]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath10k/htt_rx.c
ath10k: copy tx fetch indication message
[karo-tx-linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
36
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
39 {
40         struct ath10k_skb_rxcb *rxcb;
41
42         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43                 if (rxcb->paddr == paddr)
44                         return ATH10K_RXCB_SKB(rxcb);
45
46         WARN_ON_ONCE(1);
47         return NULL;
48 }
49
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51 {
52         struct sk_buff *skb;
53         struct ath10k_skb_rxcb *rxcb;
54         struct hlist_node *n;
55         int i;
56
57         if (htt->rx_ring.in_ord_rx) {
58                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59                         skb = ATH10K_RXCB_SKB(rxcb);
60                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
61                                          skb->len + skb_tailroom(skb),
62                                          DMA_FROM_DEVICE);
63                         hash_del(&rxcb->hlist);
64                         dev_kfree_skb_any(skb);
65                 }
66         } else {
67                 for (i = 0; i < htt->rx_ring.size; i++) {
68                         skb = htt->rx_ring.netbufs_ring[i];
69                         if (!skb)
70                                 continue;
71
72                         rxcb = ATH10K_SKB_RXCB(skb);
73                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
74                                          skb->len + skb_tailroom(skb),
75                                          DMA_FROM_DEVICE);
76                         dev_kfree_skb_any(skb);
77                 }
78         }
79
80         htt->rx_ring.fill_cnt = 0;
81         hash_init(htt->rx_ring.skb_table);
82         memset(htt->rx_ring.netbufs_ring, 0,
83                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 }
85
86 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
87 {
88         struct htt_rx_desc *rx_desc;
89         struct ath10k_skb_rxcb *rxcb;
90         struct sk_buff *skb;
91         dma_addr_t paddr;
92         int ret = 0, idx;
93
94         /* The Full Rx Reorder firmware has no way of telling the host
95          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
96          * To keep things simple make sure ring is always half empty. This
97          * guarantees there'll be no replenishment overruns possible.
98          */
99         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
100
101         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
102         while (num > 0) {
103                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
104                 if (!skb) {
105                         ret = -ENOMEM;
106                         goto fail;
107                 }
108
109                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
110                         skb_pull(skb,
111                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
112                                  skb->data);
113
114                 /* Clear rx_desc attention word before posting to Rx ring */
115                 rx_desc = (struct htt_rx_desc *)skb->data;
116                 rx_desc->attention.flags = __cpu_to_le32(0);
117
118                 paddr = dma_map_single(htt->ar->dev, skb->data,
119                                        skb->len + skb_tailroom(skb),
120                                        DMA_FROM_DEVICE);
121
122                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
123                         dev_kfree_skb_any(skb);
124                         ret = -ENOMEM;
125                         goto fail;
126                 }
127
128                 rxcb = ATH10K_SKB_RXCB(skb);
129                 rxcb->paddr = paddr;
130                 htt->rx_ring.netbufs_ring[idx] = skb;
131                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
132                 htt->rx_ring.fill_cnt++;
133
134                 if (htt->rx_ring.in_ord_rx) {
135                         hash_add(htt->rx_ring.skb_table,
136                                  &ATH10K_SKB_RXCB(skb)->hlist,
137                                  (u32)paddr);
138                 }
139
140                 num--;
141                 idx++;
142                 idx &= htt->rx_ring.size_mask;
143         }
144
145 fail:
146         /*
147          * Make sure the rx buffer is updated before available buffer
148          * index to avoid any potential rx ring corruption.
149          */
150         mb();
151         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
152         return ret;
153 }
154
155 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
156 {
157         lockdep_assert_held(&htt->rx_ring.lock);
158         return __ath10k_htt_rx_ring_fill_n(htt, num);
159 }
160
161 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
162 {
163         int ret, num_deficit, num_to_fill;
164
165         /* Refilling the whole RX ring buffer proves to be a bad idea. The
166          * reason is RX may take up significant amount of CPU cycles and starve
167          * other tasks, e.g. TX on an ethernet device while acting as a bridge
168          * with ath10k wlan interface. This ended up with very poor performance
169          * once CPU the host system was overwhelmed with RX on ath10k.
170          *
171          * By limiting the number of refills the replenishing occurs
172          * progressively. This in turns makes use of the fact tasklets are
173          * processed in FIFO order. This means actual RX processing can starve
174          * out refilling. If there's not enough buffers on RX ring FW will not
175          * report RX until it is refilled with enough buffers. This
176          * automatically balances load wrt to CPU power.
177          *
178          * This probably comes at a cost of lower maximum throughput but
179          * improves the average and stability. */
180         spin_lock_bh(&htt->rx_ring.lock);
181         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
182         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
183         num_deficit -= num_to_fill;
184         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
185         if (ret == -ENOMEM) {
186                 /*
187                  * Failed to fill it to the desired level -
188                  * we'll start a timer and try again next time.
189                  * As long as enough buffers are left in the ring for
190                  * another A-MPDU rx, no special recovery is needed.
191                  */
192                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
193                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
194         } else if (num_deficit > 0) {
195                 tasklet_schedule(&htt->rx_replenish_task);
196         }
197         spin_unlock_bh(&htt->rx_ring.lock);
198 }
199
200 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
201 {
202         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
203
204         ath10k_htt_rx_msdu_buff_replenish(htt);
205 }
206
207 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
208 {
209         struct ath10k_htt *htt = &ar->htt;
210         int ret;
211
212         spin_lock_bh(&htt->rx_ring.lock);
213         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
214                                               htt->rx_ring.fill_cnt));
215         spin_unlock_bh(&htt->rx_ring.lock);
216
217         if (ret)
218                 ath10k_htt_rx_ring_free(htt);
219
220         return ret;
221 }
222
223 void ath10k_htt_rx_free(struct ath10k_htt *htt)
224 {
225         del_timer_sync(&htt->rx_ring.refill_retry_timer);
226         tasklet_kill(&htt->rx_replenish_task);
227         tasklet_kill(&htt->txrx_compl_task);
228
229         skb_queue_purge(&htt->rx_compl_q);
230         skb_queue_purge(&htt->rx_in_ord_compl_q);
231         skb_queue_purge(&htt->tx_fetch_ind_q);
232
233         ath10k_htt_rx_ring_free(htt);
234
235         dma_free_coherent(htt->ar->dev,
236                           (htt->rx_ring.size *
237                            sizeof(htt->rx_ring.paddrs_ring)),
238                           htt->rx_ring.paddrs_ring,
239                           htt->rx_ring.base_paddr);
240
241         dma_free_coherent(htt->ar->dev,
242                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
243                           htt->rx_ring.alloc_idx.vaddr,
244                           htt->rx_ring.alloc_idx.paddr);
245
246         kfree(htt->rx_ring.netbufs_ring);
247 }
248
249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250 {
251         struct ath10k *ar = htt->ar;
252         int idx;
253         struct sk_buff *msdu;
254
255         lockdep_assert_held(&htt->rx_ring.lock);
256
257         if (htt->rx_ring.fill_cnt == 0) {
258                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
259                 return NULL;
260         }
261
262         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263         msdu = htt->rx_ring.netbufs_ring[idx];
264         htt->rx_ring.netbufs_ring[idx] = NULL;
265         htt->rx_ring.paddrs_ring[idx] = 0;
266
267         idx++;
268         idx &= htt->rx_ring.size_mask;
269         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270         htt->rx_ring.fill_cnt--;
271
272         dma_unmap_single(htt->ar->dev,
273                          ATH10K_SKB_RXCB(msdu)->paddr,
274                          msdu->len + skb_tailroom(msdu),
275                          DMA_FROM_DEVICE);
276         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277                         msdu->data, msdu->len + skb_tailroom(msdu));
278
279         return msdu;
280 }
281
282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284                                    u8 **fw_desc, int *fw_desc_len,
285                                    struct sk_buff_head *amsdu)
286 {
287         struct ath10k *ar = htt->ar;
288         int msdu_len, msdu_chaining = 0;
289         struct sk_buff *msdu;
290         struct htt_rx_desc *rx_desc;
291
292         lockdep_assert_held(&htt->rx_ring.lock);
293
294         for (;;) {
295                 int last_msdu, msdu_len_invalid, msdu_chained;
296
297                 msdu = ath10k_htt_rx_netbuf_pop(htt);
298                 if (!msdu) {
299                         __skb_queue_purge(amsdu);
300                         return -ENOENT;
301                 }
302
303                 __skb_queue_tail(amsdu, msdu);
304
305                 rx_desc = (struct htt_rx_desc *)msdu->data;
306
307                 /* FIXME: we must report msdu payload since this is what caller
308                  *        expects now */
309                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311
312                 /*
313                  * Sanity check - confirm the HW is finished filling in the
314                  * rx data.
315                  * If the HW and SW are working correctly, then it's guaranteed
316                  * that the HW's MAC DMA is done before this point in the SW.
317                  * To prevent the case that we handle a stale Rx descriptor,
318                  * just assert for now until we have a way to recover.
319                  */
320                 if (!(__le32_to_cpu(rx_desc->attention.flags)
321                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
322                         __skb_queue_purge(amsdu);
323                         return -EIO;
324                 }
325
326                 /*
327                  * Copy the FW rx descriptor for this MSDU from the rx
328                  * indication message into the MSDU's netbuf. HL uses the
329                  * same rx indication message definition as LL, and simply
330                  * appends new info (fields from the HW rx desc, and the
331                  * MSDU payload itself). So, the offset into the rx
332                  * indication message only has to account for the standard
333                  * offset of the per-MSDU FW rx desc info within the
334                  * message, and how many bytes of the per-MSDU FW rx desc
335                  * info have already been consumed. (And the endianness of
336                  * the host, since for a big-endian host, the rx ind
337                  * message contents, including the per-MSDU rx desc bytes,
338                  * were byteswapped during upload.)
339                  */
340                 if (*fw_desc_len > 0) {
341                         rx_desc->fw_desc.info0 = **fw_desc;
342                         /*
343                          * The target is expected to only provide the basic
344                          * per-MSDU rx descriptors. Just to be sure, verify
345                          * that the target has not attached extension data
346                          * (e.g. LRO flow ID).
347                          */
348
349                         /* or more, if there's extension data */
350                         (*fw_desc)++;
351                         (*fw_desc_len)--;
352                 } else {
353                         /*
354                          * When an oversized AMSDU happened, FW will lost
355                          * some of MSDU status - in this case, the FW
356                          * descriptors provided will be less than the
357                          * actual MSDUs inside this MPDU. Mark the FW
358                          * descriptors so that it will still deliver to
359                          * upper stack, if no CRC error for this MPDU.
360                          *
361                          * FIX THIS - the FW descriptors are actually for
362                          * MSDUs in the end of this A-MSDU instead of the
363                          * beginning.
364                          */
365                         rx_desc->fw_desc.info0 = 0;
366                 }
367
368                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
369                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
370                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
371                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
372                               RX_MSDU_START_INFO0_MSDU_LENGTH);
373                 msdu_chained = rx_desc->frag_info.ring2_more_count;
374
375                 if (msdu_len_invalid)
376                         msdu_len = 0;
377
378                 skb_trim(msdu, 0);
379                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
380                 msdu_len -= msdu->len;
381
382                 /* Note: Chained buffers do not contain rx descriptor */
383                 while (msdu_chained--) {
384                         msdu = ath10k_htt_rx_netbuf_pop(htt);
385                         if (!msdu) {
386                                 __skb_queue_purge(amsdu);
387                                 return -ENOENT;
388                         }
389
390                         __skb_queue_tail(amsdu, msdu);
391                         skb_trim(msdu, 0);
392                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
393                         msdu_len -= msdu->len;
394                         msdu_chaining = 1;
395                 }
396
397                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
398                                 RX_MSDU_END_INFO0_LAST_MSDU;
399
400                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
401                                          sizeof(*rx_desc) - sizeof(u32));
402
403                 if (last_msdu)
404                         break;
405         }
406
407         if (skb_queue_empty(amsdu))
408                 msdu_chaining = -1;
409
410         /*
411          * Don't refill the ring yet.
412          *
413          * First, the elements popped here are still in use - it is not
414          * safe to overwrite them until the matching call to
415          * mpdu_desc_list_next. Second, for efficiency it is preferable to
416          * refill the rx ring with 1 PPDU's worth of rx buffers (something
417          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
418          * (something like 3 buffers). Consequently, we'll rely on the txrx
419          * SW to tell us when it is done pulling all the PPDU's rx buffers
420          * out of the rx ring, and then refill it just once.
421          */
422
423         return msdu_chaining;
424 }
425
426 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
427 {
428         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
429
430         ath10k_htt_rx_msdu_buff_replenish(htt);
431 }
432
433 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
434                                                u32 paddr)
435 {
436         struct ath10k *ar = htt->ar;
437         struct ath10k_skb_rxcb *rxcb;
438         struct sk_buff *msdu;
439
440         lockdep_assert_held(&htt->rx_ring.lock);
441
442         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
443         if (!msdu)
444                 return NULL;
445
446         rxcb = ATH10K_SKB_RXCB(msdu);
447         hash_del(&rxcb->hlist);
448         htt->rx_ring.fill_cnt--;
449
450         dma_unmap_single(htt->ar->dev, rxcb->paddr,
451                          msdu->len + skb_tailroom(msdu),
452                          DMA_FROM_DEVICE);
453         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
454                         msdu->data, msdu->len + skb_tailroom(msdu));
455
456         return msdu;
457 }
458
459 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
460                                         struct htt_rx_in_ord_ind *ev,
461                                         struct sk_buff_head *list)
462 {
463         struct ath10k *ar = htt->ar;
464         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
465         struct htt_rx_desc *rxd;
466         struct sk_buff *msdu;
467         int msdu_count;
468         bool is_offload;
469         u32 paddr;
470
471         lockdep_assert_held(&htt->rx_ring.lock);
472
473         msdu_count = __le16_to_cpu(ev->msdu_count);
474         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
475
476         while (msdu_count--) {
477                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
478
479                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
480                 if (!msdu) {
481                         __skb_queue_purge(list);
482                         return -ENOENT;
483                 }
484
485                 __skb_queue_tail(list, msdu);
486
487                 if (!is_offload) {
488                         rxd = (void *)msdu->data;
489
490                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
491
492                         skb_put(msdu, sizeof(*rxd));
493                         skb_pull(msdu, sizeof(*rxd));
494                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
495
496                         if (!(__le32_to_cpu(rxd->attention.flags) &
497                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
498                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
499                                 return -EIO;
500                         }
501                 }
502
503                 msdu_desc++;
504         }
505
506         return 0;
507 }
508
509 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
510 {
511         struct ath10k *ar = htt->ar;
512         dma_addr_t paddr;
513         void *vaddr;
514         size_t size;
515         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
516
517         htt->rx_confused = false;
518
519         /* XXX: The fill level could be changed during runtime in response to
520          * the host processing latency. Is this really worth it?
521          */
522         htt->rx_ring.size = HTT_RX_RING_SIZE;
523         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
524         htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
525
526         if (!is_power_of_2(htt->rx_ring.size)) {
527                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
528                 return -EINVAL;
529         }
530
531         htt->rx_ring.netbufs_ring =
532                 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
533                         GFP_KERNEL);
534         if (!htt->rx_ring.netbufs_ring)
535                 goto err_netbuf;
536
537         size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
538
539         vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
540         if (!vaddr)
541                 goto err_dma_ring;
542
543         htt->rx_ring.paddrs_ring = vaddr;
544         htt->rx_ring.base_paddr = paddr;
545
546         vaddr = dma_alloc_coherent(htt->ar->dev,
547                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
548                                    &paddr, GFP_KERNEL);
549         if (!vaddr)
550                 goto err_dma_idx;
551
552         htt->rx_ring.alloc_idx.vaddr = vaddr;
553         htt->rx_ring.alloc_idx.paddr = paddr;
554         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
555         *htt->rx_ring.alloc_idx.vaddr = 0;
556
557         /* Initialize the Rx refill retry timer */
558         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
559
560         spin_lock_init(&htt->rx_ring.lock);
561
562         htt->rx_ring.fill_cnt = 0;
563         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
564         hash_init(htt->rx_ring.skb_table);
565
566         tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
567                      (unsigned long)htt);
568
569         skb_queue_head_init(&htt->rx_compl_q);
570         skb_queue_head_init(&htt->rx_in_ord_compl_q);
571         skb_queue_head_init(&htt->tx_fetch_ind_q);
572
573         tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
574                      (unsigned long)htt);
575
576         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
577                    htt->rx_ring.size, htt->rx_ring.fill_level);
578         return 0;
579
580 err_dma_idx:
581         dma_free_coherent(htt->ar->dev,
582                           (htt->rx_ring.size *
583                            sizeof(htt->rx_ring.paddrs_ring)),
584                           htt->rx_ring.paddrs_ring,
585                           htt->rx_ring.base_paddr);
586 err_dma_ring:
587         kfree(htt->rx_ring.netbufs_ring);
588 err_netbuf:
589         return -ENOMEM;
590 }
591
592 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
593                                           enum htt_rx_mpdu_encrypt_type type)
594 {
595         switch (type) {
596         case HTT_RX_MPDU_ENCRYPT_NONE:
597                 return 0;
598         case HTT_RX_MPDU_ENCRYPT_WEP40:
599         case HTT_RX_MPDU_ENCRYPT_WEP104:
600                 return IEEE80211_WEP_IV_LEN;
601         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
602         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
603                 return IEEE80211_TKIP_IV_LEN;
604         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
605                 return IEEE80211_CCMP_HDR_LEN;
606         case HTT_RX_MPDU_ENCRYPT_WEP128:
607         case HTT_RX_MPDU_ENCRYPT_WAPI:
608                 break;
609         }
610
611         ath10k_warn(ar, "unsupported encryption type %d\n", type);
612         return 0;
613 }
614
615 #define MICHAEL_MIC_LEN 8
616
617 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
618                                          enum htt_rx_mpdu_encrypt_type type)
619 {
620         switch (type) {
621         case HTT_RX_MPDU_ENCRYPT_NONE:
622                 return 0;
623         case HTT_RX_MPDU_ENCRYPT_WEP40:
624         case HTT_RX_MPDU_ENCRYPT_WEP104:
625                 return IEEE80211_WEP_ICV_LEN;
626         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
627         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
628                 return IEEE80211_TKIP_ICV_LEN;
629         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
630                 return IEEE80211_CCMP_MIC_LEN;
631         case HTT_RX_MPDU_ENCRYPT_WEP128:
632         case HTT_RX_MPDU_ENCRYPT_WAPI:
633                 break;
634         }
635
636         ath10k_warn(ar, "unsupported encryption type %d\n", type);
637         return 0;
638 }
639
640 struct amsdu_subframe_hdr {
641         u8 dst[ETH_ALEN];
642         u8 src[ETH_ALEN];
643         __be16 len;
644 } __packed;
645
646 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
647
648 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
649                                   struct ieee80211_rx_status *status,
650                                   struct htt_rx_desc *rxd)
651 {
652         struct ieee80211_supported_band *sband;
653         u8 cck, rate, bw, sgi, mcs, nss;
654         u8 preamble = 0;
655         u8 group_id;
656         u32 info1, info2, info3;
657
658         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
659         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
660         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
661
662         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
663
664         switch (preamble) {
665         case HTT_RX_LEGACY:
666                 /* To get legacy rate index band is required. Since band can't
667                  * be undefined check if freq is non-zero.
668                  */
669                 if (!status->freq)
670                         return;
671
672                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
673                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
674                 rate &= ~RX_PPDU_START_RATE_FLAG;
675
676                 sband = &ar->mac.sbands[status->band];
677                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
678                 break;
679         case HTT_RX_HT:
680         case HTT_RX_HT_WITH_TXBF:
681                 /* HT-SIG - Table 20-11 in info2 and info3 */
682                 mcs = info2 & 0x1F;
683                 nss = mcs >> 3;
684                 bw = (info2 >> 7) & 1;
685                 sgi = (info3 >> 7) & 1;
686
687                 status->rate_idx = mcs;
688                 status->flag |= RX_FLAG_HT;
689                 if (sgi)
690                         status->flag |= RX_FLAG_SHORT_GI;
691                 if (bw)
692                         status->flag |= RX_FLAG_40MHZ;
693                 break;
694         case HTT_RX_VHT:
695         case HTT_RX_VHT_WITH_TXBF:
696                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
697                    TODO check this */
698                 bw = info2 & 3;
699                 sgi = info3 & 1;
700                 group_id = (info2 >> 4) & 0x3F;
701
702                 if (GROUP_ID_IS_SU_MIMO(group_id)) {
703                         mcs = (info3 >> 4) & 0x0F;
704                         nss = ((info2 >> 10) & 0x07) + 1;
705                 } else {
706                         /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
707                          * so it's impossible to decode MCS. Also since
708                          * firmware consumes Group Id Management frames host
709                          * has no knowledge regarding group/user position
710                          * mapping so it's impossible to pick the correct Nsts
711                          * from VHT-SIG-A1.
712                          *
713                          * Bandwidth and SGI are valid so report the rateinfo
714                          * on best-effort basis.
715                          */
716                         mcs = 0;
717                         nss = 1;
718                 }
719
720                 if (mcs > 0x09) {
721                         ath10k_warn(ar, "invalid MCS received %u\n", mcs);
722                         ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
723                                     __le32_to_cpu(rxd->attention.flags),
724                                     __le32_to_cpu(rxd->mpdu_start.info0),
725                                     __le32_to_cpu(rxd->mpdu_start.info1),
726                                     __le32_to_cpu(rxd->msdu_start.common.info0),
727                                     __le32_to_cpu(rxd->msdu_start.common.info1),
728                                     rxd->ppdu_start.info0,
729                                     __le32_to_cpu(rxd->ppdu_start.info1),
730                                     __le32_to_cpu(rxd->ppdu_start.info2),
731                                     __le32_to_cpu(rxd->ppdu_start.info3),
732                                     __le32_to_cpu(rxd->ppdu_start.info4));
733
734                         ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
735                                     __le32_to_cpu(rxd->msdu_end.common.info0),
736                                     __le32_to_cpu(rxd->mpdu_end.info0));
737
738                         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
739                                         "rx desc msdu payload: ",
740                                         rxd->msdu_payload, 50);
741                 }
742
743                 status->rate_idx = mcs;
744                 status->vht_nss = nss;
745
746                 if (sgi)
747                         status->flag |= RX_FLAG_SHORT_GI;
748
749                 switch (bw) {
750                 /* 20MHZ */
751                 case 0:
752                         break;
753                 /* 40MHZ */
754                 case 1:
755                         status->flag |= RX_FLAG_40MHZ;
756                         break;
757                 /* 80MHZ */
758                 case 2:
759                         status->vht_flag |= RX_VHT_FLAG_80MHZ;
760                 }
761
762                 status->flag |= RX_FLAG_VHT;
763                 break;
764         default:
765                 break;
766         }
767 }
768
769 static struct ieee80211_channel *
770 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
771 {
772         struct ath10k_peer *peer;
773         struct ath10k_vif *arvif;
774         struct cfg80211_chan_def def;
775         u16 peer_id;
776
777         lockdep_assert_held(&ar->data_lock);
778
779         if (!rxd)
780                 return NULL;
781
782         if (rxd->attention.flags &
783             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
784                 return NULL;
785
786         if (!(rxd->msdu_end.common.info0 &
787               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
788                 return NULL;
789
790         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
791                      RX_MPDU_START_INFO0_PEER_IDX);
792
793         peer = ath10k_peer_find_by_id(ar, peer_id);
794         if (!peer)
795                 return NULL;
796
797         arvif = ath10k_get_arvif(ar, peer->vdev_id);
798         if (WARN_ON_ONCE(!arvif))
799                 return NULL;
800
801         if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
802                 return NULL;
803
804         return def.chan;
805 }
806
807 static struct ieee80211_channel *
808 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
809 {
810         struct ath10k_vif *arvif;
811         struct cfg80211_chan_def def;
812
813         lockdep_assert_held(&ar->data_lock);
814
815         list_for_each_entry(arvif, &ar->arvifs, list) {
816                 if (arvif->vdev_id == vdev_id &&
817                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
818                         return def.chan;
819         }
820
821         return NULL;
822 }
823
824 static void
825 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
826                               struct ieee80211_chanctx_conf *conf,
827                               void *data)
828 {
829         struct cfg80211_chan_def *def = data;
830
831         *def = conf->def;
832 }
833
834 static struct ieee80211_channel *
835 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
836 {
837         struct cfg80211_chan_def def = {};
838
839         ieee80211_iter_chan_contexts_atomic(ar->hw,
840                                             ath10k_htt_rx_h_any_chan_iter,
841                                             &def);
842
843         return def.chan;
844 }
845
846 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
847                                     struct ieee80211_rx_status *status,
848                                     struct htt_rx_desc *rxd,
849                                     u32 vdev_id)
850 {
851         struct ieee80211_channel *ch;
852
853         spin_lock_bh(&ar->data_lock);
854         ch = ar->scan_channel;
855         if (!ch)
856                 ch = ar->rx_channel;
857         if (!ch)
858                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
859         if (!ch)
860                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
861         if (!ch)
862                 ch = ath10k_htt_rx_h_any_channel(ar);
863         if (!ch)
864                 ch = ar->tgt_oper_chan;
865         spin_unlock_bh(&ar->data_lock);
866
867         if (!ch)
868                 return false;
869
870         status->band = ch->band;
871         status->freq = ch->center_freq;
872
873         return true;
874 }
875
876 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
877                                    struct ieee80211_rx_status *status,
878                                    struct htt_rx_desc *rxd)
879 {
880         /* FIXME: Get real NF */
881         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
882                          rxd->ppdu_start.rssi_comb;
883         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
884 }
885
886 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
887                                     struct ieee80211_rx_status *status,
888                                     struct htt_rx_desc *rxd)
889 {
890         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
891          * means all prior MSDUs in a PPDU are reported to mac80211 without the
892          * TSF. Is it worth holding frames until end of PPDU is known?
893          *
894          * FIXME: Can we get/compute 64bit TSF?
895          */
896         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
897         status->flag |= RX_FLAG_MACTIME_END;
898 }
899
900 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
901                                  struct sk_buff_head *amsdu,
902                                  struct ieee80211_rx_status *status,
903                                  u32 vdev_id)
904 {
905         struct sk_buff *first;
906         struct htt_rx_desc *rxd;
907         bool is_first_ppdu;
908         bool is_last_ppdu;
909
910         if (skb_queue_empty(amsdu))
911                 return;
912
913         first = skb_peek(amsdu);
914         rxd = (void *)first->data - sizeof(*rxd);
915
916         is_first_ppdu = !!(rxd->attention.flags &
917                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
918         is_last_ppdu = !!(rxd->attention.flags &
919                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
920
921         if (is_first_ppdu) {
922                 /* New PPDU starts so clear out the old per-PPDU status. */
923                 status->freq = 0;
924                 status->rate_idx = 0;
925                 status->vht_nss = 0;
926                 status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
927                 status->flag &= ~(RX_FLAG_HT |
928                                   RX_FLAG_VHT |
929                                   RX_FLAG_SHORT_GI |
930                                   RX_FLAG_40MHZ |
931                                   RX_FLAG_MACTIME_END);
932                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
933
934                 ath10k_htt_rx_h_signal(ar, status, rxd);
935                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
936                 ath10k_htt_rx_h_rates(ar, status, rxd);
937         }
938
939         if (is_last_ppdu)
940                 ath10k_htt_rx_h_mactime(ar, status, rxd);
941 }
942
943 static const char * const tid_to_ac[] = {
944         "BE",
945         "BK",
946         "BK",
947         "BE",
948         "VI",
949         "VI",
950         "VO",
951         "VO",
952 };
953
954 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
955 {
956         u8 *qc;
957         int tid;
958
959         if (!ieee80211_is_data_qos(hdr->frame_control))
960                 return "";
961
962         qc = ieee80211_get_qos_ctl(hdr);
963         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
964         if (tid < 8)
965                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
966         else
967                 snprintf(out, size, "tid %d", tid);
968
969         return out;
970 }
971
972 static void ath10k_process_rx(struct ath10k *ar,
973                               struct ieee80211_rx_status *rx_status,
974                               struct sk_buff *skb)
975 {
976         struct ieee80211_rx_status *status;
977         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
978         char tid[32];
979
980         status = IEEE80211_SKB_RXCB(skb);
981         *status = *rx_status;
982
983         ath10k_dbg(ar, ATH10K_DBG_DATA,
984                    "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
985                    skb,
986                    skb->len,
987                    ieee80211_get_SA(hdr),
988                    ath10k_get_tid(hdr, tid, sizeof(tid)),
989                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
990                                                         "mcast" : "ucast",
991                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
992                    status->flag == 0 ? "legacy" : "",
993                    status->flag & RX_FLAG_HT ? "ht" : "",
994                    status->flag & RX_FLAG_VHT ? "vht" : "",
995                    status->flag & RX_FLAG_40MHZ ? "40" : "",
996                    status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
997                    status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
998                    status->rate_idx,
999                    status->vht_nss,
1000                    status->freq,
1001                    status->band, status->flag,
1002                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1003                    !!(status->flag & RX_FLAG_MMIC_ERROR),
1004                    !!(status->flag & RX_FLAG_AMSDU_MORE));
1005         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1006                         skb->data, skb->len);
1007         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1008         trace_ath10k_rx_payload(ar, skb->data, skb->len);
1009
1010         ieee80211_rx(ar->hw, skb);
1011 }
1012
1013 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1014                                       struct ieee80211_hdr *hdr)
1015 {
1016         int len = ieee80211_hdrlen(hdr->frame_control);
1017
1018         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1019                       ar->fw_features))
1020                 len = round_up(len, 4);
1021
1022         return len;
1023 }
1024
1025 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1026                                         struct sk_buff *msdu,
1027                                         struct ieee80211_rx_status *status,
1028                                         enum htt_rx_mpdu_encrypt_type enctype,
1029                                         bool is_decrypted)
1030 {
1031         struct ieee80211_hdr *hdr;
1032         struct htt_rx_desc *rxd;
1033         size_t hdr_len;
1034         size_t crypto_len;
1035         bool is_first;
1036         bool is_last;
1037
1038         rxd = (void *)msdu->data - sizeof(*rxd);
1039         is_first = !!(rxd->msdu_end.common.info0 &
1040                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1041         is_last = !!(rxd->msdu_end.common.info0 &
1042                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1043
1044         /* Delivered decapped frame:
1045          * [802.11 header]
1046          * [crypto param] <-- can be trimmed if !fcs_err &&
1047          *                    !decrypt_err && !peer_idx_invalid
1048          * [amsdu header] <-- only if A-MSDU
1049          * [rfc1042/llc]
1050          * [payload]
1051          * [FCS] <-- at end, needs to be trimmed
1052          */
1053
1054         /* This probably shouldn't happen but warn just in case */
1055         if (unlikely(WARN_ON_ONCE(!is_first)))
1056                 return;
1057
1058         /* This probably shouldn't happen but warn just in case */
1059         if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1060                 return;
1061
1062         skb_trim(msdu, msdu->len - FCS_LEN);
1063
1064         /* In most cases this will be true for sniffed frames. It makes sense
1065          * to deliver them as-is without stripping the crypto param. This is
1066          * necessary for software based decryption.
1067          *
1068          * If there's no error then the frame is decrypted. At least that is
1069          * the case for frames that come in via fragmented rx indication.
1070          */
1071         if (!is_decrypted)
1072                 return;
1073
1074         /* The payload is decrypted so strip crypto params. Start from tail
1075          * since hdr is used to compute some stuff.
1076          */
1077
1078         hdr = (void *)msdu->data;
1079
1080         /* Tail */
1081         if (status->flag & RX_FLAG_IV_STRIPPED)
1082                 skb_trim(msdu, msdu->len -
1083                          ath10k_htt_rx_crypto_tail_len(ar, enctype));
1084
1085         /* MMIC */
1086         if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1087             !ieee80211_has_morefrags(hdr->frame_control) &&
1088             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1089                 skb_trim(msdu, msdu->len - 8);
1090
1091         /* Head */
1092         if (status->flag & RX_FLAG_IV_STRIPPED) {
1093                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1094                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1095
1096                 memmove((void *)msdu->data + crypto_len,
1097                         (void *)msdu->data, hdr_len);
1098                 skb_pull(msdu, crypto_len);
1099         }
1100 }
1101
1102 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1103                                           struct sk_buff *msdu,
1104                                           struct ieee80211_rx_status *status,
1105                                           const u8 first_hdr[64])
1106 {
1107         struct ieee80211_hdr *hdr;
1108         size_t hdr_len;
1109         u8 da[ETH_ALEN];
1110         u8 sa[ETH_ALEN];
1111
1112         /* Delivered decapped frame:
1113          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1114          * [rfc1042/llc]
1115          *
1116          * Note: The nwifi header doesn't have QoS Control and is
1117          * (always?) a 3addr frame.
1118          *
1119          * Note2: There's no A-MSDU subframe header. Even if it's part
1120          * of an A-MSDU.
1121          */
1122
1123         /* pull decapped header and copy SA & DA */
1124         if ((ar->hw_params.hw_4addr_pad == ATH10K_HW_4ADDR_PAD_BEFORE) &&
1125             ieee80211_has_a4(((struct ieee80211_hdr *)first_hdr)->frame_control)) {
1126                 /* The QCA99X0 4 address mode pad 2 bytes at the
1127                  * beginning of MSDU
1128                  */
1129                 hdr = (struct ieee80211_hdr *)(msdu->data + 2);
1130                 /* The skb length need be extended 2 as the 2 bytes at the tail
1131                  * be excluded due to the padding
1132                  */
1133                 skb_put(msdu, 2);
1134         } else {
1135                 hdr = (struct ieee80211_hdr *)(msdu->data);
1136         }
1137
1138         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1139         ether_addr_copy(da, ieee80211_get_DA(hdr));
1140         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1141         skb_pull(msdu, hdr_len);
1142
1143         /* push original 802.11 header */
1144         hdr = (struct ieee80211_hdr *)first_hdr;
1145         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1146         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1147
1148         /* original 802.11 header has a different DA and in
1149          * case of 4addr it may also have different SA
1150          */
1151         hdr = (struct ieee80211_hdr *)msdu->data;
1152         ether_addr_copy(ieee80211_get_DA(hdr), da);
1153         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1154 }
1155
1156 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1157                                           struct sk_buff *msdu,
1158                                           enum htt_rx_mpdu_encrypt_type enctype)
1159 {
1160         struct ieee80211_hdr *hdr;
1161         struct htt_rx_desc *rxd;
1162         size_t hdr_len, crypto_len;
1163         void *rfc1042;
1164         bool is_first, is_last, is_amsdu;
1165
1166         rxd = (void *)msdu->data - sizeof(*rxd);
1167         hdr = (void *)rxd->rx_hdr_status;
1168
1169         is_first = !!(rxd->msdu_end.common.info0 &
1170                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1171         is_last = !!(rxd->msdu_end.common.info0 &
1172                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1173         is_amsdu = !(is_first && is_last);
1174
1175         rfc1042 = hdr;
1176
1177         if (is_first) {
1178                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1179                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1180
1181                 rfc1042 += round_up(hdr_len, 4) +
1182                            round_up(crypto_len, 4);
1183         }
1184
1185         if (is_amsdu)
1186                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1187
1188         return rfc1042;
1189 }
1190
1191 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1192                                         struct sk_buff *msdu,
1193                                         struct ieee80211_rx_status *status,
1194                                         const u8 first_hdr[64],
1195                                         enum htt_rx_mpdu_encrypt_type enctype)
1196 {
1197         struct ieee80211_hdr *hdr;
1198         struct ethhdr *eth;
1199         size_t hdr_len;
1200         void *rfc1042;
1201         u8 da[ETH_ALEN];
1202         u8 sa[ETH_ALEN];
1203
1204         /* Delivered decapped frame:
1205          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1206          * [payload]
1207          */
1208
1209         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1210         if (WARN_ON_ONCE(!rfc1042))
1211                 return;
1212
1213         /* pull decapped header and copy SA & DA */
1214         eth = (struct ethhdr *)msdu->data;
1215         ether_addr_copy(da, eth->h_dest);
1216         ether_addr_copy(sa, eth->h_source);
1217         skb_pull(msdu, sizeof(struct ethhdr));
1218
1219         /* push rfc1042/llc/snap */
1220         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1221                sizeof(struct rfc1042_hdr));
1222
1223         /* push original 802.11 header */
1224         hdr = (struct ieee80211_hdr *)first_hdr;
1225         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1226         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1227
1228         /* original 802.11 header has a different DA and in
1229          * case of 4addr it may also have different SA
1230          */
1231         hdr = (struct ieee80211_hdr *)msdu->data;
1232         ether_addr_copy(ieee80211_get_DA(hdr), da);
1233         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1234 }
1235
1236 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1237                                          struct sk_buff *msdu,
1238                                          struct ieee80211_rx_status *status,
1239                                          const u8 first_hdr[64])
1240 {
1241         struct ieee80211_hdr *hdr;
1242         size_t hdr_len;
1243
1244         /* Delivered decapped frame:
1245          * [amsdu header] <-- replaced with 802.11 hdr
1246          * [rfc1042/llc]
1247          * [payload]
1248          */
1249
1250         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1251
1252         hdr = (struct ieee80211_hdr *)first_hdr;
1253         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1254         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1255 }
1256
1257 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1258                                     struct sk_buff *msdu,
1259                                     struct ieee80211_rx_status *status,
1260                                     u8 first_hdr[64],
1261                                     enum htt_rx_mpdu_encrypt_type enctype,
1262                                     bool is_decrypted)
1263 {
1264         struct htt_rx_desc *rxd;
1265         enum rx_msdu_decap_format decap;
1266
1267         /* First msdu's decapped header:
1268          * [802.11 header] <-- padded to 4 bytes long
1269          * [crypto param] <-- padded to 4 bytes long
1270          * [amsdu header] <-- only if A-MSDU
1271          * [rfc1042/llc]
1272          *
1273          * Other (2nd, 3rd, ..) msdu's decapped header:
1274          * [amsdu header] <-- only if A-MSDU
1275          * [rfc1042/llc]
1276          */
1277
1278         rxd = (void *)msdu->data - sizeof(*rxd);
1279         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1280                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1281
1282         switch (decap) {
1283         case RX_MSDU_DECAP_RAW:
1284                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1285                                             is_decrypted);
1286                 break;
1287         case RX_MSDU_DECAP_NATIVE_WIFI:
1288                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1289                 break;
1290         case RX_MSDU_DECAP_ETHERNET2_DIX:
1291                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1292                 break;
1293         case RX_MSDU_DECAP_8023_SNAP_LLC:
1294                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1295                 break;
1296         }
1297 }
1298
1299 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1300 {
1301         struct htt_rx_desc *rxd;
1302         u32 flags, info;
1303         bool is_ip4, is_ip6;
1304         bool is_tcp, is_udp;
1305         bool ip_csum_ok, tcpudp_csum_ok;
1306
1307         rxd = (void *)skb->data - sizeof(*rxd);
1308         flags = __le32_to_cpu(rxd->attention.flags);
1309         info = __le32_to_cpu(rxd->msdu_start.common.info1);
1310
1311         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1312         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1313         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1314         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1315         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1316         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1317
1318         if (!is_ip4 && !is_ip6)
1319                 return CHECKSUM_NONE;
1320         if (!is_tcp && !is_udp)
1321                 return CHECKSUM_NONE;
1322         if (!ip_csum_ok)
1323                 return CHECKSUM_NONE;
1324         if (!tcpudp_csum_ok)
1325                 return CHECKSUM_NONE;
1326
1327         return CHECKSUM_UNNECESSARY;
1328 }
1329
1330 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1331 {
1332         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1333 }
1334
1335 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1336                                  struct sk_buff_head *amsdu,
1337                                  struct ieee80211_rx_status *status)
1338 {
1339         struct sk_buff *first;
1340         struct sk_buff *last;
1341         struct sk_buff *msdu;
1342         struct htt_rx_desc *rxd;
1343         struct ieee80211_hdr *hdr;
1344         enum htt_rx_mpdu_encrypt_type enctype;
1345         u8 first_hdr[64];
1346         u8 *qos;
1347         size_t hdr_len;
1348         bool has_fcs_err;
1349         bool has_crypto_err;
1350         bool has_tkip_err;
1351         bool has_peer_idx_invalid;
1352         bool is_decrypted;
1353         bool is_mgmt;
1354         u32 attention;
1355
1356         if (skb_queue_empty(amsdu))
1357                 return;
1358
1359         first = skb_peek(amsdu);
1360         rxd = (void *)first->data - sizeof(*rxd);
1361
1362         is_mgmt = !!(rxd->attention.flags &
1363                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1364
1365         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1366                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1367
1368         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1369          * decapped header. It'll be used for undecapping of each MSDU.
1370          */
1371         hdr = (void *)rxd->rx_hdr_status;
1372         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1373         memcpy(first_hdr, hdr, hdr_len);
1374
1375         /* Each A-MSDU subframe will use the original header as the base and be
1376          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1377          */
1378         hdr = (void *)first_hdr;
1379         qos = ieee80211_get_qos_ctl(hdr);
1380         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1381
1382         /* Some attention flags are valid only in the last MSDU. */
1383         last = skb_peek_tail(amsdu);
1384         rxd = (void *)last->data - sizeof(*rxd);
1385         attention = __le32_to_cpu(rxd->attention.flags);
1386
1387         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1388         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1389         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1390         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1391
1392         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1393          * e.g. due to fcs error, missing peer or invalid key data it will
1394          * report the frame as raw.
1395          */
1396         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1397                         !has_fcs_err &&
1398                         !has_crypto_err &&
1399                         !has_peer_idx_invalid);
1400
1401         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1402         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1403                           RX_FLAG_MMIC_ERROR |
1404                           RX_FLAG_DECRYPTED |
1405                           RX_FLAG_IV_STRIPPED |
1406                           RX_FLAG_ONLY_MONITOR |
1407                           RX_FLAG_MMIC_STRIPPED);
1408
1409         if (has_fcs_err)
1410                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1411
1412         if (has_tkip_err)
1413                 status->flag |= RX_FLAG_MMIC_ERROR;
1414
1415         /* Firmware reports all necessary management frames via WMI already.
1416          * They are not reported to monitor interfaces at all so pass the ones
1417          * coming via HTT to monitor interfaces instead. This simplifies
1418          * matters a lot.
1419          */
1420         if (is_mgmt)
1421                 status->flag |= RX_FLAG_ONLY_MONITOR;
1422
1423         if (is_decrypted) {
1424                 status->flag |= RX_FLAG_DECRYPTED;
1425
1426                 if (likely(!is_mgmt))
1427                         status->flag |= RX_FLAG_IV_STRIPPED |
1428                                         RX_FLAG_MMIC_STRIPPED;
1429 }
1430
1431         skb_queue_walk(amsdu, msdu) {
1432                 ath10k_htt_rx_h_csum_offload(msdu);
1433                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1434                                         is_decrypted);
1435
1436                 /* Undecapping involves copying the original 802.11 header back
1437                  * to sk_buff. If frame is protected and hardware has decrypted
1438                  * it then remove the protected bit.
1439                  */
1440                 if (!is_decrypted)
1441                         continue;
1442                 if (is_mgmt)
1443                         continue;
1444
1445                 hdr = (void *)msdu->data;
1446                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1447         }
1448 }
1449
1450 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1451                                     struct sk_buff_head *amsdu,
1452                                     struct ieee80211_rx_status *status)
1453 {
1454         struct sk_buff *msdu;
1455
1456         while ((msdu = __skb_dequeue(amsdu))) {
1457                 /* Setup per-MSDU flags */
1458                 if (skb_queue_empty(amsdu))
1459                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1460                 else
1461                         status->flag |= RX_FLAG_AMSDU_MORE;
1462
1463                 ath10k_process_rx(ar, status, msdu);
1464         }
1465 }
1466
1467 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1468 {
1469         struct sk_buff *skb, *first;
1470         int space;
1471         int total_len = 0;
1472
1473         /* TODO:  Might could optimize this by using
1474          * skb_try_coalesce or similar method to
1475          * decrease copying, or maybe get mac80211 to
1476          * provide a way to just receive a list of
1477          * skb?
1478          */
1479
1480         first = __skb_dequeue(amsdu);
1481
1482         /* Allocate total length all at once. */
1483         skb_queue_walk(amsdu, skb)
1484                 total_len += skb->len;
1485
1486         space = total_len - skb_tailroom(first);
1487         if ((space > 0) &&
1488             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1489                 /* TODO:  bump some rx-oom error stat */
1490                 /* put it back together so we can free the
1491                  * whole list at once.
1492                  */
1493                 __skb_queue_head(amsdu, first);
1494                 return -1;
1495         }
1496
1497         /* Walk list again, copying contents into
1498          * msdu_head
1499          */
1500         while ((skb = __skb_dequeue(amsdu))) {
1501                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1502                                           skb->len);
1503                 dev_kfree_skb_any(skb);
1504         }
1505
1506         __skb_queue_head(amsdu, first);
1507         return 0;
1508 }
1509
1510 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1511                                     struct sk_buff_head *amsdu,
1512                                     bool chained)
1513 {
1514         struct sk_buff *first;
1515         struct htt_rx_desc *rxd;
1516         enum rx_msdu_decap_format decap;
1517
1518         first = skb_peek(amsdu);
1519         rxd = (void *)first->data - sizeof(*rxd);
1520         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1521                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1522
1523         if (!chained)
1524                 return;
1525
1526         /* FIXME: Current unchaining logic can only handle simple case of raw
1527          * msdu chaining. If decapping is other than raw the chaining may be
1528          * more complex and this isn't handled by the current code. Don't even
1529          * try re-constructing such frames - it'll be pretty much garbage.
1530          */
1531         if (decap != RX_MSDU_DECAP_RAW ||
1532             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1533                 __skb_queue_purge(amsdu);
1534                 return;
1535         }
1536
1537         ath10k_unchain_msdu(amsdu);
1538 }
1539
1540 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1541                                         struct sk_buff_head *amsdu,
1542                                         struct ieee80211_rx_status *rx_status)
1543 {
1544         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1545          * invalid/dangerous frames.
1546          */
1547
1548         if (!rx_status->freq) {
1549                 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1550                 return false;
1551         }
1552
1553         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1554                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1555                 return false;
1556         }
1557
1558         return true;
1559 }
1560
1561 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1562                                    struct sk_buff_head *amsdu,
1563                                    struct ieee80211_rx_status *rx_status)
1564 {
1565         if (skb_queue_empty(amsdu))
1566                 return;
1567
1568         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1569                 return;
1570
1571         __skb_queue_purge(amsdu);
1572 }
1573
1574 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1575                                   struct htt_rx_indication *rx)
1576 {
1577         struct ath10k *ar = htt->ar;
1578         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1579         struct htt_rx_indication_mpdu_range *mpdu_ranges;
1580         struct sk_buff_head amsdu;
1581         int num_mpdu_ranges;
1582         int fw_desc_len;
1583         u8 *fw_desc;
1584         int i, ret, mpdu_count = 0;
1585
1586         lockdep_assert_held(&htt->rx_ring.lock);
1587
1588         if (htt->rx_confused)
1589                 return;
1590
1591         fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1592         fw_desc = (u8 *)&rx->fw_desc;
1593
1594         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1595                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1596         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1597
1598         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1599                         rx, sizeof(*rx) +
1600                         (sizeof(struct htt_rx_indication_mpdu_range) *
1601                                 num_mpdu_ranges));
1602
1603         for (i = 0; i < num_mpdu_ranges; i++)
1604                 mpdu_count += mpdu_ranges[i].mpdu_count;
1605
1606         while (mpdu_count--) {
1607                 __skb_queue_head_init(&amsdu);
1608                 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1609                                               &fw_desc_len, &amsdu);
1610                 if (ret < 0) {
1611                         ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1612                         __skb_queue_purge(&amsdu);
1613                         /* FIXME: It's probably a good idea to reboot the
1614                          * device instead of leaving it inoperable.
1615                          */
1616                         htt->rx_confused = true;
1617                         break;
1618                 }
1619
1620                 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1621                 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1622                 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1623                 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1624                 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1625         }
1626
1627         tasklet_schedule(&htt->rx_replenish_task);
1628 }
1629
1630 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1631                                        struct htt_rx_fragment_indication *frag)
1632 {
1633         struct ath10k *ar = htt->ar;
1634         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1635         struct sk_buff_head amsdu;
1636         int ret;
1637         u8 *fw_desc;
1638         int fw_desc_len;
1639
1640         fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1641         fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1642
1643         __skb_queue_head_init(&amsdu);
1644
1645         spin_lock_bh(&htt->rx_ring.lock);
1646         ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1647                                       &amsdu);
1648         spin_unlock_bh(&htt->rx_ring.lock);
1649
1650         tasklet_schedule(&htt->rx_replenish_task);
1651
1652         ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1653
1654         if (ret) {
1655                 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1656                             ret);
1657                 __skb_queue_purge(&amsdu);
1658                 return;
1659         }
1660
1661         if (skb_queue_len(&amsdu) != 1) {
1662                 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1663                 __skb_queue_purge(&amsdu);
1664                 return;
1665         }
1666
1667         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1668         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1669         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1670         ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1671
1672         if (fw_desc_len > 0) {
1673                 ath10k_dbg(ar, ATH10K_DBG_HTT,
1674                            "expecting more fragmented rx in one indication %d\n",
1675                            fw_desc_len);
1676         }
1677 }
1678
1679 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1680                                        struct sk_buff *skb)
1681 {
1682         struct ath10k_htt *htt = &ar->htt;
1683         struct htt_resp *resp = (struct htt_resp *)skb->data;
1684         struct htt_tx_done tx_done = {};
1685         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1686         __le16 msdu_id;
1687         int i;
1688
1689         switch (status) {
1690         case HTT_DATA_TX_STATUS_NO_ACK:
1691                 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1692                 break;
1693         case HTT_DATA_TX_STATUS_OK:
1694                 tx_done.status = HTT_TX_COMPL_STATE_ACK;
1695                 break;
1696         case HTT_DATA_TX_STATUS_DISCARD:
1697         case HTT_DATA_TX_STATUS_POSTPONE:
1698         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1699                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1700                 break;
1701         default:
1702                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1703                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1704                 break;
1705         }
1706
1707         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1708                    resp->data_tx_completion.num_msdus);
1709
1710         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1711                 msdu_id = resp->data_tx_completion.msdus[i];
1712                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1713
1714                 /* kfifo_put: In practice firmware shouldn't fire off per-CE
1715                  * interrupt and main interrupt (MSI/-X range case) for the same
1716                  * HTC service so it should be safe to use kfifo_put w/o lock.
1717                  *
1718                  * From kfifo_put() documentation:
1719                  *  Note that with only one concurrent reader and one concurrent
1720                  *  writer, you don't need extra locking to use these macro.
1721                  */
1722                 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1723                         ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1724                                     tx_done.msdu_id, tx_done.status);
1725                         ath10k_txrx_tx_unref(htt, &tx_done);
1726                 }
1727         }
1728 }
1729
1730 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1731 {
1732         struct htt_rx_addba *ev = &resp->rx_addba;
1733         struct ath10k_peer *peer;
1734         struct ath10k_vif *arvif;
1735         u16 info0, tid, peer_id;
1736
1737         info0 = __le16_to_cpu(ev->info0);
1738         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1739         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1740
1741         ath10k_dbg(ar, ATH10K_DBG_HTT,
1742                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
1743                    tid, peer_id, ev->window_size);
1744
1745         spin_lock_bh(&ar->data_lock);
1746         peer = ath10k_peer_find_by_id(ar, peer_id);
1747         if (!peer) {
1748                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1749                             peer_id);
1750                 spin_unlock_bh(&ar->data_lock);
1751                 return;
1752         }
1753
1754         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1755         if (!arvif) {
1756                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1757                             peer->vdev_id);
1758                 spin_unlock_bh(&ar->data_lock);
1759                 return;
1760         }
1761
1762         ath10k_dbg(ar, ATH10K_DBG_HTT,
1763                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1764                    peer->addr, tid, ev->window_size);
1765
1766         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1767         spin_unlock_bh(&ar->data_lock);
1768 }
1769
1770 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1771 {
1772         struct htt_rx_delba *ev = &resp->rx_delba;
1773         struct ath10k_peer *peer;
1774         struct ath10k_vif *arvif;
1775         u16 info0, tid, peer_id;
1776
1777         info0 = __le16_to_cpu(ev->info0);
1778         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1779         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1780
1781         ath10k_dbg(ar, ATH10K_DBG_HTT,
1782                    "htt rx delba tid %hu peer_id %hu\n",
1783                    tid, peer_id);
1784
1785         spin_lock_bh(&ar->data_lock);
1786         peer = ath10k_peer_find_by_id(ar, peer_id);
1787         if (!peer) {
1788                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1789                             peer_id);
1790                 spin_unlock_bh(&ar->data_lock);
1791                 return;
1792         }
1793
1794         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1795         if (!arvif) {
1796                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1797                             peer->vdev_id);
1798                 spin_unlock_bh(&ar->data_lock);
1799                 return;
1800         }
1801
1802         ath10k_dbg(ar, ATH10K_DBG_HTT,
1803                    "htt rx stop rx ba session sta %pM tid %hu\n",
1804                    peer->addr, tid);
1805
1806         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1807         spin_unlock_bh(&ar->data_lock);
1808 }
1809
1810 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1811                                        struct sk_buff_head *amsdu)
1812 {
1813         struct sk_buff *msdu;
1814         struct htt_rx_desc *rxd;
1815
1816         if (skb_queue_empty(list))
1817                 return -ENOBUFS;
1818
1819         if (WARN_ON(!skb_queue_empty(amsdu)))
1820                 return -EINVAL;
1821
1822         while ((msdu = __skb_dequeue(list))) {
1823                 __skb_queue_tail(amsdu, msdu);
1824
1825                 rxd = (void *)msdu->data - sizeof(*rxd);
1826                 if (rxd->msdu_end.common.info0 &
1827                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1828                         break;
1829         }
1830
1831         msdu = skb_peek_tail(amsdu);
1832         rxd = (void *)msdu->data - sizeof(*rxd);
1833         if (!(rxd->msdu_end.common.info0 &
1834               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1835                 skb_queue_splice_init(amsdu, list);
1836                 return -EAGAIN;
1837         }
1838
1839         return 0;
1840 }
1841
1842 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1843                                             struct sk_buff *skb)
1844 {
1845         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1846
1847         if (!ieee80211_has_protected(hdr->frame_control))
1848                 return;
1849
1850         /* Offloaded frames are already decrypted but firmware insists they are
1851          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1852          * will drop the frame.
1853          */
1854
1855         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1856         status->flag |= RX_FLAG_DECRYPTED |
1857                         RX_FLAG_IV_STRIPPED |
1858                         RX_FLAG_MMIC_STRIPPED;
1859 }
1860
1861 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1862                                        struct sk_buff_head *list)
1863 {
1864         struct ath10k_htt *htt = &ar->htt;
1865         struct ieee80211_rx_status *status = &htt->rx_status;
1866         struct htt_rx_offload_msdu *rx;
1867         struct sk_buff *msdu;
1868         size_t offset;
1869
1870         while ((msdu = __skb_dequeue(list))) {
1871                 /* Offloaded frames don't have Rx descriptor. Instead they have
1872                  * a short meta information header.
1873                  */
1874
1875                 rx = (void *)msdu->data;
1876
1877                 skb_put(msdu, sizeof(*rx));
1878                 skb_pull(msdu, sizeof(*rx));
1879
1880                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1881                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1882                         dev_kfree_skb_any(msdu);
1883                         continue;
1884                 }
1885
1886                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1887
1888                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1889                  * actual payload is unaligned. Align the frame.  Otherwise
1890                  * mac80211 complains.  This shouldn't reduce performance much
1891                  * because these offloaded frames are rare.
1892                  */
1893                 offset = 4 - ((unsigned long)msdu->data & 3);
1894                 skb_put(msdu, offset);
1895                 memmove(msdu->data + offset, msdu->data, msdu->len);
1896                 skb_pull(msdu, offset);
1897
1898                 /* FIXME: The frame is NWifi. Re-construct QoS Control
1899                  * if possible later.
1900                  */
1901
1902                 memset(status, 0, sizeof(*status));
1903                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1904
1905                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1906                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1907                 ath10k_process_rx(ar, status, msdu);
1908         }
1909 }
1910
1911 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1912 {
1913         struct ath10k_htt *htt = &ar->htt;
1914         struct htt_resp *resp = (void *)skb->data;
1915         struct ieee80211_rx_status *status = &htt->rx_status;
1916         struct sk_buff_head list;
1917         struct sk_buff_head amsdu;
1918         u16 peer_id;
1919         u16 msdu_count;
1920         u8 vdev_id;
1921         u8 tid;
1922         bool offload;
1923         bool frag;
1924         int ret;
1925
1926         lockdep_assert_held(&htt->rx_ring.lock);
1927
1928         if (htt->rx_confused)
1929                 return;
1930
1931         skb_pull(skb, sizeof(resp->hdr));
1932         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1933
1934         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1935         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1936         vdev_id = resp->rx_in_ord_ind.vdev_id;
1937         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1938         offload = !!(resp->rx_in_ord_ind.info &
1939                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1940         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1941
1942         ath10k_dbg(ar, ATH10K_DBG_HTT,
1943                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1944                    vdev_id, peer_id, tid, offload, frag, msdu_count);
1945
1946         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1947                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1948                 return;
1949         }
1950
1951         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1952          * extracted and processed.
1953          */
1954         __skb_queue_head_init(&list);
1955         ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1956         if (ret < 0) {
1957                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1958                 htt->rx_confused = true;
1959                 return;
1960         }
1961
1962         /* Offloaded frames are very different and need to be handled
1963          * separately.
1964          */
1965         if (offload)
1966                 ath10k_htt_rx_h_rx_offload(ar, &list);
1967
1968         while (!skb_queue_empty(&list)) {
1969                 __skb_queue_head_init(&amsdu);
1970                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1971                 switch (ret) {
1972                 case 0:
1973                         /* Note: The in-order indication may report interleaved
1974                          * frames from different PPDUs meaning reported rx rate
1975                          * to mac80211 isn't accurate/reliable. It's still
1976                          * better to report something than nothing though. This
1977                          * should still give an idea about rx rate to the user.
1978                          */
1979                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1980                         ath10k_htt_rx_h_filter(ar, &amsdu, status);
1981                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1982                         ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1983                         break;
1984                 case -EAGAIN:
1985                         /* fall through */
1986                 default:
1987                         /* Should not happen. */
1988                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1989                         htt->rx_confused = true;
1990                         __skb_queue_purge(&list);
1991                         return;
1992                 }
1993         }
1994
1995         tasklet_schedule(&htt->rx_replenish_task);
1996 }
1997
1998 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
1999                                                    const __le32 *resp_ids,
2000                                                    int num_resp_ids)
2001 {
2002         int i;
2003         u32 resp_id;
2004
2005         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2006                    num_resp_ids);
2007
2008         for (i = 0; i < num_resp_ids; i++) {
2009                 resp_id = le32_to_cpu(resp_ids[i]);
2010
2011                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2012                            resp_id);
2013
2014                 /* TODO: free resp_id */
2015         }
2016 }
2017
2018 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2019 {
2020         struct ieee80211_hw *hw = ar->hw;
2021         struct ieee80211_txq *txq;
2022         struct htt_resp *resp = (struct htt_resp *)skb->data;
2023         struct htt_tx_fetch_record *record;
2024         size_t len;
2025         size_t max_num_bytes;
2026         size_t max_num_msdus;
2027         size_t num_bytes;
2028         size_t num_msdus;
2029         const __le32 *resp_ids;
2030         u16 num_records;
2031         u16 num_resp_ids;
2032         u16 peer_id;
2033         u8 tid;
2034         int ret;
2035         int i;
2036
2037         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2038
2039         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2040         if (unlikely(skb->len < len)) {
2041                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2042                 return;
2043         }
2044
2045         num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2046         num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2047
2048         len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2049         len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2050
2051         if (unlikely(skb->len < len)) {
2052                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2053                 return;
2054         }
2055
2056         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2057                    num_records, num_resp_ids,
2058                    le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2059
2060         if (!ar->htt.tx_q_state.enabled) {
2061                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2062                 return;
2063         }
2064
2065         if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2066                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2067                 return;
2068         }
2069
2070         rcu_read_lock();
2071
2072         for (i = 0; i < num_records; i++) {
2073                 record = &resp->tx_fetch_ind.records[i];
2074                 peer_id = MS(le16_to_cpu(record->info),
2075                              HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2076                 tid = MS(le16_to_cpu(record->info),
2077                          HTT_TX_FETCH_RECORD_INFO_TID);
2078                 max_num_msdus = le16_to_cpu(record->num_msdus);
2079                 max_num_bytes = le32_to_cpu(record->num_bytes);
2080
2081                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2082                            i, peer_id, tid, max_num_msdus, max_num_bytes);
2083
2084                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2085                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2086                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2087                                     peer_id, tid);
2088                         continue;
2089                 }
2090
2091                 spin_lock_bh(&ar->data_lock);
2092                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2093                 spin_unlock_bh(&ar->data_lock);
2094
2095                 /* It is okay to release the lock and use txq because RCU read
2096                  * lock is held.
2097                  */
2098
2099                 if (unlikely(!txq)) {
2100                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2101                                     peer_id, tid);
2102                         continue;
2103                 }
2104
2105                 num_msdus = 0;
2106                 num_bytes = 0;
2107
2108                 while (num_msdus < max_num_msdus &&
2109                        num_bytes < max_num_bytes) {
2110                         ret = ath10k_mac_tx_push_txq(hw, txq);
2111                         if (ret < 0)
2112                                 break;
2113
2114                         num_msdus++;
2115                         num_bytes += ret;
2116                 }
2117
2118                 record->num_msdus = cpu_to_le16(num_msdus);
2119                 record->num_bytes = cpu_to_le32(num_bytes);
2120
2121                 ath10k_htt_tx_txq_recalc(hw, txq);
2122         }
2123
2124         rcu_read_unlock();
2125
2126         resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2127         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2128
2129         ret = ath10k_htt_tx_fetch_resp(ar,
2130                                        resp->tx_fetch_ind.token,
2131                                        resp->tx_fetch_ind.fetch_seq_num,
2132                                        resp->tx_fetch_ind.records,
2133                                        num_records);
2134         if (unlikely(ret)) {
2135                 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2136                             le32_to_cpu(resp->tx_fetch_ind.token), ret);
2137                 /* FIXME: request fw restart */
2138         }
2139
2140         ath10k_htt_tx_txq_sync(ar);
2141 }
2142
2143 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2144                                            struct sk_buff *skb)
2145 {
2146         const struct htt_resp *resp = (void *)skb->data;
2147         size_t len;
2148         int num_resp_ids;
2149
2150         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2151
2152         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2153         if (unlikely(skb->len < len)) {
2154                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2155                 return;
2156         }
2157
2158         num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2159         len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2160
2161         if (unlikely(skb->len < len)) {
2162                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2163                 return;
2164         }
2165
2166         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2167                                                resp->tx_fetch_confirm.resp_ids,
2168                                                num_resp_ids);
2169 }
2170
2171 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2172                                              struct sk_buff *skb)
2173 {
2174         const struct htt_resp *resp = (void *)skb->data;
2175         const struct htt_tx_mode_switch_record *record;
2176         struct ieee80211_txq *txq;
2177         struct ath10k_txq *artxq;
2178         size_t len;
2179         size_t num_records;
2180         enum htt_tx_mode_switch_mode mode;
2181         bool enable;
2182         u16 info0;
2183         u16 info1;
2184         u16 threshold;
2185         u16 peer_id;
2186         u8 tid;
2187         int i;
2188
2189         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2190
2191         len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2192         if (unlikely(skb->len < len)) {
2193                 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2194                 return;
2195         }
2196
2197         info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2198         info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2199
2200         enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2201         num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2202         mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2203         threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2204
2205         ath10k_dbg(ar, ATH10K_DBG_HTT,
2206                    "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2207                    info0, info1, enable, num_records, mode, threshold);
2208
2209         len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2210
2211         if (unlikely(skb->len < len)) {
2212                 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2213                 return;
2214         }
2215
2216         switch (mode) {
2217         case HTT_TX_MODE_SWITCH_PUSH:
2218         case HTT_TX_MODE_SWITCH_PUSH_PULL:
2219                 break;
2220         default:
2221                 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2222                             mode);
2223                 return;
2224         }
2225
2226         if (!enable)
2227                 return;
2228
2229         ar->htt.tx_q_state.enabled = enable;
2230         ar->htt.tx_q_state.mode = mode;
2231         ar->htt.tx_q_state.num_push_allowed = threshold;
2232
2233         rcu_read_lock();
2234
2235         for (i = 0; i < num_records; i++) {
2236                 record = &resp->tx_mode_switch_ind.records[i];
2237                 info0 = le16_to_cpu(record->info0);
2238                 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2239                 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2240
2241                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2242                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2243                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2244                                     peer_id, tid);
2245                         continue;
2246                 }
2247
2248                 spin_lock_bh(&ar->data_lock);
2249                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2250                 spin_unlock_bh(&ar->data_lock);
2251
2252                 /* It is okay to release the lock and use txq because RCU read
2253                  * lock is held.
2254                  */
2255
2256                 if (unlikely(!txq)) {
2257                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2258                                     peer_id, tid);
2259                         continue;
2260                 }
2261
2262                 spin_lock_bh(&ar->htt.tx_lock);
2263                 artxq = (void *)txq->drv_priv;
2264                 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2265                 spin_unlock_bh(&ar->htt.tx_lock);
2266         }
2267
2268         rcu_read_unlock();
2269
2270         ath10k_mac_tx_push_pending(ar);
2271 }
2272
2273 static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
2274 {
2275         enum ieee80211_band band;
2276
2277         switch (phy_mode) {
2278         case MODE_11A:
2279         case MODE_11NA_HT20:
2280         case MODE_11NA_HT40:
2281         case MODE_11AC_VHT20:
2282         case MODE_11AC_VHT40:
2283         case MODE_11AC_VHT80:
2284                 band = IEEE80211_BAND_5GHZ;
2285                 break;
2286         case MODE_11G:
2287         case MODE_11B:
2288         case MODE_11GONLY:
2289         case MODE_11NG_HT20:
2290         case MODE_11NG_HT40:
2291         case MODE_11AC_VHT20_2G:
2292         case MODE_11AC_VHT40_2G:
2293         case MODE_11AC_VHT80_2G:
2294         default:
2295                 band = IEEE80211_BAND_2GHZ;
2296         }
2297
2298         return band;
2299 }
2300
2301 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2302 {
2303         struct ath10k_htt *htt = &ar->htt;
2304         struct htt_resp *resp = (struct htt_resp *)skb->data;
2305         enum htt_t2h_msg_type type;
2306
2307         /* confirm alignment */
2308         if (!IS_ALIGNED((unsigned long)skb->data, 4))
2309                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2310
2311         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2312                    resp->hdr.msg_type);
2313
2314         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2315                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2316                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2317                 dev_kfree_skb_any(skb);
2318                 return;
2319         }
2320         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2321
2322         switch (type) {
2323         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2324                 htt->target_version_major = resp->ver_resp.major;
2325                 htt->target_version_minor = resp->ver_resp.minor;
2326                 complete(&htt->target_version_received);
2327                 break;
2328         }
2329         case HTT_T2H_MSG_TYPE_RX_IND:
2330                 skb_queue_tail(&htt->rx_compl_q, skb);
2331                 tasklet_schedule(&htt->txrx_compl_task);
2332                 return;
2333         case HTT_T2H_MSG_TYPE_PEER_MAP: {
2334                 struct htt_peer_map_event ev = {
2335                         .vdev_id = resp->peer_map.vdev_id,
2336                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2337                 };
2338                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2339                 ath10k_peer_map_event(htt, &ev);
2340                 break;
2341         }
2342         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2343                 struct htt_peer_unmap_event ev = {
2344                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2345                 };
2346                 ath10k_peer_unmap_event(htt, &ev);
2347                 break;
2348         }
2349         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2350                 struct htt_tx_done tx_done = {};
2351                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2352
2353                 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2354
2355                 switch (status) {
2356                 case HTT_MGMT_TX_STATUS_OK:
2357                         tx_done.status = HTT_TX_COMPL_STATE_ACK;
2358                         break;
2359                 case HTT_MGMT_TX_STATUS_RETRY:
2360                         tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2361                         break;
2362                 case HTT_MGMT_TX_STATUS_DROP:
2363                         tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2364                         break;
2365                 }
2366
2367                 status = ath10k_txrx_tx_unref(htt, &tx_done);
2368                 if (!status) {
2369                         spin_lock_bh(&htt->tx_lock);
2370                         ath10k_htt_tx_mgmt_dec_pending(htt);
2371                         spin_unlock_bh(&htt->tx_lock);
2372                 }
2373                 ath10k_mac_tx_push_pending(ar);
2374                 break;
2375         }
2376         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2377                 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2378                 tasklet_schedule(&htt->txrx_compl_task);
2379                 break;
2380         case HTT_T2H_MSG_TYPE_SEC_IND: {
2381                 struct ath10k *ar = htt->ar;
2382                 struct htt_security_indication *ev = &resp->security_indication;
2383
2384                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2385                            "sec ind peer_id %d unicast %d type %d\n",
2386                           __le16_to_cpu(ev->peer_id),
2387                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2388                           MS(ev->flags, HTT_SECURITY_TYPE));
2389                 complete(&ar->install_key_done);
2390                 break;
2391         }
2392         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2393                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2394                                 skb->data, skb->len);
2395                 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
2396                 break;
2397         }
2398         case HTT_T2H_MSG_TYPE_TEST:
2399                 break;
2400         case HTT_T2H_MSG_TYPE_STATS_CONF:
2401                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2402                 break;
2403         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2404                 /* Firmware can return tx frames if it's unable to fully
2405                  * process them and suspects host may be able to fix it. ath10k
2406                  * sends all tx frames as already inspected so this shouldn't
2407                  * happen unless fw has a bug.
2408                  */
2409                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2410                 break;
2411         case HTT_T2H_MSG_TYPE_RX_ADDBA:
2412                 ath10k_htt_rx_addba(ar, resp);
2413                 break;
2414         case HTT_T2H_MSG_TYPE_RX_DELBA:
2415                 ath10k_htt_rx_delba(ar, resp);
2416                 break;
2417         case HTT_T2H_MSG_TYPE_PKTLOG: {
2418                 struct ath10k_pktlog_hdr *hdr =
2419                         (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
2420
2421                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2422                                         sizeof(*hdr) +
2423                                         __le16_to_cpu(hdr->size));
2424                 break;
2425         }
2426         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2427                 /* Ignore this event because mac80211 takes care of Rx
2428                  * aggregation reordering.
2429                  */
2430                 break;
2431         }
2432         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2433                 skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2434                 tasklet_schedule(&htt->txrx_compl_task);
2435                 return;
2436         }
2437         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2438                 break;
2439         case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2440                 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2441                 u32 freq = __le32_to_cpu(resp->chan_change.freq);
2442
2443                 ar->tgt_oper_chan =
2444                         __ieee80211_get_channel(ar->hw->wiphy, freq);
2445                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2446                            "htt chan change freq %u phymode %s\n",
2447                            freq, ath10k_wmi_phymode_str(phymode));
2448                 break;
2449         }
2450         case HTT_T2H_MSG_TYPE_AGGR_CONF:
2451                 break;
2452         case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2453                 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2454
2455                 if (!tx_fetch_ind) {
2456                         ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2457                         break;
2458                 }
2459                 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2460                 tasklet_schedule(&htt->txrx_compl_task);
2461                 break;
2462         }
2463         case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2464                 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2465                 break;
2466         case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2467                 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2468                 break;
2469         case HTT_T2H_MSG_TYPE_EN_STATS:
2470         default:
2471                 ath10k_warn(ar, "htt event (%d) not handled\n",
2472                             resp->hdr.msg_type);
2473                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2474                                 skb->data, skb->len);
2475                 break;
2476         };
2477
2478         /* Free the indication buffer */
2479         dev_kfree_skb_any(skb);
2480 }
2481 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2482
2483 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2484                                              struct sk_buff *skb)
2485 {
2486         trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2487         dev_kfree_skb_any(skb);
2488 }
2489 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2490
2491 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2492 {
2493         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
2494         struct ath10k *ar = htt->ar;
2495         struct htt_tx_done tx_done = {};
2496         struct sk_buff_head rx_q;
2497         struct sk_buff_head rx_ind_q;
2498         struct sk_buff_head tx_ind_q;
2499         struct htt_resp *resp;
2500         struct sk_buff *skb;
2501         unsigned long flags;
2502
2503         __skb_queue_head_init(&rx_q);
2504         __skb_queue_head_init(&rx_ind_q);
2505         __skb_queue_head_init(&tx_ind_q);
2506
2507         spin_lock_irqsave(&htt->rx_compl_q.lock, flags);
2508         skb_queue_splice_init(&htt->rx_compl_q, &rx_q);
2509         spin_unlock_irqrestore(&htt->rx_compl_q.lock, flags);
2510
2511         spin_lock_irqsave(&htt->rx_in_ord_compl_q.lock, flags);
2512         skb_queue_splice_init(&htt->rx_in_ord_compl_q, &rx_ind_q);
2513         spin_unlock_irqrestore(&htt->rx_in_ord_compl_q.lock, flags);
2514
2515         spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2516         skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2517         spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2518
2519         /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2520          * From kfifo_get() documentation:
2521          *  Note that with only one concurrent reader and one concurrent writer,
2522          *  you don't need extra locking to use these macro.
2523          */
2524         while (kfifo_get(&htt->txdone_fifo, &tx_done))
2525                 ath10k_txrx_tx_unref(htt, &tx_done);
2526
2527         while ((skb = __skb_dequeue(&tx_ind_q))) {
2528                 ath10k_htt_rx_tx_fetch_ind(ar, skb);
2529                 dev_kfree_skb_any(skb);
2530         }
2531
2532         ath10k_mac_tx_push_pending(ar);
2533
2534         while ((skb = __skb_dequeue(&rx_q))) {
2535                 resp = (struct htt_resp *)skb->data;
2536                 spin_lock_bh(&htt->rx_ring.lock);
2537                 ath10k_htt_rx_handler(htt, &resp->rx_ind);
2538                 spin_unlock_bh(&htt->rx_ring.lock);
2539                 dev_kfree_skb_any(skb);
2540         }
2541
2542         while ((skb = __skb_dequeue(&rx_ind_q))) {
2543                 spin_lock_bh(&htt->rx_ring.lock);
2544                 ath10k_htt_rx_in_ord_ind(ar, skb);
2545                 spin_unlock_bh(&htt->rx_ring.lock);
2546                 dev_kfree_skb_any(skb);
2547         }
2548 }