                 tc_writel(cam_index + 4, &tr->CAM_Adr);
1918                 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1919                 cam_data |= addr[4] << 24 | (addr[5] << 16);
1920                 tc_writel(cam_data, &tr->CAM_Data);
1921         }
1922
1923         tc_writel(saved_addr, &tr->CAM_Adr);
1924 }
1925
1926
1927 /*
1928  * Set or clear the multicast filter for this adaptor.
1929  * num_addrs == -1      Promiscuous mode, receive all packets
1930  * num_addrs == 0       Normal mode, clear multicast list
1931  * num_addrs > 0        Multicast mode, receive normal and MC packets,
1932  *                      and do best-effort filtering.
1933  */
1934 static void
1935 tc35815_set_multicast_list(struct net_device *dev)
1936 {
1937         struct tc35815_regs __iomem *tr =
1938                 (struct tc35815_regs __iomem *)dev->base_addr;
1939
1940         if (dev->flags & IFF_PROMISC) {
1941                 /* With some (all?) 100MHalf HUB, controller will hang
1942                  * if we enabled promiscuous mode before linkup... */
1943                 struct tc35815_local *lp = netdev_priv(dev);
1944
1945                 if (!lp->link)
1946                         return;
1947                 /* Enable promiscuous mode */
1948                 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1949         } else if ((dev->flags & IFF_ALLMULTI) ||
1950                   netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1951                 /* CAM 0, 1, 20 are reserved. */
1952                 /* Disable promiscuous mode, use normal mode. */
1953                 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1954         } else if (!netdev_mc_empty(dev)) {
1955                 struct netdev_hw_addr *ha;
1956                 int i;
1957                 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1958
1959                 tc_writel(0, &tr->CAM_Ctl);
1960                 /* Walk the address list, and load the filter */
1961                 i = 0;
1962                 netdev_for_each_mc_addr(ha, dev) {
1963                         /* entry 0,1 is reserved. */
1964                         tc35815_set_cam_entry(dev, i + 2, ha->addr);
1965                         ena_bits |= CAM_Ena_Bit(i + 2);
1966                         i++;
1967                 }
1968                 tc_writel(ena_bits, &tr->CAM_Ena);
1969                 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1970         } else {
1971                 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1972                 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1973         }
1974 }
1975
1976 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1977 {
1978         struct tc35815_local *lp = netdev_priv(dev);
1979         strcpy(info->driver, MODNAME);
1980         strcpy(info->version, DRV_VERSION);
1981         strcpy(info->bus_info, pci_name(lp->pci_dev));
1982 }
1983
1984 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1985 {
1986         struct tc35815_local *lp = netdev_priv(dev);
1987
1988         if (!lp->phy_dev)
1989                 return -ENODEV;
1990         return phy_ethtool_gset(lp->phy_dev, cmd);
1991 }
1992
1993 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1994 {
1995         struct tc35815_local *lp = netdev_priv(dev);
1996
1997         if (!lp->phy_dev)
1998                 return -ENODEV;
1999         return phy_ethtool_sset(lp->phy_dev, cmd);
2000 }
2001
2002 static u32 tc35815_get_msglevel(struct net_device *dev)
2003 {
2004         struct tc35815_local *lp = netdev_priv(dev);
2005         return lp->msg_enable;
2006 }
2007
2008 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
2009 {
2010         struct tc35815_local *lp = netdev_priv(dev);
2011         lp->msg_enable = datum;
2012 }
2013
2014 static int tc35815_get_sset_count(struct net_device *dev, int sset)
2015 {
2016         struct tc35815_local *lp = netdev_priv(dev);
2017
2018         switch (sset) {
2019         case ETH_SS_STATS:
2020                 return sizeof(lp->lstats) / sizeof(int);
2021         default:
2022                 return -EOPNOTSUPP;
2023         }
2024 }
2025
2026 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
2027 {
2028         struct tc35815_local *lp = netdev_priv(dev);
2029         data[0] = lp->lstats.max_tx_qlen;
2030         data[1] = lp->lstats.tx_ints;
2031         data[2] = lp->lstats.rx_ints;
2032         data[3] = lp->lstats.tx_underrun;
2033 }
2034
2035 static struct {
2036         const char str[ETH_GSTRING_LEN];
2037 } ethtool_stats_keys[] = {
2038         { "max_tx_qlen" },
2039         { "tx_ints" },
2040         { "rx_ints" },
2041         { "tx_underrun" },
2042 };
2043
2044 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2045 {
2046         memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2047 }
2048
2049 static const struct ethtool_ops tc35815_ethtool_ops = {
2050         .get_drvinfo            = tc35815_get_drvinfo,
2051         .get_settings           = tc35815_get_settings,
2052         .set_settings           = tc35815_set_settings,
2053         .get_link               = ethtool_op_get_link,
2054         .get_msglevel           = tc35815_get_msglevel,
2055         .set_msglevel           = tc35815_set_msglevel,
2056         .get_strings            = tc35815_get_strings,
2057         .get_sset_count         = tc35815_get_sset_count,
2058         .get_ethtool_stats      = tc35815_get_ethtool_stats,
2059 };
2060
2061 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2062 {
2063         struct tc35815_local *lp = netdev_priv(dev);
2064
2065         if (!netif_running(dev))
2066                 return -EINVAL;
2067         if (!lp->phy_dev)
2068                 return -ENODEV;
2069         return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2070 }
2071
2072 static void tc35815_chip_reset(struct net_device *dev)
2073 {
2074         struct tc35815_regs __iomem *tr =
2075                 (struct tc35815_regs __iomem *)dev->base_addr;
2076         int i;
2077         /* reset the controller */
2078         tc_writel(MAC_Reset, &tr->MAC_Ctl);
2079         udelay(4); /* 3200ns */
2080         i = 0;
2081         while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2082                 if (i++ > 100) {
2083                         printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2084                         break;
2085                 }
2086                 mdelay(1);
2087         }
2088         tc_writel(0, &tr->MAC_Ctl);
2089
2090         /* initialize registers to default value */
2091         tc_writel(0, &tr->DMA_Ctl);
2092         tc_writel(0, &tr->TxThrsh);
2093         tc_writel(0, &tr->TxPollCtr);
2094         tc_writel(0, &tr->RxFragSize);
2095         tc_writel(0, &tr->Int_En);
2096         tc_writel(0, &tr->FDA_Bas);
2097         tc_writel(0, &tr->FDA_Lim);
2098         tc_writel(0xffffffff, &tr->Int_Src);    /* Write 1 to clear */
2099         tc_writel(0, &tr->CAM_Ctl);
2100         tc_writel(0, &tr->Tx_Ctl);
2101         tc_writel(0, &tr->Rx_Ctl);
2102         tc_writel(0, &tr->CAM_Ena);
2103         (void)tc_readl(&tr->Miss_Cnt);  /* Read to clear */
2104
2105         /* initialize internal SRAM */
2106         tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2107         for (i = 0; i < 0x1000; i += 4) {
2108                 tc_writel(i, &tr->CAM_Adr);
2109                 tc_writel(0, &tr->CAM_Data);
2110         }
2111         tc_writel(0, &tr->DMA_Ctl);
2112 }
2113
2114 static void tc35815_chip_init(struct net_device *dev)
2115 {
2116         struct tc35815_local *lp = netdev_priv(dev);
2117         struct tc35815_regs __iomem *tr =
2118                 (struct tc35815_regs __iomem *)dev->base_addr;
2119         unsigned long txctl = TX_CTL_CMD;
2120
2121         /* load station address to CAM */
2122         tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2123
2124         /* Enable CAM (broadcast and unicast) */
2125         tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2126         tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2127
2128         /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2129         if (HAVE_DMA_RXALIGN(lp))
2130                 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2131         else
2132                 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2133         tc_writel(0, &tr->TxPollCtr);   /* Batch mode */
2134         tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2135         tc_writel(INT_EN_CMD, &tr->Int_En);
2136
2137         /* set queues */
2138         tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2139         tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2140                   &tr->FDA_Lim);
2141         /*
2142          * Activation method:
2143          * First, enable the MAC Transmitter and the DMA Receive circuits.
2144          * Then enable the DMA Transmitter and the MAC Receive circuits.
2145          */
2146         tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);      /* start DMA receiver */
2147         tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);     /* start MAC receiver */
2148
2149         /* start MAC transmitter */
2150         /* TX4939 does not have EnLCarr */
2151         if (lp->chiptype == TC35815_TX4939)
2152                 txctl &= ~Tx_EnLCarr;
2153         /* WORKAROUND: ignore LostCrS in full duplex operation */
2154         if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2155                 txctl &= ~Tx_EnLCarr;
2156         tc_writel(txctl, &tr->Tx_Ctl);
2157 }
2158
2159 #ifdef CONFIG_PM
2160 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2161 {
2162         struct net_device *dev = pci_get_drvdata(pdev);
2163         struct tc35815_local *lp = netdev_priv(dev);
2164         unsigned long flags;
2165
2166         pci_save_state(pdev);
2167         if (!netif_running(dev))
2168                 return 0;
2169         netif_device_detach(dev);
2170         if (lp->phy_dev)
2171                 phy_stop(lp->phy_dev);
2172         spin_lock_irqsave(&lp->lock, flags);
2173         tc35815_chip_reset(dev);
2174         spin_unlock_irqrestore(&lp->lock, flags);
2175         pci_set_power_state(pdev, PCI_D3hot);
2176         return 0;
2177 }
2178
2179 static int tc35815_resume(struct pci_dev *pdev)
2180 {
2181         struct net_device *dev = pci_get_drvdata(pdev);
2182         struct tc35815_local *lp = netdev_priv(dev);
2183
2184         pci_restore_state(pdev);
2185         if (!netif_running(dev))
2186                 return 0;
2187         pci_set_power_state(pdev, PCI_D0);
2188         tc35815_restart(dev);
2189         netif_carrier_off(dev);
2190         if (lp->phy_dev)
2191                 phy_start(lp->phy_dev);
2192         netif_device_attach(dev);
2193         return 0;
2194 }
2195 #endif /* CONFIG_PM */
2196
2197 static struct pci_driver tc35815_pci_driver = {
2198         .name           = MODNAME,
2199         .id_table       = tc35815_pci_tbl,
2200         .probe          = tc35815_init_one,
2201         .remove         = __devexit_p(tc35815_remove_one),
2202 #ifdef CONFIG_PM
2203         .suspend        = tc35815_suspend,
2204         .resume         = tc35815_resume,
2205 #endif
2206 };
2207
2208 module_param_named(speed, options.speed, int, 0);
2209 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2210 module_param_named(duplex, options.duplex, int, 0);
2211 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2212
2213 static int __init tc35815_init_module(void)
2214 {
2215         return pci_register_driver(&tc35815_pci_driver);
2216 }
2217
2218 static void __exit tc35815_cleanup_module(void)
2219 {
2220         pci_unregister_driver(&tc35815_pci_driver);
2221 }
2222
2223 module_init(tc35815_init_module);
2224 module_exit(tc35815_cleanup_module);
2225
2226 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2227 MODULE_LICENSE("GPL");