]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/vrf.c
ipc/msg.c: use freezable blocking call
[karo-tx-linux.git] / drivers / net / vrf.c
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/rtnetlink.h>
36 #include <net/route.h>
37 #include <net/addrconf.h>
38 #include <net/l3mdev.h>
39
40 #define RT_FL_TOS(oldflp4) \
41         ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42
43 #define DRV_NAME        "vrf"
44 #define DRV_VERSION     "1.0"
45
46 #define vrf_master_get_rcu(dev) \
47         ((struct net_device *)rcu_dereference(dev->rx_handler_data))
48
49 struct net_vrf {
50         struct rtable           *rth;
51         struct rt6_info         *rt6;
52         u32                     tb_id;
53 };
54
55 struct pcpu_dstats {
56         u64                     tx_pkts;
57         u64                     tx_bytes;
58         u64                     tx_drps;
59         u64                     rx_pkts;
60         u64                     rx_bytes;
61         struct u64_stats_sync   syncp;
62 };
63
64 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
65 {
66         return dst;
67 }
68
69 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
70 {
71         return ip_local_out(net, sk, skb);
72 }
73
74 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
75 {
76         /* TO-DO: return max ethernet size? */
77         return dst->dev->mtu;
78 }
79
80 static void vrf_dst_destroy(struct dst_entry *dst)
81 {
82         /* our dst lives forever - or until the device is closed */
83 }
84
85 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
86 {
87         return 65535 - 40;
88 }
89
90 static struct dst_ops vrf_dst_ops = {
91         .family         = AF_INET,
92         .local_out      = vrf_ip_local_out,
93         .check          = vrf_ip_check,
94         .mtu            = vrf_v4_mtu,
95         .destroy        = vrf_dst_destroy,
96         .default_advmss = vrf_default_advmss,
97 };
98
99 /* neighbor handling is done with actual device; do not want
100  * to flip skb->dev for those ndisc packets. This really fails
101  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
102  * a start.
103  */
104 #if IS_ENABLED(CONFIG_IPV6)
105 static bool check_ipv6_frame(const struct sk_buff *skb)
106 {
107         const struct ipv6hdr *ipv6h = (struct ipv6hdr *)skb->data;
108         size_t hlen = sizeof(*ipv6h);
109         bool rc = true;
110
111         if (skb->len < hlen)
112                 goto out;
113
114         if (ipv6h->nexthdr == NEXTHDR_ICMP) {
115                 const struct icmp6hdr *icmph;
116
117                 if (skb->len < hlen + sizeof(*icmph))
118                         goto out;
119
120                 icmph = (struct icmp6hdr *)(skb->data + sizeof(*ipv6h));
121                 switch (icmph->icmp6_type) {
122                 case NDISC_ROUTER_SOLICITATION:
123                 case NDISC_ROUTER_ADVERTISEMENT:
124                 case NDISC_NEIGHBOUR_SOLICITATION:
125                 case NDISC_NEIGHBOUR_ADVERTISEMENT:
126                 case NDISC_REDIRECT:
127                         rc = false;
128                         break;
129                 }
130         }
131
132 out:
133         return rc;
134 }
135 #else
136 static bool check_ipv6_frame(const struct sk_buff *skb)
137 {
138         return false;
139 }
140 #endif
141
142 static bool is_ip_rx_frame(struct sk_buff *skb)
143 {
144         switch (skb->protocol) {
145         case htons(ETH_P_IP):
146                 return true;
147         case htons(ETH_P_IPV6):
148                 return check_ipv6_frame(skb);
149         }
150         return false;
151 }
152
153 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
154 {
155         vrf_dev->stats.tx_errors++;
156         kfree_skb(skb);
157 }
158
159 /* note: already called with rcu_read_lock */
160 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
161 {
162         struct sk_buff *skb = *pskb;
163
164         if (is_ip_rx_frame(skb)) {
165                 struct net_device *dev = vrf_master_get_rcu(skb->dev);
166                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
167
168                 u64_stats_update_begin(&dstats->syncp);
169                 dstats->rx_pkts++;
170                 dstats->rx_bytes += skb->len;
171                 u64_stats_update_end(&dstats->syncp);
172
173                 skb->dev = dev;
174
175                 return RX_HANDLER_ANOTHER;
176         }
177         return RX_HANDLER_PASS;
178 }
179
180 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
181                                                  struct rtnl_link_stats64 *stats)
182 {
183         int i;
184
185         for_each_possible_cpu(i) {
186                 const struct pcpu_dstats *dstats;
187                 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
188                 unsigned int start;
189
190                 dstats = per_cpu_ptr(dev->dstats, i);
191                 do {
192                         start = u64_stats_fetch_begin_irq(&dstats->syncp);
193                         tbytes = dstats->tx_bytes;
194                         tpkts = dstats->tx_pkts;
195                         tdrops = dstats->tx_drps;
196                         rbytes = dstats->rx_bytes;
197                         rpkts = dstats->rx_pkts;
198                 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
199                 stats->tx_bytes += tbytes;
200                 stats->tx_packets += tpkts;
201                 stats->tx_dropped += tdrops;
202                 stats->rx_bytes += rbytes;
203                 stats->rx_packets += rpkts;
204         }
205         return stats;
206 }
207
208 #if IS_ENABLED(CONFIG_IPV6)
209 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
210                                            struct net_device *dev)
211 {
212         const struct ipv6hdr *iph = ipv6_hdr(skb);
213         struct net *net = dev_net(skb->dev);
214         struct flowi6 fl6 = {
215                 /* needed to match OIF rule */
216                 .flowi6_oif = dev->ifindex,
217                 .flowi6_iif = LOOPBACK_IFINDEX,
218                 .daddr = iph->daddr,
219                 .saddr = iph->saddr,
220                 .flowlabel = ip6_flowinfo(iph),
221                 .flowi6_mark = skb->mark,
222                 .flowi6_proto = iph->nexthdr,
223                 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
224         };
225         int ret = NET_XMIT_DROP;
226         struct dst_entry *dst;
227         struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
228
229         dst = ip6_route_output(net, NULL, &fl6);
230         if (dst == dst_null)
231                 goto err;
232
233         skb_dst_drop(skb);
234         skb_dst_set(skb, dst);
235
236         ret = ip6_local_out(net, skb->sk, skb);
237         if (unlikely(net_xmit_eval(ret)))
238                 dev->stats.tx_errors++;
239         else
240                 ret = NET_XMIT_SUCCESS;
241
242         return ret;
243 err:
244         vrf_tx_error(dev, skb);
245         return NET_XMIT_DROP;
246 }
247 #else
248 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
249                                            struct net_device *dev)
250 {
251         vrf_tx_error(dev, skb);
252         return NET_XMIT_DROP;
253 }
254 #endif
255
256 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
257                             struct net_device *vrf_dev)
258 {
259         struct rtable *rt;
260         int err = 1;
261
262         rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
263         if (IS_ERR(rt))
264                 goto out;
265
266         /* TO-DO: what about broadcast ? */
267         if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
268                 ip_rt_put(rt);
269                 goto out;
270         }
271
272         skb_dst_drop(skb);
273         skb_dst_set(skb, &rt->dst);
274         err = 0;
275 out:
276         return err;
277 }
278
279 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
280                                            struct net_device *vrf_dev)
281 {
282         struct iphdr *ip4h = ip_hdr(skb);
283         int ret = NET_XMIT_DROP;
284         struct flowi4 fl4 = {
285                 /* needed to match OIF rule */
286                 .flowi4_oif = vrf_dev->ifindex,
287                 .flowi4_iif = LOOPBACK_IFINDEX,
288                 .flowi4_tos = RT_TOS(ip4h->tos),
289                 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
290                                 FLOWI_FLAG_SKIP_NH_OIF,
291                 .daddr = ip4h->daddr,
292         };
293
294         if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
295                 goto err;
296
297         if (!ip4h->saddr) {
298                 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
299                                                RT_SCOPE_LINK);
300         }
301
302         ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
303         if (unlikely(net_xmit_eval(ret)))
304                 vrf_dev->stats.tx_errors++;
305         else
306                 ret = NET_XMIT_SUCCESS;
307
308 out:
309         return ret;
310 err:
311         vrf_tx_error(vrf_dev, skb);
312         goto out;
313 }
314
315 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
316 {
317         /* strip the ethernet header added for pass through VRF device */
318         __skb_pull(skb, skb_network_offset(skb));
319
320         switch (skb->protocol) {
321         case htons(ETH_P_IP):
322                 return vrf_process_v4_outbound(skb, dev);
323         case htons(ETH_P_IPV6):
324                 return vrf_process_v6_outbound(skb, dev);
325         default:
326                 vrf_tx_error(dev, skb);
327                 return NET_XMIT_DROP;
328         }
329 }
330
331 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
332 {
333         netdev_tx_t ret = is_ip_tx_frame(skb, dev);
334
335         if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
336                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
337
338                 u64_stats_update_begin(&dstats->syncp);
339                 dstats->tx_pkts++;
340                 dstats->tx_bytes += skb->len;
341                 u64_stats_update_end(&dstats->syncp);
342         } else {
343                 this_cpu_inc(dev->dstats->tx_drps);
344         }
345
346         return ret;
347 }
348
349 #if IS_ENABLED(CONFIG_IPV6)
350 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
351 {
352         return dst;
353 }
354
355 static struct dst_ops vrf_dst_ops6 = {
356         .family         = AF_INET6,
357         .local_out      = ip6_local_out,
358         .check          = vrf_ip6_check,
359         .mtu            = vrf_v4_mtu,
360         .destroy        = vrf_dst_destroy,
361         .default_advmss = vrf_default_advmss,
362 };
363
364 static int init_dst_ops6_kmem_cachep(void)
365 {
366         vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
367                                                      sizeof(struct rt6_info),
368                                                      0,
369                                                      SLAB_HWCACHE_ALIGN,
370                                                      NULL);
371
372         if (!vrf_dst_ops6.kmem_cachep)
373                 return -ENOMEM;
374
375         return 0;
376 }
377
378 static void free_dst_ops6_kmem_cachep(void)
379 {
380         kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
381 }
382
383 static int vrf_input6(struct sk_buff *skb)
384 {
385         skb->dev->stats.rx_errors++;
386         kfree_skb(skb);
387         return 0;
388 }
389
390 /* modelled after ip6_finish_output2 */
391 static int vrf_finish_output6(struct net *net, struct sock *sk,
392                               struct sk_buff *skb)
393 {
394         struct dst_entry *dst = skb_dst(skb);
395         struct net_device *dev = dst->dev;
396         struct neighbour *neigh;
397         struct in6_addr *nexthop;
398         int ret;
399
400         skb->protocol = htons(ETH_P_IPV6);
401         skb->dev = dev;
402
403         rcu_read_lock_bh();
404         nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
405         neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
406         if (unlikely(!neigh))
407                 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
408         if (!IS_ERR(neigh)) {
409                 ret = dst_neigh_output(dst, neigh, skb);
410                 rcu_read_unlock_bh();
411                 return ret;
412         }
413         rcu_read_unlock_bh();
414
415         IP6_INC_STATS(dev_net(dst->dev),
416                       ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
417         kfree_skb(skb);
418         return -EINVAL;
419 }
420
421 /* modelled after ip6_output */
422 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
423 {
424         return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
425                             net, sk, skb, NULL, skb_dst(skb)->dev,
426                             vrf_finish_output6,
427                             !(IP6CB(skb)->flags & IP6SKB_REROUTED));
428 }
429
430 static void vrf_rt6_destroy(struct net_vrf *vrf)
431 {
432         dst_destroy(&vrf->rt6->dst);
433         free_percpu(vrf->rt6->rt6i_pcpu);
434         vrf->rt6 = NULL;
435 }
436
437 static int vrf_rt6_create(struct net_device *dev)
438 {
439         struct net_vrf *vrf = netdev_priv(dev);
440         struct dst_entry *dst;
441         struct rt6_info *rt6;
442         int cpu;
443         int rc = -ENOMEM;
444
445         rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
446                         DST_OBSOLETE_NONE,
447                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
448         if (!rt6)
449                 goto out;
450
451         dst = &rt6->dst;
452
453         rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
454         if (!rt6->rt6i_pcpu) {
455                 dst_destroy(dst);
456                 goto out;
457         }
458         for_each_possible_cpu(cpu) {
459                 struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
460                 *p =  NULL;
461         }
462
463         memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
464
465         INIT_LIST_HEAD(&rt6->rt6i_siblings);
466         INIT_LIST_HEAD(&rt6->rt6i_uncached);
467
468         rt6->dst.input  = vrf_input6;
469         rt6->dst.output = vrf_output6;
470
471         rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
472
473         atomic_set(&rt6->dst.__refcnt, 2);
474
475         vrf->rt6 = rt6;
476         rc = 0;
477 out:
478         return rc;
479 }
480 #else
481 static int init_dst_ops6_kmem_cachep(void)
482 {
483         return 0;
484 }
485
486 static void free_dst_ops6_kmem_cachep(void)
487 {
488 }
489
490 static void vrf_rt6_destroy(struct net_vrf *vrf)
491 {
492 }
493
494 static int vrf_rt6_create(struct net_device *dev)
495 {
496         return 0;
497 }
498 #endif
499
500 /* modelled after ip_finish_output2 */
501 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
502 {
503         struct dst_entry *dst = skb_dst(skb);
504         struct rtable *rt = (struct rtable *)dst;
505         struct net_device *dev = dst->dev;
506         unsigned int hh_len = LL_RESERVED_SPACE(dev);
507         struct neighbour *neigh;
508         u32 nexthop;
509         int ret = -EINVAL;
510
511         /* Be paranoid, rather than too clever. */
512         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
513                 struct sk_buff *skb2;
514
515                 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
516                 if (!skb2) {
517                         ret = -ENOMEM;
518                         goto err;
519                 }
520                 if (skb->sk)
521                         skb_set_owner_w(skb2, skb->sk);
522
523                 consume_skb(skb);
524                 skb = skb2;
525         }
526
527         rcu_read_lock_bh();
528
529         nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
530         neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
531         if (unlikely(!neigh))
532                 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
533         if (!IS_ERR(neigh))
534                 ret = dst_neigh_output(dst, neigh, skb);
535
536         rcu_read_unlock_bh();
537 err:
538         if (unlikely(ret < 0))
539                 vrf_tx_error(skb->dev, skb);
540         return ret;
541 }
542
543 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
544 {
545         struct net_device *dev = skb_dst(skb)->dev;
546
547         IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
548
549         skb->dev = dev;
550         skb->protocol = htons(ETH_P_IP);
551
552         return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
553                             net, sk, skb, NULL, dev,
554                             vrf_finish_output,
555                             !(IPCB(skb)->flags & IPSKB_REROUTED));
556 }
557
558 static void vrf_rtable_destroy(struct net_vrf *vrf)
559 {
560         struct dst_entry *dst = (struct dst_entry *)vrf->rth;
561
562         dst_destroy(dst);
563         vrf->rth = NULL;
564 }
565
566 static struct rtable *vrf_rtable_create(struct net_device *dev)
567 {
568         struct net_vrf *vrf = netdev_priv(dev);
569         struct rtable *rth;
570
571         rth = dst_alloc(&vrf_dst_ops, dev, 2,
572                         DST_OBSOLETE_NONE,
573                         (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
574         if (rth) {
575                 rth->dst.output = vrf_output;
576                 rth->rt_genid   = rt_genid_ipv4(dev_net(dev));
577                 rth->rt_flags   = 0;
578                 rth->rt_type    = RTN_UNICAST;
579                 rth->rt_is_input = 0;
580                 rth->rt_iif     = 0;
581                 rth->rt_pmtu    = 0;
582                 rth->rt_gateway = 0;
583                 rth->rt_uses_gateway = 0;
584                 rth->rt_table_id = vrf->tb_id;
585                 INIT_LIST_HEAD(&rth->rt_uncached);
586                 rth->rt_uncached_list = NULL;
587         }
588
589         return rth;
590 }
591
592 /**************************** device handling ********************/
593
594 /* cycle interface to flush neighbor cache and move routes across tables */
595 static void cycle_netdev(struct net_device *dev)
596 {
597         unsigned int flags = dev->flags;
598         int ret;
599
600         if (!netif_running(dev))
601                 return;
602
603         ret = dev_change_flags(dev, flags & ~IFF_UP);
604         if (ret >= 0)
605                 ret = dev_change_flags(dev, flags);
606
607         if (ret < 0) {
608                 netdev_err(dev,
609                            "Failed to cycle device %s; route tables might be wrong!\n",
610                            dev->name);
611         }
612 }
613
614 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
615 {
616         int ret;
617
618         /* register the packet handler for slave ports */
619         ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
620         if (ret) {
621                 netdev_err(port_dev,
622                            "Device %s failed to register rx_handler\n",
623                            port_dev->name);
624                 goto out_fail;
625         }
626
627         ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
628         if (ret < 0)
629                 goto out_unregister;
630
631         port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
632         cycle_netdev(port_dev);
633
634         return 0;
635
636 out_unregister:
637         netdev_rx_handler_unregister(port_dev);
638 out_fail:
639         return ret;
640 }
641
642 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
643 {
644         if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
645                 return -EINVAL;
646
647         return do_vrf_add_slave(dev, port_dev);
648 }
649
650 /* inverse of do_vrf_add_slave */
651 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
652 {
653         netdev_upper_dev_unlink(port_dev, dev);
654         port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
655
656         netdev_rx_handler_unregister(port_dev);
657
658         cycle_netdev(port_dev);
659
660         return 0;
661 }
662
663 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
664 {
665         return do_vrf_del_slave(dev, port_dev);
666 }
667
668 static void vrf_dev_uninit(struct net_device *dev)
669 {
670         struct net_vrf *vrf = netdev_priv(dev);
671         struct net_device *port_dev;
672         struct list_head *iter;
673
674         vrf_rtable_destroy(vrf);
675         vrf_rt6_destroy(vrf);
676
677         netdev_for_each_lower_dev(dev, port_dev, iter)
678                 vrf_del_slave(dev, port_dev);
679
680         free_percpu(dev->dstats);
681         dev->dstats = NULL;
682 }
683
684 static int vrf_dev_init(struct net_device *dev)
685 {
686         struct net_vrf *vrf = netdev_priv(dev);
687
688         dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
689         if (!dev->dstats)
690                 goto out_nomem;
691
692         /* create the default dst which points back to us */
693         vrf->rth = vrf_rtable_create(dev);
694         if (!vrf->rth)
695                 goto out_stats;
696
697         if (vrf_rt6_create(dev) != 0)
698                 goto out_rth;
699
700         dev->flags = IFF_MASTER | IFF_NOARP;
701
702         return 0;
703
704 out_rth:
705         vrf_rtable_destroy(vrf);
706 out_stats:
707         free_percpu(dev->dstats);
708         dev->dstats = NULL;
709 out_nomem:
710         return -ENOMEM;
711 }
712
713 static const struct net_device_ops vrf_netdev_ops = {
714         .ndo_init               = vrf_dev_init,
715         .ndo_uninit             = vrf_dev_uninit,
716         .ndo_start_xmit         = vrf_xmit,
717         .ndo_get_stats64        = vrf_get_stats64,
718         .ndo_add_slave          = vrf_add_slave,
719         .ndo_del_slave          = vrf_del_slave,
720 };
721
722 static u32 vrf_fib_table(const struct net_device *dev)
723 {
724         struct net_vrf *vrf = netdev_priv(dev);
725
726         return vrf->tb_id;
727 }
728
729 static struct rtable *vrf_get_rtable(const struct net_device *dev,
730                                      const struct flowi4 *fl4)
731 {
732         struct rtable *rth = NULL;
733
734         if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
735                 struct net_vrf *vrf = netdev_priv(dev);
736
737                 rth = vrf->rth;
738                 atomic_inc(&rth->dst.__refcnt);
739         }
740
741         return rth;
742 }
743
744 /* called under rcu_read_lock */
745 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
746 {
747         struct fib_result res = { .tclassid = 0 };
748         struct net *net = dev_net(dev);
749         u32 orig_tos = fl4->flowi4_tos;
750         u8 flags = fl4->flowi4_flags;
751         u8 scope = fl4->flowi4_scope;
752         u8 tos = RT_FL_TOS(fl4);
753         int rc;
754
755         if (unlikely(!fl4->daddr))
756                 return 0;
757
758         fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
759         fl4->flowi4_iif = LOOPBACK_IFINDEX;
760         fl4->flowi4_tos = tos & IPTOS_RT_MASK;
761         fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
762                              RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
763
764         rc = fib_lookup(net, fl4, &res, 0);
765         if (!rc) {
766                 if (res.type == RTN_LOCAL)
767                         fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
768                 else
769                         fib_select_path(net, &res, fl4, -1);
770         }
771
772         fl4->flowi4_flags = flags;
773         fl4->flowi4_tos = orig_tos;
774         fl4->flowi4_scope = scope;
775
776         return rc;
777 }
778
779 #if IS_ENABLED(CONFIG_IPV6)
780 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
781                                          const struct flowi6 *fl6)
782 {
783         struct rt6_info *rt = NULL;
784
785         if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
786                 struct net_vrf *vrf = netdev_priv(dev);
787
788                 rt = vrf->rt6;
789                 atomic_inc(&rt->dst.__refcnt);
790         }
791
792         return (struct dst_entry *)rt;
793 }
794 #endif
795
796 static const struct l3mdev_ops vrf_l3mdev_ops = {
797         .l3mdev_fib_table       = vrf_fib_table,
798         .l3mdev_get_rtable      = vrf_get_rtable,
799         .l3mdev_get_saddr       = vrf_get_saddr,
800 #if IS_ENABLED(CONFIG_IPV6)
801         .l3mdev_get_rt6_dst     = vrf_get_rt6_dst,
802 #endif
803 };
804
805 static void vrf_get_drvinfo(struct net_device *dev,
806                             struct ethtool_drvinfo *info)
807 {
808         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
809         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
810 }
811
812 static const struct ethtool_ops vrf_ethtool_ops = {
813         .get_drvinfo    = vrf_get_drvinfo,
814 };
815
816 static void vrf_setup(struct net_device *dev)
817 {
818         ether_setup(dev);
819
820         /* Initialize the device structure. */
821         dev->netdev_ops = &vrf_netdev_ops;
822         dev->l3mdev_ops = &vrf_l3mdev_ops;
823         dev->ethtool_ops = &vrf_ethtool_ops;
824         dev->destructor = free_netdev;
825
826         /* Fill in device structure with ethernet-generic values. */
827         eth_hw_addr_random(dev);
828
829         /* don't acquire vrf device's netif_tx_lock when transmitting */
830         dev->features |= NETIF_F_LLTX;
831
832         /* don't allow vrf devices to change network namespaces. */
833         dev->features |= NETIF_F_NETNS_LOCAL;
834 }
835
836 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
837 {
838         if (tb[IFLA_ADDRESS]) {
839                 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
840                         return -EINVAL;
841                 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
842                         return -EADDRNOTAVAIL;
843         }
844         return 0;
845 }
846
847 static void vrf_dellink(struct net_device *dev, struct list_head *head)
848 {
849         unregister_netdevice_queue(dev, head);
850 }
851
852 static int vrf_newlink(struct net *src_net, struct net_device *dev,
853                        struct nlattr *tb[], struct nlattr *data[])
854 {
855         struct net_vrf *vrf = netdev_priv(dev);
856
857         if (!data || !data[IFLA_VRF_TABLE])
858                 return -EINVAL;
859
860         vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
861
862         dev->priv_flags |= IFF_L3MDEV_MASTER;
863
864         return register_netdevice(dev);
865 }
866
867 static size_t vrf_nl_getsize(const struct net_device *dev)
868 {
869         return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
870 }
871
872 static int vrf_fillinfo(struct sk_buff *skb,
873                         const struct net_device *dev)
874 {
875         struct net_vrf *vrf = netdev_priv(dev);
876
877         return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
878 }
879
880 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
881         [IFLA_VRF_TABLE] = { .type = NLA_U32 },
882 };
883
884 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
885         .kind           = DRV_NAME,
886         .priv_size      = sizeof(struct net_vrf),
887
888         .get_size       = vrf_nl_getsize,
889         .policy         = vrf_nl_policy,
890         .validate       = vrf_validate,
891         .fill_info      = vrf_fillinfo,
892
893         .newlink        = vrf_newlink,
894         .dellink        = vrf_dellink,
895         .setup          = vrf_setup,
896         .maxtype        = IFLA_VRF_MAX,
897 };
898
899 static int vrf_device_event(struct notifier_block *unused,
900                             unsigned long event, void *ptr)
901 {
902         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
903
904         /* only care about unregister events to drop slave references */
905         if (event == NETDEV_UNREGISTER) {
906                 struct net_device *vrf_dev;
907
908                 if (!netif_is_l3_slave(dev))
909                         goto out;
910
911                 vrf_dev = netdev_master_upper_dev_get(dev);
912                 vrf_del_slave(vrf_dev, dev);
913         }
914 out:
915         return NOTIFY_DONE;
916 }
917
918 static struct notifier_block vrf_notifier_block __read_mostly = {
919         .notifier_call = vrf_device_event,
920 };
921
922 static int __init vrf_init_module(void)
923 {
924         int rc;
925
926         vrf_dst_ops.kmem_cachep =
927                 kmem_cache_create("vrf_ip_dst_cache",
928                                   sizeof(struct rtable), 0,
929                                   SLAB_HWCACHE_ALIGN,
930                                   NULL);
931
932         if (!vrf_dst_ops.kmem_cachep)
933                 return -ENOMEM;
934
935         rc = init_dst_ops6_kmem_cachep();
936         if (rc != 0)
937                 goto error2;
938
939         register_netdevice_notifier(&vrf_notifier_block);
940
941         rc = rtnl_link_register(&vrf_link_ops);
942         if (rc < 0)
943                 goto error;
944
945         return 0;
946
947 error:
948         unregister_netdevice_notifier(&vrf_notifier_block);
949         free_dst_ops6_kmem_cachep();
950 error2:
951         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
952         return rc;
953 }
954
955 static void __exit vrf_cleanup_module(void)
956 {
957         rtnl_link_unregister(&vrf_link_ops);
958         unregister_netdevice_notifier(&vrf_notifier_block);
959         kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
960         free_dst_ops6_kmem_cachep();
961 }
962
963 module_init(vrf_init_module);
964 module_exit(vrf_cleanup_module);
965 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
966 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
967 MODULE_LICENSE("GPL");
968 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
969 MODULE_VERSION(DRV_VERSION);