]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath/ath5k/eeprom.c
Merge branch 'sh/dwarf-unwinder'
[mv-sheeva.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
28
29 /*
30  * Read from eeprom
31  */
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33 {
34         u32 status, timeout;
35
36         ATH5K_TRACE(ah->ah_sc);
37         /*
38          * Initialize EEPROM access
39          */
40         if (ah->ah_version == AR5K_AR5210) {
41                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43         } else {
44                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46                                 AR5K_EEPROM_CMD_READ);
47         }
48
49         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51                 if (status & AR5K_EEPROM_STAT_RDDONE) {
52                         if (status & AR5K_EEPROM_STAT_RDERR)
53                                 return -EIO;
54                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55                                         0xffff);
56                         return 0;
57                 }
58                 udelay(15);
59         }
60
61         return -ETIMEDOUT;
62 }
63
64 /*
65  * Translate binary channel representation in EEPROM to frequency
66  */
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68                                  unsigned int mode)
69 {
70         u16 val;
71
72         if (bin == AR5K_EEPROM_CHANNEL_DIS)
73                 return bin;
74
75         if (mode == AR5K_EEPROM_MODE_11A) {
76                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77                         val = (5 * bin) + 4800;
78                 else
79                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80                                 (bin * 10) + 5100;
81         } else {
82                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83                         val = bin + 2300;
84                 else
85                         val = bin + 2400;
86         }
87
88         return val;
89 }
90
91 /*
92  * Initialize eeprom & capabilities structs
93  */
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
96 {
97         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98         int ret;
99         u16 val;
100
101         /*
102          * Read values from EEPROM and store them in the capability structure
103          */
104         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
105         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
106         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
107         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
108         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
109
110         /* Return if we have an old EEPROM */
111         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
112                 return 0;
113
114 #ifdef notyet
115         /*
116          * Validate the checksum of the EEPROM date. There are some
117          * devices with invalid EEPROMs.
118          */
119         for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
120                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
121                 cksum ^= val;
122         }
123         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
124                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
125                 return -EIO;
126         }
127 #endif
128
129         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
130             ee_ant_gain);
131
132         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
133                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
134                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
135
136                 /* XXX: Don't know which versions include these two */
137                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
138
139                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
140                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
141
142                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
143                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
144                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
145                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
146                 }
147         }
148
149         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
150                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
151                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
152                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
153
154                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
155                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
156                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
157         }
158
159         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
160
161         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
162                 ee->ee_is_hb63 = true;
163         else
164                 ee->ee_is_hb63 = false;
165
166         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
167         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
168         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
169
170         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
171          * and enable serdes programming if needed.
172          *
173          * XXX: Serdes values seem to be fixed so
174          * no need to read them here, we write them
175          * during ath5k_hw_attach */
176         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
177         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
178                                                         true : false;
179
180         return 0;
181 }
182
183
184 /*
185  * Read antenna infos from eeprom
186  */
187 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
188                 unsigned int mode)
189 {
190         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
191         u32 o = *offset;
192         u16 val;
193         int ret, i = 0;
194
195         AR5K_EEPROM_READ(o++, val);
196         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
197         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
198         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
199
200         AR5K_EEPROM_READ(o++, val);
201         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
202         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
203         ee->ee_ant_control[mode][i++]   = val & 0x3f;
204
205         AR5K_EEPROM_READ(o++, val);
206         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
207         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
208         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
209
210         AR5K_EEPROM_READ(o++, val);
211         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
212         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
213         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
214         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
215
216         AR5K_EEPROM_READ(o++, val);
217         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
218         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
219         ee->ee_ant_control[mode][i++]   = val & 0x3f;
220
221         /* Get antenna switch tables */
222         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
223             (ee->ee_ant_control[mode][0] << 4);
224         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
225              ee->ee_ant_control[mode][1]        |
226             (ee->ee_ant_control[mode][2] << 6)  |
227             (ee->ee_ant_control[mode][3] << 12) |
228             (ee->ee_ant_control[mode][4] << 18) |
229             (ee->ee_ant_control[mode][5] << 24);
230         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
231              ee->ee_ant_control[mode][6]        |
232             (ee->ee_ant_control[mode][7] << 6)  |
233             (ee->ee_ant_control[mode][8] << 12) |
234             (ee->ee_ant_control[mode][9] << 18) |
235             (ee->ee_ant_control[mode][10] << 24);
236
237         /* return new offset */
238         *offset = o;
239
240         return 0;
241 }
242
243 /*
244  * Read supported modes and some mode-specific calibration data
245  * from eeprom
246  */
247 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
248                 unsigned int mode)
249 {
250         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
251         u32 o = *offset;
252         u16 val;
253         int ret;
254
255         ee->ee_n_piers[mode] = 0;
256         AR5K_EEPROM_READ(o++, val);
257         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
258         switch(mode) {
259         case AR5K_EEPROM_MODE_11A:
260                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
261                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
262                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
263
264                 AR5K_EEPROM_READ(o++, val);
265                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
266                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
267                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
268                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
269                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
270                 ee->ee_db[mode][0]      = val & 0x7;
271                 break;
272         case AR5K_EEPROM_MODE_11G:
273         case AR5K_EEPROM_MODE_11B:
274                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
275                 ee->ee_db[mode][1]      = val & 0x7;
276                 break;
277         }
278
279         AR5K_EEPROM_READ(o++, val);
280         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
281         ee->ee_thr_62[mode]             = val & 0xff;
282
283         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
285
286         AR5K_EEPROM_READ(o++, val);
287         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
288         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
289
290         AR5K_EEPROM_READ(o++, val);
291         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
292
293         if ((val & 0xff) & 0x80)
294                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295         else
296                 ee->ee_noise_floor_thr[mode] = val & 0xff;
297
298         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299                 ee->ee_noise_floor_thr[mode] =
300                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
301
302         AR5K_EEPROM_READ(o++, val);
303         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
304         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
305         ee->ee_xpd[mode]                = val & 0x1;
306
307         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
308                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
309
310         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
311                 AR5K_EEPROM_READ(o++, val);
312                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
313
314                 if (mode == AR5K_EEPROM_MODE_11A)
315                         ee->ee_xr_power[mode] = val & 0x3f;
316                 else {
317                         ee->ee_ob[mode][0] = val & 0x7;
318                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
319                 }
320         }
321
322         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
323                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
324                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
325         } else {
326                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
327
328                 AR5K_EEPROM_READ(o++, val);
329                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
330
331                 if (mode == AR5K_EEPROM_MODE_11G) {
332                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
333                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
334                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
335                 }
336         }
337
338         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
339                         mode == AR5K_EEPROM_MODE_11A) {
340                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
341                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
342         }
343
344         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
345                 goto done;
346
347         /* Note: >= v5 have bg freq piers on another location
348          * so these freq piers are ignored for >= v5 (should be 0xff
349          * anyway) */
350         switch(mode) {
351         case AR5K_EEPROM_MODE_11A:
352                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
353                         break;
354
355                 AR5K_EEPROM_READ(o++, val);
356                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
357                 break;
358         case AR5K_EEPROM_MODE_11B:
359                 AR5K_EEPROM_READ(o++, val);
360
361                 ee->ee_pwr_cal_b[0].freq =
362                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
363                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
364                         ee->ee_n_piers[mode]++;
365
366                 ee->ee_pwr_cal_b[1].freq =
367                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
368                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
369                         ee->ee_n_piers[mode]++;
370
371                 AR5K_EEPROM_READ(o++, val);
372                 ee->ee_pwr_cal_b[2].freq =
373                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
374                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
375                         ee->ee_n_piers[mode]++;
376
377                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
378                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
379                 break;
380         case AR5K_EEPROM_MODE_11G:
381                 AR5K_EEPROM_READ(o++, val);
382
383                 ee->ee_pwr_cal_g[0].freq =
384                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
385                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
386                         ee->ee_n_piers[mode]++;
387
388                 ee->ee_pwr_cal_g[1].freq =
389                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
390                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
391                         ee->ee_n_piers[mode]++;
392
393                 AR5K_EEPROM_READ(o++, val);
394                 ee->ee_turbo_max_power[mode] = val & 0x7f;
395                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
396
397                 AR5K_EEPROM_READ(o++, val);
398                 ee->ee_pwr_cal_g[2].freq =
399                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
400                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
401                         ee->ee_n_piers[mode]++;
402
403                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
404                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
405
406                 AR5K_EEPROM_READ(o++, val);
407                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
408                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
409
410                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
411                         AR5K_EEPROM_READ(o++, val);
412                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
413                 }
414                 break;
415         }
416
417         /*
418          * Read turbo mode information on newer EEPROM versions
419          */
420         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
421                 goto done;
422
423         switch (mode){
424         case AR5K_EEPROM_MODE_11A:
425                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
426
427                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
428                 AR5K_EEPROM_READ(o++, val);
429                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
430                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
431
432                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
433                 AR5K_EEPROM_READ(o++, val);
434                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
435                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
436
437                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
438                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
439                 break;
440         case AR5K_EEPROM_MODE_11G:
441                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
442
443                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
444                 AR5K_EEPROM_READ(o++, val);
445                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
446                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
447
448                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
449                 AR5K_EEPROM_READ(o++, val);
450                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
451                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
452                 break;
453         }
454
455 done:
456         /* return new offset */
457         *offset = o;
458
459         return 0;
460 }
461
462 /* Read mode-specific data (except power calibration data) */
463 static int
464 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
465 {
466         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
467         u32 mode_offset[3];
468         unsigned int mode;
469         u32 offset;
470         int ret;
471
472         /*
473          * Get values for all modes
474          */
475         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
476         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
477         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
478
479         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
480                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
481
482         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
483                 offset = mode_offset[mode];
484
485                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
486                 if (ret)
487                         return ret;
488
489                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
490                 if (ret)
491                         return ret;
492         }
493
494         /* override for older eeprom versions for better performance */
495         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
496                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
497                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
498                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
499         }
500
501         return 0;
502 }
503
504 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
505  * frequency mask) */
506 static inline int
507 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
508                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
509 {
510         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
511         int o = *offset;
512         int i = 0;
513         u8 freq1, freq2;
514         int ret;
515         u16 val;
516
517         ee->ee_n_piers[mode] = 0;
518         while(i < max) {
519                 AR5K_EEPROM_READ(o++, val);
520
521                 freq1 = val & 0xff;
522                 if (!freq1)
523                         break;
524
525                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
526                                 freq1, mode);
527                 ee->ee_n_piers[mode]++;
528
529                 freq2 = (val >> 8) & 0xff;
530                 if (!freq2)
531                         break;
532
533                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
534                                 freq2, mode);
535                 ee->ee_n_piers[mode]++;
536         }
537
538         /* return new offset */
539         *offset = o;
540
541         return 0;
542 }
543
544 /* Read frequency piers for 802.11a */
545 static int
546 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
547 {
548         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
549         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
550         int i, ret;
551         u16 val;
552         u8 mask;
553
554         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
555                 ath5k_eeprom_read_freq_list(ah, &offset,
556                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
557                         AR5K_EEPROM_MODE_11A);
558         } else {
559                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
560
561                 AR5K_EEPROM_READ(offset++, val);
562                 pcal[0].freq  = (val >> 9) & mask;
563                 pcal[1].freq  = (val >> 2) & mask;
564                 pcal[2].freq  = (val << 5) & mask;
565
566                 AR5K_EEPROM_READ(offset++, val);
567                 pcal[2].freq |= (val >> 11) & 0x1f;
568                 pcal[3].freq  = (val >> 4) & mask;
569                 pcal[4].freq  = (val << 3) & mask;
570
571                 AR5K_EEPROM_READ(offset++, val);
572                 pcal[4].freq |= (val >> 13) & 0x7;
573                 pcal[5].freq  = (val >> 6) & mask;
574                 pcal[6].freq  = (val << 1) & mask;
575
576                 AR5K_EEPROM_READ(offset++, val);
577                 pcal[6].freq |= (val >> 15) & 0x1;
578                 pcal[7].freq  = (val >> 8) & mask;
579                 pcal[8].freq  = (val >> 1) & mask;
580                 pcal[9].freq  = (val << 6) & mask;
581
582                 AR5K_EEPROM_READ(offset++, val);
583                 pcal[9].freq |= (val >> 10) & 0x3f;
584
585                 /* Fixed number of piers */
586                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
587
588                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
589                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
590                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
591                 }
592         }
593
594         return 0;
595 }
596
597 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
598 static inline int
599 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
600 {
601         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
602         struct ath5k_chan_pcal_info *pcal;
603
604         switch(mode) {
605         case AR5K_EEPROM_MODE_11B:
606                 pcal = ee->ee_pwr_cal_b;
607                 break;
608         case AR5K_EEPROM_MODE_11G:
609                 pcal = ee->ee_pwr_cal_g;
610                 break;
611         default:
612                 return -EINVAL;
613         }
614
615         ath5k_eeprom_read_freq_list(ah, &offset,
616                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
617                 mode);
618
619         return 0;
620 }
621
622 /*
623  * Read power calibration for RF5111 chips
624  *
625  * For RF5111 we have an XPD -eXternal Power Detector- curve
626  * for each calibrated channel. Each curve has 0,5dB Power steps
627  * on x axis and PCDAC steps (offsets) on y axis and looks like an
628  * exponential function. To recreate the curve we read 11 points
629  * here and interpolate later.
630  */
631
632 /* Used to match PCDAC steps with power values on RF5111 chips
633  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
634  * steps that match with the power values we read from eeprom. On
635  * older eeprom versions (< 3.2) these steps are equaly spaced at
636  * 10% of the pcdac curve -until the curve reaches it's maximum-
637  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
638  * these 11 steps are spaced in a different way. This function returns
639  * the pcdac steps based on eeprom version and curve min/max so that we
640  * can have pcdac/pwr points.
641  */
642 static inline void
643 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
644 {
645         static const u16 intercepts3[] =
646                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
647         static const u16 intercepts3_2[] =
648                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
649         const u16 *ip;
650         int i;
651
652         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
653                 ip = intercepts3_2;
654         else
655                 ip = intercepts3;
656
657         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
658                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
659 }
660
661 /* Convert RF5111 specific data to generic raw data
662  * used by interpolation code */
663 static int
664 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
665                                 struct ath5k_chan_pcal_info *chinfo)
666 {
667         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
668         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
669         struct ath5k_pdgain_info *pd;
670         u8 pier, point, idx;
671         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
672
673         /* Fill raw data for each calibration pier */
674         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
675
676                 pcinfo = &chinfo[pier].rf5111_info;
677
678                 /* Allocate pd_curves for this cal pier */
679                 chinfo[pier].pd_curves =
680                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
681                                 sizeof(struct ath5k_pdgain_info),
682                                 GFP_KERNEL);
683
684                 if (!chinfo[pier].pd_curves)
685                         return -ENOMEM;
686
687                 /* Only one curve for RF5111
688                  * find out which one and place
689                  * in in pd_curves.
690                  * Note: ee_x_gain is reversed here */
691                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
692
693                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
694                                 pdgain_idx[0] = idx;
695                                 break;
696                         }
697                 }
698
699                 ee->ee_pd_gains[mode] = 1;
700
701                 pd = &chinfo[pier].pd_curves[idx];
702
703                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
704
705                 /* Allocate pd points for this curve */
706                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
707                                         sizeof(u8), GFP_KERNEL);
708                 if (!pd->pd_step)
709                         return -ENOMEM;
710
711                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
712                                         sizeof(s16), GFP_KERNEL);
713                 if (!pd->pd_pwr)
714                         return -ENOMEM;
715
716                 /* Fill raw dataset
717                  * (convert power to 0.25dB units
718                  * for RF5112 combatibility) */
719                 for (point = 0; point < pd->pd_points; point++) {
720
721                         /* Absolute values */
722                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
723
724                         /* Already sorted */
725                         pd->pd_step[point] = pcinfo->pcdac[point];
726                 }
727
728                 /* Set min/max pwr */
729                 chinfo[pier].min_pwr = pd->pd_pwr[0];
730                 chinfo[pier].max_pwr = pd->pd_pwr[10];
731
732         }
733
734         return 0;
735 }
736
737 /* Parse EEPROM data */
738 static int
739 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
740 {
741         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
742         struct ath5k_chan_pcal_info *pcal;
743         int offset, ret;
744         int i;
745         u16 val;
746
747         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
748         switch(mode) {
749         case AR5K_EEPROM_MODE_11A:
750                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
751                         return 0;
752
753                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
754                         offset + AR5K_EEPROM_GROUP1_OFFSET);
755                 if (ret < 0)
756                         return ret;
757
758                 offset += AR5K_EEPROM_GROUP2_OFFSET;
759                 pcal = ee->ee_pwr_cal_a;
760                 break;
761         case AR5K_EEPROM_MODE_11B:
762                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
763                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
764                         return 0;
765
766                 pcal = ee->ee_pwr_cal_b;
767                 offset += AR5K_EEPROM_GROUP3_OFFSET;
768
769                 /* fixed piers */
770                 pcal[0].freq = 2412;
771                 pcal[1].freq = 2447;
772                 pcal[2].freq = 2484;
773                 ee->ee_n_piers[mode] = 3;
774                 break;
775         case AR5K_EEPROM_MODE_11G:
776                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
777                         return 0;
778
779                 pcal = ee->ee_pwr_cal_g;
780                 offset += AR5K_EEPROM_GROUP4_OFFSET;
781
782                 /* fixed piers */
783                 pcal[0].freq = 2312;
784                 pcal[1].freq = 2412;
785                 pcal[2].freq = 2484;
786                 ee->ee_n_piers[mode] = 3;
787                 break;
788         default:
789                 return -EINVAL;
790         }
791
792         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
793                 struct ath5k_chan_pcal_info_rf5111 *cdata =
794                         &pcal[i].rf5111_info;
795
796                 AR5K_EEPROM_READ(offset++, val);
797                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
798                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
799                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
800
801                 AR5K_EEPROM_READ(offset++, val);
802                 cdata->pwr[0] |= ((val >> 14) & 0x3);
803                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
804                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
805                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
806
807                 AR5K_EEPROM_READ(offset++, val);
808                 cdata->pwr[3] |= ((val >> 12) & 0xf);
809                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
810                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
811
812                 AR5K_EEPROM_READ(offset++, val);
813                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
814                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
815                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
816
817                 AR5K_EEPROM_READ(offset++, val);
818                 cdata->pwr[8] |= ((val >> 14) & 0x3);
819                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
820                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
821
822                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
823                         cdata->pcdac_max, cdata->pcdac);
824         }
825
826         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
827 }
828
829
830 /*
831  * Read power calibration for RF5112 chips
832  *
833  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
834  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
835  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
836  * power steps on x axis and PCDAC steps on y axis and looks like a
837  * linear function. To recreate the curve and pass the power values
838  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
839  * and 3 points for xpd 3 (higher gain -> lower power) here and
840  * interpolate later.
841  *
842  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
843  */
844
845 /* Convert RF5112 specific data to generic raw data
846  * used by interpolation code */
847 static int
848 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
849                                 struct ath5k_chan_pcal_info *chinfo)
850 {
851         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
852         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
853         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
854         unsigned int pier, pdg, point;
855
856         /* Fill raw data for each calibration pier */
857         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
858
859                 pcinfo = &chinfo[pier].rf5112_info;
860
861                 /* Allocate pd_curves for this cal pier */
862                 chinfo[pier].pd_curves =
863                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
864                                         sizeof(struct ath5k_pdgain_info),
865                                         GFP_KERNEL);
866
867                 if (!chinfo[pier].pd_curves)
868                         return -ENOMEM;
869
870                 /* Fill pd_curves */
871                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
872
873                         u8 idx = pdgain_idx[pdg];
874                         struct ath5k_pdgain_info *pd =
875                                         &chinfo[pier].pd_curves[idx];
876
877                         /* Lowest gain curve (max power) */
878                         if (pdg == 0) {
879                                 /* One more point for better accuracy */
880                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
881
882                                 /* Allocate pd points for this curve */
883                                 pd->pd_step = kcalloc(pd->pd_points,
884                                                 sizeof(u8), GFP_KERNEL);
885
886                                 if (!pd->pd_step)
887                                         return -ENOMEM;
888
889                                 pd->pd_pwr = kcalloc(pd->pd_points,
890                                                 sizeof(s16), GFP_KERNEL);
891
892                                 if (!pd->pd_pwr)
893                                         return -ENOMEM;
894
895
896                                 /* Fill raw dataset
897                                  * (all power levels are in 0.25dB units) */
898                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
899                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
900
901                                 for (point = 1; point < pd->pd_points;
902                                 point++) {
903                                         /* Absolute values */
904                                         pd->pd_pwr[point] =
905                                                 pcinfo->pwr_x0[point];
906
907                                         /* Deltas */
908                                         pd->pd_step[point] =
909                                                 pd->pd_step[point - 1] +
910                                                 pcinfo->pcdac_x0[point];
911                                 }
912
913                                 /* Set min power for this frequency */
914                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
915
916                         /* Highest gain curve (min power) */
917                         } else if (pdg == 1) {
918
919                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
920
921                                 /* Allocate pd points for this curve */
922                                 pd->pd_step = kcalloc(pd->pd_points,
923                                                 sizeof(u8), GFP_KERNEL);
924
925                                 if (!pd->pd_step)
926                                         return -ENOMEM;
927
928                                 pd->pd_pwr = kcalloc(pd->pd_points,
929                                                 sizeof(s16), GFP_KERNEL);
930
931                                 if (!pd->pd_pwr)
932                                         return -ENOMEM;
933
934                                 /* Fill raw dataset
935                                  * (all power levels are in 0.25dB units) */
936                                 for (point = 0; point < pd->pd_points;
937                                 point++) {
938                                         /* Absolute values */
939                                         pd->pd_pwr[point] =
940                                                 pcinfo->pwr_x3[point];
941
942                                         /* Fixed points */
943                                         pd->pd_step[point] =
944                                                 pcinfo->pcdac_x3[point];
945                                 }
946
947                                 /* Since we have a higher gain curve
948                                  * override min power */
949                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
950                         }
951                 }
952         }
953
954         return 0;
955 }
956
957 /* Parse EEPROM data */
958 static int
959 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
960 {
961         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
962         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
963         struct ath5k_chan_pcal_info *gen_chan_info;
964         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
965         u32 offset;
966         u8 i, c;
967         u16 val;
968         int ret;
969         u8 pd_gains = 0;
970
971         /* Count how many curves we have and
972          * identify them (which one of the 4
973          * available curves we have on each count).
974          * Curves are stored from lower (x0) to
975          * higher (x3) gain */
976         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
977                 /* ee_x_gain[mode] is x gain mask */
978                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
979                         pdgain_idx[pd_gains++] = i;
980         }
981         ee->ee_pd_gains[mode] = pd_gains;
982
983         if (pd_gains == 0 || pd_gains > 2)
984                 return -EINVAL;
985
986         switch (mode) {
987         case AR5K_EEPROM_MODE_11A:
988                 /*
989                  * Read 5GHz EEPROM channels
990                  */
991                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
992                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
993
994                 offset += AR5K_EEPROM_GROUP2_OFFSET;
995                 gen_chan_info = ee->ee_pwr_cal_a;
996                 break;
997         case AR5K_EEPROM_MODE_11B:
998                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
999                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1000                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1001
1002                 /* NB: frequency piers parsed during mode init */
1003                 gen_chan_info = ee->ee_pwr_cal_b;
1004                 break;
1005         case AR5K_EEPROM_MODE_11G:
1006                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1007                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1008                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1009                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1010                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1011
1012                 /* NB: frequency piers parsed during mode init */
1013                 gen_chan_info = ee->ee_pwr_cal_g;
1014                 break;
1015         default:
1016                 return -EINVAL;
1017         }
1018
1019         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1020                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1021
1022                 /* Power values in quarter dB
1023                  * for the lower xpd gain curve
1024                  * (0 dBm -> higher output power) */
1025                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1026                         AR5K_EEPROM_READ(offset++, val);
1027                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1028                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1029                 }
1030
1031                 /* PCDAC steps
1032                  * corresponding to the above power
1033                  * measurements */
1034                 AR5K_EEPROM_READ(offset++, val);
1035                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1036                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1037                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1038
1039                 /* Power values in quarter dB
1040                  * for the higher xpd gain curve
1041                  * (18 dBm -> lower output power) */
1042                 AR5K_EEPROM_READ(offset++, val);
1043                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1044                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1045
1046                 AR5K_EEPROM_READ(offset++, val);
1047                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1048
1049                 /* PCDAC steps
1050                  * corresponding to the above power
1051                  * measurements (fixed) */
1052                 chan_pcal_info->pcdac_x3[0] = 20;
1053                 chan_pcal_info->pcdac_x3[1] = 35;
1054                 chan_pcal_info->pcdac_x3[2] = 63;
1055
1056                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1057                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1058
1059                         /* Last xpd0 power level is also channel maximum */
1060                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1061                 } else {
1062                         chan_pcal_info->pcdac_x0[0] = 1;
1063                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1064                 }
1065
1066         }
1067
1068         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1069 }
1070
1071
1072 /*
1073  * Read power calibration for RF2413 chips
1074  *
1075  * For RF2413 we have a Power to PDDAC table (Power Detector)
1076  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1077  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1078  * axis and looks like an exponential function like the RF5111 curve.
1079  *
1080  * To recreate the curves we read here the points and interpolate
1081  * later. Note that in most cases only 2 (higher and lower) curves are
1082  * used (like RF5112) but vendors have the oportunity to include all
1083  * 4 curves on eeprom. The final curve (higher power) has an extra
1084  * point for better accuracy like RF5112.
1085  */
1086
1087 /* For RF2413 power calibration data doesn't start on a fixed location and
1088  * if a mode is not supported, it's section is missing -not zeroed-.
1089  * So we need to calculate the starting offset for each section by using
1090  * these two functions */
1091
1092 /* Return the size of each section based on the mode and the number of pd
1093  * gains available (maximum 4). */
1094 static inline unsigned int
1095 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1096 {
1097         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1098         unsigned int sz;
1099
1100         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1101         sz *= ee->ee_n_piers[mode];
1102
1103         return sz;
1104 }
1105
1106 /* Return the starting offset for a section based on the modes supported
1107  * and each section's size. */
1108 static unsigned int
1109 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1110 {
1111         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1112
1113         switch(mode) {
1114         case AR5K_EEPROM_MODE_11G:
1115                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1116                         offset += ath5k_pdgains_size_2413(ee,
1117                                         AR5K_EEPROM_MODE_11B) +
1118                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1119                 /* fall through */
1120         case AR5K_EEPROM_MODE_11B:
1121                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1122                         offset += ath5k_pdgains_size_2413(ee,
1123                                         AR5K_EEPROM_MODE_11A) +
1124                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1125                 /* fall through */
1126         case AR5K_EEPROM_MODE_11A:
1127                 break;
1128         default:
1129                 break;
1130         }
1131
1132         return offset;
1133 }
1134
1135 /* Convert RF2413 specific data to generic raw data
1136  * used by interpolation code */
1137 static int
1138 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1139                                 struct ath5k_chan_pcal_info *chinfo)
1140 {
1141         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1142         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1143         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1144         unsigned int pier, pdg, point;
1145
1146         /* Fill raw data for each calibration pier */
1147         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1148
1149                 pcinfo = &chinfo[pier].rf2413_info;
1150
1151                 /* Allocate pd_curves for this cal pier */
1152                 chinfo[pier].pd_curves =
1153                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1154                                         sizeof(struct ath5k_pdgain_info),
1155                                         GFP_KERNEL);
1156
1157                 if (!chinfo[pier].pd_curves)
1158                         return -ENOMEM;
1159
1160                 /* Fill pd_curves */
1161                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1162
1163                         u8 idx = pdgain_idx[pdg];
1164                         struct ath5k_pdgain_info *pd =
1165                                         &chinfo[pier].pd_curves[idx];
1166
1167                         /* One more point for the highest power
1168                          * curve (lowest gain) */
1169                         if (pdg == ee->ee_pd_gains[mode] - 1)
1170                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1171                         else
1172                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1173
1174                         /* Allocate pd points for this curve */
1175                         pd->pd_step = kcalloc(pd->pd_points,
1176                                         sizeof(u8), GFP_KERNEL);
1177
1178                         if (!pd->pd_step)
1179                                 return -ENOMEM;
1180
1181                         pd->pd_pwr = kcalloc(pd->pd_points,
1182                                         sizeof(s16), GFP_KERNEL);
1183
1184                         if (!pd->pd_pwr)
1185                                 return -ENOMEM;
1186
1187                         /* Fill raw dataset
1188                          * convert all pwr levels to
1189                          * quarter dB for RF5112 combatibility */
1190                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1191                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1192
1193                         for (point = 1; point < pd->pd_points; point++) {
1194
1195                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1196                                         2 * pcinfo->pwr[pdg][point - 1];
1197
1198                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1199                                                 pcinfo->pddac[pdg][point - 1];
1200
1201                         }
1202
1203                         /* Highest gain curve -> min power */
1204                         if (pdg == 0)
1205                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1206
1207                         /* Lowest gain curve -> max power */
1208                         if (pdg == ee->ee_pd_gains[mode] - 1)
1209                                 chinfo[pier].max_pwr =
1210                                         pd->pd_pwr[pd->pd_points - 1];
1211                 }
1212         }
1213
1214         return 0;
1215 }
1216
1217 /* Parse EEPROM data */
1218 static int
1219 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1220 {
1221         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1222         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1223         struct ath5k_chan_pcal_info *chinfo;
1224         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1225         u32 offset;
1226         int idx, i, ret;
1227         u16 val;
1228         u8 pd_gains = 0;
1229
1230         /* Count how many curves we have and
1231          * identify them (which one of the 4
1232          * available curves we have on each count).
1233          * Curves are stored from higher to
1234          * lower gain so we go backwards */
1235         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1236                 /* ee_x_gain[mode] is x gain mask */
1237                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1238                         pdgain_idx[pd_gains++] = idx;
1239
1240         }
1241         ee->ee_pd_gains[mode] = pd_gains;
1242
1243         if (pd_gains == 0)
1244                 return -EINVAL;
1245
1246         offset = ath5k_cal_data_offset_2413(ee, mode);
1247         switch (mode) {
1248         case AR5K_EEPROM_MODE_11A:
1249                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1250                         return 0;
1251
1252                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1253                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1254                 chinfo = ee->ee_pwr_cal_a;
1255                 break;
1256         case AR5K_EEPROM_MODE_11B:
1257                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1258                         return 0;
1259
1260                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1261                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1262                 chinfo = ee->ee_pwr_cal_b;
1263                 break;
1264         case AR5K_EEPROM_MODE_11G:
1265                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1266                         return 0;
1267
1268                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1269                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1270                 chinfo = ee->ee_pwr_cal_g;
1271                 break;
1272         default:
1273                 return -EINVAL;
1274         }
1275
1276         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1277                 pcinfo = &chinfo[i].rf2413_info;
1278
1279                 /*
1280                  * Read pwr_i, pddac_i and the first
1281                  * 2 pd points (pwr, pddac)
1282                  */
1283                 AR5K_EEPROM_READ(offset++, val);
1284                 pcinfo->pwr_i[0] = val & 0x1f;
1285                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1286                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1287
1288                 AR5K_EEPROM_READ(offset++, val);
1289                 pcinfo->pddac[0][0] = val & 0x3f;
1290                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1291                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1292
1293                 AR5K_EEPROM_READ(offset++, val);
1294                 pcinfo->pwr[0][2] = val & 0xf;
1295                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1296
1297                 pcinfo->pwr[0][3] = 0;
1298                 pcinfo->pddac[0][3] = 0;
1299
1300                 if (pd_gains > 1) {
1301                         /*
1302                          * Pd gain 0 is not the last pd gain
1303                          * so it only has 2 pd points.
1304                          * Continue wih pd gain 1.
1305                          */
1306                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1307
1308                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1309                         AR5K_EEPROM_READ(offset++, val);
1310                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1311
1312                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1313                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1314
1315                         AR5K_EEPROM_READ(offset++, val);
1316                         pcinfo->pwr[1][1] = val & 0xf;
1317                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1318                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1319
1320                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1321                         AR5K_EEPROM_READ(offset++, val);
1322                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1323
1324                         pcinfo->pwr[1][3] = 0;
1325                         pcinfo->pddac[1][3] = 0;
1326                 } else if (pd_gains == 1) {
1327                         /*
1328                          * Pd gain 0 is the last one so
1329                          * read the extra point.
1330                          */
1331                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1332
1333                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1334                         AR5K_EEPROM_READ(offset++, val);
1335                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1336                 }
1337
1338                 /*
1339                  * Proceed with the other pd_gains
1340                  * as above.
1341                  */
1342                 if (pd_gains > 2) {
1343                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1344                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1345
1346                         AR5K_EEPROM_READ(offset++, val);
1347                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1348                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1349                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1350
1351                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1352                         AR5K_EEPROM_READ(offset++, val);
1353                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1354
1355                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1356                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1357
1358                         pcinfo->pwr[2][3] = 0;
1359                         pcinfo->pddac[2][3] = 0;
1360                 } else if (pd_gains == 2) {
1361                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1362                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1363                 }
1364
1365                 if (pd_gains > 3) {
1366                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1367                         AR5K_EEPROM_READ(offset++, val);
1368                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1369
1370                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1371                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1372                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1373
1374                         AR5K_EEPROM_READ(offset++, val);
1375                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1376                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1377                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1378
1379                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1380                         AR5K_EEPROM_READ(offset++, val);
1381                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1382
1383                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1384                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1385
1386                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1387                         AR5K_EEPROM_READ(offset++, val);
1388                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1389                 } else if (pd_gains == 3) {
1390                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1391                         AR5K_EEPROM_READ(offset++, val);
1392                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1393
1394                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1395                 }
1396         }
1397
1398         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1399 }
1400
1401
1402 /*
1403  * Read per rate target power (this is the maximum tx power
1404  * supported by the card). This info is used when setting
1405  * tx power, no matter the channel.
1406  *
1407  * This also works for v5 EEPROMs.
1408  */
1409 static int
1410 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1411 {
1412         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1413         struct ath5k_rate_pcal_info *rate_pcal_info;
1414         u8 *rate_target_pwr_num;
1415         u32 offset;
1416         u16 val;
1417         int ret, i;
1418
1419         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1420         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1421         switch (mode) {
1422         case AR5K_EEPROM_MODE_11A:
1423                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1424                 rate_pcal_info = ee->ee_rate_tpwr_a;
1425                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1426                 break;
1427         case AR5K_EEPROM_MODE_11B:
1428                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1429                 rate_pcal_info = ee->ee_rate_tpwr_b;
1430                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1431                 break;
1432         case AR5K_EEPROM_MODE_11G:
1433                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1434                 rate_pcal_info = ee->ee_rate_tpwr_g;
1435                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1436                 break;
1437         default:
1438                 return -EINVAL;
1439         }
1440
1441         /* Different freq mask for older eeproms (<= v3.2) */
1442         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1443                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1444                         AR5K_EEPROM_READ(offset++, val);
1445                         rate_pcal_info[i].freq =
1446                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1447
1448                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1449                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1450
1451                         AR5K_EEPROM_READ(offset++, val);
1452
1453                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1454                             val == 0) {
1455                                 (*rate_target_pwr_num) = i;
1456                                 break;
1457                         }
1458
1459                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1460                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1461                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1462                 }
1463         } else {
1464                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1465                         AR5K_EEPROM_READ(offset++, val);
1466                         rate_pcal_info[i].freq =
1467                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1468
1469                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1470                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1471
1472                         AR5K_EEPROM_READ(offset++, val);
1473
1474                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1475                             val == 0) {
1476                                 (*rate_target_pwr_num) = i;
1477                                 break;
1478                         }
1479
1480                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1481                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1482                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1483                 }
1484         }
1485
1486         return 0;
1487 }
1488
1489 /*
1490  * Read per channel calibration info from EEPROM
1491  *
1492  * This info is used to calibrate the baseband power table. Imagine
1493  * that for each channel there is a power curve that's hw specific
1494  * (depends on amplifier etc) and we try to "correct" this curve using
1495  * offests we pass on to phy chip (baseband -> before amplifier) so that
1496  * it can use accurate power values when setting tx power (takes amplifier's
1497  * performance on each channel into account).
1498  *
1499  * EEPROM provides us with the offsets for some pre-calibrated channels
1500  * and we have to interpolate to create the full table for these channels and
1501  * also the table for any channel.
1502  */
1503 static int
1504 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1505 {
1506         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1507         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1508         int mode;
1509         int err;
1510
1511         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1512                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1513                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1514         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1515                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1516                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1517         else
1518                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1519
1520
1521         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1522         mode++) {
1523                 err = read_pcal(ah, mode);
1524                 if (err)
1525                         return err;
1526
1527                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1528                 if (err < 0)
1529                         return err;
1530         }
1531
1532         return 0;
1533 }
1534
1535 static int
1536 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1537 {
1538         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1539         struct ath5k_chan_pcal_info *chinfo;
1540         u8 pier, pdg;
1541
1542         switch (mode) {
1543         case AR5K_EEPROM_MODE_11A:
1544                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1545                         return 0;
1546                 chinfo = ee->ee_pwr_cal_a;
1547                 break;
1548         case AR5K_EEPROM_MODE_11B:
1549                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1550                         return 0;
1551                 chinfo = ee->ee_pwr_cal_b;
1552                 break;
1553         case AR5K_EEPROM_MODE_11G:
1554                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1555                         return 0;
1556                 chinfo = ee->ee_pwr_cal_g;
1557                 break;
1558         default:
1559                 return -EINVAL;
1560         }
1561
1562         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1563                 if (!chinfo[pier].pd_curves)
1564                         continue;
1565
1566                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1567                         struct ath5k_pdgain_info *pd =
1568                                         &chinfo[pier].pd_curves[pdg];
1569
1570                         if (pd != NULL) {
1571                                 kfree(pd->pd_step);
1572                                 kfree(pd->pd_pwr);
1573                         }
1574                 }
1575
1576                 kfree(chinfo[pier].pd_curves);
1577         }
1578
1579         return 0;
1580 }
1581
1582 void
1583 ath5k_eeprom_detach(struct ath5k_hw *ah)
1584 {
1585         u8 mode;
1586
1587         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1588                 ath5k_eeprom_free_pcal_info(ah, mode);
1589 }
1590
1591 /* Read conformance test limits used for regulatory control */
1592 static int
1593 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1594 {
1595         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1596         struct ath5k_edge_power *rep;
1597         unsigned int fmask, pmask;
1598         unsigned int ctl_mode;
1599         int ret, i, j;
1600         u32 offset;
1601         u16 val;
1602
1603         pmask = AR5K_EEPROM_POWER_M;
1604         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1605         offset = AR5K_EEPROM_CTL(ee->ee_version);
1606         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1607         for (i = 0; i < ee->ee_ctls; i += 2) {
1608                 AR5K_EEPROM_READ(offset++, val);
1609                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1610                 ee->ee_ctl[i + 1] = val & 0xff;
1611         }
1612
1613         offset = AR5K_EEPROM_GROUP8_OFFSET;
1614         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1615                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1616                         AR5K_EEPROM_GROUP5_OFFSET;
1617         else
1618                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1619
1620         rep = ee->ee_ctl_pwr;
1621         for(i = 0; i < ee->ee_ctls; i++) {
1622                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1623                 case AR5K_CTL_11A:
1624                 case AR5K_CTL_TURBO:
1625                         ctl_mode = AR5K_EEPROM_MODE_11A;
1626                         break;
1627                 default:
1628                         ctl_mode = AR5K_EEPROM_MODE_11G;
1629                         break;
1630                 }
1631                 if (ee->ee_ctl[i] == 0) {
1632                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1633                                 offset += 8;
1634                         else
1635                                 offset += 7;
1636                         rep += AR5K_EEPROM_N_EDGES;
1637                         continue;
1638                 }
1639                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1640                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1641                                 AR5K_EEPROM_READ(offset++, val);
1642                                 rep[j].freq = (val >> 8) & fmask;
1643                                 rep[j + 1].freq = val & fmask;
1644                         }
1645                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646                                 AR5K_EEPROM_READ(offset++, val);
1647                                 rep[j].edge = (val >> 8) & pmask;
1648                                 rep[j].flag = (val >> 14) & 1;
1649                                 rep[j + 1].edge = val & pmask;
1650                                 rep[j + 1].flag = (val >> 6) & 1;
1651                         }
1652                 } else {
1653                         AR5K_EEPROM_READ(offset++, val);
1654                         rep[0].freq = (val >> 9) & fmask;
1655                         rep[1].freq = (val >> 2) & fmask;
1656                         rep[2].freq = (val << 5) & fmask;
1657
1658                         AR5K_EEPROM_READ(offset++, val);
1659                         rep[2].freq |= (val >> 11) & 0x1f;
1660                         rep[3].freq = (val >> 4) & fmask;
1661                         rep[4].freq = (val << 3) & fmask;
1662
1663                         AR5K_EEPROM_READ(offset++, val);
1664                         rep[4].freq |= (val >> 13) & 0x7;
1665                         rep[5].freq = (val >> 6) & fmask;
1666                         rep[6].freq = (val << 1) & fmask;
1667
1668                         AR5K_EEPROM_READ(offset++, val);
1669                         rep[6].freq |= (val >> 15) & 0x1;
1670                         rep[7].freq = (val >> 8) & fmask;
1671
1672                         rep[0].edge = (val >> 2) & pmask;
1673                         rep[1].edge = (val << 4) & pmask;
1674
1675                         AR5K_EEPROM_READ(offset++, val);
1676                         rep[1].edge |= (val >> 12) & 0xf;
1677                         rep[2].edge = (val >> 6) & pmask;
1678                         rep[3].edge = val & pmask;
1679
1680                         AR5K_EEPROM_READ(offset++, val);
1681                         rep[4].edge = (val >> 10) & pmask;
1682                         rep[5].edge = (val >> 4) & pmask;
1683                         rep[6].edge = (val << 2) & pmask;
1684
1685                         AR5K_EEPROM_READ(offset++, val);
1686                         rep[6].edge |= (val >> 14) & 0x3;
1687                         rep[7].edge = (val >> 8) & pmask;
1688                 }
1689                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1690                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1691                                 rep[j].freq, ctl_mode);
1692                 }
1693                 rep += AR5K_EEPROM_N_EDGES;
1694         }
1695
1696         return 0;
1697 }
1698
1699 static int
1700 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1701 {
1702         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1703         u32 offset;
1704         u16 val;
1705         int ret = 0, i;
1706
1707         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1708                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1709
1710         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1711                 /* No spur info for 5GHz */
1712                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1713                 /* 2 channels for 2GHz (2464/2420) */
1714                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1715                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1716                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1717         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1718                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1719                         AR5K_EEPROM_READ(offset, val);
1720                         ee->ee_spur_chans[i][0] = val;
1721                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1722                                                                         val);
1723                         ee->ee_spur_chans[i][1] = val;
1724                         offset++;
1725                 }
1726         }
1727
1728         return ret;
1729 }
1730
1731 /*
1732  * Initialize eeprom data structure
1733  */
1734 int
1735 ath5k_eeprom_init(struct ath5k_hw *ah)
1736 {
1737         int err;
1738
1739         err = ath5k_eeprom_init_header(ah);
1740         if (err < 0)
1741                 return err;
1742
1743         err = ath5k_eeprom_init_modes(ah);
1744         if (err < 0)
1745                 return err;
1746
1747         err = ath5k_eeprom_read_pcal_info(ah);
1748         if (err < 0)
1749                 return err;
1750
1751         err = ath5k_eeprom_read_ctl_info(ah);
1752         if (err < 0)
1753                 return err;
1754
1755         err = ath5k_eeprom_read_spur_chans(ah);
1756         if (err < 0)
1757                 return err;
1758
1759         return 0;
1760 }
1761
1762 /*
1763  * Read the MAC address from eeprom
1764  */
1765 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1766 {
1767         u8 mac_d[ETH_ALEN] = {};
1768         u32 total, offset;
1769         u16 data;
1770         int octet, ret;
1771
1772         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1773         if (ret)
1774                 return ret;
1775
1776         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1777                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1778                 if (ret)
1779                         return ret;
1780
1781                 total += data;
1782                 mac_d[octet + 1] = data & 0xff;
1783                 mac_d[octet] = data >> 8;
1784                 octet += 2;
1785         }
1786
1787         if (!total || total == 3 * 0xffff)
1788                 return -EINVAL;
1789
1790         memcpy(mac, mac_d, ETH_ALEN);
1791
1792         return 0;
1793 }