]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath9k/ar9003_paprd.c
ath9k: Register id table for platform device
[karo-tx-linux.git] / drivers / net / wireless / ath / ath9k / ar9003_paprd.c
1 /*
2  * Copyright (c) 2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18 #include "ar9003_phy.h"
19
20 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
21 {
22         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
23         struct ath9k_channel *chan = ah->curchan;
24
25         if (val) {
26                 ah->paprd_table_write_done = true;
27
28                 ah->eep_ops->set_txpower(ah, chan,
29                                 ath9k_regd_get_ctl(regulatory, chan),
30                                 chan->chan->max_antenna_gain * 2,
31                                 chan->chan->max_power * 2,
32                                 min((u32) MAX_RATE_POWER,
33                                 (u32) regulatory->power_limit), false);
34         }
35
36         REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
37                       AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
38         if (ah->caps.tx_chainmask & BIT(1))
39                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
40                               AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
41         if (ah->caps.tx_chainmask & BIT(2))
42                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
43                               AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
44 }
45 EXPORT_SYMBOL(ar9003_paprd_enable);
46
47 static int ar9003_get_training_power_2g(struct ath_hw *ah)
48 {
49         struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
50         struct ar9300_modal_eep_header *hdr = &eep->modalHeader2G;
51         unsigned int power, scale, delta;
52
53         scale = MS(le32_to_cpu(hdr->papdRateMaskHt20), AR9300_PAPRD_SCALE_1);
54         power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
55                                AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
56
57         delta = abs((int) ah->paprd_target_power - (int) power);
58         if (delta > scale)
59                 return -1;
60
61         if (delta < 4)
62                 power -= 4 - delta;
63
64         return power;
65 }
66
67 static int ar9003_get_training_power_5g(struct ath_hw *ah)
68 {
69         struct ath_common *common = ath9k_hw_common(ah);
70         struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
71         struct ar9300_modal_eep_header *hdr = &eep->modalHeader5G;
72         struct ath9k_channel *chan = ah->curchan;
73         unsigned int power, scale, delta;
74
75         if (chan->channel >= 5700)
76                 scale = MS(le32_to_cpu(hdr->papdRateMaskHt20),
77                            AR9300_PAPRD_SCALE_1);
78         else if (chan->channel >= 5400)
79                 scale = MS(le32_to_cpu(hdr->papdRateMaskHt40),
80                            AR9300_PAPRD_SCALE_2);
81         else
82                 scale = MS(le32_to_cpu(hdr->papdRateMaskHt40),
83                            AR9300_PAPRD_SCALE_1);
84
85         if (IS_CHAN_HT40(chan))
86                 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
87                         AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
88         else
89                 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
90                         AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
91
92         power += scale;
93         delta = abs((int) ah->paprd_target_power - (int) power);
94         if (delta > scale)
95                 return -1;
96
97         power += 2 * get_streams(common->tx_chainmask);
98         return power;
99 }
100
101 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
102 {
103         struct ath_common *common = ath9k_hw_common(ah);
104         static const u32 ctrl0[3] = {
105                 AR_PHY_PAPRD_CTRL0_B0,
106                 AR_PHY_PAPRD_CTRL0_B1,
107                 AR_PHY_PAPRD_CTRL0_B2
108         };
109         static const u32 ctrl1[3] = {
110                 AR_PHY_PAPRD_CTRL1_B0,
111                 AR_PHY_PAPRD_CTRL1_B1,
112                 AR_PHY_PAPRD_CTRL1_B2
113         };
114         int training_power;
115         int i;
116
117         if (IS_CHAN_2GHZ(ah->curchan))
118                 training_power = ar9003_get_training_power_2g(ah);
119         else
120                 training_power = ar9003_get_training_power_5g(ah);
121
122         if (training_power < 0) {
123                 ath_dbg(common, ATH_DBG_CALIBRATE,
124                         "PAPRD target power delta out of range");
125                 return -ERANGE;
126         }
127         ah->paprd_training_power = training_power;
128         ath_dbg(common, ATH_DBG_CALIBRATE,
129                 "Training power: %d, Target power: %d\n",
130                 ah->paprd_training_power, ah->paprd_target_power);
131
132         REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
133                       ah->paprd_ratemask);
134         REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
135                       ah->paprd_ratemask);
136         REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
137                       ah->paprd_ratemask_ht40);
138
139         for (i = 0; i < ah->caps.max_txchains; i++) {
140                 REG_RMW_FIELD(ah, ctrl0[i],
141                               AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
142                 REG_RMW_FIELD(ah, ctrl1[i],
143                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
144                 REG_RMW_FIELD(ah, ctrl1[i],
145                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
146                 REG_RMW_FIELD(ah, ctrl1[i],
147                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
148                 REG_RMW_FIELD(ah, ctrl1[i],
149                               AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
150                 REG_RMW_FIELD(ah, ctrl1[i],
151                               AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
152                 REG_RMW_FIELD(ah, ctrl1[i],
153                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
154                 REG_RMW_FIELD(ah, ctrl0[i],
155                               AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
156         }
157
158         ar9003_paprd_enable(ah, false);
159
160         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
161                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
162         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
163                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
164         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
165                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
166         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
167                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
168         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
169                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
170         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
171                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
172         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
173                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
174         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
175                       AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, 147);
176         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
177                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
178         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
179                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
180         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
181                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
182         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
183                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
184         if (AR_SREV_9485(ah))
185                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
186                               AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
187                               -3);
188         else
189                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
190                               AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
191                               -6);
192         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
193                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
194                       -15);
195         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
196                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
197         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
198                       AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
199         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
200                       AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
201         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
202                       AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
203                       100);
204         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
205                       AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
206         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
207                       AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
208         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
209                       AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
210         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
211                       AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
212         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
213                       AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
214         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
215                       AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
216         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
217                       AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
218         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
219                       AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
220         return 0;
221 }
222
223 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
224 {
225         u32 *entry = ah->paprd_gain_table_entries;
226         u8 *index = ah->paprd_gain_table_index;
227         u32 reg = AR_PHY_TXGAIN_TABLE;
228         int i;
229
230         memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
231         memset(index, 0, sizeof(ah->paprd_gain_table_index));
232
233         for (i = 0; i < 32; i++) {
234                 entry[i] = REG_READ(ah, reg);
235                 index[i] = (entry[i] >> 24) & 0xff;
236                 reg += 4;
237         }
238 }
239
240 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
241                                             int target_power)
242 {
243         int olpc_gain_delta = 0;
244         int alpha_therm, alpha_volt;
245         int therm_cal_value, volt_cal_value;
246         int therm_value, volt_value;
247         int thermal_gain_corr, voltage_gain_corr;
248         int desired_scale, desired_gain = 0;
249         u32 reg;
250
251         REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
252                     AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
253         desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
254                                        AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
255         alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
256                                      AR_PHY_TPC_19_ALPHA_THERM);
257         alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
258                                     AR_PHY_TPC_19_ALPHA_VOLT);
259         therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
260                                          AR_PHY_TPC_18_THERM_CAL_VALUE);
261         volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
262                                         AR_PHY_TPC_18_VOLT_CAL_VALUE);
263         therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
264                                      AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
265         volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
266                                     AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
267
268         if (chain == 0)
269                 reg = AR_PHY_TPC_11_B0;
270         else if (chain == 1)
271                 reg = AR_PHY_TPC_11_B1;
272         else
273                 reg = AR_PHY_TPC_11_B2;
274
275         olpc_gain_delta = REG_READ_FIELD(ah, reg,
276                                          AR_PHY_TPC_11_OLPC_GAIN_DELTA);
277
278         if (olpc_gain_delta >= 128)
279                 olpc_gain_delta = olpc_gain_delta - 256;
280
281         thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
282                              (256 / 2)) / 256;
283         voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
284                              (128 / 2)) / 128;
285         desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
286             voltage_gain_corr + desired_scale;
287
288         return desired_gain;
289 }
290
291 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
292 {
293         int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
294         int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
295         u32 *gain_table_entries = ah->paprd_gain_table_entries;
296
297         selected_gain_entry = gain_table_entries[gain_index];
298         txbb1dbgain = selected_gain_entry & 0x7;
299         txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
300         txmxrgain = (selected_gain_entry >> 5) & 0xf;
301         padrvgnA = (selected_gain_entry >> 9) & 0xf;
302         padrvgnB = (selected_gain_entry >> 13) & 0xf;
303         padrvgnC = (selected_gain_entry >> 17) & 0xf;
304         padrvgnD = (selected_gain_entry >> 21) & 0x3;
305
306         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
307                       AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
308         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
309                       AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
310         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
311                       AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
312         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
313                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
314         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
315                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
316         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
317                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
318         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
319                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
320         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
321                       AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
322         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
323                       AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
324         REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
325         REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
326 }
327
328 static inline int find_expn(int num)
329 {
330         return fls(num) - 1;
331 }
332
333 static inline int find_proper_scale(int expn, int N)
334 {
335         return (expn > N) ? expn - 10 : 0;
336 }
337
338 #define NUM_BIN 23
339
340 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
341 {
342         unsigned int thresh_accum_cnt;
343         int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
344         int PA_in[NUM_BIN + 1];
345         int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
346         unsigned int B1_abs_max, B2_abs_max;
347         int max_index, scale_factor;
348         int y_est[NUM_BIN + 1];
349         int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
350         unsigned int x_tilde_abs;
351         int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
352         int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
353         int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
354         int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
355         int y5, y3, tmp;
356         int theta_low_bin = 0;
357         int i;
358
359         /* disregard any bin that contains <= 16 samples */
360         thresh_accum_cnt = 16;
361         scale_factor = 5;
362         max_index = 0;
363         memset(theta, 0, sizeof(theta));
364         memset(x_est, 0, sizeof(x_est));
365         memset(Y, 0, sizeof(Y));
366         memset(y_est, 0, sizeof(y_est));
367         memset(x_tilde, 0, sizeof(x_tilde));
368
369         for (i = 0; i < NUM_BIN; i++) {
370                 s32 accum_cnt, accum_tx, accum_rx, accum_ang;
371
372                 /* number of samples */
373                 accum_cnt = data_L[i] & 0xffff;
374
375                 if (accum_cnt <= thresh_accum_cnt)
376                         continue;
377
378                 /* sum(tx amplitude) */
379                 accum_tx = ((data_L[i] >> 16) & 0xffff) |
380                     ((data_U[i] & 0x7ff) << 16);
381
382                 /* sum(rx amplitude distance to lower bin edge) */
383                 accum_rx = ((data_U[i] >> 11) & 0x1f) |
384                     ((data_L[i + 23] & 0xffff) << 5);
385
386                 /* sum(angles) */
387                 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
388                     ((data_U[i + 23] & 0x7ff) << 16);
389
390                 accum_tx <<= scale_factor;
391                 accum_rx <<= scale_factor;
392                 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
393                     scale_factor;
394
395                 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
396                             scale_factor) +
397                             (1 << scale_factor) * max_index + 16;
398
399                 if (accum_ang >= (1 << 26))
400                         accum_ang -= 1 << 27;
401
402                 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
403                     accum_cnt;
404
405                 max_index++;
406         }
407
408         /*
409          * Find average theta of first 5 bin and all of those to same value.
410          * Curve is linear at that range.
411          */
412         for (i = 1; i < 6; i++)
413                 theta_low_bin += theta[i];
414
415         theta_low_bin = theta_low_bin / 5;
416         for (i = 1; i < 6; i++)
417                 theta[i] = theta_low_bin;
418
419         /* Set values at origin */
420         theta[0] = theta_low_bin;
421         for (i = 0; i <= max_index; i++)
422                 theta[i] -= theta_low_bin;
423
424         x_est[0] = 0;
425         Y[0] = 0;
426         scale_factor = 8;
427
428         /* low signal gain */
429         if (x_est[6] == x_est[3])
430                 return false;
431
432         G_fxp =
433             (((Y[6] - Y[3]) * 1 << scale_factor) +
434              (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
435
436         /* prevent division by zero */
437         if (G_fxp == 0)
438                 return false;
439
440         Y_intercept =
441             (G_fxp * (x_est[0] - x_est[3]) +
442              (1 << scale_factor)) / (1 << scale_factor) + Y[3];
443
444         for (i = 0; i <= max_index; i++)
445                 y_est[i] = Y[i] - Y_intercept;
446
447         for (i = 0; i <= 3; i++) {
448                 y_est[i] = i * 32;
449                 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
450         }
451
452         if (y_est[max_index] == 0)
453                 return false;
454
455         x_est_fxp1_nonlin =
456             x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
457                                 G_fxp) / G_fxp;
458
459         order_x_by_y =
460             (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
461
462         if (order_x_by_y == 0)
463                 M = 10;
464         else if (order_x_by_y == 1)
465                 M = 9;
466         else
467                 M = 8;
468
469         I = (max_index > 15) ? 7 : max_index >> 1;
470         L = max_index - I;
471         scale_factor = 8;
472         sum_y_sqr = 0;
473         sum_y_quad = 0;
474         x_tilde_abs = 0;
475
476         for (i = 0; i <= L; i++) {
477                 unsigned int y_sqr;
478                 unsigned int y_quad;
479                 unsigned int tmp_abs;
480
481                 /* prevent division by zero */
482                 if (y_est[i + I] == 0)
483                         return false;
484
485                 x_est_fxp1_nonlin =
486                     x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
487                                     G_fxp) / G_fxp;
488
489                 x_tilde[i] =
490                     (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
491                                                                           I];
492                 x_tilde[i] =
493                     (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
494                 x_tilde[i] =
495                     (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
496                 y_sqr =
497                     (y_est[i + I] * y_est[i + I] +
498                      (scale_factor * scale_factor)) / (scale_factor *
499                                                        scale_factor);
500                 tmp_abs = abs(x_tilde[i]);
501                 if (tmp_abs > x_tilde_abs)
502                         x_tilde_abs = tmp_abs;
503
504                 y_quad = y_sqr * y_sqr;
505                 sum_y_sqr = sum_y_sqr + y_sqr;
506                 sum_y_quad = sum_y_quad + y_quad;
507                 B1_tmp[i] = y_sqr * (L + 1);
508                 B2_tmp[i] = y_sqr;
509         }
510
511         B1_abs_max = 0;
512         B2_abs_max = 0;
513         for (i = 0; i <= L; i++) {
514                 int abs_val;
515
516                 B1_tmp[i] -= sum_y_sqr;
517                 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
518
519                 abs_val = abs(B1_tmp[i]);
520                 if (abs_val > B1_abs_max)
521                         B1_abs_max = abs_val;
522
523                 abs_val = abs(B2_tmp[i]);
524                 if (abs_val > B2_abs_max)
525                         B2_abs_max = abs_val;
526         }
527
528         Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
529         Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
530         Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
531
532         beta_raw = 0;
533         alpha_raw = 0;
534         for (i = 0; i <= L; i++) {
535                 x_tilde[i] = x_tilde[i] / (1 << Q_x);
536                 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
537                 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
538                 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
539                 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
540         }
541
542         scale_B =
543             ((sum_y_quad / scale_factor) * (L + 1) -
544              (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
545
546         Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
547         scale_B = scale_B / (1 << Q_scale_B);
548         if (scale_B == 0)
549                 return false;
550         Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
551         Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
552         beta_raw = beta_raw / (1 << Q_beta);
553         alpha_raw = alpha_raw / (1 << Q_alpha);
554         alpha = (alpha_raw << 10) / scale_B;
555         beta = (beta_raw << 10) / scale_B;
556         order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
557         order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
558         order1_5x = order_1 / 5;
559         order2_3x = order_2 / 3;
560         order1_5x_rem = order_1 - 5 * order1_5x;
561         order2_3x_rem = order_2 - 3 * order2_3x;
562
563         for (i = 0; i < PAPRD_TABLE_SZ; i++) {
564                 tmp = i * 32;
565                 y5 = ((beta * tmp) >> 6) >> order1_5x;
566                 y5 = (y5 * tmp) >> order1_5x;
567                 y5 = (y5 * tmp) >> order1_5x;
568                 y5 = (y5 * tmp) >> order1_5x;
569                 y5 = (y5 * tmp) >> order1_5x;
570                 y5 = y5 >> order1_5x_rem;
571                 y3 = (alpha * tmp) >> order2_3x;
572                 y3 = (y3 * tmp) >> order2_3x;
573                 y3 = (y3 * tmp) >> order2_3x;
574                 y3 = y3 >> order2_3x_rem;
575                 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
576
577                 if (i >= 2) {
578                         tmp = PA_in[i] - PA_in[i - 1];
579                         if (tmp < 0)
580                                 PA_in[i] =
581                                     PA_in[i - 1] + (PA_in[i - 1] -
582                                                     PA_in[i - 2]);
583                 }
584
585                 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
586         }
587
588         beta_raw = 0;
589         alpha_raw = 0;
590
591         for (i = 0; i <= L; i++) {
592                 int theta_tilde =
593                     ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
594                 theta_tilde =
595                     ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
596                 theta_tilde =
597                     ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
598                 beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
599                 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
600         }
601
602         Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
603         Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
604         beta_raw = beta_raw / (1 << Q_beta);
605         alpha_raw = alpha_raw / (1 << Q_alpha);
606
607         alpha = (alpha_raw << 10) / scale_B;
608         beta = (beta_raw << 10) / scale_B;
609         order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
610         order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
611         order1_5x = order_1 / 5;
612         order2_3x = order_2 / 3;
613         order1_5x_rem = order_1 - 5 * order1_5x;
614         order2_3x_rem = order_2 - 3 * order2_3x;
615
616         for (i = 0; i < PAPRD_TABLE_SZ; i++) {
617                 int PA_angle;
618
619                 /* pa_table[4] is calculated from PA_angle for i=5 */
620                 if (i == 4)
621                         continue;
622
623                 tmp = i * 32;
624                 if (beta > 0)
625                         y5 = (((beta * tmp - 64) >> 6) -
626                               (1 << order1_5x)) / (1 << order1_5x);
627                 else
628                         y5 = ((((beta * tmp - 64) >> 6) +
629                                (1 << order1_5x)) / (1 << order1_5x));
630
631                 y5 = (y5 * tmp) / (1 << order1_5x);
632                 y5 = (y5 * tmp) / (1 << order1_5x);
633                 y5 = (y5 * tmp) / (1 << order1_5x);
634                 y5 = (y5 * tmp) / (1 << order1_5x);
635                 y5 = y5 / (1 << order1_5x_rem);
636
637                 if (beta > 0)
638                         y3 = (alpha * tmp -
639                               (1 << order2_3x)) / (1 << order2_3x);
640                 else
641                         y3 = (alpha * tmp +
642                               (1 << order2_3x)) / (1 << order2_3x);
643                 y3 = (y3 * tmp) / (1 << order2_3x);
644                 y3 = (y3 * tmp) / (1 << order2_3x);
645                 y3 = y3 / (1 << order2_3x_rem);
646
647                 if (i < 4) {
648                         PA_angle = 0;
649                 } else {
650                         PA_angle = y5 + y3;
651                         if (PA_angle < -150)
652                                 PA_angle = -150;
653                         else if (PA_angle > 150)
654                                 PA_angle = 150;
655                 }
656
657                 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
658                 if (i == 5) {
659                         PA_angle = (PA_angle + 2) >> 1;
660                         pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
661                             (PA_angle & 0x7ff);
662                 }
663         }
664
665         *gain = G_fxp;
666         return true;
667 }
668
669 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
670                                         struct ath9k_hw_cal_data *caldata,
671                                         int chain)
672 {
673         u32 *paprd_table_val = caldata->pa_table[chain];
674         u32 small_signal_gain = caldata->small_signal_gain[chain];
675         u32 training_power = ah->paprd_training_power;
676         u32 reg = 0;
677         int i;
678
679         if (chain == 0)
680                 reg = AR_PHY_PAPRD_MEM_TAB_B0;
681         else if (chain == 1)
682                 reg = AR_PHY_PAPRD_MEM_TAB_B1;
683         else if (chain == 2)
684                 reg = AR_PHY_PAPRD_MEM_TAB_B2;
685
686         for (i = 0; i < PAPRD_TABLE_SZ; i++) {
687                 REG_WRITE(ah, reg, paprd_table_val[i]);
688                 reg = reg + 4;
689         }
690
691         if (chain == 0)
692                 reg = AR_PHY_PA_GAIN123_B0;
693         else if (chain == 1)
694                 reg = AR_PHY_PA_GAIN123_B1;
695         else
696                 reg = AR_PHY_PA_GAIN123_B2;
697
698         REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
699
700         REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
701                       AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
702                       training_power);
703
704         if (ah->caps.tx_chainmask & BIT(1))
705                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
706                               AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
707                               training_power);
708
709         if (ah->caps.tx_chainmask & BIT(2))
710                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
711                               AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
712                               training_power);
713 }
714 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
715
716 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
717 {
718         unsigned int i, desired_gain, gain_index;
719         unsigned int train_power = ah->paprd_training_power;
720
721         desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
722
723         gain_index = 0;
724         for (i = 0; i < 32; i++) {
725                 if (ah->paprd_gain_table_index[i] >= desired_gain)
726                         break;
727                 gain_index++;
728         }
729
730         ar9003_tx_force_gain(ah, gain_index);
731
732         REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
733                         AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
734
735         return 0;
736 }
737 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
738
739 int ar9003_paprd_create_curve(struct ath_hw *ah,
740                               struct ath9k_hw_cal_data *caldata, int chain)
741 {
742         u16 *small_signal_gain = &caldata->small_signal_gain[chain];
743         u32 *pa_table = caldata->pa_table[chain];
744         u32 *data_L, *data_U;
745         int i, status = 0;
746         u32 *buf;
747         u32 reg;
748
749         memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
750
751         buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
752         if (!buf)
753                 return -ENOMEM;
754
755         data_L = &buf[0];
756         data_U = &buf[48];
757
758         REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
759                     AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
760
761         reg = AR_PHY_CHAN_INFO_TAB_0;
762         for (i = 0; i < 48; i++)
763                 data_L[i] = REG_READ(ah, reg + (i << 2));
764
765         REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
766                     AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
767
768         for (i = 0; i < 48; i++)
769                 data_U[i] = REG_READ(ah, reg + (i << 2));
770
771         if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
772                 status = -2;
773
774         REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
775                     AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
776
777         kfree(buf);
778
779         return status;
780 }
781 EXPORT_SYMBOL(ar9003_paprd_create_curve);
782
783 int ar9003_paprd_init_table(struct ath_hw *ah)
784 {
785         int ret;
786
787         ret = ar9003_paprd_setup_single_table(ah);
788         if (ret < 0)
789             return ret;
790
791         ar9003_paprd_get_gain_table(ah);
792         return 0;
793 }
794 EXPORT_SYMBOL(ar9003_paprd_init_table);
795
796 bool ar9003_paprd_is_done(struct ath_hw *ah)
797 {
798         return !!REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
799                                 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
800 }
801 EXPORT_SYMBOL(ar9003_paprd_is_done);