]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath/ath9k/eeprom_4k.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mv-sheeva.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18 #include "ar9002_phy.h"
19
20 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
21 {
22         return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
23 }
24
25 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
26 {
27         return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
28 }
29
30 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
31 {
32 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
33         struct ath_common *common = ath9k_hw_common(ah);
34         u16 *eep_data = (u16 *)&ah->eeprom.map4k;
35         int addr, eep_start_loc = 0;
36
37         eep_start_loc = 64;
38
39         if (!ath9k_hw_use_flash(ah)) {
40                 ath_dbg(common, ATH_DBG_EEPROM,
41                         "Reading from EEPROM, not flash\n");
42         }
43
44         for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
45                 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
46                         ath_dbg(common, ATH_DBG_EEPROM,
47                                 "Unable to read eeprom region\n");
48                         return false;
49                 }
50                 eep_data++;
51         }
52
53         return true;
54 #undef SIZE_EEPROM_4K
55 }
56
57 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
58 {
59 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
60         struct ath_common *common = ath9k_hw_common(ah);
61         struct ar5416_eeprom_4k *eep =
62                 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
63         u16 *eepdata, temp, magic, magic2;
64         u32 sum = 0, el;
65         bool need_swap = false;
66         int i, addr;
67
68
69         if (!ath9k_hw_use_flash(ah)) {
70                 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
71                                          &magic)) {
72                         ath_err(common, "Reading Magic # failed\n");
73                         return false;
74                 }
75
76                 ath_dbg(common, ATH_DBG_EEPROM,
77                         "Read Magic = 0x%04X\n", magic);
78
79                 if (magic != AR5416_EEPROM_MAGIC) {
80                         magic2 = swab16(magic);
81
82                         if (magic2 == AR5416_EEPROM_MAGIC) {
83                                 need_swap = true;
84                                 eepdata = (u16 *) (&ah->eeprom);
85
86                                 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
87                                         temp = swab16(*eepdata);
88                                         *eepdata = temp;
89                                         eepdata++;
90                                 }
91                         } else {
92                                 ath_err(common,
93                                         "Invalid EEPROM Magic. Endianness mismatch.\n");
94                                 return -EINVAL;
95                         }
96                 }
97         }
98
99         ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
100                 need_swap ? "True" : "False");
101
102         if (need_swap)
103                 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
104         else
105                 el = ah->eeprom.map4k.baseEepHeader.length;
106
107         if (el > sizeof(struct ar5416_eeprom_4k))
108                 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
109         else
110                 el = el / sizeof(u16);
111
112         eepdata = (u16 *)(&ah->eeprom);
113
114         for (i = 0; i < el; i++)
115                 sum ^= *eepdata++;
116
117         if (need_swap) {
118                 u32 integer;
119                 u16 word;
120
121                 ath_dbg(common, ATH_DBG_EEPROM,
122                         "EEPROM Endianness is not native.. Changing\n");
123
124                 word = swab16(eep->baseEepHeader.length);
125                 eep->baseEepHeader.length = word;
126
127                 word = swab16(eep->baseEepHeader.checksum);
128                 eep->baseEepHeader.checksum = word;
129
130                 word = swab16(eep->baseEepHeader.version);
131                 eep->baseEepHeader.version = word;
132
133                 word = swab16(eep->baseEepHeader.regDmn[0]);
134                 eep->baseEepHeader.regDmn[0] = word;
135
136                 word = swab16(eep->baseEepHeader.regDmn[1]);
137                 eep->baseEepHeader.regDmn[1] = word;
138
139                 word = swab16(eep->baseEepHeader.rfSilent);
140                 eep->baseEepHeader.rfSilent = word;
141
142                 word = swab16(eep->baseEepHeader.blueToothOptions);
143                 eep->baseEepHeader.blueToothOptions = word;
144
145                 word = swab16(eep->baseEepHeader.deviceCap);
146                 eep->baseEepHeader.deviceCap = word;
147
148                 integer = swab32(eep->modalHeader.antCtrlCommon);
149                 eep->modalHeader.antCtrlCommon = integer;
150
151                 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
152                         integer = swab32(eep->modalHeader.antCtrlChain[i]);
153                         eep->modalHeader.antCtrlChain[i] = integer;
154                 }
155
156                 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
157                         word = swab16(eep->modalHeader.spurChans[i].spurChan);
158                         eep->modalHeader.spurChans[i].spurChan = word;
159                 }
160         }
161
162         if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
163             ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
164                 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
165                         sum, ah->eep_ops->get_eeprom_ver(ah));
166                 return -EINVAL;
167         }
168
169         return 0;
170 #undef EEPROM_4K_SIZE
171 }
172
173 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
174                                   enum eeprom_param param)
175 {
176         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
177         struct modal_eep_4k_header *pModal = &eep->modalHeader;
178         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
179         u16 ver_minor;
180
181         ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
182
183         switch (param) {
184         case EEP_NFTHRESH_2:
185                 return pModal->noiseFloorThreshCh[0];
186         case EEP_MAC_LSW:
187                 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
188         case EEP_MAC_MID:
189                 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
190         case EEP_MAC_MSW:
191                 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
192         case EEP_REG_0:
193                 return pBase->regDmn[0];
194         case EEP_REG_1:
195                 return pBase->regDmn[1];
196         case EEP_OP_CAP:
197                 return pBase->deviceCap;
198         case EEP_OP_MODE:
199                 return pBase->opCapFlags;
200         case EEP_RF_SILENT:
201                 return pBase->rfSilent;
202         case EEP_OB_2:
203                 return pModal->ob_0;
204         case EEP_DB_2:
205                 return pModal->db1_1;
206         case EEP_MINOR_REV:
207                 return ver_minor;
208         case EEP_TX_MASK:
209                 return pBase->txMask;
210         case EEP_RX_MASK:
211                 return pBase->rxMask;
212         case EEP_FRAC_N_5G:
213                 return 0;
214         case EEP_PWR_TABLE_OFFSET:
215                 return AR5416_PWR_TABLE_OFFSET_DB;
216         case EEP_MODAL_VER:
217                 return pModal->version;
218         case EEP_ANT_DIV_CTL1:
219                 return pModal->antdiv_ctl1;
220         case EEP_TXGAIN_TYPE:
221                 if (ver_minor >= AR5416_EEP_MINOR_VER_19)
222                         return pBase->txGainType;
223                 else
224                         return AR5416_EEP_TXGAIN_ORIGINAL;
225         default:
226                 return 0;
227         }
228 }
229
230 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
231                                   struct ath9k_channel *chan,
232                                   int16_t *pTxPowerIndexOffset)
233 {
234         struct ath_common *common = ath9k_hw_common(ah);
235         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
236         struct cal_data_per_freq_4k *pRawDataset;
237         u8 *pCalBChans = NULL;
238         u16 pdGainOverlap_t2;
239         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
240         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
241         u16 numPiers, i, j;
242         u16 numXpdGain, xpdMask;
243         u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
244         u32 reg32, regOffset, regChainOffset;
245
246         xpdMask = pEepData->modalHeader.xpdGain;
247
248         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
249             AR5416_EEP_MINOR_VER_2) {
250                 pdGainOverlap_t2 =
251                         pEepData->modalHeader.pdGainOverlap;
252         } else {
253                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
254                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
255         }
256
257         pCalBChans = pEepData->calFreqPier2G;
258         numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
259
260         numXpdGain = 0;
261
262         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
263                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
264                         if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
265                                 break;
266                         xpdGainValues[numXpdGain] =
267                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
268                         numXpdGain++;
269                 }
270         }
271
272         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
273                       (numXpdGain - 1) & 0x3);
274         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
275                       xpdGainValues[0]);
276         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
277                       xpdGainValues[1]);
278         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
279
280         for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
281                 if (AR_SREV_5416_20_OR_LATER(ah) &&
282                     (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
283                     (i != 0)) {
284                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
285                 } else
286                         regChainOffset = i * 0x1000;
287
288                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
289                         pRawDataset = pEepData->calPierData2G[i];
290
291                         ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
292                                             pRawDataset, pCalBChans,
293                                             numPiers, pdGainOverlap_t2,
294                                             gainBoundaries,
295                                             pdadcValues, numXpdGain);
296
297                         ENABLE_REGWRITE_BUFFER(ah);
298
299                         if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
300                                 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
301                                           SM(pdGainOverlap_t2,
302                                              AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
303                                           | SM(gainBoundaries[0],
304                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
305                                           | SM(gainBoundaries[1],
306                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
307                                           | SM(gainBoundaries[2],
308                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
309                                           | SM(gainBoundaries[3],
310                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
311                         }
312
313                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
314                         for (j = 0; j < 32; j++) {
315                                 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
316                                         ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
317                                         ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
318                                         ((pdadcValues[4 * j + 3] & 0xFF) << 24);
319                                 REG_WRITE(ah, regOffset, reg32);
320
321                                 ath_dbg(common, ATH_DBG_EEPROM,
322                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
323                                         i, regChainOffset, regOffset,
324                                         reg32);
325                                 ath_dbg(common, ATH_DBG_EEPROM,
326                                         "PDADC: Chain %d | "
327                                         "PDADC %3d Value %3d | "
328                                         "PDADC %3d Value %3d | "
329                                         "PDADC %3d Value %3d | "
330                                         "PDADC %3d Value %3d |\n",
331                                         i, 4 * j, pdadcValues[4 * j],
332                                         4 * j + 1, pdadcValues[4 * j + 1],
333                                         4 * j + 2, pdadcValues[4 * j + 2],
334                                         4 * j + 3, pdadcValues[4 * j + 3]);
335
336                                 regOffset += 4;
337                         }
338
339                         REGWRITE_BUFFER_FLUSH(ah);
340                 }
341         }
342
343         *pTxPowerIndexOffset = 0;
344 }
345
346 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
347                                                  struct ath9k_channel *chan,
348                                                  int16_t *ratesArray,
349                                                  u16 cfgCtl,
350                                                  u16 AntennaReduction,
351                                                  u16 twiceMaxRegulatoryPower,
352                                                  u16 powerLimit)
353 {
354 #define CMP_TEST_GRP \
355         (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==  \
356          pEepData->ctlIndex[i])                                         \
357         || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
358             ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
359
360         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
361         int i;
362         int16_t twiceLargestAntenna;
363         u16 twiceMinEdgePower;
364         u16 twiceMaxEdgePower = MAX_RATE_POWER;
365         u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
366         u16 numCtlModes;
367         const u16 *pCtlMode;
368         u16 ctlMode, freq;
369         struct chan_centers centers;
370         struct cal_ctl_data_4k *rep;
371         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
372         static const u16 tpScaleReductionTable[5] =
373                 { 0, 3, 6, 9, MAX_RATE_POWER };
374         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
375                 0, { 0, 0, 0, 0}
376         };
377         struct cal_target_power_leg targetPowerOfdmExt = {
378                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
379                 0, { 0, 0, 0, 0 }
380         };
381         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
382                 0, {0, 0, 0, 0}
383         };
384         static const u16 ctlModesFor11g[] = {
385                 CTL_11B, CTL_11G, CTL_2GHT20,
386                 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
387         };
388
389         ath9k_hw_get_channel_centers(ah, chan, &centers);
390
391         twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
392         twiceLargestAntenna = (int16_t)min(AntennaReduction -
393                                            twiceLargestAntenna, 0);
394
395         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
396         if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
397                 maxRegAllowedPower -=
398                         (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
399         }
400
401         scaledPower = min(powerLimit, maxRegAllowedPower);
402         scaledPower = max((u16)0, scaledPower);
403
404         numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
405         pCtlMode = ctlModesFor11g;
406
407         ath9k_hw_get_legacy_target_powers(ah, chan,
408                         pEepData->calTargetPowerCck,
409                         AR5416_NUM_2G_CCK_TARGET_POWERS,
410                         &targetPowerCck, 4, false);
411         ath9k_hw_get_legacy_target_powers(ah, chan,
412                         pEepData->calTargetPower2G,
413                         AR5416_NUM_2G_20_TARGET_POWERS,
414                         &targetPowerOfdm, 4, false);
415         ath9k_hw_get_target_powers(ah, chan,
416                         pEepData->calTargetPower2GHT20,
417                         AR5416_NUM_2G_20_TARGET_POWERS,
418                         &targetPowerHt20, 8, false);
419
420         if (IS_CHAN_HT40(chan)) {
421                 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
422                 ath9k_hw_get_target_powers(ah, chan,
423                                 pEepData->calTargetPower2GHT40,
424                                 AR5416_NUM_2G_40_TARGET_POWERS,
425                                 &targetPowerHt40, 8, true);
426                 ath9k_hw_get_legacy_target_powers(ah, chan,
427                                 pEepData->calTargetPowerCck,
428                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
429                                 &targetPowerCckExt, 4, true);
430                 ath9k_hw_get_legacy_target_powers(ah, chan,
431                                 pEepData->calTargetPower2G,
432                                 AR5416_NUM_2G_20_TARGET_POWERS,
433                                 &targetPowerOfdmExt, 4, true);
434         }
435
436         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
437                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
438                         (pCtlMode[ctlMode] == CTL_2GHT40);
439
440                 if (isHt40CtlMode)
441                         freq = centers.synth_center;
442                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
443                         freq = centers.ext_center;
444                 else
445                         freq = centers.ctl_center;
446
447                 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
448                     ah->eep_ops->get_eeprom_rev(ah) <= 2)
449                         twiceMaxEdgePower = MAX_RATE_POWER;
450
451                 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
452                              pEepData->ctlIndex[i]; i++) {
453
454                         if (CMP_TEST_GRP) {
455                                 rep = &(pEepData->ctlData[i]);
456
457                                 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
458                                         freq,
459                                         rep->ctlEdges[
460                                         ar5416_get_ntxchains(ah->txchainmask) - 1],
461                                         IS_CHAN_2GHZ(chan),
462                                         AR5416_EEP4K_NUM_BAND_EDGES);
463
464                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
465                                         twiceMaxEdgePower =
466                                                 min(twiceMaxEdgePower,
467                                                     twiceMinEdgePower);
468                                 } else {
469                                         twiceMaxEdgePower = twiceMinEdgePower;
470                                         break;
471                                 }
472                         }
473                 }
474
475                 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
476
477                 switch (pCtlMode[ctlMode]) {
478                 case CTL_11B:
479                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
480                                 targetPowerCck.tPow2x[i] =
481                                         min((u16)targetPowerCck.tPow2x[i],
482                                             minCtlPower);
483                         }
484                         break;
485                 case CTL_11G:
486                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
487                                 targetPowerOfdm.tPow2x[i] =
488                                         min((u16)targetPowerOfdm.tPow2x[i],
489                                             minCtlPower);
490                         }
491                         break;
492                 case CTL_2GHT20:
493                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
494                                 targetPowerHt20.tPow2x[i] =
495                                         min((u16)targetPowerHt20.tPow2x[i],
496                                             minCtlPower);
497                         }
498                         break;
499                 case CTL_11B_EXT:
500                         targetPowerCckExt.tPow2x[0] =
501                                 min((u16)targetPowerCckExt.tPow2x[0],
502                                     minCtlPower);
503                         break;
504                 case CTL_11G_EXT:
505                         targetPowerOfdmExt.tPow2x[0] =
506                                 min((u16)targetPowerOfdmExt.tPow2x[0],
507                                     minCtlPower);
508                         break;
509                 case CTL_2GHT40:
510                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
511                                 targetPowerHt40.tPow2x[i] =
512                                         min((u16)targetPowerHt40.tPow2x[i],
513                                             minCtlPower);
514                         }
515                         break;
516                 default:
517                         break;
518                 }
519         }
520
521         ratesArray[rate6mb] =
522         ratesArray[rate9mb] =
523         ratesArray[rate12mb] =
524         ratesArray[rate18mb] =
525         ratesArray[rate24mb] =
526         targetPowerOfdm.tPow2x[0];
527
528         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
529         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
530         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
531         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
532
533         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
534                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
535
536         ratesArray[rate1l] = targetPowerCck.tPow2x[0];
537         ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
538         ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
539         ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
540
541         if (IS_CHAN_HT40(chan)) {
542                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
543                         ratesArray[rateHt40_0 + i] =
544                                 targetPowerHt40.tPow2x[i];
545                 }
546                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
547                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
548                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
549                 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
550         }
551
552 #undef CMP_TEST_GRP
553 }
554
555 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
556                                     struct ath9k_channel *chan,
557                                     u16 cfgCtl,
558                                     u8 twiceAntennaReduction,
559                                     u8 twiceMaxRegulatoryPower,
560                                     u8 powerLimit, bool test)
561 {
562         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
563         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
564         struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
565         int16_t ratesArray[Ar5416RateSize];
566         int16_t txPowerIndexOffset = 0;
567         u8 ht40PowerIncForPdadc = 2;
568         int i;
569
570         memset(ratesArray, 0, sizeof(ratesArray));
571
572         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
573             AR5416_EEP_MINOR_VER_2) {
574                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
575         }
576
577         ath9k_hw_set_4k_power_per_rate_table(ah, chan,
578                                              &ratesArray[0], cfgCtl,
579                                              twiceAntennaReduction,
580                                              twiceMaxRegulatoryPower,
581                                              powerLimit);
582
583         ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
584
585         regulatory->max_power_level = 0;
586         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
587                 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
588                 if (ratesArray[i] > MAX_RATE_POWER)
589                         ratesArray[i] = MAX_RATE_POWER;
590
591                 if (ratesArray[i] > regulatory->max_power_level)
592                         regulatory->max_power_level = ratesArray[i];
593         }
594
595         if (test)
596             return;
597
598         /* Update regulatory */
599         i = rate6mb;
600         if (IS_CHAN_HT40(chan))
601                 i = rateHt40_0;
602         else if (IS_CHAN_HT20(chan))
603                 i = rateHt20_0;
604
605         regulatory->max_power_level = ratesArray[i];
606
607         if (AR_SREV_9280_20_OR_LATER(ah)) {
608                 for (i = 0; i < Ar5416RateSize; i++)
609                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
610         }
611
612         ENABLE_REGWRITE_BUFFER(ah);
613
614         /* OFDM power per rate */
615         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
616                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
617                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
618                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
619                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
620         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
621                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
622                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
623                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
624                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
625
626         /* CCK power per rate */
627         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
628                   ATH9K_POW_SM(ratesArray[rate2s], 24)
629                   | ATH9K_POW_SM(ratesArray[rate2l], 16)
630                   | ATH9K_POW_SM(ratesArray[rateXr], 8)
631                   | ATH9K_POW_SM(ratesArray[rate1l], 0));
632         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
633                   ATH9K_POW_SM(ratesArray[rate11s], 24)
634                   | ATH9K_POW_SM(ratesArray[rate11l], 16)
635                   | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
636                   | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
637
638         /* HT20 power per rate */
639         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
640                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
641                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
642                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
643                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
644         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
645                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
646                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
647                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
648                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
649
650         /* HT40 power per rate */
651         if (IS_CHAN_HT40(chan)) {
652                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
653                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
654                                        ht40PowerIncForPdadc, 24)
655                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
656                                          ht40PowerIncForPdadc, 16)
657                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
658                                          ht40PowerIncForPdadc, 8)
659                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
660                                          ht40PowerIncForPdadc, 0));
661                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
662                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
663                                        ht40PowerIncForPdadc, 24)
664                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
665                                          ht40PowerIncForPdadc, 16)
666                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
667                                          ht40PowerIncForPdadc, 8)
668                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
669                                          ht40PowerIncForPdadc, 0));
670                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
671                           ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
672                           | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
673                           | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
674                           | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
675         }
676
677         REGWRITE_BUFFER_FLUSH(ah);
678 }
679
680 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
681                                   struct ath9k_channel *chan)
682 {
683         struct modal_eep_4k_header *pModal;
684         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
685         u8 biaslevel;
686
687         if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
688                 return;
689
690         if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
691                 return;
692
693         pModal = &eep->modalHeader;
694
695         if (pModal->xpaBiasLvl != 0xff) {
696                 biaslevel = pModal->xpaBiasLvl;
697                 INI_RA(&ah->iniAddac, 7, 1) =
698                   (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
699         }
700 }
701
702 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
703                                  struct modal_eep_4k_header *pModal,
704                                  struct ar5416_eeprom_4k *eep,
705                                  u8 txRxAttenLocal)
706 {
707         REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
708                   pModal->antCtrlChain[0]);
709
710         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
711                   (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
712                    ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
713                      AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
714                   SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
715                   SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
716
717         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
718             AR5416_EEP_MINOR_VER_3) {
719                 txRxAttenLocal = pModal->txRxAttenCh[0];
720
721                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
722                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
723                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
724                               AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
725                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
726                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
727                               pModal->xatten2Margin[0]);
728                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
729                               AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
730
731                 /* Set the block 1 value to block 0 value */
732                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
733                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
734                               pModal->bswMargin[0]);
735                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
736                               AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
737                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
738                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
739                               pModal->xatten2Margin[0]);
740                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
741                               AR_PHY_GAIN_2GHZ_XATTEN2_DB,
742                               pModal->xatten2Db[0]);
743         }
744
745         REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
746                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
747         REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
748                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
749
750         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
751                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
752         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
753                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
754 }
755
756 /*
757  * Read EEPROM header info and program the device for correct operation
758  * given the channel value.
759  */
760 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
761                                          struct ath9k_channel *chan)
762 {
763         struct modal_eep_4k_header *pModal;
764         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
765         u8 txRxAttenLocal;
766         u8 ob[5], db1[5], db2[5];
767         u8 ant_div_control1, ant_div_control2;
768         u32 regVal;
769
770         pModal = &eep->modalHeader;
771         txRxAttenLocal = 23;
772
773         REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
774
775         /* Single chain for 4K EEPROM*/
776         ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
777
778         /* Initialize Ant Diversity settings from EEPROM */
779         if (pModal->version >= 3) {
780                 ant_div_control1 = pModal->antdiv_ctl1;
781                 ant_div_control2 = pModal->antdiv_ctl2;
782
783                 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
784                 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
785
786                 regVal |= SM(ant_div_control1,
787                              AR_PHY_9285_ANT_DIV_CTL);
788                 regVal |= SM(ant_div_control2,
789                              AR_PHY_9285_ANT_DIV_ALT_LNACONF);
790                 regVal |= SM((ant_div_control2 >> 2),
791                              AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
792                 regVal |= SM((ant_div_control1 >> 1),
793                              AR_PHY_9285_ANT_DIV_ALT_GAINTB);
794                 regVal |= SM((ant_div_control1 >> 2),
795                              AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
796
797
798                 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
799                 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
800                 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
801                 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
802                 regVal |= SM((ant_div_control1 >> 3),
803                              AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
804
805                 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
806                 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
807         }
808
809         if (pModal->version >= 2) {
810                 ob[0] = pModal->ob_0;
811                 ob[1] = pModal->ob_1;
812                 ob[2] = pModal->ob_2;
813                 ob[3] = pModal->ob_3;
814                 ob[4] = pModal->ob_4;
815
816                 db1[0] = pModal->db1_0;
817                 db1[1] = pModal->db1_1;
818                 db1[2] = pModal->db1_2;
819                 db1[3] = pModal->db1_3;
820                 db1[4] = pModal->db1_4;
821
822                 db2[0] = pModal->db2_0;
823                 db2[1] = pModal->db2_1;
824                 db2[2] = pModal->db2_2;
825                 db2[3] = pModal->db2_3;
826                 db2[4] = pModal->db2_4;
827         } else if (pModal->version == 1) {
828                 ob[0] = pModal->ob_0;
829                 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
830                 db1[0] = pModal->db1_0;
831                 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
832                 db2[0] = pModal->db2_0;
833                 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
834         } else {
835                 int i;
836
837                 for (i = 0; i < 5; i++) {
838                         ob[i] = pModal->ob_0;
839                         db1[i] = pModal->db1_0;
840                         db2[i] = pModal->db1_0;
841                 }
842         }
843
844         if (AR_SREV_9271(ah)) {
845                 ath9k_hw_analog_shift_rmw(ah,
846                                           AR9285_AN_RF2G3,
847                                           AR9271_AN_RF2G3_OB_cck,
848                                           AR9271_AN_RF2G3_OB_cck_S,
849                                           ob[0]);
850                 ath9k_hw_analog_shift_rmw(ah,
851                                           AR9285_AN_RF2G3,
852                                           AR9271_AN_RF2G3_OB_psk,
853                                           AR9271_AN_RF2G3_OB_psk_S,
854                                           ob[1]);
855                 ath9k_hw_analog_shift_rmw(ah,
856                                           AR9285_AN_RF2G3,
857                                           AR9271_AN_RF2G3_OB_qam,
858                                           AR9271_AN_RF2G3_OB_qam_S,
859                                           ob[2]);
860                 ath9k_hw_analog_shift_rmw(ah,
861                                           AR9285_AN_RF2G3,
862                                           AR9271_AN_RF2G3_DB_1,
863                                           AR9271_AN_RF2G3_DB_1_S,
864                                           db1[0]);
865                 ath9k_hw_analog_shift_rmw(ah,
866                                           AR9285_AN_RF2G4,
867                                           AR9271_AN_RF2G4_DB_2,
868                                           AR9271_AN_RF2G4_DB_2_S,
869                                           db2[0]);
870         } else {
871                 ath9k_hw_analog_shift_rmw(ah,
872                                           AR9285_AN_RF2G3,
873                                           AR9285_AN_RF2G3_OB_0,
874                                           AR9285_AN_RF2G3_OB_0_S,
875                                           ob[0]);
876                 ath9k_hw_analog_shift_rmw(ah,
877                                           AR9285_AN_RF2G3,
878                                           AR9285_AN_RF2G3_OB_1,
879                                           AR9285_AN_RF2G3_OB_1_S,
880                                           ob[1]);
881                 ath9k_hw_analog_shift_rmw(ah,
882                                           AR9285_AN_RF2G3,
883                                           AR9285_AN_RF2G3_OB_2,
884                                           AR9285_AN_RF2G3_OB_2_S,
885                                           ob[2]);
886                 ath9k_hw_analog_shift_rmw(ah,
887                                           AR9285_AN_RF2G3,
888                                           AR9285_AN_RF2G3_OB_3,
889                                           AR9285_AN_RF2G3_OB_3_S,
890                                           ob[3]);
891                 ath9k_hw_analog_shift_rmw(ah,
892                                           AR9285_AN_RF2G3,
893                                           AR9285_AN_RF2G3_OB_4,
894                                           AR9285_AN_RF2G3_OB_4_S,
895                                           ob[4]);
896
897                 ath9k_hw_analog_shift_rmw(ah,
898                                           AR9285_AN_RF2G3,
899                                           AR9285_AN_RF2G3_DB1_0,
900                                           AR9285_AN_RF2G3_DB1_0_S,
901                                           db1[0]);
902                 ath9k_hw_analog_shift_rmw(ah,
903                                           AR9285_AN_RF2G3,
904                                           AR9285_AN_RF2G3_DB1_1,
905                                           AR9285_AN_RF2G3_DB1_1_S,
906                                           db1[1]);
907                 ath9k_hw_analog_shift_rmw(ah,
908                                           AR9285_AN_RF2G3,
909                                           AR9285_AN_RF2G3_DB1_2,
910                                           AR9285_AN_RF2G3_DB1_2_S,
911                                           db1[2]);
912                 ath9k_hw_analog_shift_rmw(ah,
913                                           AR9285_AN_RF2G4,
914                                           AR9285_AN_RF2G4_DB1_3,
915                                           AR9285_AN_RF2G4_DB1_3_S,
916                                           db1[3]);
917                 ath9k_hw_analog_shift_rmw(ah,
918                                           AR9285_AN_RF2G4,
919                                           AR9285_AN_RF2G4_DB1_4,
920                                           AR9285_AN_RF2G4_DB1_4_S, db1[4]);
921
922                 ath9k_hw_analog_shift_rmw(ah,
923                                           AR9285_AN_RF2G4,
924                                           AR9285_AN_RF2G4_DB2_0,
925                                           AR9285_AN_RF2G4_DB2_0_S,
926                                           db2[0]);
927                 ath9k_hw_analog_shift_rmw(ah,
928                                           AR9285_AN_RF2G4,
929                                           AR9285_AN_RF2G4_DB2_1,
930                                           AR9285_AN_RF2G4_DB2_1_S,
931                                           db2[1]);
932                 ath9k_hw_analog_shift_rmw(ah,
933                                           AR9285_AN_RF2G4,
934                                           AR9285_AN_RF2G4_DB2_2,
935                                           AR9285_AN_RF2G4_DB2_2_S,
936                                           db2[2]);
937                 ath9k_hw_analog_shift_rmw(ah,
938                                           AR9285_AN_RF2G4,
939                                           AR9285_AN_RF2G4_DB2_3,
940                                           AR9285_AN_RF2G4_DB2_3_S,
941                                           db2[3]);
942                 ath9k_hw_analog_shift_rmw(ah,
943                                           AR9285_AN_RF2G4,
944                                           AR9285_AN_RF2G4_DB2_4,
945                                           AR9285_AN_RF2G4_DB2_4_S,
946                                           db2[4]);
947         }
948
949
950         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
951                       pModal->switchSettling);
952         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
953                       pModal->adcDesiredSize);
954
955         REG_WRITE(ah, AR_PHY_RF_CTL4,
956                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
957                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
958                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
959                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
960
961         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
962                       pModal->txEndToRxOn);
963
964         if (AR_SREV_9271_10(ah))
965                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
966                               pModal->txEndToRxOn);
967         REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
968                       pModal->thresh62);
969         REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
970                       pModal->thresh62);
971
972         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
973                                                 AR5416_EEP_MINOR_VER_2) {
974                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
975                               pModal->txFrameToDataStart);
976                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
977                               pModal->txFrameToPaOn);
978         }
979
980         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
981                                                 AR5416_EEP_MINOR_VER_3) {
982                 if (IS_CHAN_HT40(chan))
983                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
984                                       AR_PHY_SETTLING_SWITCH,
985                                       pModal->swSettleHt40);
986         }
987 }
988
989 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
990 {
991 #define EEP_MAP4K_SPURCHAN \
992         (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
993         struct ath_common *common = ath9k_hw_common(ah);
994
995         u16 spur_val = AR_NO_SPUR;
996
997         ath_dbg(common, ATH_DBG_ANI,
998                 "Getting spur idx:%d is2Ghz:%d val:%x\n",
999                 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1000
1001         switch (ah->config.spurmode) {
1002         case SPUR_DISABLE:
1003                 break;
1004         case SPUR_ENABLE_IOCTL:
1005                 spur_val = ah->config.spurchans[i][is2GHz];
1006                 ath_dbg(common, ATH_DBG_ANI,
1007                         "Getting spur val from new loc. %d\n", spur_val);
1008                 break;
1009         case SPUR_ENABLE_EEPROM:
1010                 spur_val = EEP_MAP4K_SPURCHAN;
1011                 break;
1012         }
1013
1014         return spur_val;
1015
1016 #undef EEP_MAP4K_SPURCHAN
1017 }
1018
1019 const struct eeprom_ops eep_4k_ops = {
1020         .check_eeprom           = ath9k_hw_4k_check_eeprom,
1021         .get_eeprom             = ath9k_hw_4k_get_eeprom,
1022         .fill_eeprom            = ath9k_hw_4k_fill_eeprom,
1023         .get_eeprom_ver         = ath9k_hw_4k_get_eeprom_ver,
1024         .get_eeprom_rev         = ath9k_hw_4k_get_eeprom_rev,
1025         .set_board_values       = ath9k_hw_4k_set_board_values,
1026         .set_addac              = ath9k_hw_4k_set_addac,
1027         .set_txpower            = ath9k_hw_4k_set_txpower,
1028         .get_spur_channel       = ath9k_hw_4k_get_spur_channel
1029 };