]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath/ath5k/eeprom.c
Merge tag 'v2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mv-sheeva.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
30
31
32 /******************\
33 * Helper functions *
34 \******************/
35
36 /*
37  * Translate binary channel representation in EEPROM to frequency
38  */
39 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
40                                                         unsigned int mode)
41 {
42         u16 val;
43
44         if (bin == AR5K_EEPROM_CHANNEL_DIS)
45                 return bin;
46
47         if (mode == AR5K_EEPROM_MODE_11A) {
48                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
49                         val = (5 * bin) + 4800;
50                 else
51                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
52                                 (bin * 10) + 5100;
53         } else {
54                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
55                         val = bin + 2300;
56                 else
57                         val = bin + 2400;
58         }
59
60         return val;
61 }
62
63
64 /*********\
65 * Parsers *
66 \*********/
67
68 /*
69  * Initialize eeprom & capabilities structs
70  */
71 static int
72 ath5k_eeprom_init_header(struct ath5k_hw *ah)
73 {
74         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
75         int ret;
76         u16 val;
77         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
78
79         /*
80          * Read values from EEPROM and store them in the capability structure
81          */
82         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
83         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
84         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
85         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
86         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
87
88         /* Return if we have an old EEPROM */
89         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
90                 return 0;
91
92         /*
93          * Validate the checksum of the EEPROM date. There are some
94          * devices with invalid EEPROMs.
95          */
96         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
97         if (val) {
98                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
99                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
100                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
101                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
102
103                 /*
104                  * Fail safe check to prevent stupid loops due
105                  * to busted EEPROMs. XXX: This value is likely too
106                  * big still, waiting on a better value.
107                  */
108                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
109                         ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
110                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
111                                   eep_max, eep_max,
112                                   3 * AR5K_EEPROM_INFO_MAX,
113                                   3 * AR5K_EEPROM_INFO_MAX);
114                         return -EIO;
115                 }
116         }
117
118         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
119                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
120                 cksum ^= val;
121         }
122         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
123                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
124                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125                           cksum, eep_max,
126                           eep_max == AR5K_EEPROM_INFO_MAX ?
127                                 "default size" : "custom size");
128                 return -EIO;
129         }
130
131         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
132             ee_ant_gain);
133
134         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
135                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
136                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
137
138                 /* XXX: Don't know which versions include these two */
139                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
140
141                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
142                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
143
144                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
145                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
146                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
147                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
148                 }
149         }
150
151         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
152                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
153                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
154                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
155
156                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
157                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
158                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
159         }
160
161         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
162
163         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
164                 ee->ee_is_hb63 = true;
165         else
166                 ee->ee_is_hb63 = false;
167
168         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
169         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
170         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
171
172         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173          * and enable serdes programming if needed.
174          *
175          * XXX: Serdes values seem to be fixed so
176          * no need to read them here, we write them
177          * during ath5k_hw_init */
178         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
179         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
180                                                         true : false;
181
182         return 0;
183 }
184
185
186 /*
187  * Read antenna infos from eeprom
188  */
189 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
190                 unsigned int mode)
191 {
192         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
193         u32 o = *offset;
194         u16 val;
195         int ret, i = 0;
196
197         AR5K_EEPROM_READ(o++, val);
198         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
199         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
200         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
201
202         AR5K_EEPROM_READ(o++, val);
203         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
204         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
205         ee->ee_ant_control[mode][i++]   = val & 0x3f;
206
207         AR5K_EEPROM_READ(o++, val);
208         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
209         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
210         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
211
212         AR5K_EEPROM_READ(o++, val);
213         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
214         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
215         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
216         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
217
218         AR5K_EEPROM_READ(o++, val);
219         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
220         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
221         ee->ee_ant_control[mode][i++]   = val & 0x3f;
222
223         /* Get antenna switch tables */
224         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
225             (ee->ee_ant_control[mode][0] << 4);
226         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
227              ee->ee_ant_control[mode][1]        |
228             (ee->ee_ant_control[mode][2] << 6)  |
229             (ee->ee_ant_control[mode][3] << 12) |
230             (ee->ee_ant_control[mode][4] << 18) |
231             (ee->ee_ant_control[mode][5] << 24);
232         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
233              ee->ee_ant_control[mode][6]        |
234             (ee->ee_ant_control[mode][7] << 6)  |
235             (ee->ee_ant_control[mode][8] << 12) |
236             (ee->ee_ant_control[mode][9] << 18) |
237             (ee->ee_ant_control[mode][10] << 24);
238
239         /* return new offset */
240         *offset = o;
241
242         return 0;
243 }
244
245 /*
246  * Read supported modes and some mode-specific calibration data
247  * from eeprom
248  */
249 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
250                 unsigned int mode)
251 {
252         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
253         u32 o = *offset;
254         u16 val;
255         int ret;
256
257         ee->ee_n_piers[mode] = 0;
258         AR5K_EEPROM_READ(o++, val);
259         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
260         switch(mode) {
261         case AR5K_EEPROM_MODE_11A:
262                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
263                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
264                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
265
266                 AR5K_EEPROM_READ(o++, val);
267                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
268                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
269                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
270                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
271                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
272                 ee->ee_db[mode][0]      = val & 0x7;
273                 break;
274         case AR5K_EEPROM_MODE_11G:
275         case AR5K_EEPROM_MODE_11B:
276                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
277                 ee->ee_db[mode][1]      = val & 0x7;
278                 break;
279         }
280
281         AR5K_EEPROM_READ(o++, val);
282         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
283         ee->ee_thr_62[mode]             = val & 0xff;
284
285         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
286                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
287
288         AR5K_EEPROM_READ(o++, val);
289         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
290         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
291
292         AR5K_EEPROM_READ(o++, val);
293         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
294
295         if ((val & 0xff) & 0x80)
296                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
297         else
298                 ee->ee_noise_floor_thr[mode] = val & 0xff;
299
300         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
301                 ee->ee_noise_floor_thr[mode] =
302                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
303
304         AR5K_EEPROM_READ(o++, val);
305         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
306         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
307         ee->ee_xpd[mode]                = val & 0x1;
308
309         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
310             mode != AR5K_EEPROM_MODE_11B)
311                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
312
313         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
314                 AR5K_EEPROM_READ(o++, val);
315                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
316
317                 if (mode == AR5K_EEPROM_MODE_11A)
318                         ee->ee_xr_power[mode] = val & 0x3f;
319                 else {
320                         /* b_DB_11[bg] and b_OB_11[bg] */
321                         ee->ee_ob[mode][0] = val & 0x7;
322                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
323                 }
324         }
325
326         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
327                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
328                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
329         } else {
330                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
331
332                 AR5K_EEPROM_READ(o++, val);
333                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
334
335                 if (mode == AR5K_EEPROM_MODE_11G) {
336                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
337                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
338                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
339                 }
340         }
341
342         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
343                         mode == AR5K_EEPROM_MODE_11A) {
344                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
345                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
346         }
347
348         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
349                 goto done;
350
351         /* Note: >= v5 have bg freq piers on another location
352          * so these freq piers are ignored for >= v5 (should be 0xff
353          * anyway) */
354         switch(mode) {
355         case AR5K_EEPROM_MODE_11A:
356                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
357                         break;
358
359                 AR5K_EEPROM_READ(o++, val);
360                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
361                 break;
362         case AR5K_EEPROM_MODE_11B:
363                 AR5K_EEPROM_READ(o++, val);
364
365                 ee->ee_pwr_cal_b[0].freq =
366                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
367                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
368                         ee->ee_n_piers[mode]++;
369
370                 ee->ee_pwr_cal_b[1].freq =
371                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
372                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
373                         ee->ee_n_piers[mode]++;
374
375                 AR5K_EEPROM_READ(o++, val);
376                 ee->ee_pwr_cal_b[2].freq =
377                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
378                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
379                         ee->ee_n_piers[mode]++;
380
381                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
382                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
383                 break;
384         case AR5K_EEPROM_MODE_11G:
385                 AR5K_EEPROM_READ(o++, val);
386
387                 ee->ee_pwr_cal_g[0].freq =
388                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
389                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
390                         ee->ee_n_piers[mode]++;
391
392                 ee->ee_pwr_cal_g[1].freq =
393                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
394                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
395                         ee->ee_n_piers[mode]++;
396
397                 AR5K_EEPROM_READ(o++, val);
398                 ee->ee_turbo_max_power[mode] = val & 0x7f;
399                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
400
401                 AR5K_EEPROM_READ(o++, val);
402                 ee->ee_pwr_cal_g[2].freq =
403                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
404                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
405                         ee->ee_n_piers[mode]++;
406
407                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
408                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
409
410                 AR5K_EEPROM_READ(o++, val);
411                 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
412                 ee->ee_q_cal[mode] = val & 0x1f;
413
414                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
415                         AR5K_EEPROM_READ(o++, val);
416                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
417                 }
418                 break;
419         }
420
421         /*
422          * Read turbo mode information on newer EEPROM versions
423          */
424         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
425                 goto done;
426
427         switch (mode){
428         case AR5K_EEPROM_MODE_11A:
429                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
430
431                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
432                 AR5K_EEPROM_READ(o++, val);
433                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
434                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
435
436                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
437                 AR5K_EEPROM_READ(o++, val);
438                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
439                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
440
441                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
442                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
443                 break;
444         case AR5K_EEPROM_MODE_11G:
445                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
446
447                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
448                 AR5K_EEPROM_READ(o++, val);
449                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
450                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
451
452                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
453                 AR5K_EEPROM_READ(o++, val);
454                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
455                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
456                 break;
457         }
458
459 done:
460         /* return new offset */
461         *offset = o;
462
463         return 0;
464 }
465
466 /* Read mode-specific data (except power calibration data) */
467 static int
468 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
469 {
470         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
471         u32 mode_offset[3];
472         unsigned int mode;
473         u32 offset;
474         int ret;
475
476         /*
477          * Get values for all modes
478          */
479         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
480         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
481         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
482
483         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
484                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
485
486         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
487                 offset = mode_offset[mode];
488
489                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
490                 if (ret)
491                         return ret;
492
493                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
494                 if (ret)
495                         return ret;
496         }
497
498         /* override for older eeprom versions for better performance */
499         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
500                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
501                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
502                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
503         }
504
505         return 0;
506 }
507
508 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
509  * frequency mask) */
510 static inline int
511 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
512                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
513 {
514         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
515         int o = *offset;
516         int i = 0;
517         u8 freq1, freq2;
518         int ret;
519         u16 val;
520
521         ee->ee_n_piers[mode] = 0;
522         while(i < max) {
523                 AR5K_EEPROM_READ(o++, val);
524
525                 freq1 = val & 0xff;
526                 if (!freq1)
527                         break;
528
529                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
530                                 freq1, mode);
531                 ee->ee_n_piers[mode]++;
532
533                 freq2 = (val >> 8) & 0xff;
534                 if (!freq2)
535                         break;
536
537                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
538                                 freq2, mode);
539                 ee->ee_n_piers[mode]++;
540         }
541
542         /* return new offset */
543         *offset = o;
544
545         return 0;
546 }
547
548 /* Read frequency piers for 802.11a */
549 static int
550 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
551 {
552         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
554         int i, ret;
555         u16 val;
556         u8 mask;
557
558         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
559                 ath5k_eeprom_read_freq_list(ah, &offset,
560                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
561                         AR5K_EEPROM_MODE_11A);
562         } else {
563                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
564
565                 AR5K_EEPROM_READ(offset++, val);
566                 pcal[0].freq  = (val >> 9) & mask;
567                 pcal[1].freq  = (val >> 2) & mask;
568                 pcal[2].freq  = (val << 5) & mask;
569
570                 AR5K_EEPROM_READ(offset++, val);
571                 pcal[2].freq |= (val >> 11) & 0x1f;
572                 pcal[3].freq  = (val >> 4) & mask;
573                 pcal[4].freq  = (val << 3) & mask;
574
575                 AR5K_EEPROM_READ(offset++, val);
576                 pcal[4].freq |= (val >> 13) & 0x7;
577                 pcal[5].freq  = (val >> 6) & mask;
578                 pcal[6].freq  = (val << 1) & mask;
579
580                 AR5K_EEPROM_READ(offset++, val);
581                 pcal[6].freq |= (val >> 15) & 0x1;
582                 pcal[7].freq  = (val >> 8) & mask;
583                 pcal[8].freq  = (val >> 1) & mask;
584                 pcal[9].freq  = (val << 6) & mask;
585
586                 AR5K_EEPROM_READ(offset++, val);
587                 pcal[9].freq |= (val >> 10) & 0x3f;
588
589                 /* Fixed number of piers */
590                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
591
592                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
593                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
594                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
595                 }
596         }
597
598         return 0;
599 }
600
601 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
602 static inline int
603 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
604 {
605         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
606         struct ath5k_chan_pcal_info *pcal;
607
608         switch(mode) {
609         case AR5K_EEPROM_MODE_11B:
610                 pcal = ee->ee_pwr_cal_b;
611                 break;
612         case AR5K_EEPROM_MODE_11G:
613                 pcal = ee->ee_pwr_cal_g;
614                 break;
615         default:
616                 return -EINVAL;
617         }
618
619         ath5k_eeprom_read_freq_list(ah, &offset,
620                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
621                 mode);
622
623         return 0;
624 }
625
626
627 /*
628  * Read power calibration for RF5111 chips
629  *
630  * For RF5111 we have an XPD -eXternal Power Detector- curve
631  * for each calibrated channel. Each curve has 0,5dB Power steps
632  * on x axis and PCDAC steps (offsets) on y axis and looks like an
633  * exponential function. To recreate the curve we read 11 points
634  * here and interpolate later.
635  */
636
637 /* Used to match PCDAC steps with power values on RF5111 chips
638  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
639  * steps that match with the power values we read from eeprom. On
640  * older eeprom versions (< 3.2) these steps are equaly spaced at
641  * 10% of the pcdac curve -until the curve reaches its maximum-
642  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
643  * these 11 steps are spaced in a different way. This function returns
644  * the pcdac steps based on eeprom version and curve min/max so that we
645  * can have pcdac/pwr points.
646  */
647 static inline void
648 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
649 {
650         static const u16 intercepts3[] =
651                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
652         static const u16 intercepts3_2[] =
653                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
654         const u16 *ip;
655         int i;
656
657         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
658                 ip = intercepts3_2;
659         else
660                 ip = intercepts3;
661
662         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
663                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
664 }
665
666 /* Convert RF5111 specific data to generic raw data
667  * used by interpolation code */
668 static int
669 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
670                                 struct ath5k_chan_pcal_info *chinfo)
671 {
672         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
673         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
674         struct ath5k_pdgain_info *pd;
675         u8 pier, point, idx;
676         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
677
678         /* Fill raw data for each calibration pier */
679         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
680
681                 pcinfo = &chinfo[pier].rf5111_info;
682
683                 /* Allocate pd_curves for this cal pier */
684                 chinfo[pier].pd_curves =
685                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
686                                 sizeof(struct ath5k_pdgain_info),
687                                 GFP_KERNEL);
688
689                 if (!chinfo[pier].pd_curves)
690                         return -ENOMEM;
691
692                 /* Only one curve for RF5111
693                  * find out which one and place
694                  * in pd_curves.
695                  * Note: ee_x_gain is reversed here */
696                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
697
698                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
699                                 pdgain_idx[0] = idx;
700                                 break;
701                         }
702                 }
703
704                 ee->ee_pd_gains[mode] = 1;
705
706                 pd = &chinfo[pier].pd_curves[idx];
707
708                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
709
710                 /* Allocate pd points for this curve */
711                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
712                                         sizeof(u8), GFP_KERNEL);
713                 if (!pd->pd_step)
714                         return -ENOMEM;
715
716                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
717                                         sizeof(s16), GFP_KERNEL);
718                 if (!pd->pd_pwr)
719                         return -ENOMEM;
720
721                 /* Fill raw dataset
722                  * (convert power to 0.25dB units
723                  * for RF5112 combatibility) */
724                 for (point = 0; point < pd->pd_points; point++) {
725
726                         /* Absolute values */
727                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
728
729                         /* Already sorted */
730                         pd->pd_step[point] = pcinfo->pcdac[point];
731                 }
732
733                 /* Set min/max pwr */
734                 chinfo[pier].min_pwr = pd->pd_pwr[0];
735                 chinfo[pier].max_pwr = pd->pd_pwr[10];
736
737         }
738
739         return 0;
740 }
741
742 /* Parse EEPROM data */
743 static int
744 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
745 {
746         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
747         struct ath5k_chan_pcal_info *pcal;
748         int offset, ret;
749         int i;
750         u16 val;
751
752         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
753         switch(mode) {
754         case AR5K_EEPROM_MODE_11A:
755                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
756                         return 0;
757
758                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
759                         offset + AR5K_EEPROM_GROUP1_OFFSET);
760                 if (ret < 0)
761                         return ret;
762
763                 offset += AR5K_EEPROM_GROUP2_OFFSET;
764                 pcal = ee->ee_pwr_cal_a;
765                 break;
766         case AR5K_EEPROM_MODE_11B:
767                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
768                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
769                         return 0;
770
771                 pcal = ee->ee_pwr_cal_b;
772                 offset += AR5K_EEPROM_GROUP3_OFFSET;
773
774                 /* fixed piers */
775                 pcal[0].freq = 2412;
776                 pcal[1].freq = 2447;
777                 pcal[2].freq = 2484;
778                 ee->ee_n_piers[mode] = 3;
779                 break;
780         case AR5K_EEPROM_MODE_11G:
781                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
782                         return 0;
783
784                 pcal = ee->ee_pwr_cal_g;
785                 offset += AR5K_EEPROM_GROUP4_OFFSET;
786
787                 /* fixed piers */
788                 pcal[0].freq = 2312;
789                 pcal[1].freq = 2412;
790                 pcal[2].freq = 2484;
791                 ee->ee_n_piers[mode] = 3;
792                 break;
793         default:
794                 return -EINVAL;
795         }
796
797         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
798                 struct ath5k_chan_pcal_info_rf5111 *cdata =
799                         &pcal[i].rf5111_info;
800
801                 AR5K_EEPROM_READ(offset++, val);
802                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
803                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
804                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
805
806                 AR5K_EEPROM_READ(offset++, val);
807                 cdata->pwr[0] |= ((val >> 14) & 0x3);
808                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
809                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
810                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
811
812                 AR5K_EEPROM_READ(offset++, val);
813                 cdata->pwr[3] |= ((val >> 12) & 0xf);
814                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
815                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
816
817                 AR5K_EEPROM_READ(offset++, val);
818                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
819                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
820                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
821
822                 AR5K_EEPROM_READ(offset++, val);
823                 cdata->pwr[8] |= ((val >> 14) & 0x3);
824                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
825                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
826
827                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
828                         cdata->pcdac_max, cdata->pcdac);
829         }
830
831         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
832 }
833
834
835 /*
836  * Read power calibration for RF5112 chips
837  *
838  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
839  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
840  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
841  * power steps on x axis and PCDAC steps on y axis and looks like a
842  * linear function. To recreate the curve and pass the power values
843  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
844  * and 3 points for xpd 3 (higher gain -> lower power) here and
845  * interpolate later.
846  *
847  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
848  */
849
850 /* Convert RF5112 specific data to generic raw data
851  * used by interpolation code */
852 static int
853 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
854                                 struct ath5k_chan_pcal_info *chinfo)
855 {
856         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
857         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
858         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
859         unsigned int pier, pdg, point;
860
861         /* Fill raw data for each calibration pier */
862         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
863
864                 pcinfo = &chinfo[pier].rf5112_info;
865
866                 /* Allocate pd_curves for this cal pier */
867                 chinfo[pier].pd_curves =
868                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
869                                         sizeof(struct ath5k_pdgain_info),
870                                         GFP_KERNEL);
871
872                 if (!chinfo[pier].pd_curves)
873                         return -ENOMEM;
874
875                 /* Fill pd_curves */
876                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
877
878                         u8 idx = pdgain_idx[pdg];
879                         struct ath5k_pdgain_info *pd =
880                                         &chinfo[pier].pd_curves[idx];
881
882                         /* Lowest gain curve (max power) */
883                         if (pdg == 0) {
884                                 /* One more point for better accuracy */
885                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
886
887                                 /* Allocate pd points for this curve */
888                                 pd->pd_step = kcalloc(pd->pd_points,
889                                                 sizeof(u8), GFP_KERNEL);
890
891                                 if (!pd->pd_step)
892                                         return -ENOMEM;
893
894                                 pd->pd_pwr = kcalloc(pd->pd_points,
895                                                 sizeof(s16), GFP_KERNEL);
896
897                                 if (!pd->pd_pwr)
898                                         return -ENOMEM;
899
900
901                                 /* Fill raw dataset
902                                  * (all power levels are in 0.25dB units) */
903                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
904                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
905
906                                 for (point = 1; point < pd->pd_points;
907                                 point++) {
908                                         /* Absolute values */
909                                         pd->pd_pwr[point] =
910                                                 pcinfo->pwr_x0[point];
911
912                                         /* Deltas */
913                                         pd->pd_step[point] =
914                                                 pd->pd_step[point - 1] +
915                                                 pcinfo->pcdac_x0[point];
916                                 }
917
918                                 /* Set min power for this frequency */
919                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
920
921                         /* Highest gain curve (min power) */
922                         } else if (pdg == 1) {
923
924                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
925
926                                 /* Allocate pd points for this curve */
927                                 pd->pd_step = kcalloc(pd->pd_points,
928                                                 sizeof(u8), GFP_KERNEL);
929
930                                 if (!pd->pd_step)
931                                         return -ENOMEM;
932
933                                 pd->pd_pwr = kcalloc(pd->pd_points,
934                                                 sizeof(s16), GFP_KERNEL);
935
936                                 if (!pd->pd_pwr)
937                                         return -ENOMEM;
938
939                                 /* Fill raw dataset
940                                  * (all power levels are in 0.25dB units) */
941                                 for (point = 0; point < pd->pd_points;
942                                 point++) {
943                                         /* Absolute values */
944                                         pd->pd_pwr[point] =
945                                                 pcinfo->pwr_x3[point];
946
947                                         /* Fixed points */
948                                         pd->pd_step[point] =
949                                                 pcinfo->pcdac_x3[point];
950                                 }
951
952                                 /* Since we have a higher gain curve
953                                  * override min power */
954                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
955                         }
956                 }
957         }
958
959         return 0;
960 }
961
962 /* Parse EEPROM data */
963 static int
964 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
965 {
966         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
967         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
968         struct ath5k_chan_pcal_info *gen_chan_info;
969         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
970         u32 offset;
971         u8 i, c;
972         u16 val;
973         int ret;
974         u8 pd_gains = 0;
975
976         /* Count how many curves we have and
977          * identify them (which one of the 4
978          * available curves we have on each count).
979          * Curves are stored from lower (x0) to
980          * higher (x3) gain */
981         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
982                 /* ee_x_gain[mode] is x gain mask */
983                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
984                         pdgain_idx[pd_gains++] = i;
985         }
986         ee->ee_pd_gains[mode] = pd_gains;
987
988         if (pd_gains == 0 || pd_gains > 2)
989                 return -EINVAL;
990
991         switch (mode) {
992         case AR5K_EEPROM_MODE_11A:
993                 /*
994                  * Read 5GHz EEPROM channels
995                  */
996                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
997                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
998
999                 offset += AR5K_EEPROM_GROUP2_OFFSET;
1000                 gen_chan_info = ee->ee_pwr_cal_a;
1001                 break;
1002         case AR5K_EEPROM_MODE_11B:
1003                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1004                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1005                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1006
1007                 /* NB: frequency piers parsed during mode init */
1008                 gen_chan_info = ee->ee_pwr_cal_b;
1009                 break;
1010         case AR5K_EEPROM_MODE_11G:
1011                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1012                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1013                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1014                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1015                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1016
1017                 /* NB: frequency piers parsed during mode init */
1018                 gen_chan_info = ee->ee_pwr_cal_g;
1019                 break;
1020         default:
1021                 return -EINVAL;
1022         }
1023
1024         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1025                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1026
1027                 /* Power values in quarter dB
1028                  * for the lower xpd gain curve
1029                  * (0 dBm -> higher output power) */
1030                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1031                         AR5K_EEPROM_READ(offset++, val);
1032                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1033                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1034                 }
1035
1036                 /* PCDAC steps
1037                  * corresponding to the above power
1038                  * measurements */
1039                 AR5K_EEPROM_READ(offset++, val);
1040                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1041                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1042                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1043
1044                 /* Power values in quarter dB
1045                  * for the higher xpd gain curve
1046                  * (18 dBm -> lower output power) */
1047                 AR5K_EEPROM_READ(offset++, val);
1048                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1049                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1050
1051                 AR5K_EEPROM_READ(offset++, val);
1052                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1053
1054                 /* PCDAC steps
1055                  * corresponding to the above power
1056                  * measurements (fixed) */
1057                 chan_pcal_info->pcdac_x3[0] = 20;
1058                 chan_pcal_info->pcdac_x3[1] = 35;
1059                 chan_pcal_info->pcdac_x3[2] = 63;
1060
1061                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1062                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1063
1064                         /* Last xpd0 power level is also channel maximum */
1065                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1066                 } else {
1067                         chan_pcal_info->pcdac_x0[0] = 1;
1068                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1069                 }
1070
1071         }
1072
1073         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1074 }
1075
1076
1077 /*
1078  * Read power calibration for RF2413 chips
1079  *
1080  * For RF2413 we have a Power to PDDAC table (Power Detector)
1081  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1082  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1083  * axis and looks like an exponential function like the RF5111 curve.
1084  *
1085  * To recreate the curves we read here the points and interpolate
1086  * later. Note that in most cases only 2 (higher and lower) curves are
1087  * used (like RF5112) but vendors have the oportunity to include all
1088  * 4 curves on eeprom. The final curve (higher power) has an extra
1089  * point for better accuracy like RF5112.
1090  */
1091
1092 /* For RF2413 power calibration data doesn't start on a fixed location and
1093  * if a mode is not supported, its section is missing -not zeroed-.
1094  * So we need to calculate the starting offset for each section by using
1095  * these two functions */
1096
1097 /* Return the size of each section based on the mode and the number of pd
1098  * gains available (maximum 4). */
1099 static inline unsigned int
1100 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1101 {
1102         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1103         unsigned int sz;
1104
1105         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1106         sz *= ee->ee_n_piers[mode];
1107
1108         return sz;
1109 }
1110
1111 /* Return the starting offset for a section based on the modes supported
1112  * and each section's size. */
1113 static unsigned int
1114 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1115 {
1116         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1117
1118         switch(mode) {
1119         case AR5K_EEPROM_MODE_11G:
1120                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1121                         offset += ath5k_pdgains_size_2413(ee,
1122                                         AR5K_EEPROM_MODE_11B) +
1123                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1124                 /* fall through */
1125         case AR5K_EEPROM_MODE_11B:
1126                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1127                         offset += ath5k_pdgains_size_2413(ee,
1128                                         AR5K_EEPROM_MODE_11A) +
1129                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1130                 /* fall through */
1131         case AR5K_EEPROM_MODE_11A:
1132                 break;
1133         default:
1134                 break;
1135         }
1136
1137         return offset;
1138 }
1139
1140 /* Convert RF2413 specific data to generic raw data
1141  * used by interpolation code */
1142 static int
1143 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1144                                 struct ath5k_chan_pcal_info *chinfo)
1145 {
1146         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1147         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1148         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1149         unsigned int pier, pdg, point;
1150
1151         /* Fill raw data for each calibration pier */
1152         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1153
1154                 pcinfo = &chinfo[pier].rf2413_info;
1155
1156                 /* Allocate pd_curves for this cal pier */
1157                 chinfo[pier].pd_curves =
1158                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1159                                         sizeof(struct ath5k_pdgain_info),
1160                                         GFP_KERNEL);
1161
1162                 if (!chinfo[pier].pd_curves)
1163                         return -ENOMEM;
1164
1165                 /* Fill pd_curves */
1166                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1167
1168                         u8 idx = pdgain_idx[pdg];
1169                         struct ath5k_pdgain_info *pd =
1170                                         &chinfo[pier].pd_curves[idx];
1171
1172                         /* One more point for the highest power
1173                          * curve (lowest gain) */
1174                         if (pdg == ee->ee_pd_gains[mode] - 1)
1175                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1176                         else
1177                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1178
1179                         /* Allocate pd points for this curve */
1180                         pd->pd_step = kcalloc(pd->pd_points,
1181                                         sizeof(u8), GFP_KERNEL);
1182
1183                         if (!pd->pd_step)
1184                                 return -ENOMEM;
1185
1186                         pd->pd_pwr = kcalloc(pd->pd_points,
1187                                         sizeof(s16), GFP_KERNEL);
1188
1189                         if (!pd->pd_pwr)
1190                                 return -ENOMEM;
1191
1192                         /* Fill raw dataset
1193                          * convert all pwr levels to
1194                          * quarter dB for RF5112 combatibility */
1195                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1196                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1197
1198                         for (point = 1; point < pd->pd_points; point++) {
1199
1200                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1201                                         2 * pcinfo->pwr[pdg][point - 1];
1202
1203                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1204                                                 pcinfo->pddac[pdg][point - 1];
1205
1206                         }
1207
1208                         /* Highest gain curve -> min power */
1209                         if (pdg == 0)
1210                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1211
1212                         /* Lowest gain curve -> max power */
1213                         if (pdg == ee->ee_pd_gains[mode] - 1)
1214                                 chinfo[pier].max_pwr =
1215                                         pd->pd_pwr[pd->pd_points - 1];
1216                 }
1217         }
1218
1219         return 0;
1220 }
1221
1222 /* Parse EEPROM data */
1223 static int
1224 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1225 {
1226         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1227         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1228         struct ath5k_chan_pcal_info *chinfo;
1229         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1230         u32 offset;
1231         int idx, i, ret;
1232         u16 val;
1233         u8 pd_gains = 0;
1234
1235         /* Count how many curves we have and
1236          * identify them (which one of the 4
1237          * available curves we have on each count).
1238          * Curves are stored from higher to
1239          * lower gain so we go backwards */
1240         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1241                 /* ee_x_gain[mode] is x gain mask */
1242                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1243                         pdgain_idx[pd_gains++] = idx;
1244
1245         }
1246         ee->ee_pd_gains[mode] = pd_gains;
1247
1248         if (pd_gains == 0)
1249                 return -EINVAL;
1250
1251         offset = ath5k_cal_data_offset_2413(ee, mode);
1252         switch (mode) {
1253         case AR5K_EEPROM_MODE_11A:
1254                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1255                         return 0;
1256
1257                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1258                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1259                 chinfo = ee->ee_pwr_cal_a;
1260                 break;
1261         case AR5K_EEPROM_MODE_11B:
1262                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1263                         return 0;
1264
1265                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1266                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1267                 chinfo = ee->ee_pwr_cal_b;
1268                 break;
1269         case AR5K_EEPROM_MODE_11G:
1270                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1271                         return 0;
1272
1273                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1274                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1275                 chinfo = ee->ee_pwr_cal_g;
1276                 break;
1277         default:
1278                 return -EINVAL;
1279         }
1280
1281         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1282                 pcinfo = &chinfo[i].rf2413_info;
1283
1284                 /*
1285                  * Read pwr_i, pddac_i and the first
1286                  * 2 pd points (pwr, pddac)
1287                  */
1288                 AR5K_EEPROM_READ(offset++, val);
1289                 pcinfo->pwr_i[0] = val & 0x1f;
1290                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1291                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1292
1293                 AR5K_EEPROM_READ(offset++, val);
1294                 pcinfo->pddac[0][0] = val & 0x3f;
1295                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1296                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1297
1298                 AR5K_EEPROM_READ(offset++, val);
1299                 pcinfo->pwr[0][2] = val & 0xf;
1300                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1301
1302                 pcinfo->pwr[0][3] = 0;
1303                 pcinfo->pddac[0][3] = 0;
1304
1305                 if (pd_gains > 1) {
1306                         /*
1307                          * Pd gain 0 is not the last pd gain
1308                          * so it only has 2 pd points.
1309                          * Continue wih pd gain 1.
1310                          */
1311                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1312
1313                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1314                         AR5K_EEPROM_READ(offset++, val);
1315                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1316
1317                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1318                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1319
1320                         AR5K_EEPROM_READ(offset++, val);
1321                         pcinfo->pwr[1][1] = val & 0xf;
1322                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1323                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1324
1325                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1326                         AR5K_EEPROM_READ(offset++, val);
1327                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1328
1329                         pcinfo->pwr[1][3] = 0;
1330                         pcinfo->pddac[1][3] = 0;
1331                 } else if (pd_gains == 1) {
1332                         /*
1333                          * Pd gain 0 is the last one so
1334                          * read the extra point.
1335                          */
1336                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1337
1338                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1339                         AR5K_EEPROM_READ(offset++, val);
1340                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1341                 }
1342
1343                 /*
1344                  * Proceed with the other pd_gains
1345                  * as above.
1346                  */
1347                 if (pd_gains > 2) {
1348                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1349                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1350
1351                         AR5K_EEPROM_READ(offset++, val);
1352                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1353                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1354                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1355
1356                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1357                         AR5K_EEPROM_READ(offset++, val);
1358                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1359
1360                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1361                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1362
1363                         pcinfo->pwr[2][3] = 0;
1364                         pcinfo->pddac[2][3] = 0;
1365                 } else if (pd_gains == 2) {
1366                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1367                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1368                 }
1369
1370                 if (pd_gains > 3) {
1371                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1372                         AR5K_EEPROM_READ(offset++, val);
1373                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1374
1375                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1376                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1377                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1378
1379                         AR5K_EEPROM_READ(offset++, val);
1380                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1381                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1382                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1383
1384                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1385                         AR5K_EEPROM_READ(offset++, val);
1386                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1387
1388                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1389                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1390
1391                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1392                         AR5K_EEPROM_READ(offset++, val);
1393                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1394                 } else if (pd_gains == 3) {
1395                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1396                         AR5K_EEPROM_READ(offset++, val);
1397                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1398
1399                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1400                 }
1401         }
1402
1403         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1404 }
1405
1406
1407 /*
1408  * Read per rate target power (this is the maximum tx power
1409  * supported by the card). This info is used when setting
1410  * tx power, no matter the channel.
1411  *
1412  * This also works for v5 EEPROMs.
1413  */
1414 static int
1415 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1416 {
1417         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1418         struct ath5k_rate_pcal_info *rate_pcal_info;
1419         u8 *rate_target_pwr_num;
1420         u32 offset;
1421         u16 val;
1422         int ret, i;
1423
1424         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1425         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1426         switch (mode) {
1427         case AR5K_EEPROM_MODE_11A:
1428                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1429                 rate_pcal_info = ee->ee_rate_tpwr_a;
1430                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1431                 break;
1432         case AR5K_EEPROM_MODE_11B:
1433                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1434                 rate_pcal_info = ee->ee_rate_tpwr_b;
1435                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1436                 break;
1437         case AR5K_EEPROM_MODE_11G:
1438                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1439                 rate_pcal_info = ee->ee_rate_tpwr_g;
1440                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1441                 break;
1442         default:
1443                 return -EINVAL;
1444         }
1445
1446         /* Different freq mask for older eeproms (<= v3.2) */
1447         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1448                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1449                         AR5K_EEPROM_READ(offset++, val);
1450                         rate_pcal_info[i].freq =
1451                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1452
1453                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1454                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1455
1456                         AR5K_EEPROM_READ(offset++, val);
1457
1458                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1459                             val == 0) {
1460                                 (*rate_target_pwr_num) = i;
1461                                 break;
1462                         }
1463
1464                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1465                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1466                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1467                 }
1468         } else {
1469                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1470                         AR5K_EEPROM_READ(offset++, val);
1471                         rate_pcal_info[i].freq =
1472                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1473
1474                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1475                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1476
1477                         AR5K_EEPROM_READ(offset++, val);
1478
1479                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1480                             val == 0) {
1481                                 (*rate_target_pwr_num) = i;
1482                                 break;
1483                         }
1484
1485                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1486                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1487                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1488                 }
1489         }
1490
1491         return 0;
1492 }
1493
1494
1495 /*
1496  * Read per channel calibration info from EEPROM
1497  *
1498  * This info is used to calibrate the baseband power table. Imagine
1499  * that for each channel there is a power curve that's hw specific
1500  * (depends on amplifier etc) and we try to "correct" this curve using
1501  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1502  * it can use accurate power values when setting tx power (takes amplifier's
1503  * performance on each channel into account).
1504  *
1505  * EEPROM provides us with the offsets for some pre-calibrated channels
1506  * and we have to interpolate to create the full table for these channels and
1507  * also the table for any channel.
1508  */
1509 static int
1510 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1511 {
1512         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1513         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1514         int mode;
1515         int err;
1516
1517         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1518                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1519                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1520         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1521                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1522                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1523         else
1524                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1525
1526
1527         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1528         mode++) {
1529                 err = read_pcal(ah, mode);
1530                 if (err)
1531                         return err;
1532
1533                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1534                 if (err < 0)
1535                         return err;
1536         }
1537
1538         return 0;
1539 }
1540
1541 static int
1542 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1543 {
1544         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1545         struct ath5k_chan_pcal_info *chinfo;
1546         u8 pier, pdg;
1547
1548         switch (mode) {
1549         case AR5K_EEPROM_MODE_11A:
1550                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1551                         return 0;
1552                 chinfo = ee->ee_pwr_cal_a;
1553                 break;
1554         case AR5K_EEPROM_MODE_11B:
1555                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1556                         return 0;
1557                 chinfo = ee->ee_pwr_cal_b;
1558                 break;
1559         case AR5K_EEPROM_MODE_11G:
1560                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1561                         return 0;
1562                 chinfo = ee->ee_pwr_cal_g;
1563                 break;
1564         default:
1565                 return -EINVAL;
1566         }
1567
1568         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1569                 if (!chinfo[pier].pd_curves)
1570                         continue;
1571
1572                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1573                         struct ath5k_pdgain_info *pd =
1574                                         &chinfo[pier].pd_curves[pdg];
1575
1576                         if (pd != NULL) {
1577                                 kfree(pd->pd_step);
1578                                 kfree(pd->pd_pwr);
1579                         }
1580                 }
1581
1582                 kfree(chinfo[pier].pd_curves);
1583         }
1584
1585         return 0;
1586 }
1587
1588 /* Read conformance test limits used for regulatory control */
1589 static int
1590 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1591 {
1592         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1593         struct ath5k_edge_power *rep;
1594         unsigned int fmask, pmask;
1595         unsigned int ctl_mode;
1596         int ret, i, j;
1597         u32 offset;
1598         u16 val;
1599
1600         pmask = AR5K_EEPROM_POWER_M;
1601         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1602         offset = AR5K_EEPROM_CTL(ee->ee_version);
1603         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1604         for (i = 0; i < ee->ee_ctls; i += 2) {
1605                 AR5K_EEPROM_READ(offset++, val);
1606                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1607                 ee->ee_ctl[i + 1] = val & 0xff;
1608         }
1609
1610         offset = AR5K_EEPROM_GROUP8_OFFSET;
1611         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1612                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1613                         AR5K_EEPROM_GROUP5_OFFSET;
1614         else
1615                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1616
1617         rep = ee->ee_ctl_pwr;
1618         for(i = 0; i < ee->ee_ctls; i++) {
1619                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1620                 case AR5K_CTL_11A:
1621                 case AR5K_CTL_TURBO:
1622                         ctl_mode = AR5K_EEPROM_MODE_11A;
1623                         break;
1624                 default:
1625                         ctl_mode = AR5K_EEPROM_MODE_11G;
1626                         break;
1627                 }
1628                 if (ee->ee_ctl[i] == 0) {
1629                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1630                                 offset += 8;
1631                         else
1632                                 offset += 7;
1633                         rep += AR5K_EEPROM_N_EDGES;
1634                         continue;
1635                 }
1636                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1637                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1638                                 AR5K_EEPROM_READ(offset++, val);
1639                                 rep[j].freq = (val >> 8) & fmask;
1640                                 rep[j + 1].freq = val & fmask;
1641                         }
1642                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1643                                 AR5K_EEPROM_READ(offset++, val);
1644                                 rep[j].edge = (val >> 8) & pmask;
1645                                 rep[j].flag = (val >> 14) & 1;
1646                                 rep[j + 1].edge = val & pmask;
1647                                 rep[j + 1].flag = (val >> 6) & 1;
1648                         }
1649                 } else {
1650                         AR5K_EEPROM_READ(offset++, val);
1651                         rep[0].freq = (val >> 9) & fmask;
1652                         rep[1].freq = (val >> 2) & fmask;
1653                         rep[2].freq = (val << 5) & fmask;
1654
1655                         AR5K_EEPROM_READ(offset++, val);
1656                         rep[2].freq |= (val >> 11) & 0x1f;
1657                         rep[3].freq = (val >> 4) & fmask;
1658                         rep[4].freq = (val << 3) & fmask;
1659
1660                         AR5K_EEPROM_READ(offset++, val);
1661                         rep[4].freq |= (val >> 13) & 0x7;
1662                         rep[5].freq = (val >> 6) & fmask;
1663                         rep[6].freq = (val << 1) & fmask;
1664
1665                         AR5K_EEPROM_READ(offset++, val);
1666                         rep[6].freq |= (val >> 15) & 0x1;
1667                         rep[7].freq = (val >> 8) & fmask;
1668
1669                         rep[0].edge = (val >> 2) & pmask;
1670                         rep[1].edge = (val << 4) & pmask;
1671
1672                         AR5K_EEPROM_READ(offset++, val);
1673                         rep[1].edge |= (val >> 12) & 0xf;
1674                         rep[2].edge = (val >> 6) & pmask;
1675                         rep[3].edge = val & pmask;
1676
1677                         AR5K_EEPROM_READ(offset++, val);
1678                         rep[4].edge = (val >> 10) & pmask;
1679                         rep[5].edge = (val >> 4) & pmask;
1680                         rep[6].edge = (val << 2) & pmask;
1681
1682                         AR5K_EEPROM_READ(offset++, val);
1683                         rep[6].edge |= (val >> 14) & 0x3;
1684                         rep[7].edge = (val >> 8) & pmask;
1685                 }
1686                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1687                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1688                                 rep[j].freq, ctl_mode);
1689                 }
1690                 rep += AR5K_EEPROM_N_EDGES;
1691         }
1692
1693         return 0;
1694 }
1695
1696 static int
1697 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1698 {
1699         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1700         u32 offset;
1701         u16 val;
1702         int ret = 0, i;
1703
1704         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1705                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1706
1707         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1708                 /* No spur info for 5GHz */
1709                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1710                 /* 2 channels for 2GHz (2464/2420) */
1711                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1712                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1713                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1714         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1715                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1716                         AR5K_EEPROM_READ(offset, val);
1717                         ee->ee_spur_chans[i][0] = val;
1718                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1719                                                                         val);
1720                         ee->ee_spur_chans[i][1] = val;
1721                         offset++;
1722                 }
1723         }
1724
1725         return ret;
1726 }
1727
1728 /*
1729  * Read the MAC address from eeprom
1730  */
1731 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1732 {
1733         u8 mac_d[ETH_ALEN] = {};
1734         u32 total, offset;
1735         u16 data;
1736         int octet, ret;
1737
1738         ret = ath5k_hw_nvram_read(ah, 0x20, &data);
1739         if (ret)
1740                 return ret;
1741
1742         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1743                 ret = ath5k_hw_nvram_read(ah, offset, &data);
1744                 if (ret)
1745                         return ret;
1746
1747                 total += data;
1748                 mac_d[octet + 1] = data & 0xff;
1749                 mac_d[octet] = data >> 8;
1750                 octet += 2;
1751         }
1752
1753         if (!total || total == 3 * 0xffff)
1754                 return -EINVAL;
1755
1756         memcpy(mac, mac_d, ETH_ALEN);
1757
1758         return 0;
1759 }
1760
1761
1762 /***********************\
1763 * Init/Detach functions *
1764 \***********************/
1765
1766 /*
1767  * Initialize eeprom data structure
1768  */
1769 int
1770 ath5k_eeprom_init(struct ath5k_hw *ah)
1771 {
1772         int err;
1773
1774         err = ath5k_eeprom_init_header(ah);
1775         if (err < 0)
1776                 return err;
1777
1778         err = ath5k_eeprom_init_modes(ah);
1779         if (err < 0)
1780                 return err;
1781
1782         err = ath5k_eeprom_read_pcal_info(ah);
1783         if (err < 0)
1784                 return err;
1785
1786         err = ath5k_eeprom_read_ctl_info(ah);
1787         if (err < 0)
1788                 return err;
1789
1790         err = ath5k_eeprom_read_spur_chans(ah);
1791         if (err < 0)
1792                 return err;
1793
1794         return 0;
1795 }
1796
1797 void
1798 ath5k_eeprom_detach(struct ath5k_hw *ah)
1799 {
1800         u8 mode;
1801
1802         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1803                 ath5k_eeprom_free_pcal_info(ah, mode);
1804 }
1805
1806 int
1807 ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1808 {
1809         switch (channel->hw_value & CHANNEL_MODES) {
1810         case CHANNEL_A:
1811         case CHANNEL_XR:
1812                 return AR5K_EEPROM_MODE_11A;
1813         case CHANNEL_G:
1814                 return AR5K_EEPROM_MODE_11G;
1815         case CHANNEL_B:
1816                 return AR5K_EEPROM_MODE_11B;
1817         default:
1818                 return -1;
1819         }
1820 }