]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wimax/i2400m/rx.c
Merge branch 'stable/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mv-sheeva.git] / drivers / net / wimax / i2400m / rx.c
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Handle incoming traffic and deliver it to the control or data planes
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37  *  - Initial implementation
38  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39  *  - Use skb_clone(), break up processing in chunks
40  *  - Split transport/device specific
41  *  - Make buffer size dynamic to exert less memory pressure
42  *  - RX reorder support
43  *
44  * This handles the RX path.
45  *
46  * We receive an RX message from the bus-specific driver, which
47  * contains one or more payloads that have potentially different
48  * destinataries (data or control paths).
49  *
50  * So we just take that payload from the transport specific code in
51  * the form of an skb, break it up in chunks (a cloned skb each in the
52  * case of network packets) and pass it to netdev or to the
53  * command/ack handler (and from there to the WiMAX stack).
54  *
55  * PROTOCOL FORMAT
56  *
57  * The format of the buffer is:
58  *
59  * HEADER                      (struct i2400m_msg_hdr)
60  * PAYLOAD DESCRIPTOR 0        (struct i2400m_pld)
61  * PAYLOAD DESCRIPTOR 1
62  * ...
63  * PAYLOAD DESCRIPTOR N
64  * PAYLOAD 0                   (raw bytes)
65  * PAYLOAD 1
66  * ...
67  * PAYLOAD N
68  *
69  * See tx.c for a deeper description on alignment requirements and
70  * other fun facts of it.
71  *
72  * DATA PACKETS
73  *
74  * In firmwares <= v1.3, data packets have no header for RX, but they
75  * do for TX (currently unused).
76  *
77  * In firmware >= 1.4, RX packets have an extended header (16
78  * bytes). This header conveys information for management of host
79  * reordering of packets (the device offloads storage of the packets
80  * for reordering to the host). Read below for more information.
81  *
82  * The header is used as dummy space to emulate an ethernet header and
83  * thus be able to act as an ethernet device without having to reallocate.
84  *
85  * DATA RX REORDERING
86  *
87  * Starting in firmware v1.4, the device can deliver packets for
88  * delivery with special reordering information; this allows it to
89  * more effectively do packet management when some frames were lost in
90  * the radio traffic.
91  *
92  * Thus, for RX packets that come out of order, the device gives the
93  * driver enough information to queue them properly and then at some
94  * point, the signal to deliver the whole (or part) of the queued
95  * packets to the networking stack. There are 16 such queues.
96  *
97  * This only happens when a packet comes in with the "need reorder"
98  * flag set in the RX header. When such bit is set, the following
99  * operations might be indicated:
100  *
101  *  - reset queue: send all queued packets to the OS
102  *
103  *  - queue: queue a packet
104  *
105  *  - update ws: update the queue's window start and deliver queued
106  *    packets that meet the criteria
107  *
108  *  - queue & update ws: queue a packet, update the window start and
109  *    deliver queued packets that meet the criteria
110  *
111  * (delivery criteria: the packet's [normalized] sequence number is
112  * lower than the new [normalized] window start).
113  *
114  * See the i2400m_roq_*() functions for details.
115  *
116  * ROADMAP
117  *
118  * i2400m_rx
119  *   i2400m_rx_msg_hdr_check
120  *   i2400m_rx_pl_descr_check
121  *   i2400m_rx_payload
122  *     i2400m_net_rx
123  *     i2400m_rx_edata
124  *       i2400m_net_erx
125  *       i2400m_roq_reset
126  *         i2400m_net_erx
127  *       i2400m_roq_queue
128  *         __i2400m_roq_queue
129  *       i2400m_roq_update_ws
130  *         __i2400m_roq_update_ws
131  *           i2400m_net_erx
132  *       i2400m_roq_queue_update_ws
133  *         __i2400m_roq_queue
134  *         __i2400m_roq_update_ws
135  *           i2400m_net_erx
136  *     i2400m_rx_ctl
137  *       i2400m_msg_size_check
138  *       i2400m_report_hook_work    [in a workqueue]
139  *         i2400m_report_hook
140  *       wimax_msg_to_user
141  *       i2400m_rx_ctl_ack
142  *         wimax_msg_to_user_alloc
143  *     i2400m_rx_trace
144  *       i2400m_msg_size_check
145  *       wimax_msg
146  */
147 #include <linux/slab.h>
148 #include <linux/kernel.h>
149 #include <linux/if_arp.h>
150 #include <linux/netdevice.h>
151 #include <linux/workqueue.h>
152 #include "i2400m.h"
153
154
155 #define D_SUBMODULE rx
156 #include "debug-levels.h"
157
158 static int i2400m_rx_reorder_disabled;  /* 0 (rx reorder enabled) by default */
159 module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
160 MODULE_PARM_DESC(rx_reorder_disabled,
161                  "If true, RX reordering will be disabled.");
162
163 struct i2400m_report_hook_args {
164         struct sk_buff *skb_rx;
165         const struct i2400m_l3l4_hdr *l3l4_hdr;
166         size_t size;
167         struct list_head list_node;
168 };
169
170
171 /*
172  * Execute i2400m_report_hook in a workqueue
173  *
174  * Goes over the list of queued reports in i2400m->rx_reports and
175  * processes them.
176  *
177  * NOTE: refcounts on i2400m are not needed because we flush the
178  *     workqueue this runs on (i2400m->work_queue) before destroying
179  *     i2400m.
180  */
181 void i2400m_report_hook_work(struct work_struct *ws)
182 {
183         struct i2400m *i2400m = container_of(ws, struct i2400m, rx_report_ws);
184         struct device *dev = i2400m_dev(i2400m);
185         struct i2400m_report_hook_args *args, *args_next;
186         LIST_HEAD(list);
187         unsigned long flags;
188
189         while (1) {
190                 spin_lock_irqsave(&i2400m->rx_lock, flags);
191                 list_splice_init(&i2400m->rx_reports, &list);
192                 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
193                 if (list_empty(&list))
194                         break;
195                 else
196                         d_printf(1, dev, "processing queued reports\n");
197                 list_for_each_entry_safe(args, args_next, &list, list_node) {
198                         d_printf(2, dev, "processing queued report %p\n", args);
199                         i2400m_report_hook(i2400m, args->l3l4_hdr, args->size);
200                         kfree_skb(args->skb_rx);
201                         list_del(&args->list_node);
202                         kfree(args);
203                 }
204         }
205 }
206
207
208 /*
209  * Flush the list of queued reports
210  */
211 static
212 void i2400m_report_hook_flush(struct i2400m *i2400m)
213 {
214         struct device *dev = i2400m_dev(i2400m);
215         struct i2400m_report_hook_args *args, *args_next;
216         LIST_HEAD(list);
217         unsigned long flags;
218
219         d_printf(1, dev, "flushing queued reports\n");
220         spin_lock_irqsave(&i2400m->rx_lock, flags);
221         list_splice_init(&i2400m->rx_reports, &list);
222         spin_unlock_irqrestore(&i2400m->rx_lock, flags);
223         list_for_each_entry_safe(args, args_next, &list, list_node) {
224                 d_printf(2, dev, "flushing queued report %p\n", args);
225                 kfree_skb(args->skb_rx);
226                 list_del(&args->list_node);
227                 kfree(args);
228         }
229 }
230
231
232 /*
233  * Queue a report for later processing
234  *
235  * @i2400m: device descriptor
236  * @skb_rx: skb that contains the payload (for reference counting)
237  * @l3l4_hdr: pointer to the control
238  * @size: size of the message
239  */
240 static
241 void i2400m_report_hook_queue(struct i2400m *i2400m, struct sk_buff *skb_rx,
242                               const void *l3l4_hdr, size_t size)
243 {
244         struct device *dev = i2400m_dev(i2400m);
245         unsigned long flags;
246         struct i2400m_report_hook_args *args;
247
248         args = kzalloc(sizeof(*args), GFP_NOIO);
249         if (args) {
250                 args->skb_rx = skb_get(skb_rx);
251                 args->l3l4_hdr = l3l4_hdr;
252                 args->size = size;
253                 spin_lock_irqsave(&i2400m->rx_lock, flags);
254                 list_add_tail(&args->list_node, &i2400m->rx_reports);
255                 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
256                 d_printf(2, dev, "queued report %p\n", args);
257                 rmb();          /* see i2400m->ready's documentation  */
258                 if (likely(i2400m->ready))      /* only send if up */
259                         queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
260         } else  {
261                 if (printk_ratelimit())
262                         dev_err(dev, "%s:%u: Can't allocate %zu B\n",
263                                 __func__, __LINE__, sizeof(*args));
264         }
265 }
266
267
268 /*
269  * Process an ack to a command
270  *
271  * @i2400m: device descriptor
272  * @payload: pointer to message
273  * @size: size of the message
274  *
275  * Pass the acknodledgment (in an skb) to the thread that is waiting
276  * for it in i2400m->msg_completion.
277  *
278  * We need to coordinate properly with the thread waiting for the
279  * ack. Check if it is waiting or if it is gone. We loose the spinlock
280  * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
281  * but this is not so speed critical).
282  */
283 static
284 void i2400m_rx_ctl_ack(struct i2400m *i2400m,
285                        const void *payload, size_t size)
286 {
287         struct device *dev = i2400m_dev(i2400m);
288         struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
289         unsigned long flags;
290         struct sk_buff *ack_skb;
291
292         /* Anyone waiting for an answer? */
293         spin_lock_irqsave(&i2400m->rx_lock, flags);
294         if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
295                 dev_err(dev, "Huh? reply to command with no waiters\n");
296                 goto error_no_waiter;
297         }
298         spin_unlock_irqrestore(&i2400m->rx_lock, flags);
299
300         ack_skb = wimax_msg_alloc(wimax_dev, NULL, payload, size, GFP_KERNEL);
301
302         /* Check waiter didn't time out waiting for the answer... */
303         spin_lock_irqsave(&i2400m->rx_lock, flags);
304         if (i2400m->ack_skb != ERR_PTR(-EINPROGRESS)) {
305                 d_printf(1, dev, "Huh? waiter for command reply cancelled\n");
306                 goto error_waiter_cancelled;
307         }
308         if (IS_ERR(ack_skb))
309                 dev_err(dev, "CMD/GET/SET ack: cannot allocate SKB\n");
310         i2400m->ack_skb = ack_skb;
311         spin_unlock_irqrestore(&i2400m->rx_lock, flags);
312         complete(&i2400m->msg_completion);
313         return;
314
315 error_waiter_cancelled:
316         if (!IS_ERR(ack_skb))
317                 kfree_skb(ack_skb);
318 error_no_waiter:
319         spin_unlock_irqrestore(&i2400m->rx_lock, flags);
320 }
321
322
323 /*
324  * Receive and process a control payload
325  *
326  * @i2400m: device descriptor
327  * @skb_rx: skb that contains the payload (for reference counting)
328  * @payload: pointer to message
329  * @size: size of the message
330  *
331  * There are two types of control RX messages: reports (asynchronous,
332  * like your every day interrupts) and 'acks' (reponses to a command,
333  * get or set request).
334  *
335  * If it is a report, we run hooks on it (to extract information for
336  * things we need to do in the driver) and then pass it over to the
337  * WiMAX stack to send it to user space.
338  *
339  * NOTE: report processing is done in a workqueue specific to the
340  *     generic driver, to avoid deadlocks in the system.
341  *
342  * If it is not a report, it is an ack to a previously executed
343  * command, set or get, so wake up whoever is waiting for it from
344  * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
345  *
346  * Note that the sizes we pass to other functions from here are the
347  * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
348  * verified in _msg_size_check() that they are congruent.
349  *
350  * For reports: We can't clone the original skb where the data is
351  * because we need to send this up via netlink; netlink has to add
352  * headers and we can't overwrite what's preceeding the payload...as
353  * it is another message. So we just dup them.
354  */
355 static
356 void i2400m_rx_ctl(struct i2400m *i2400m, struct sk_buff *skb_rx,
357                    const void *payload, size_t size)
358 {
359         int result;
360         struct device *dev = i2400m_dev(i2400m);
361         const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
362         unsigned msg_type;
363
364         result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
365         if (result < 0) {
366                 dev_err(dev, "HW BUG? device sent a bad message: %d\n",
367                         result);
368                 goto error_check;
369         }
370         msg_type = le16_to_cpu(l3l4_hdr->type);
371         d_printf(1, dev, "%s 0x%04x: %zu bytes\n",
372                  msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
373                  msg_type, size);
374         d_dump(2, dev, l3l4_hdr, size);
375         if (msg_type & I2400M_MT_REPORT_MASK) {
376                 /*
377                  * Process each report
378                  *
379                  * - has to be ran serialized as well
380                  *
381                  * - the handling might force the execution of
382                  *   commands. That might cause reentrancy issues with
383                  *   bus-specific subdrivers and workqueues, so the we
384                  *   run it in a separate workqueue.
385                  *
386                  * - when the driver is not yet ready to handle them,
387                  *   they are queued and at some point the queue is
388                  *   restarted [NOTE: we can't queue SKBs directly, as
389                  *   this might be a piece of a SKB, not the whole
390                  *   thing, and this is cheaper than cloning the
391                  *   SKB].
392                  *
393                  * Note we don't do refcounting for the device
394                  * structure; this is because before destroying
395                  * 'i2400m', we make sure to flush the
396                  * i2400m->work_queue, so there are no issues.
397                  */
398                 i2400m_report_hook_queue(i2400m, skb_rx, l3l4_hdr, size);
399                 if (unlikely(i2400m->trace_msg_from_user))
400                         wimax_msg(&i2400m->wimax_dev, "echo",
401                                   l3l4_hdr, size, GFP_KERNEL);
402                 result = wimax_msg(&i2400m->wimax_dev, NULL, l3l4_hdr, size,
403                                    GFP_KERNEL);
404                 if (result < 0)
405                         dev_err(dev, "error sending report to userspace: %d\n",
406                                 result);
407         } else          /* an ack to a CMD, GET or SET */
408                 i2400m_rx_ctl_ack(i2400m, payload, size);
409 error_check:
410         return;
411 }
412
413
414 /*
415  * Receive and send up a trace
416  *
417  * @i2400m: device descriptor
418  * @skb_rx: skb that contains the trace (for reference counting)
419  * @payload: pointer to trace message inside the skb
420  * @size: size of the message
421  *
422  * THe i2400m might produce trace information (diagnostics) and we
423  * send them through a different kernel-to-user pipe (to avoid
424  * clogging it).
425  *
426  * As in i2400m_rx_ctl(), we can't clone the original skb where the
427  * data is because we need to send this up via netlink; netlink has to
428  * add headers and we can't overwrite what's preceeding the
429  * payload...as it is another message. So we just dup them.
430  */
431 static
432 void i2400m_rx_trace(struct i2400m *i2400m,
433                      const void *payload, size_t size)
434 {
435         int result;
436         struct device *dev = i2400m_dev(i2400m);
437         struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
438         const struct i2400m_l3l4_hdr *l3l4_hdr = payload;
439         unsigned msg_type;
440
441         result = i2400m_msg_size_check(i2400m, l3l4_hdr, size);
442         if (result < 0) {
443                 dev_err(dev, "HW BUG? device sent a bad trace message: %d\n",
444                         result);
445                 goto error_check;
446         }
447         msg_type = le16_to_cpu(l3l4_hdr->type);
448         d_printf(1, dev, "Trace %s 0x%04x: %zu bytes\n",
449                  msg_type & I2400M_MT_REPORT_MASK ? "REPORT" : "CMD/SET/GET",
450                  msg_type, size);
451         d_dump(2, dev, l3l4_hdr, size);
452         result = wimax_msg(wimax_dev, "trace", l3l4_hdr, size, GFP_KERNEL);
453         if (result < 0)
454                 dev_err(dev, "error sending trace to userspace: %d\n",
455                         result);
456 error_check:
457         return;
458 }
459
460
461 /*
462  * Reorder queue data stored on skb->cb while the skb is queued in the
463  * reorder queues.
464  */
465 struct i2400m_roq_data {
466         unsigned sn;            /* Serial number for the skb */
467         enum i2400m_cs cs;      /* packet type for the skb */
468 };
469
470
471 /*
472  * ReOrder Queue
473  *
474  * @ws: Window Start; sequence number where the current window start
475  *     is for this queue
476  * @queue: the skb queue itself
477  * @log: circular ring buffer used to log information about the
478  *     reorder process in this queue that can be displayed in case of
479  *     error to help diagnose it.
480  *
481  * This is the head for a list of skbs. In the skb->cb member of the
482  * skb when queued here contains a 'struct i2400m_roq_data' were we
483  * store the sequence number (sn) and the cs (packet type) coming from
484  * the RX payload header from the device.
485  */
486 struct i2400m_roq
487 {
488         unsigned ws;
489         struct sk_buff_head queue;
490         struct i2400m_roq_log *log;
491 };
492
493
494 static
495 void __i2400m_roq_init(struct i2400m_roq *roq)
496 {
497         roq->ws = 0;
498         skb_queue_head_init(&roq->queue);
499 }
500
501
502 static
503 unsigned __i2400m_roq_index(struct i2400m *i2400m, struct i2400m_roq *roq)
504 {
505         return ((unsigned long) roq - (unsigned long) i2400m->rx_roq)
506                 / sizeof(*roq);
507 }
508
509
510 /*
511  * Normalize a sequence number based on the queue's window start
512  *
513  * nsn = (sn - ws) % 2048
514  *
515  * Note that if @sn < @roq->ws, we still need a positive number; %'s
516  * sign is implementation specific, so we normalize it by adding 2048
517  * to bring it to be positive.
518  */
519 static
520 unsigned __i2400m_roq_nsn(struct i2400m_roq *roq, unsigned sn)
521 {
522         int r;
523         r =  ((int) sn - (int) roq->ws) % 2048;
524         if (r < 0)
525                 r += 2048;
526         return r;
527 }
528
529
530 /*
531  * Circular buffer to keep the last N reorder operations
532  *
533  * In case something fails, dumb then to try to come up with what
534  * happened.
535  */
536 enum {
537         I2400M_ROQ_LOG_LENGTH = 32,
538 };
539
540 struct i2400m_roq_log {
541         struct i2400m_roq_log_entry {
542                 enum i2400m_ro_type type;
543                 unsigned ws, count, sn, nsn, new_ws;
544         } entry[I2400M_ROQ_LOG_LENGTH];
545         unsigned in, out;
546 };
547
548
549 /* Print a log entry */
550 static
551 void i2400m_roq_log_entry_print(struct i2400m *i2400m, unsigned index,
552                                 unsigned e_index,
553                                 struct i2400m_roq_log_entry *e)
554 {
555         struct device *dev = i2400m_dev(i2400m);
556
557         switch(e->type) {
558         case I2400M_RO_TYPE_RESET:
559                 dev_err(dev, "q#%d reset           ws %u cnt %u sn %u/%u"
560                         " - new nws %u\n",
561                         index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
562                 break;
563         case I2400M_RO_TYPE_PACKET:
564                 dev_err(dev, "q#%d queue           ws %u cnt %u sn %u/%u\n",
565                         index, e->ws, e->count, e->sn, e->nsn);
566                 break;
567         case I2400M_RO_TYPE_WS:
568                 dev_err(dev, "q#%d update_ws       ws %u cnt %u sn %u/%u"
569                         " - new nws %u\n",
570                         index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
571                 break;
572         case I2400M_RO_TYPE_PACKET_WS:
573                 dev_err(dev, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
574                         " - new nws %u\n",
575                         index, e->ws, e->count, e->sn, e->nsn, e->new_ws);
576                 break;
577         default:
578                 dev_err(dev, "q#%d BUG? entry %u - unknown type %u\n",
579                         index, e_index, e->type);
580                 break;
581         }
582 }
583
584
585 static
586 void i2400m_roq_log_add(struct i2400m *i2400m,
587                         struct i2400m_roq *roq, enum i2400m_ro_type type,
588                         unsigned ws, unsigned count, unsigned sn,
589                         unsigned nsn, unsigned new_ws)
590 {
591         struct i2400m_roq_log_entry *e;
592         unsigned cnt_idx;
593         int index = __i2400m_roq_index(i2400m, roq);
594
595         /* if we run out of space, we eat from the end */
596         if (roq->log->in - roq->log->out == I2400M_ROQ_LOG_LENGTH)
597                 roq->log->out++;
598         cnt_idx = roq->log->in++ % I2400M_ROQ_LOG_LENGTH;
599         e = &roq->log->entry[cnt_idx];
600
601         e->type = type;
602         e->ws = ws;
603         e->count = count;
604         e->sn = sn;
605         e->nsn = nsn;
606         e->new_ws = new_ws;
607
608         if (d_test(1))
609                 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
610 }
611
612
613 /* Dump all the entries in the FIFO and reinitialize it */
614 static
615 void i2400m_roq_log_dump(struct i2400m *i2400m, struct i2400m_roq *roq)
616 {
617         unsigned cnt, cnt_idx;
618         struct i2400m_roq_log_entry *e;
619         int index = __i2400m_roq_index(i2400m, roq);
620
621         BUG_ON(roq->log->out > roq->log->in);
622         for (cnt = roq->log->out; cnt < roq->log->in; cnt++) {
623                 cnt_idx = cnt % I2400M_ROQ_LOG_LENGTH;
624                 e = &roq->log->entry[cnt_idx];
625                 i2400m_roq_log_entry_print(i2400m, index, cnt_idx, e);
626                 memset(e, 0, sizeof(*e));
627         }
628         roq->log->in = roq->log->out = 0;
629 }
630
631
632 /*
633  * Backbone for the queuing of an skb (by normalized sequence number)
634  *
635  * @i2400m: device descriptor
636  * @roq: reorder queue where to add
637  * @skb: the skb to add
638  * @sn: the sequence number of the skb
639  * @nsn: the normalized sequence number of the skb (pre-computed by the
640  *     caller from the @sn and @roq->ws).
641  *
642  * We try first a couple of quick cases:
643  *
644  *   - the queue is empty
645  *   - the skb would be appended to the queue
646  *
647  * These will be the most common operations.
648  *
649  * If these fail, then we have to do a sorted insertion in the queue,
650  * which is the slowest path.
651  *
652  * We don't have to acquire a reference count as we are going to own it.
653  */
654 static
655 void __i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
656                         struct sk_buff *skb, unsigned sn, unsigned nsn)
657 {
658         struct device *dev = i2400m_dev(i2400m);
659         struct sk_buff *skb_itr;
660         struct i2400m_roq_data *roq_data_itr, *roq_data;
661         unsigned nsn_itr;
662
663         d_fnstart(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
664                   i2400m, roq, skb, sn, nsn);
665
666         roq_data = (struct i2400m_roq_data *) &skb->cb;
667         BUILD_BUG_ON(sizeof(*roq_data) > sizeof(skb->cb));
668         roq_data->sn = sn;
669         d_printf(3, dev, "ERX: roq %p [ws %u] nsn %d sn %u\n",
670                  roq, roq->ws, nsn, roq_data->sn);
671
672         /* Queues will be empty on not-so-bad environments, so try
673          * that first */
674         if (skb_queue_empty(&roq->queue)) {
675                 d_printf(2, dev, "ERX: roq %p - first one\n", roq);
676                 __skb_queue_head(&roq->queue, skb);
677                 goto out;
678         }
679         /* Now try append, as most of the operations will be that */
680         skb_itr = skb_peek_tail(&roq->queue);
681         roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
682         nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
683         /* NSN bounds assumed correct (checked when it was queued) */
684         if (nsn >= nsn_itr) {
685                 d_printf(2, dev, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
686                          roq, skb_itr, nsn_itr, roq_data_itr->sn);
687                 __skb_queue_tail(&roq->queue, skb);
688                 goto out;
689         }
690         /* None of the fast paths option worked. Iterate to find the
691          * right spot where to insert the packet; we know the queue is
692          * not empty, so we are not the first ones; we also know we
693          * are not going to be the last ones. The list is sorted, so
694          * we have to insert before the the first guy with an nsn_itr
695          * greater that our nsn. */
696         skb_queue_walk(&roq->queue, skb_itr) {
697                 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
698                 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
699                 /* NSN bounds assumed correct (checked when it was queued) */
700                 if (nsn_itr > nsn) {
701                         d_printf(2, dev, "ERX: roq %p - queued before %p "
702                                  "(nsn %d sn %u)\n", roq, skb_itr, nsn_itr,
703                                  roq_data_itr->sn);
704                         __skb_queue_before(&roq->queue, skb_itr, skb);
705                         goto out;
706                 }
707         }
708         /* If we get here, that is VERY bad -- print info to help
709          * diagnose and crash it */
710         dev_err(dev, "SW BUG? failed to insert packet\n");
711         dev_err(dev, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
712                 roq, roq->ws, skb, nsn, roq_data->sn);
713         skb_queue_walk(&roq->queue, skb_itr) {
714                 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
715                 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
716                 /* NSN bounds assumed correct (checked when it was queued) */
717                 dev_err(dev, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
718                         roq, skb_itr, nsn_itr, roq_data_itr->sn);
719         }
720         BUG();
721 out:
722         d_fnend(4, dev, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
723                 i2400m, roq, skb, sn, nsn);
724 }
725
726
727 /*
728  * Backbone for the update window start operation
729  *
730  * @i2400m: device descriptor
731  * @roq: Reorder queue
732  * @sn: New sequence number
733  *
734  * Updates the window start of a queue; when doing so, it must deliver
735  * to the networking stack all the queued skb's whose normalized
736  * sequence number is lower than the new normalized window start.
737  */
738 static
739 unsigned __i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
740                                 unsigned sn)
741 {
742         struct device *dev = i2400m_dev(i2400m);
743         struct sk_buff *skb_itr, *tmp_itr;
744         struct i2400m_roq_data *roq_data_itr;
745         unsigned new_nws, nsn_itr;
746
747         new_nws = __i2400m_roq_nsn(roq, sn);
748         /*
749          * For type 2(update_window_start) rx messages, there is no
750          * need to check if the normalized sequence number is greater 1023.
751          * Simply insert and deliver all packets to the host up to the
752          * window start.
753          */
754         skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
755                 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
756                 nsn_itr = __i2400m_roq_nsn(roq, roq_data_itr->sn);
757                 /* NSN bounds assumed correct (checked when it was queued) */
758                 if (nsn_itr < new_nws) {
759                         d_printf(2, dev, "ERX: roq %p - release skb %p "
760                                  "(nsn %u/%u new nws %u)\n",
761                                  roq, skb_itr, nsn_itr, roq_data_itr->sn,
762                                  new_nws);
763                         __skb_unlink(skb_itr, &roq->queue);
764                         i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
765                 }
766                 else
767                         break;  /* rest of packets all nsn_itr > nws */
768         }
769         roq->ws = sn;
770         return new_nws;
771 }
772
773
774 /*
775  * Reset a queue
776  *
777  * @i2400m: device descriptor
778  * @cin: Queue Index
779  *
780  * Deliver all the packets and reset the window-start to zero. Name is
781  * kind of misleading.
782  */
783 static
784 void i2400m_roq_reset(struct i2400m *i2400m, struct i2400m_roq *roq)
785 {
786         struct device *dev = i2400m_dev(i2400m);
787         struct sk_buff *skb_itr, *tmp_itr;
788         struct i2400m_roq_data *roq_data_itr;
789
790         d_fnstart(2, dev, "(i2400m %p roq %p)\n", i2400m, roq);
791         i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_RESET,
792                              roq->ws, skb_queue_len(&roq->queue),
793                              ~0, ~0, 0);
794         skb_queue_walk_safe(&roq->queue, skb_itr, tmp_itr) {
795                 roq_data_itr = (struct i2400m_roq_data *) &skb_itr->cb;
796                 d_printf(2, dev, "ERX: roq %p - release skb %p (sn %u)\n",
797                          roq, skb_itr, roq_data_itr->sn);
798                 __skb_unlink(skb_itr, &roq->queue);
799                 i2400m_net_erx(i2400m, skb_itr, roq_data_itr->cs);
800         }
801         roq->ws = 0;
802         d_fnend(2, dev, "(i2400m %p roq %p) = void\n", i2400m, roq);
803 }
804
805
806 /*
807  * Queue a packet
808  *
809  * @i2400m: device descriptor
810  * @cin: Queue Index
811  * @skb: containing the packet data
812  * @fbn: First block number of the packet in @skb
813  * @lbn: Last block number of the packet in @skb
814  *
815  * The hardware is asking the driver to queue a packet for later
816  * delivery to the networking stack.
817  */
818 static
819 void i2400m_roq_queue(struct i2400m *i2400m, struct i2400m_roq *roq,
820                       struct sk_buff * skb, unsigned lbn)
821 {
822         struct device *dev = i2400m_dev(i2400m);
823         unsigned nsn, len;
824
825         d_fnstart(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
826                   i2400m, roq, skb, lbn);
827         len = skb_queue_len(&roq->queue);
828         nsn = __i2400m_roq_nsn(roq, lbn);
829         if (unlikely(nsn >= 1024)) {
830                 dev_err(dev, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
831                         nsn, lbn, roq->ws);
832                 i2400m_roq_log_dump(i2400m, roq);
833                 i2400m_reset(i2400m, I2400M_RT_WARM);
834         } else {
835                 __i2400m_roq_queue(i2400m, roq, skb, lbn, nsn);
836                 i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET,
837                                      roq->ws, len, lbn, nsn, ~0);
838         }
839         d_fnend(2, dev, "(i2400m %p roq %p skb %p lbn %u) = void\n",
840                 i2400m, roq, skb, lbn);
841 }
842
843
844 /*
845  * Update the window start in a reorder queue and deliver all skbs
846  * with a lower window start
847  *
848  * @i2400m: device descriptor
849  * @roq: Reorder queue
850  * @sn: New sequence number
851  */
852 static
853 void i2400m_roq_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
854                           unsigned sn)
855 {
856         struct device *dev = i2400m_dev(i2400m);
857         unsigned old_ws, nsn, len;
858
859         d_fnstart(2, dev, "(i2400m %p roq %p sn %u)\n", i2400m, roq, sn);
860         old_ws = roq->ws;
861         len = skb_queue_len(&roq->queue);
862         nsn = __i2400m_roq_update_ws(i2400m, roq, sn);
863         i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_WS,
864                              old_ws, len, sn, nsn, roq->ws);
865         d_fnstart(2, dev, "(i2400m %p roq %p sn %u) = void\n", i2400m, roq, sn);
866 }
867
868
869 /*
870  * Queue a packet and update the window start
871  *
872  * @i2400m: device descriptor
873  * @cin: Queue Index
874  * @skb: containing the packet data
875  * @fbn: First block number of the packet in @skb
876  * @sn: Last block number of the packet in @skb
877  *
878  * Note that unlike i2400m_roq_update_ws(), which sets the new window
879  * start to @sn, in here we'll set it to @sn + 1.
880  */
881 static
882 void i2400m_roq_queue_update_ws(struct i2400m *i2400m, struct i2400m_roq *roq,
883                                 struct sk_buff * skb, unsigned sn)
884 {
885         struct device *dev = i2400m_dev(i2400m);
886         unsigned nsn, old_ws, len;
887
888         d_fnstart(2, dev, "(i2400m %p roq %p skb %p sn %u)\n",
889                   i2400m, roq, skb, sn);
890         len = skb_queue_len(&roq->queue);
891         nsn = __i2400m_roq_nsn(roq, sn);
892         /*
893          * For type 3(queue_update_window_start) rx messages, there is no
894          * need to check if the normalized sequence number is greater 1023.
895          * Simply insert and deliver all packets to the host up to the
896          * window start.
897          */
898         old_ws = roq->ws;
899         /* If the queue is empty, don't bother as we'd queue
900          * it and immediately unqueue it -- just deliver it.
901          */
902         if (len == 0) {
903                 struct i2400m_roq_data *roq_data;
904                 roq_data = (struct i2400m_roq_data *) &skb->cb;
905                 i2400m_net_erx(i2400m, skb, roq_data->cs);
906         } else
907                 __i2400m_roq_queue(i2400m, roq, skb, sn, nsn);
908
909         __i2400m_roq_update_ws(i2400m, roq, sn + 1);
910         i2400m_roq_log_add(i2400m, roq, I2400M_RO_TYPE_PACKET_WS,
911                            old_ws, len, sn, nsn, roq->ws);
912
913         d_fnend(2, dev, "(i2400m %p roq %p skb %p sn %u) = void\n",
914                 i2400m, roq, skb, sn);
915 }
916
917
918 /*
919  * This routine destroys the memory allocated for rx_roq, when no
920  * other thread is accessing it. Access to rx_roq is refcounted by
921  * rx_roq_refcount, hence memory allocated must be destroyed when
922  * rx_roq_refcount becomes zero. This routine gets executed when
923  * rx_roq_refcount becomes zero.
924  */
925 void i2400m_rx_roq_destroy(struct kref *ref)
926 {
927         unsigned itr;
928         struct i2400m *i2400m
929                         = container_of(ref, struct i2400m, rx_roq_refcount);
930         for (itr = 0; itr < I2400M_RO_CIN + 1; itr++)
931                 __skb_queue_purge(&i2400m->rx_roq[itr].queue);
932         kfree(i2400m->rx_roq[0].log);
933         kfree(i2400m->rx_roq);
934         i2400m->rx_roq = NULL;
935 }
936
937 /*
938  * Receive and send up an extended data packet
939  *
940  * @i2400m: device descriptor
941  * @skb_rx: skb that contains the extended data packet
942  * @single_last: 1 if the payload is the only one or the last one of
943  *     the skb.
944  * @payload: pointer to the packet's data inside the skb
945  * @size: size of the payload
946  *
947  * Starting in v1.4 of the i2400m's firmware, the device can send data
948  * packets to the host in an extended format that; this incudes a 16
949  * byte header (struct i2400m_pl_edata_hdr). Using this header's space
950  * we can fake ethernet headers for ethernet device emulation without
951  * having to copy packets around.
952  *
953  * This function handles said path.
954  *
955  *
956  * Receive and send up an extended data packet that requires no reordering
957  *
958  * @i2400m: device descriptor
959  * @skb_rx: skb that contains the extended data packet
960  * @single_last: 1 if the payload is the only one or the last one of
961  *     the skb.
962  * @payload: pointer to the packet's data (past the actual extended
963  *     data payload header).
964  * @size: size of the payload
965  *
966  * Pass over to the networking stack a data packet that might have
967  * reordering requirements.
968  *
969  * This needs to the decide if the skb in which the packet is
970  * contained can be reused or if it needs to be cloned. Then it has to
971  * be trimmed in the edges so that the beginning is the space for eth
972  * header and then pass it to i2400m_net_erx() for the stack
973  *
974  * Assumes the caller has verified the sanity of the payload (size,
975  * etc) already.
976  */
977 static
978 void i2400m_rx_edata(struct i2400m *i2400m, struct sk_buff *skb_rx,
979                      unsigned single_last, const void *payload, size_t size)
980 {
981         struct device *dev = i2400m_dev(i2400m);
982         const struct i2400m_pl_edata_hdr *hdr = payload;
983         struct net_device *net_dev = i2400m->wimax_dev.net_dev;
984         struct sk_buff *skb;
985         enum i2400m_cs cs;
986         u32 reorder;
987         unsigned ro_needed, ro_type, ro_cin, ro_sn;
988         struct i2400m_roq *roq;
989         struct i2400m_roq_data *roq_data;
990         unsigned long flags;
991
992         BUILD_BUG_ON(ETH_HLEN > sizeof(*hdr));
993
994         d_fnstart(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
995                   "size %zu)\n", i2400m, skb_rx, single_last, payload, size);
996         if (size < sizeof(*hdr)) {
997                 dev_err(dev, "ERX: HW BUG? message with short header (%zu "
998                         "vs %zu bytes expected)\n", size, sizeof(*hdr));
999                 goto error;
1000         }
1001
1002         if (single_last) {
1003                 skb = skb_get(skb_rx);
1004                 d_printf(3, dev, "ERX: skb %p reusing\n", skb);
1005         } else {
1006                 skb = skb_clone(skb_rx, GFP_KERNEL);
1007                 if (skb == NULL) {
1008                         dev_err(dev, "ERX: no memory to clone skb\n");
1009                         net_dev->stats.rx_dropped++;
1010                         goto error_skb_clone;
1011                 }
1012                 d_printf(3, dev, "ERX: skb %p cloned from %p\n", skb, skb_rx);
1013         }
1014         /* now we have to pull and trim so that the skb points to the
1015          * beginning of the IP packet; the netdev part will add the
1016          * ethernet header as needed - we know there is enough space
1017          * because we checked in i2400m_rx_edata(). */
1018         skb_pull(skb, payload + sizeof(*hdr) - (void *) skb->data);
1019         skb_trim(skb, (void *) skb_end_pointer(skb) - payload - sizeof(*hdr));
1020
1021         reorder = le32_to_cpu(hdr->reorder);
1022         ro_needed = reorder & I2400M_RO_NEEDED;
1023         cs = hdr->cs;
1024         if (ro_needed) {
1025                 ro_type = (reorder >> I2400M_RO_TYPE_SHIFT) & I2400M_RO_TYPE;
1026                 ro_cin = (reorder >> I2400M_RO_CIN_SHIFT) & I2400M_RO_CIN;
1027                 ro_sn = (reorder >> I2400M_RO_SN_SHIFT) & I2400M_RO_SN;
1028
1029                 spin_lock_irqsave(&i2400m->rx_lock, flags);
1030                 if (i2400m->rx_roq == NULL) {
1031                         kfree_skb(skb); /* rx_roq is already destroyed */
1032                         spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1033                         goto error;
1034                 }
1035                 roq = &i2400m->rx_roq[ro_cin];
1036                 kref_get(&i2400m->rx_roq_refcount);
1037                 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1038
1039                 roq_data = (struct i2400m_roq_data *) &skb->cb;
1040                 roq_data->sn = ro_sn;
1041                 roq_data->cs = cs;
1042                 d_printf(2, dev, "ERX: reorder needed: "
1043                          "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1044                          ro_type, ro_cin, roq->ws, ro_sn,
1045                          __i2400m_roq_nsn(roq, ro_sn), size);
1046                 d_dump(2, dev, payload, size);
1047                 switch(ro_type) {
1048                 case I2400M_RO_TYPE_RESET:
1049                         i2400m_roq_reset(i2400m, roq);
1050                         kfree_skb(skb); /* no data here */
1051                         break;
1052                 case I2400M_RO_TYPE_PACKET:
1053                         i2400m_roq_queue(i2400m, roq, skb, ro_sn);
1054                         break;
1055                 case I2400M_RO_TYPE_WS:
1056                         i2400m_roq_update_ws(i2400m, roq, ro_sn);
1057                         kfree_skb(skb); /* no data here */
1058                         break;
1059                 case I2400M_RO_TYPE_PACKET_WS:
1060                         i2400m_roq_queue_update_ws(i2400m, roq, skb, ro_sn);
1061                         break;
1062                 default:
1063                         dev_err(dev, "HW BUG? unknown reorder type %u\n", ro_type);
1064                 }
1065
1066                 spin_lock_irqsave(&i2400m->rx_lock, flags);
1067                 kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1068                 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1069         }
1070         else
1071                 i2400m_net_erx(i2400m, skb, cs);
1072 error_skb_clone:
1073 error:
1074         d_fnend(2, dev, "(i2400m %p skb_rx %p single %u payload %p "
1075                 "size %zu) = void\n", i2400m, skb_rx, single_last, payload, size);
1076 }
1077
1078
1079 /*
1080  * Act on a received payload
1081  *
1082  * @i2400m: device instance
1083  * @skb_rx: skb where the transaction was received
1084  * @single_last: 1 this is the only payload or the last one (so the
1085  *     skb can be reused instead of cloned).
1086  * @pld: payload descriptor
1087  * @payload: payload data
1088  *
1089  * Upon reception of a payload, look at its guts in the payload
1090  * descriptor and decide what to do with it. If it is a single payload
1091  * skb or if the last skb is a data packet, the skb will be referenced
1092  * and modified (so it doesn't have to be cloned).
1093  */
1094 static
1095 void i2400m_rx_payload(struct i2400m *i2400m, struct sk_buff *skb_rx,
1096                        unsigned single_last, const struct i2400m_pld *pld,
1097                        const void *payload)
1098 {
1099         struct device *dev = i2400m_dev(i2400m);
1100         size_t pl_size = i2400m_pld_size(pld);
1101         enum i2400m_pt pl_type = i2400m_pld_type(pld);
1102
1103         d_printf(7, dev, "RX: received payload type %u, %zu bytes\n",
1104                  pl_type, pl_size);
1105         d_dump(8, dev, payload, pl_size);
1106
1107         switch (pl_type) {
1108         case I2400M_PT_DATA:
1109                 d_printf(3, dev, "RX: data payload %zu bytes\n", pl_size);
1110                 i2400m_net_rx(i2400m, skb_rx, single_last, payload, pl_size);
1111                 break;
1112         case I2400M_PT_CTRL:
1113                 i2400m_rx_ctl(i2400m, skb_rx, payload, pl_size);
1114                 break;
1115         case I2400M_PT_TRACE:
1116                 i2400m_rx_trace(i2400m, payload, pl_size);
1117                 break;
1118         case I2400M_PT_EDATA:
1119                 d_printf(3, dev, "ERX: data payload %zu bytes\n", pl_size);
1120                 i2400m_rx_edata(i2400m, skb_rx, single_last, payload, pl_size);
1121                 break;
1122         default:        /* Anything else shouldn't come to the host */
1123                 if (printk_ratelimit())
1124                         dev_err(dev, "RX: HW BUG? unexpected payload type %u\n",
1125                                 pl_type);
1126         }
1127 }
1128
1129
1130 /*
1131  * Check a received transaction's message header
1132  *
1133  * @i2400m: device descriptor
1134  * @msg_hdr: message header
1135  * @buf_size: size of the received buffer
1136  *
1137  * Check that the declarations done by a RX buffer message header are
1138  * sane and consistent with the amount of data that was received.
1139  */
1140 static
1141 int i2400m_rx_msg_hdr_check(struct i2400m *i2400m,
1142                             const struct i2400m_msg_hdr *msg_hdr,
1143                             size_t buf_size)
1144 {
1145         int result = -EIO;
1146         struct device *dev = i2400m_dev(i2400m);
1147         if (buf_size < sizeof(*msg_hdr)) {
1148                 dev_err(dev, "RX: HW BUG? message with short header (%zu "
1149                         "vs %zu bytes expected)\n", buf_size, sizeof(*msg_hdr));
1150                 goto error;
1151         }
1152         if (msg_hdr->barker != cpu_to_le32(I2400M_D2H_MSG_BARKER)) {
1153                 dev_err(dev, "RX: HW BUG? message received with unknown "
1154                         "barker 0x%08x (buf_size %zu bytes)\n",
1155                         le32_to_cpu(msg_hdr->barker), buf_size);
1156                 goto error;
1157         }
1158         if (msg_hdr->num_pls == 0) {
1159                 dev_err(dev, "RX: HW BUG? zero payload packets in message\n");
1160                 goto error;
1161         }
1162         if (le16_to_cpu(msg_hdr->num_pls) > I2400M_MAX_PLS_IN_MSG) {
1163                 dev_err(dev, "RX: HW BUG? message contains more payload "
1164                         "than maximum; ignoring.\n");
1165                 goto error;
1166         }
1167         result = 0;
1168 error:
1169         return result;
1170 }
1171
1172
1173 /*
1174  * Check a payload descriptor against the received data
1175  *
1176  * @i2400m: device descriptor
1177  * @pld: payload descriptor
1178  * @pl_itr: offset (in bytes) in the received buffer the payload is
1179  *          located
1180  * @buf_size: size of the received buffer
1181  *
1182  * Given a payload descriptor (part of a RX buffer), check it is sane
1183  * and that the data it declares fits in the buffer.
1184  */
1185 static
1186 int i2400m_rx_pl_descr_check(struct i2400m *i2400m,
1187                               const struct i2400m_pld *pld,
1188                               size_t pl_itr, size_t buf_size)
1189 {
1190         int result = -EIO;
1191         struct device *dev = i2400m_dev(i2400m);
1192         size_t pl_size = i2400m_pld_size(pld);
1193         enum i2400m_pt pl_type = i2400m_pld_type(pld);
1194
1195         if (pl_size > i2400m->bus_pl_size_max) {
1196                 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu is "
1197                         "bigger than maximum %zu; ignoring message\n",
1198                         pl_itr, pl_size, i2400m->bus_pl_size_max);
1199                 goto error;
1200         }
1201         if (pl_itr + pl_size > buf_size) {      /* enough? */
1202                 dev_err(dev, "RX: HW BUG? payload @%zu: size %zu "
1203                         "goes beyond the received buffer "
1204                         "size (%zu bytes); ignoring message\n",
1205                         pl_itr, pl_size, buf_size);
1206                 goto error;
1207         }
1208         if (pl_type >= I2400M_PT_ILLEGAL) {
1209                 dev_err(dev, "RX: HW BUG? illegal payload type %u; "
1210                         "ignoring message\n", pl_type);
1211                 goto error;
1212         }
1213         result = 0;
1214 error:
1215         return result;
1216 }
1217
1218
1219 /**
1220  * i2400m_rx - Receive a buffer of data from the device
1221  *
1222  * @i2400m: device descriptor
1223  * @skb: skbuff where the data has been received
1224  *
1225  * Parse in a buffer of data that contains an RX message sent from the
1226  * device. See the file header for the format. Run all checks on the
1227  * buffer header, then run over each payload's descriptors, verify
1228  * their consistency and act on each payload's contents.  If
1229  * everything is successful, update the device's statistics.
1230  *
1231  * Note: You need to set the skb to contain only the length of the
1232  * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1233  *
1234  * Returns:
1235  *
1236  * 0 if ok, < 0 errno on error
1237  *
1238  * If ok, this function owns now the skb and the caller DOESN'T have
1239  * to run kfree_skb() on it. However, on error, the caller still owns
1240  * the skb and it is responsible for releasing it.
1241  */
1242 int i2400m_rx(struct i2400m *i2400m, struct sk_buff *skb)
1243 {
1244         int i, result;
1245         struct device *dev = i2400m_dev(i2400m);
1246         const struct i2400m_msg_hdr *msg_hdr;
1247         size_t pl_itr, pl_size;
1248         unsigned long flags;
1249         unsigned num_pls, single_last, skb_len;
1250
1251         skb_len = skb->len;
1252         d_fnstart(4, dev, "(i2400m %p skb %p [size %u])\n",
1253                   i2400m, skb, skb_len);
1254         result = -EIO;
1255         msg_hdr = (void *) skb->data;
1256         result = i2400m_rx_msg_hdr_check(i2400m, msg_hdr, skb_len);
1257         if (result < 0)
1258                 goto error_msg_hdr_check;
1259         result = -EIO;
1260         num_pls = le16_to_cpu(msg_hdr->num_pls);
1261         pl_itr = sizeof(*msg_hdr) +     /* Check payload descriptor(s) */
1262                 num_pls * sizeof(msg_hdr->pld[0]);
1263         pl_itr = ALIGN(pl_itr, I2400M_PL_ALIGN);
1264         if (pl_itr > skb_len) { /* got all the payload descriptors? */
1265                 dev_err(dev, "RX: HW BUG? message too short (%u bytes) for "
1266                         "%u payload descriptors (%zu each, total %zu)\n",
1267                         skb_len, num_pls, sizeof(msg_hdr->pld[0]), pl_itr);
1268                 goto error_pl_descr_short;
1269         }
1270         /* Walk each payload payload--check we really got it */
1271         for (i = 0; i < num_pls; i++) {
1272                 /* work around old gcc warnings */
1273                 pl_size = i2400m_pld_size(&msg_hdr->pld[i]);
1274                 result = i2400m_rx_pl_descr_check(i2400m, &msg_hdr->pld[i],
1275                                                   pl_itr, skb_len);
1276                 if (result < 0)
1277                         goto error_pl_descr_check;
1278                 single_last = num_pls == 1 || i == num_pls - 1;
1279                 i2400m_rx_payload(i2400m, skb, single_last, &msg_hdr->pld[i],
1280                                   skb->data + pl_itr);
1281                 pl_itr += ALIGN(pl_size, I2400M_PL_ALIGN);
1282                 cond_resched();         /* Don't monopolize */
1283         }
1284         kfree_skb(skb);
1285         /* Update device statistics */
1286         spin_lock_irqsave(&i2400m->rx_lock, flags);
1287         i2400m->rx_pl_num += i;
1288         if (i > i2400m->rx_pl_max)
1289                 i2400m->rx_pl_max = i;
1290         if (i < i2400m->rx_pl_min)
1291                 i2400m->rx_pl_min = i;
1292         i2400m->rx_num++;
1293         i2400m->rx_size_acc += skb_len;
1294         if (skb_len < i2400m->rx_size_min)
1295                 i2400m->rx_size_min = skb_len;
1296         if (skb_len > i2400m->rx_size_max)
1297                 i2400m->rx_size_max = skb_len;
1298         spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1299 error_pl_descr_check:
1300 error_pl_descr_short:
1301 error_msg_hdr_check:
1302         d_fnend(4, dev, "(i2400m %p skb %p [size %u]) = %d\n",
1303                 i2400m, skb, skb_len, result);
1304         return result;
1305 }
1306 EXPORT_SYMBOL_GPL(i2400m_rx);
1307
1308
1309 void i2400m_unknown_barker(struct i2400m *i2400m,
1310                            const void *buf, size_t size)
1311 {
1312         struct device *dev = i2400m_dev(i2400m);
1313         char prefix[64];
1314         const __le32 *barker = buf;
1315         dev_err(dev, "RX: HW BUG? unknown barker %08x, "
1316                 "dropping %zu bytes\n", le32_to_cpu(*barker), size);
1317         snprintf(prefix, sizeof(prefix), "%s %s: ",
1318                  dev_driver_string(dev), dev_name(dev));
1319         if (size > 64) {
1320                 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1321                                8, 4, buf, 64, 0);
1322                 printk(KERN_ERR "%s... (only first 64 bytes "
1323                        "dumped)\n", prefix);
1324         } else
1325                 print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET,
1326                                8, 4, buf, size, 0);
1327 }
1328 EXPORT_SYMBOL(i2400m_unknown_barker);
1329
1330
1331 /*
1332  * Initialize the RX queue and infrastructure
1333  *
1334  * This sets up all the RX reordering infrastructures, which will not
1335  * be used if reordering is not enabled or if the firmware does not
1336  * support it. The device is told to do reordering in
1337  * i2400m_dev_initialize(), where it also looks at the value of the
1338  * i2400m->rx_reorder switch before taking a decission.
1339  *
1340  * Note we allocate the roq queues in one chunk and the actual logging
1341  * support for it (logging) in another one and then we setup the
1342  * pointers from the first to the last.
1343  */
1344 int i2400m_rx_setup(struct i2400m *i2400m)
1345 {
1346         int result = 0;
1347         struct device *dev = i2400m_dev(i2400m);
1348
1349         i2400m->rx_reorder = i2400m_rx_reorder_disabled? 0 : 1;
1350         if (i2400m->rx_reorder) {
1351                 unsigned itr;
1352                 size_t size;
1353                 struct i2400m_roq_log *rd;
1354
1355                 result = -ENOMEM;
1356
1357                 size = sizeof(i2400m->rx_roq[0]) * (I2400M_RO_CIN + 1);
1358                 i2400m->rx_roq = kzalloc(size, GFP_KERNEL);
1359                 if (i2400m->rx_roq == NULL) {
1360                         dev_err(dev, "RX: cannot allocate %zu bytes for "
1361                                 "reorder queues\n", size);
1362                         goto error_roq_alloc;
1363                 }
1364
1365                 size = sizeof(*i2400m->rx_roq[0].log) * (I2400M_RO_CIN + 1);
1366                 rd = kzalloc(size, GFP_KERNEL);
1367                 if (rd == NULL) {
1368                         dev_err(dev, "RX: cannot allocate %zu bytes for "
1369                                 "reorder queues log areas\n", size);
1370                         result = -ENOMEM;
1371                         goto error_roq_log_alloc;
1372                 }
1373
1374                 for(itr = 0; itr < I2400M_RO_CIN + 1; itr++) {
1375                         __i2400m_roq_init(&i2400m->rx_roq[itr]);
1376                         i2400m->rx_roq[itr].log = &rd[itr];
1377                 }
1378                 kref_init(&i2400m->rx_roq_refcount);
1379         }
1380         return 0;
1381
1382 error_roq_log_alloc:
1383         kfree(i2400m->rx_roq);
1384 error_roq_alloc:
1385         return result;
1386 }
1387
1388
1389 /* Tear down the RX queue and infrastructure */
1390 void i2400m_rx_release(struct i2400m *i2400m)
1391 {
1392         unsigned long flags;
1393
1394         if (i2400m->rx_reorder) {
1395                 spin_lock_irqsave(&i2400m->rx_lock, flags);
1396                 kref_put(&i2400m->rx_roq_refcount, i2400m_rx_roq_destroy);
1397                 spin_unlock_irqrestore(&i2400m->rx_lock, flags);
1398         }
1399         /* at this point, nothing can be received... */
1400         i2400m_report_hook_flush(i2400m);
1401 }