1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
46 defined(CONFIG_SPARC) || defined(__ia64__) || \
47 defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
50 static int rx_copybreak;
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
78 /* Operational parameters that usually are not changed. */
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/interrupt.h>
93 #include <linux/pci.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/netdevice.h>
96 #include <linux/etherdevice.h>
97 #include <linux/skbuff.h>
98 #include <linux/init.h>
99 #include <linux/delay.h>
100 #include <linux/mii.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <linux/workqueue.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
111 /* These identify the driver base version and may not be removed. */
112 static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
116 /* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118 #ifdef CONFIG_VIA_RHINE_MMIO
123 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125 MODULE_LICENSE("GPL");
127 module_param(max_interrupt_work, int, 0);
128 module_param(debug, int, 0);
129 module_param(rx_copybreak, int, 0);
130 module_param(avoid_D3, bool, 0);
131 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
134 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
139 I. Board Compatibility
141 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
144 II. Board-specific settings
146 Boards with this chip are functional only in a bus-master PCI slot.
148 Many operational settings are loaded from the EEPROM to the Config word at
149 offset 0x78. For most of these settings, this driver assumes that they are
151 If this driver is compiled to use PCI memory space operations the EEPROM
152 must be configured to enable memory ops.
154 III. Driver operation
158 This driver uses two statically allocated fixed-size descriptor lists
159 formed into rings by a branch from the final descriptor to the beginning of
160 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
162 IIIb/c. Transmit/Receive Structure
164 This driver attempts to use a zero-copy receive and transmit scheme.
166 Alas, all data buffers are required to start on a 32 bit boundary, so
167 the driver must often copy transmit packets into bounce buffers.
169 The driver allocates full frame size skbuffs for the Rx ring buffers at
170 open() time and passes the skb->data field to the chip as receive data
171 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172 a fresh skbuff is allocated and the frame is copied to the new skbuff.
173 When the incoming frame is larger, the skbuff is passed directly up the
174 protocol stack. Buffers consumed this way are replaced by newly allocated
175 skbuffs in the last phase of rhine_rx().
177 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178 using a full-sized skbuff for small frames vs. the copying costs of larger
179 frames. New boards are typically used in generously configured machines
180 and the underfilled buffers have negligible impact compared to the benefit of
181 a single allocation size, so the default value of zero results in never
182 copying packets. When copying is done, the cost is usually mitigated by using
183 a combined copy/checksum routine. Copying also preloads the cache, which is
184 most useful with small frames.
186 Since the VIA chips are only able to transfer data to buffers on 32 bit
187 boundaries, the IP header at offset 14 in an ethernet frame isn't
188 longword aligned for further processing. Copying these unaligned buffers
189 has the beneficial effect of 16-byte aligning the IP header.
191 IIId. Synchronization
193 The driver runs as two independent, single-threaded flows of control. One
194 is the send-packet routine, which enforces single-threaded use by the
195 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196 which is single threaded by the hardware and interrupt handling software.
198 The send packet thread has partial control over the Tx ring. It locks the
199 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200 the ring is not available it stops the transmit queue by
201 calling netif_stop_queue.
203 The interrupt handler has exclusive control over the Rx ring and records stats
204 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205 empty by incrementing the dirty_tx mark. If at least half of the entries in
206 the Rx ring are available the transmit queue is woken up if it was stopped.
212 Preliminary VT86C100A manual from http://www.via.com.tw/
213 http://www.scyld.com/expert/100mbps.html
214 http://www.scyld.com/expert/NWay.html
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221 The VT86C100A manual is not reliable information.
222 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223 in significant performance degradation for bounce buffer copies on transmit
224 and unaligned IP headers on receive.
225 The chip does not pad to minimum transmit length.
230 /* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
250 VT6105M = 0x90, /* Management adapter */
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266 /* Beware of PCI posted writes */
267 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
269 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
274 { } /* terminate list */
276 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279 /* Offsets to the device registers. */
280 enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
296 /* Bits in ConfigD */
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
303 /* Registers we check that mmio and reg are the same. */
304 static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
310 /* Bits in the interrupt status/mask registers. */
311 enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
324 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
333 /* The Rx and Tx buffer descriptors. */
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
347 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348 #define TXDESC 0x00e08000
350 enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
354 /* Bits in *_desc.*_status */
355 enum desc_status_bits {
359 /* Bits in ChipCmd. */
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
367 struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
382 /* Tx bounce buffers (Rhine-I only) */
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
387 struct pci_dev *pdev;
389 struct net_device *dev;
390 struct napi_struct napi;
392 struct work_struct reset_task;
394 /* Frequently used values: keep some adjacent for cache effect. */
396 struct rx_desc *rx_head_desc;
397 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
398 unsigned int cur_tx, dirty_tx;
399 unsigned int rx_buf_sz; /* Based on MTU+slack. */
402 u8 tx_thresh, rx_thresh;
404 struct mii_if_info mii_if;
408 static int mdio_read(struct net_device *dev, int phy_id, int location);
409 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
410 static int rhine_open(struct net_device *dev);
411 static void rhine_reset_task(struct work_struct *work);
412 static void rhine_tx_timeout(struct net_device *dev);
413 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
414 struct net_device *dev);
415 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
416 static void rhine_tx(struct net_device *dev);
417 static int rhine_rx(struct net_device *dev, int limit);
418 static void rhine_error(struct net_device *dev, int intr_status);
419 static void rhine_set_rx_mode(struct net_device *dev);
420 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
421 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
422 static const struct ethtool_ops netdev_ethtool_ops;
423 static int rhine_close(struct net_device *dev);
424 static void rhine_shutdown (struct pci_dev *pdev);
426 #define RHINE_WAIT_FOR(condition) do { \
428 while (!(condition) && --i) \
430 if (debug > 1 && i < 512) \
431 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
432 DRV_NAME, 1024-i, __func__, __LINE__); \
435 static inline u32 get_intr_status(struct net_device *dev)
437 struct rhine_private *rp = netdev_priv(dev);
438 void __iomem *ioaddr = rp->base;
441 intr_status = ioread16(ioaddr + IntrStatus);
442 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
443 if (rp->quirks & rqStatusWBRace)
444 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
449 * Get power related registers into sane state.
450 * Notify user about past WOL event.
452 static void rhine_power_init(struct net_device *dev)
454 struct rhine_private *rp = netdev_priv(dev);
455 void __iomem *ioaddr = rp->base;
458 if (rp->quirks & rqWOL) {
459 /* Make sure chip is in power state D0 */
460 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
462 /* Disable "force PME-enable" */
463 iowrite8(0x80, ioaddr + WOLcgClr);
465 /* Clear power-event config bits (WOL) */
466 iowrite8(0xFF, ioaddr + WOLcrClr);
467 /* More recent cards can manage two additional patterns */
468 if (rp->quirks & rq6patterns)
469 iowrite8(0x03, ioaddr + WOLcrClr1);
471 /* Save power-event status bits */
472 wolstat = ioread8(ioaddr + PwrcsrSet);
473 if (rp->quirks & rq6patterns)
474 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
476 /* Clear power-event status bits */
477 iowrite8(0xFF, ioaddr + PwrcsrClr);
478 if (rp->quirks & rq6patterns)
479 iowrite8(0x03, ioaddr + PwrcsrClr1);
485 reason = "Magic packet";
488 reason = "Link went up";
491 reason = "Link went down";
494 reason = "Unicast packet";
497 reason = "Multicast/broadcast packet";
502 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
508 static void rhine_chip_reset(struct net_device *dev)
510 struct rhine_private *rp = netdev_priv(dev);
511 void __iomem *ioaddr = rp->base;
513 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
516 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
517 printk(KERN_INFO "%s: Reset not complete yet. "
518 "Trying harder.\n", DRV_NAME);
521 if (rp->quirks & rqForceReset)
522 iowrite8(0x40, ioaddr + MiscCmd);
524 /* Reset can take somewhat longer (rare) */
525 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
529 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
530 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
531 "failed" : "succeeded");
535 static void enable_mmio(long pioaddr, u32 quirks)
538 if (quirks & rqRhineI) {
539 /* More recent docs say that this bit is reserved ... */
540 n = inb(pioaddr + ConfigA) | 0x20;
541 outb(n, pioaddr + ConfigA);
543 n = inb(pioaddr + ConfigD) | 0x80;
544 outb(n, pioaddr + ConfigD);
550 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
551 * (plus 0x6C for Rhine-I/II)
553 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
555 struct rhine_private *rp = netdev_priv(dev);
556 void __iomem *ioaddr = rp->base;
558 outb(0x20, pioaddr + MACRegEEcsr);
559 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
563 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
564 * MMIO. If reloading EEPROM was done first this could be avoided, but
565 * it is not known if that still works with the "win98-reboot" problem.
567 enable_mmio(pioaddr, rp->quirks);
570 /* Turn off EEPROM-controlled wake-up (magic packet) */
571 if (rp->quirks & rqWOL)
572 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
576 #ifdef CONFIG_NET_POLL_CONTROLLER
577 static void rhine_poll(struct net_device *dev)
579 disable_irq(dev->irq);
580 rhine_interrupt(dev->irq, (void *)dev);
581 enable_irq(dev->irq);
585 static int rhine_napipoll(struct napi_struct *napi, int budget)
587 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
588 struct net_device *dev = rp->dev;
589 void __iomem *ioaddr = rp->base;
592 work_done = rhine_rx(dev, budget);
594 if (work_done < budget) {
597 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
598 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
599 IntrTxDone | IntrTxError | IntrTxUnderrun |
600 IntrPCIErr | IntrStatsMax | IntrLinkChange,
601 ioaddr + IntrEnable);
606 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
608 struct rhine_private *rp = netdev_priv(dev);
610 /* Reset the chip to erase previous misconfiguration. */
611 rhine_chip_reset(dev);
613 /* Rhine-I needs extra time to recuperate before EEPROM reload */
614 if (rp->quirks & rqRhineI)
617 /* Reload EEPROM controlled bytes cleared by soft reset */
618 rhine_reload_eeprom(pioaddr, dev);
621 static const struct net_device_ops rhine_netdev_ops = {
622 .ndo_open = rhine_open,
623 .ndo_stop = rhine_close,
624 .ndo_start_xmit = rhine_start_tx,
625 .ndo_get_stats = rhine_get_stats,
626 .ndo_set_multicast_list = rhine_set_rx_mode,
627 .ndo_change_mtu = eth_change_mtu,
628 .ndo_validate_addr = eth_validate_addr,
629 .ndo_set_mac_address = eth_mac_addr,
630 .ndo_do_ioctl = netdev_ioctl,
631 .ndo_tx_timeout = rhine_tx_timeout,
632 #ifdef CONFIG_NET_POLL_CONTROLLER
633 .ndo_poll_controller = rhine_poll,
637 static int __devinit rhine_init_one(struct pci_dev *pdev,
638 const struct pci_device_id *ent)
640 struct net_device *dev;
641 struct rhine_private *rp;
646 void __iomem *ioaddr;
655 /* when built into the kernel, we only print version if device is found */
657 static int printed_version;
658 if (!printed_version++)
666 if (pdev->revision < VTunknown0) {
670 else if (pdev->revision >= VT6102) {
671 quirks = rqWOL | rqForceReset;
672 if (pdev->revision < VT6105) {
674 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
677 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
678 if (pdev->revision >= VT6105_B0)
679 quirks |= rq6patterns;
680 if (pdev->revision < VT6105M)
683 name = "Rhine III (Management Adapter)";
687 rc = pci_enable_device(pdev);
691 /* this should always be supported */
692 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
694 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
700 if ((pci_resource_len(pdev, 0) < io_size) ||
701 (pci_resource_len(pdev, 1) < io_size)) {
703 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
707 pioaddr = pci_resource_start(pdev, 0);
708 memaddr = pci_resource_start(pdev, 1);
710 pci_set_master(pdev);
712 dev = alloc_etherdev(sizeof(struct rhine_private));
715 printk(KERN_ERR "alloc_etherdev failed\n");
718 SET_NETDEV_DEV(dev, &pdev->dev);
720 rp = netdev_priv(dev);
723 rp->pioaddr = pioaddr;
726 rc = pci_request_regions(pdev, DRV_NAME);
728 goto err_out_free_netdev;
730 ioaddr = pci_iomap(pdev, bar, io_size);
733 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
734 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
735 goto err_out_free_res;
739 enable_mmio(pioaddr, quirks);
741 /* Check that selected MMIO registers match the PIO ones */
743 while (mmio_verify_registers[i]) {
744 int reg = mmio_verify_registers[i++];
745 unsigned char a = inb(pioaddr+reg);
746 unsigned char b = readb(ioaddr+reg);
749 printk(KERN_ERR "MMIO do not match PIO [%02x] "
750 "(%02x != %02x)\n", reg, a, b);
754 #endif /* USE_MMIO */
756 dev->base_addr = (unsigned long)ioaddr;
759 /* Get chip registers into a sane state */
760 rhine_power_init(dev);
761 rhine_hw_init(dev, pioaddr);
763 for (i = 0; i < 6; i++)
764 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
765 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
767 if (!is_valid_ether_addr(dev->perm_addr)) {
769 printk(KERN_ERR "Invalid MAC address\n");
773 /* For Rhine-I/II, phy_id is loaded from EEPROM */
775 phy_id = ioread8(ioaddr + 0x6C);
777 dev->irq = pdev->irq;
779 spin_lock_init(&rp->lock);
780 INIT_WORK(&rp->reset_task, rhine_reset_task);
782 rp->mii_if.dev = dev;
783 rp->mii_if.mdio_read = mdio_read;
784 rp->mii_if.mdio_write = mdio_write;
785 rp->mii_if.phy_id_mask = 0x1f;
786 rp->mii_if.reg_num_mask = 0x1f;
788 /* The chip-specific entries in the device structure. */
789 dev->netdev_ops = &rhine_netdev_ops;
790 dev->ethtool_ops = &netdev_ethtool_ops,
791 dev->watchdog_timeo = TX_TIMEOUT;
793 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
795 if (rp->quirks & rqRhineI)
796 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
798 /* dev->name not defined before register_netdev()! */
799 rc = register_netdev(dev);
803 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
810 dev->dev_addr, pdev->irq);
812 pci_set_drvdata(pdev, dev);
816 int mii_status = mdio_read(dev, phy_id, 1);
817 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
818 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
819 if (mii_status != 0xffff && mii_status != 0x0000) {
820 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
821 printk(KERN_INFO "%s: MII PHY found at address "
822 "%d, status 0x%4.4x advertising %4.4x "
823 "Link %4.4x.\n", dev->name, phy_id,
824 mii_status, rp->mii_if.advertising,
825 mdio_read(dev, phy_id, 5));
827 /* set IFF_RUNNING */
828 if (mii_status & BMSR_LSTATUS)
829 netif_carrier_on(dev);
831 netif_carrier_off(dev);
835 rp->mii_if.phy_id = phy_id;
836 if (debug > 1 && avoid_D3)
837 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
843 pci_iounmap(pdev, ioaddr);
845 pci_release_regions(pdev);
852 static int alloc_ring(struct net_device* dev)
854 struct rhine_private *rp = netdev_priv(dev);
858 ring = pci_alloc_consistent(rp->pdev,
859 RX_RING_SIZE * sizeof(struct rx_desc) +
860 TX_RING_SIZE * sizeof(struct tx_desc),
863 printk(KERN_ERR "Could not allocate DMA memory.\n");
866 if (rp->quirks & rqRhineI) {
867 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
868 PKT_BUF_SZ * TX_RING_SIZE,
870 if (rp->tx_bufs == NULL) {
871 pci_free_consistent(rp->pdev,
872 RX_RING_SIZE * sizeof(struct rx_desc) +
873 TX_RING_SIZE * sizeof(struct tx_desc),
880 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
881 rp->rx_ring_dma = ring_dma;
882 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
887 static void free_ring(struct net_device* dev)
889 struct rhine_private *rp = netdev_priv(dev);
891 pci_free_consistent(rp->pdev,
892 RX_RING_SIZE * sizeof(struct rx_desc) +
893 TX_RING_SIZE * sizeof(struct tx_desc),
894 rp->rx_ring, rp->rx_ring_dma);
898 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
899 rp->tx_bufs, rp->tx_bufs_dma);
905 static void alloc_rbufs(struct net_device *dev)
907 struct rhine_private *rp = netdev_priv(dev);
911 rp->dirty_rx = rp->cur_rx = 0;
913 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
914 rp->rx_head_desc = &rp->rx_ring[0];
915 next = rp->rx_ring_dma;
917 /* Init the ring entries */
918 for (i = 0; i < RX_RING_SIZE; i++) {
919 rp->rx_ring[i].rx_status = 0;
920 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
921 next += sizeof(struct rx_desc);
922 rp->rx_ring[i].next_desc = cpu_to_le32(next);
923 rp->rx_skbuff[i] = NULL;
925 /* Mark the last entry as wrapping the ring. */
926 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
928 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
929 for (i = 0; i < RX_RING_SIZE; i++) {
930 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
931 rp->rx_skbuff[i] = skb;
934 skb->dev = dev; /* Mark as being used by this device. */
936 rp->rx_skbuff_dma[i] =
937 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
940 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
941 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
943 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
946 static void free_rbufs(struct net_device* dev)
948 struct rhine_private *rp = netdev_priv(dev);
951 /* Free all the skbuffs in the Rx queue. */
952 for (i = 0; i < RX_RING_SIZE; i++) {
953 rp->rx_ring[i].rx_status = 0;
954 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
955 if (rp->rx_skbuff[i]) {
956 pci_unmap_single(rp->pdev,
957 rp->rx_skbuff_dma[i],
958 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
959 dev_kfree_skb(rp->rx_skbuff[i]);
961 rp->rx_skbuff[i] = NULL;
965 static void alloc_tbufs(struct net_device* dev)
967 struct rhine_private *rp = netdev_priv(dev);
971 rp->dirty_tx = rp->cur_tx = 0;
972 next = rp->tx_ring_dma;
973 for (i = 0; i < TX_RING_SIZE; i++) {
974 rp->tx_skbuff[i] = NULL;
975 rp->tx_ring[i].tx_status = 0;
976 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
977 next += sizeof(struct tx_desc);
978 rp->tx_ring[i].next_desc = cpu_to_le32(next);
979 if (rp->quirks & rqRhineI)
980 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
982 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
986 static void free_tbufs(struct net_device* dev)
988 struct rhine_private *rp = netdev_priv(dev);
991 for (i = 0; i < TX_RING_SIZE; i++) {
992 rp->tx_ring[i].tx_status = 0;
993 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
994 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
995 if (rp->tx_skbuff[i]) {
996 if (rp->tx_skbuff_dma[i]) {
997 pci_unmap_single(rp->pdev,
998 rp->tx_skbuff_dma[i],
999 rp->tx_skbuff[i]->len,
1002 dev_kfree_skb(rp->tx_skbuff[i]);
1004 rp->tx_skbuff[i] = NULL;
1005 rp->tx_buf[i] = NULL;
1009 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1011 struct rhine_private *rp = netdev_priv(dev);
1012 void __iomem *ioaddr = rp->base;
1014 mii_check_media(&rp->mii_if, debug, init_media);
1016 if (rp->mii_if.full_duplex)
1017 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1020 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1023 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1024 rp->mii_if.force_media, netif_carrier_ok(dev));
1027 /* Called after status of force_media possibly changed */
1028 static void rhine_set_carrier(struct mii_if_info *mii)
1030 if (mii->force_media) {
1031 /* autoneg is off: Link is always assumed to be up */
1032 if (!netif_carrier_ok(mii->dev))
1033 netif_carrier_on(mii->dev);
1035 else /* Let MMI library update carrier status */
1036 rhine_check_media(mii->dev, 0);
1038 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1039 mii->dev->name, mii->force_media,
1040 netif_carrier_ok(mii->dev));
1043 static void init_registers(struct net_device *dev)
1045 struct rhine_private *rp = netdev_priv(dev);
1046 void __iomem *ioaddr = rp->base;
1049 for (i = 0; i < 6; i++)
1050 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1052 /* Initialize other registers. */
1053 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1054 /* Configure initial FIFO thresholds. */
1055 iowrite8(0x20, ioaddr + TxConfig);
1056 rp->tx_thresh = 0x20;
1057 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1059 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1060 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1062 rhine_set_rx_mode(dev);
1064 napi_enable(&rp->napi);
1066 /* Enable interrupts by setting the interrupt mask. */
1067 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1068 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1069 IntrTxDone | IntrTxError | IntrTxUnderrun |
1070 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1071 ioaddr + IntrEnable);
1073 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1075 rhine_check_media(dev, 1);
1078 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1079 static void rhine_enable_linkmon(void __iomem *ioaddr)
1081 iowrite8(0, ioaddr + MIICmd);
1082 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1083 iowrite8(0x80, ioaddr + MIICmd);
1085 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1087 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1090 /* Disable MII link status auto-polling (required for MDIO access) */
1091 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1093 iowrite8(0, ioaddr + MIICmd);
1095 if (quirks & rqRhineI) {
1096 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1098 /* Can be called from ISR. Evil. */
1101 /* 0x80 must be set immediately before turning it off */
1102 iowrite8(0x80, ioaddr + MIICmd);
1104 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1106 /* Heh. Now clear 0x80 again. */
1107 iowrite8(0, ioaddr + MIICmd);
1110 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1113 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1115 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1117 struct rhine_private *rp = netdev_priv(dev);
1118 void __iomem *ioaddr = rp->base;
1121 rhine_disable_linkmon(ioaddr, rp->quirks);
1123 /* rhine_disable_linkmon already cleared MIICmd */
1124 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1125 iowrite8(regnum, ioaddr + MIIRegAddr);
1126 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1127 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1128 result = ioread16(ioaddr + MIIData);
1130 rhine_enable_linkmon(ioaddr);
1134 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1136 struct rhine_private *rp = netdev_priv(dev);
1137 void __iomem *ioaddr = rp->base;
1139 rhine_disable_linkmon(ioaddr, rp->quirks);
1141 /* rhine_disable_linkmon already cleared MIICmd */
1142 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1143 iowrite8(regnum, ioaddr + MIIRegAddr);
1144 iowrite16(value, ioaddr + MIIData);
1145 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1146 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1148 rhine_enable_linkmon(ioaddr);
1151 static int rhine_open(struct net_device *dev)
1153 struct rhine_private *rp = netdev_priv(dev);
1154 void __iomem *ioaddr = rp->base;
1157 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1163 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1164 dev->name, rp->pdev->irq);
1166 rc = alloc_ring(dev);
1168 free_irq(rp->pdev->irq, dev);
1173 rhine_chip_reset(dev);
1174 init_registers(dev);
1176 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1177 "MII status: %4.4x.\n",
1178 dev->name, ioread16(ioaddr + ChipCmd),
1179 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1181 netif_start_queue(dev);
1186 static void rhine_reset_task(struct work_struct *work)
1188 struct rhine_private *rp = container_of(work, struct rhine_private,
1190 struct net_device *dev = rp->dev;
1192 /* protect against concurrent rx interrupts */
1193 disable_irq(rp->pdev->irq);
1195 napi_disable(&rp->napi);
1197 spin_lock_bh(&rp->lock);
1199 /* clear all descriptors */
1205 /* Reinitialize the hardware. */
1206 rhine_chip_reset(dev);
1207 init_registers(dev);
1209 spin_unlock_bh(&rp->lock);
1210 enable_irq(rp->pdev->irq);
1212 dev->trans_start = jiffies; /* prevent tx timeout */
1213 dev->stats.tx_errors++;
1214 netif_wake_queue(dev);
1217 static void rhine_tx_timeout(struct net_device *dev)
1219 struct rhine_private *rp = netdev_priv(dev);
1220 void __iomem *ioaddr = rp->base;
1222 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1223 "%4.4x, resetting...\n",
1224 dev->name, ioread16(ioaddr + IntrStatus),
1225 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1227 schedule_work(&rp->reset_task);
1230 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1231 struct net_device *dev)
1233 struct rhine_private *rp = netdev_priv(dev);
1234 void __iomem *ioaddr = rp->base;
1236 unsigned long flags;
1238 /* Caution: the write order is important here, set the field
1239 with the "ownership" bits last. */
1241 /* Calculate the next Tx descriptor entry. */
1242 entry = rp->cur_tx % TX_RING_SIZE;
1244 if (skb_padto(skb, ETH_ZLEN))
1245 return NETDEV_TX_OK;
1247 rp->tx_skbuff[entry] = skb;
1249 if ((rp->quirks & rqRhineI) &&
1250 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1251 /* Must use alignment buffer. */
1252 if (skb->len > PKT_BUF_SZ) {
1253 /* packet too long, drop it */
1255 rp->tx_skbuff[entry] = NULL;
1256 dev->stats.tx_dropped++;
1257 return NETDEV_TX_OK;
1260 /* Padding is not copied and so must be redone. */
1261 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1262 if (skb->len < ETH_ZLEN)
1263 memset(rp->tx_buf[entry] + skb->len, 0,
1264 ETH_ZLEN - skb->len);
1265 rp->tx_skbuff_dma[entry] = 0;
1266 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1267 (rp->tx_buf[entry] -
1270 rp->tx_skbuff_dma[entry] =
1271 pci_map_single(rp->pdev, skb->data, skb->len,
1273 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1276 rp->tx_ring[entry].desc_length =
1277 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1280 spin_lock_irqsave(&rp->lock, flags);
1282 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1287 /* Non-x86 Todo: explicitly flush cache lines here. */
1289 /* Wake the potentially-idle transmit channel */
1290 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1294 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1295 netif_stop_queue(dev);
1297 spin_unlock_irqrestore(&rp->lock, flags);
1300 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1301 dev->name, rp->cur_tx-1, entry);
1303 return NETDEV_TX_OK;
1306 /* The interrupt handler does all of the Rx thread work and cleans up
1307 after the Tx thread. */
1308 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1310 struct net_device *dev = dev_instance;
1311 struct rhine_private *rp = netdev_priv(dev);
1312 void __iomem *ioaddr = rp->base;
1314 int boguscnt = max_interrupt_work;
1317 while ((intr_status = get_intr_status(dev))) {
1320 /* Acknowledge all of the current interrupt sources ASAP. */
1321 if (intr_status & IntrTxDescRace)
1322 iowrite8(0x08, ioaddr + IntrStatus2);
1323 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1327 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1328 dev->name, intr_status);
1330 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1331 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1332 iowrite16(IntrTxAborted |
1333 IntrTxDone | IntrTxError | IntrTxUnderrun |
1334 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1335 ioaddr + IntrEnable);
1337 napi_schedule(&rp->napi);
1340 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1341 if (intr_status & IntrTxErrSummary) {
1342 /* Avoid scavenging before Tx engine turned off */
1343 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1345 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1346 printk(KERN_WARNING "%s: "
1347 "rhine_interrupt() Tx engine "
1348 "still on.\n", dev->name);
1353 /* Abnormal error summary/uncommon events handlers. */
1354 if (intr_status & (IntrPCIErr | IntrLinkChange |
1355 IntrStatsMax | IntrTxError | IntrTxAborted |
1356 IntrTxUnderrun | IntrTxDescRace))
1357 rhine_error(dev, intr_status);
1359 if (--boguscnt < 0) {
1360 printk(KERN_WARNING "%s: Too much work at interrupt, "
1362 dev->name, intr_status);
1368 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1369 dev->name, ioread16(ioaddr + IntrStatus));
1370 return IRQ_RETVAL(handled);
1373 /* This routine is logically part of the interrupt handler, but isolated
1375 static void rhine_tx(struct net_device *dev)
1377 struct rhine_private *rp = netdev_priv(dev);
1378 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1380 spin_lock(&rp->lock);
1382 /* find and cleanup dirty tx descriptors */
1383 while (rp->dirty_tx != rp->cur_tx) {
1384 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1386 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1388 if (txstatus & DescOwn)
1390 if (txstatus & 0x8000) {
1392 printk(KERN_DEBUG "%s: Transmit error, "
1393 "Tx status %8.8x.\n",
1394 dev->name, txstatus);
1395 dev->stats.tx_errors++;
1396 if (txstatus & 0x0400)
1397 dev->stats.tx_carrier_errors++;
1398 if (txstatus & 0x0200)
1399 dev->stats.tx_window_errors++;
1400 if (txstatus & 0x0100)
1401 dev->stats.tx_aborted_errors++;
1402 if (txstatus & 0x0080)
1403 dev->stats.tx_heartbeat_errors++;
1404 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1405 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1406 dev->stats.tx_fifo_errors++;
1407 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1408 break; /* Keep the skb - we try again */
1410 /* Transmitter restarted in 'abnormal' handler. */
1412 if (rp->quirks & rqRhineI)
1413 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1415 dev->stats.collisions += txstatus & 0x0F;
1417 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1418 (txstatus >> 3) & 0xF,
1420 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1421 dev->stats.tx_packets++;
1423 /* Free the original skb. */
1424 if (rp->tx_skbuff_dma[entry]) {
1425 pci_unmap_single(rp->pdev,
1426 rp->tx_skbuff_dma[entry],
1427 rp->tx_skbuff[entry]->len,
1430 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1431 rp->tx_skbuff[entry] = NULL;
1432 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1434 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1435 netif_wake_queue(dev);
1437 spin_unlock(&rp->lock);
1440 /* Process up to limit frames from receive ring */
1441 static int rhine_rx(struct net_device *dev, int limit)
1443 struct rhine_private *rp = netdev_priv(dev);
1445 int entry = rp->cur_rx % RX_RING_SIZE;
1448 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1450 le32_to_cpu(rp->rx_head_desc->rx_status));
1453 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1454 for (count = 0; count < limit; ++count) {
1455 struct rx_desc *desc = rp->rx_head_desc;
1456 u32 desc_status = le32_to_cpu(desc->rx_status);
1457 int data_size = desc_status >> 16;
1459 if (desc_status & DescOwn)
1463 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1466 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1467 if ((desc_status & RxWholePkt) != RxWholePkt) {
1468 printk(KERN_WARNING "%s: Oversized Ethernet "
1469 "frame spanned multiple buffers, entry "
1470 "%#x length %d status %8.8x!\n",
1471 dev->name, entry, data_size,
1473 printk(KERN_WARNING "%s: Oversized Ethernet "
1474 "frame %p vs %p.\n", dev->name,
1475 rp->rx_head_desc, &rp->rx_ring[entry]);
1476 dev->stats.rx_length_errors++;
1477 } else if (desc_status & RxErr) {
1478 /* There was a error. */
1480 printk(KERN_DEBUG "rhine_rx() Rx "
1481 "error was %8.8x.\n",
1483 dev->stats.rx_errors++;
1484 if (desc_status & 0x0030)
1485 dev->stats.rx_length_errors++;
1486 if (desc_status & 0x0048)
1487 dev->stats.rx_fifo_errors++;
1488 if (desc_status & 0x0004)
1489 dev->stats.rx_frame_errors++;
1490 if (desc_status & 0x0002) {
1491 /* this can also be updated outside the interrupt handler */
1492 spin_lock(&rp->lock);
1493 dev->stats.rx_crc_errors++;
1494 spin_unlock(&rp->lock);
1498 struct sk_buff *skb = NULL;
1499 /* Length should omit the CRC */
1500 int pkt_len = data_size - 4;
1502 /* Check if the packet is long enough to accept without
1503 copying to a minimally-sized skbuff. */
1504 if (pkt_len < rx_copybreak)
1505 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1507 pci_dma_sync_single_for_cpu(rp->pdev,
1508 rp->rx_skbuff_dma[entry],
1510 PCI_DMA_FROMDEVICE);
1512 skb_copy_to_linear_data(skb,
1513 rp->rx_skbuff[entry]->data,
1515 skb_put(skb, pkt_len);
1516 pci_dma_sync_single_for_device(rp->pdev,
1517 rp->rx_skbuff_dma[entry],
1519 PCI_DMA_FROMDEVICE);
1521 skb = rp->rx_skbuff[entry];
1523 printk(KERN_ERR "%s: Inconsistent Rx "
1524 "descriptor chain.\n",
1528 rp->rx_skbuff[entry] = NULL;
1529 skb_put(skb, pkt_len);
1530 pci_unmap_single(rp->pdev,
1531 rp->rx_skbuff_dma[entry],
1533 PCI_DMA_FROMDEVICE);
1535 skb->protocol = eth_type_trans(skb, dev);
1536 netif_receive_skb(skb);
1537 dev->stats.rx_bytes += pkt_len;
1538 dev->stats.rx_packets++;
1540 entry = (++rp->cur_rx) % RX_RING_SIZE;
1541 rp->rx_head_desc = &rp->rx_ring[entry];
1544 /* Refill the Rx ring buffers. */
1545 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1546 struct sk_buff *skb;
1547 entry = rp->dirty_rx % RX_RING_SIZE;
1548 if (rp->rx_skbuff[entry] == NULL) {
1549 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1550 rp->rx_skbuff[entry] = skb;
1552 break; /* Better luck next round. */
1553 skb->dev = dev; /* Mark as being used by this device. */
1554 rp->rx_skbuff_dma[entry] =
1555 pci_map_single(rp->pdev, skb->data,
1557 PCI_DMA_FROMDEVICE);
1558 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1560 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1567 * Clears the "tally counters" for CRC errors and missed frames(?).
1568 * It has been reported that some chips need a write of 0 to clear
1569 * these, for others the counters are set to 1 when written to and
1570 * instead cleared when read. So we clear them both ways ...
1572 static inline void clear_tally_counters(void __iomem *ioaddr)
1574 iowrite32(0, ioaddr + RxMissed);
1575 ioread16(ioaddr + RxCRCErrs);
1576 ioread16(ioaddr + RxMissed);
1579 static void rhine_restart_tx(struct net_device *dev) {
1580 struct rhine_private *rp = netdev_priv(dev);
1581 void __iomem *ioaddr = rp->base;
1582 int entry = rp->dirty_tx % TX_RING_SIZE;
1586 * If new errors occured, we need to sort them out before doing Tx.
1587 * In that case the ISR will be back here RSN anyway.
1589 intr_status = get_intr_status(dev);
1591 if ((intr_status & IntrTxErrSummary) == 0) {
1593 /* We know better than the chip where it should continue. */
1594 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1595 ioaddr + TxRingPtr);
1597 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1599 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1604 /* This should never happen */
1606 printk(KERN_WARNING "%s: rhine_restart_tx() "
1607 "Another error occured %8.8x.\n",
1608 dev->name, intr_status);
1613 static void rhine_error(struct net_device *dev, int intr_status)
1615 struct rhine_private *rp = netdev_priv(dev);
1616 void __iomem *ioaddr = rp->base;
1618 spin_lock(&rp->lock);
1620 if (intr_status & IntrLinkChange)
1621 rhine_check_media(dev, 0);
1622 if (intr_status & IntrStatsMax) {
1623 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1624 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1625 clear_tally_counters(ioaddr);
1627 if (intr_status & IntrTxAborted) {
1629 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1630 dev->name, intr_status);
1632 if (intr_status & IntrTxUnderrun) {
1633 if (rp->tx_thresh < 0xE0)
1634 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1636 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1637 "threshold now %2.2x.\n",
1638 dev->name, rp->tx_thresh);
1640 if (intr_status & IntrTxDescRace) {
1642 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1645 if ((intr_status & IntrTxError) &&
1646 (intr_status & (IntrTxAborted |
1647 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1648 if (rp->tx_thresh < 0xE0) {
1649 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1652 printk(KERN_INFO "%s: Unspecified error. Tx "
1653 "threshold now %2.2x.\n",
1654 dev->name, rp->tx_thresh);
1656 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1658 rhine_restart_tx(dev);
1660 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1661 IntrTxError | IntrTxAborted | IntrNormalSummary |
1664 printk(KERN_ERR "%s: Something Wicked happened! "
1665 "%8.8x.\n", dev->name, intr_status);
1668 spin_unlock(&rp->lock);
1671 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1673 struct rhine_private *rp = netdev_priv(dev);
1674 void __iomem *ioaddr = rp->base;
1675 unsigned long flags;
1677 spin_lock_irqsave(&rp->lock, flags);
1678 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1679 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1680 clear_tally_counters(ioaddr);
1681 spin_unlock_irqrestore(&rp->lock, flags);
1686 static void rhine_set_rx_mode(struct net_device *dev)
1688 struct rhine_private *rp = netdev_priv(dev);
1689 void __iomem *ioaddr = rp->base;
1690 u32 mc_filter[2]; /* Multicast hash filter */
1691 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1693 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1695 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1696 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1697 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1698 (dev->flags & IFF_ALLMULTI)) {
1699 /* Too many to match, or accept all multicasts. */
1700 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1701 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1704 struct netdev_hw_addr *ha;
1706 memset(mc_filter, 0, sizeof(mc_filter));
1707 netdev_for_each_mc_addr(ha, dev) {
1708 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1710 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1712 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1713 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1716 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1719 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1721 struct rhine_private *rp = netdev_priv(dev);
1723 strcpy(info->driver, DRV_NAME);
1724 strcpy(info->version, DRV_VERSION);
1725 strcpy(info->bus_info, pci_name(rp->pdev));
1728 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1730 struct rhine_private *rp = netdev_priv(dev);
1733 spin_lock_irq(&rp->lock);
1734 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1735 spin_unlock_irq(&rp->lock);
1740 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1742 struct rhine_private *rp = netdev_priv(dev);
1745 spin_lock_irq(&rp->lock);
1746 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1747 spin_unlock_irq(&rp->lock);
1748 rhine_set_carrier(&rp->mii_if);
1753 static int netdev_nway_reset(struct net_device *dev)
1755 struct rhine_private *rp = netdev_priv(dev);
1757 return mii_nway_restart(&rp->mii_if);
1760 static u32 netdev_get_link(struct net_device *dev)
1762 struct rhine_private *rp = netdev_priv(dev);
1764 return mii_link_ok(&rp->mii_if);
1767 static u32 netdev_get_msglevel(struct net_device *dev)
1772 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1777 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1779 struct rhine_private *rp = netdev_priv(dev);
1781 if (!(rp->quirks & rqWOL))
1784 spin_lock_irq(&rp->lock);
1785 wol->supported = WAKE_PHY | WAKE_MAGIC |
1786 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1787 wol->wolopts = rp->wolopts;
1788 spin_unlock_irq(&rp->lock);
1791 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1793 struct rhine_private *rp = netdev_priv(dev);
1794 u32 support = WAKE_PHY | WAKE_MAGIC |
1795 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1797 if (!(rp->quirks & rqWOL))
1800 if (wol->wolopts & ~support)
1803 spin_lock_irq(&rp->lock);
1804 rp->wolopts = wol->wolopts;
1805 spin_unlock_irq(&rp->lock);
1810 static const struct ethtool_ops netdev_ethtool_ops = {
1811 .get_drvinfo = netdev_get_drvinfo,
1812 .get_settings = netdev_get_settings,
1813 .set_settings = netdev_set_settings,
1814 .nway_reset = netdev_nway_reset,
1815 .get_link = netdev_get_link,
1816 .get_msglevel = netdev_get_msglevel,
1817 .set_msglevel = netdev_set_msglevel,
1818 .get_wol = rhine_get_wol,
1819 .set_wol = rhine_set_wol,
1822 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1824 struct rhine_private *rp = netdev_priv(dev);
1827 if (!netif_running(dev))
1830 spin_lock_irq(&rp->lock);
1831 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1832 spin_unlock_irq(&rp->lock);
1833 rhine_set_carrier(&rp->mii_if);
1838 static int rhine_close(struct net_device *dev)
1840 struct rhine_private *rp = netdev_priv(dev);
1841 void __iomem *ioaddr = rp->base;
1843 napi_disable(&rp->napi);
1844 cancel_work_sync(&rp->reset_task);
1845 netif_stop_queue(dev);
1847 spin_lock_irq(&rp->lock);
1850 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1851 "status was %4.4x.\n",
1852 dev->name, ioread16(ioaddr + ChipCmd));
1854 /* Switch to loopback mode to avoid hardware races. */
1855 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1857 /* Disable interrupts by clearing the interrupt mask. */
1858 iowrite16(0x0000, ioaddr + IntrEnable);
1860 /* Stop the chip's Tx and Rx processes. */
1861 iowrite16(CmdStop, ioaddr + ChipCmd);
1863 spin_unlock_irq(&rp->lock);
1865 free_irq(rp->pdev->irq, dev);
1874 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1876 struct net_device *dev = pci_get_drvdata(pdev);
1877 struct rhine_private *rp = netdev_priv(dev);
1879 unregister_netdev(dev);
1881 pci_iounmap(pdev, rp->base);
1882 pci_release_regions(pdev);
1885 pci_disable_device(pdev);
1886 pci_set_drvdata(pdev, NULL);
1889 static void rhine_shutdown (struct pci_dev *pdev)
1891 struct net_device *dev = pci_get_drvdata(pdev);
1892 struct rhine_private *rp = netdev_priv(dev);
1893 void __iomem *ioaddr = rp->base;
1895 if (!(rp->quirks & rqWOL))
1896 return; /* Nothing to do for non-WOL adapters */
1898 rhine_power_init(dev);
1900 /* Make sure we use pattern 0, 1 and not 4, 5 */
1901 if (rp->quirks & rq6patterns)
1902 iowrite8(0x04, ioaddr + WOLcgClr);
1904 if (rp->wolopts & WAKE_MAGIC) {
1905 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1907 * Turn EEPROM-controlled wake-up back on -- some hardware may
1908 * not cooperate otherwise.
1910 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1913 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1914 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1916 if (rp->wolopts & WAKE_PHY)
1917 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1919 if (rp->wolopts & WAKE_UCAST)
1920 iowrite8(WOLucast, ioaddr + WOLcrSet);
1923 /* Enable legacy WOL (for old motherboards) */
1924 iowrite8(0x01, ioaddr + PwcfgSet);
1925 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1928 /* Hit power state D3 (sleep) */
1930 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1932 /* TODO: Check use of pci_enable_wake() */
1937 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1939 struct net_device *dev = pci_get_drvdata(pdev);
1940 struct rhine_private *rp = netdev_priv(dev);
1941 unsigned long flags;
1943 if (!netif_running(dev))
1946 napi_disable(&rp->napi);
1948 netif_device_detach(dev);
1949 pci_save_state(pdev);
1951 spin_lock_irqsave(&rp->lock, flags);
1952 rhine_shutdown(pdev);
1953 spin_unlock_irqrestore(&rp->lock, flags);
1955 free_irq(dev->irq, dev);
1959 static int rhine_resume(struct pci_dev *pdev)
1961 struct net_device *dev = pci_get_drvdata(pdev);
1962 struct rhine_private *rp = netdev_priv(dev);
1963 unsigned long flags;
1966 if (!netif_running(dev))
1969 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1970 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1972 ret = pci_set_power_state(pdev, PCI_D0);
1974 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1975 dev->name, ret ? "failed" : "succeeded", ret);
1977 pci_restore_state(pdev);
1979 spin_lock_irqsave(&rp->lock, flags);
1981 enable_mmio(rp->pioaddr, rp->quirks);
1983 rhine_power_init(dev);
1988 init_registers(dev);
1989 spin_unlock_irqrestore(&rp->lock, flags);
1991 netif_device_attach(dev);
1995 #endif /* CONFIG_PM */
1997 static struct pci_driver rhine_driver = {
1999 .id_table = rhine_pci_tbl,
2000 .probe = rhine_init_one,
2001 .remove = __devexit_p(rhine_remove_one),
2003 .suspend = rhine_suspend,
2004 .resume = rhine_resume,
2005 #endif /* CONFIG_PM */
2006 .shutdown = rhine_shutdown,
2009 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2013 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2014 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2020 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2021 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2027 static int __init rhine_init(void)
2029 /* when a module, this is printed whether or not devices are found in probe */
2033 if (dmi_check_system(rhine_dmi_table)) {
2034 /* these BIOSes fail at PXE boot if chip is in D3 */
2036 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2041 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2043 return pci_register_driver(&rhine_driver);
2047 static void __exit rhine_cleanup(void)
2049 pci_unregister_driver(&rhine_driver);
2053 module_init(rhine_init);
2054 module_exit(rhine_cleanup);