]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath/ath9k/eeprom_def.c
ath9k: clarify what hw code is and remove ath9k.h from a few files
[mv-sheeva.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18
19 static void ath9k_get_txgain_index(struct ath_hw *ah,
20                 struct ath9k_channel *chan,
21                 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
22                 u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
23 {
24         u8 pcdac, i = 0;
25         u16 idxL = 0, idxR = 0, numPiers;
26         bool match;
27         struct chan_centers centers;
28
29         ath9k_hw_get_channel_centers(ah, chan, &centers);
30
31         for (numPiers = 0; numPiers < availPiers; numPiers++)
32                 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
33                         break;
34
35         match = ath9k_hw_get_lower_upper_index(
36                         (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
37                         calChans, numPiers, &idxL, &idxR);
38         if (match) {
39                 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
40                 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
41         } else {
42                 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
43                 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
44                                 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
45         }
46
47         while (pcdac > ah->originalGain[i] &&
48                         i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
49                 i++;
50
51         *pcdacIdx = i;
52         return;
53 }
54
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56                                 u32 initTxGain,
57                                 int txPower,
58                                 u8 *pPDADCValues)
59 {
60         u32 i;
61         u32 offset;
62
63         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64                         AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66                         AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
67
68         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69                         AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
70
71         offset = txPower;
72         for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73                 if (i < offset)
74                         pPDADCValues[i] = 0x0;
75                 else
76                         pPDADCValues[i] = 0xFF;
77 }
78
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
80 {
81         return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
82 }
83
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
85 {
86         return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
87 }
88
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
90 {
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92         u16 *eep_data = (u16 *)&ah->eeprom.def;
93         int addr, ar5416_eep_start_loc = 0x100;
94
95         for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
96                 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
97                                          eep_data)) {
98                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
99                                   "Unable to read eeprom region\n");
100                         return false;
101                 }
102                 eep_data++;
103         }
104         return true;
105 #undef SIZE_EEPROM_DEF
106 }
107
108 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
109 {
110         struct ar5416_eeprom_def *eep =
111                 (struct ar5416_eeprom_def *) &ah->eeprom.def;
112         struct ath_common *common = ath9k_hw_common(ah);
113         u16 *eepdata, temp, magic, magic2;
114         u32 sum = 0, el;
115         bool need_swap = false;
116         int i, addr, size;
117
118         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
119                 ath_print(common, ATH_DBG_FATAL, "Reading Magic # failed\n");
120                 return false;
121         }
122
123         if (!ath9k_hw_use_flash(ah)) {
124                 ath_print(common, ATH_DBG_EEPROM,
125                           "Read Magic = 0x%04X\n", magic);
126
127                 if (magic != AR5416_EEPROM_MAGIC) {
128                         magic2 = swab16(magic);
129
130                         if (magic2 == AR5416_EEPROM_MAGIC) {
131                                 size = sizeof(struct ar5416_eeprom_def);
132                                 need_swap = true;
133                                 eepdata = (u16 *) (&ah->eeprom);
134
135                                 for (addr = 0; addr < size / sizeof(u16); addr++) {
136                                         temp = swab16(*eepdata);
137                                         *eepdata = temp;
138                                         eepdata++;
139                                 }
140                         } else {
141                                 ath_print(common, ATH_DBG_FATAL,
142                                           "Invalid EEPROM Magic. "
143                                           "Endianness mismatch.\n");
144                                 return -EINVAL;
145                         }
146                 }
147         }
148
149         ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
150                   need_swap ? "True" : "False");
151
152         if (need_swap)
153                 el = swab16(ah->eeprom.def.baseEepHeader.length);
154         else
155                 el = ah->eeprom.def.baseEepHeader.length;
156
157         if (el > sizeof(struct ar5416_eeprom_def))
158                 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
159         else
160                 el = el / sizeof(u16);
161
162         eepdata = (u16 *)(&ah->eeprom);
163
164         for (i = 0; i < el; i++)
165                 sum ^= *eepdata++;
166
167         if (need_swap) {
168                 u32 integer, j;
169                 u16 word;
170
171                 ath_print(common, ATH_DBG_EEPROM,
172                           "EEPROM Endianness is not native.. Changing.\n");
173
174                 word = swab16(eep->baseEepHeader.length);
175                 eep->baseEepHeader.length = word;
176
177                 word = swab16(eep->baseEepHeader.checksum);
178                 eep->baseEepHeader.checksum = word;
179
180                 word = swab16(eep->baseEepHeader.version);
181                 eep->baseEepHeader.version = word;
182
183                 word = swab16(eep->baseEepHeader.regDmn[0]);
184                 eep->baseEepHeader.regDmn[0] = word;
185
186                 word = swab16(eep->baseEepHeader.regDmn[1]);
187                 eep->baseEepHeader.regDmn[1] = word;
188
189                 word = swab16(eep->baseEepHeader.rfSilent);
190                 eep->baseEepHeader.rfSilent = word;
191
192                 word = swab16(eep->baseEepHeader.blueToothOptions);
193                 eep->baseEepHeader.blueToothOptions = word;
194
195                 word = swab16(eep->baseEepHeader.deviceCap);
196                 eep->baseEepHeader.deviceCap = word;
197
198                 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
199                         struct modal_eep_header *pModal =
200                                 &eep->modalHeader[j];
201                         integer = swab32(pModal->antCtrlCommon);
202                         pModal->antCtrlCommon = integer;
203
204                         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
205                                 integer = swab32(pModal->antCtrlChain[i]);
206                                 pModal->antCtrlChain[i] = integer;
207                         }
208
209                         for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
210                                 word = swab16(pModal->spurChans[i].spurChan);
211                                 pModal->spurChans[i].spurChan = word;
212                         }
213                 }
214         }
215
216         if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
217             ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
218                 ath_print(common, ATH_DBG_FATAL,
219                           "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
220                         sum, ah->eep_ops->get_eeprom_ver(ah));
221                 return -EINVAL;
222         }
223
224         return 0;
225 }
226
227 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
228                                    enum eeprom_param param)
229 {
230         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
231         struct modal_eep_header *pModal = eep->modalHeader;
232         struct base_eep_header *pBase = &eep->baseEepHeader;
233
234         switch (param) {
235         case EEP_NFTHRESH_5:
236                 return pModal[0].noiseFloorThreshCh[0];
237         case EEP_NFTHRESH_2:
238                 return pModal[1].noiseFloorThreshCh[0];
239         case AR_EEPROM_MAC(0):
240                 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
241         case AR_EEPROM_MAC(1):
242                 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
243         case AR_EEPROM_MAC(2):
244                 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
245         case EEP_REG_0:
246                 return pBase->regDmn[0];
247         case EEP_REG_1:
248                 return pBase->regDmn[1];
249         case EEP_OP_CAP:
250                 return pBase->deviceCap;
251         case EEP_OP_MODE:
252                 return pBase->opCapFlags;
253         case EEP_RF_SILENT:
254                 return pBase->rfSilent;
255         case EEP_OB_5:
256                 return pModal[0].ob;
257         case EEP_DB_5:
258                 return pModal[0].db;
259         case EEP_OB_2:
260                 return pModal[1].ob;
261         case EEP_DB_2:
262                 return pModal[1].db;
263         case EEP_MINOR_REV:
264                 return AR5416_VER_MASK;
265         case EEP_TX_MASK:
266                 return pBase->txMask;
267         case EEP_RX_MASK:
268                 return pBase->rxMask;
269         case EEP_RXGAIN_TYPE:
270                 return pBase->rxGainType;
271         case EEP_TXGAIN_TYPE:
272                 return pBase->txGainType;
273         case EEP_OL_PWRCTRL:
274                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
275                         return pBase->openLoopPwrCntl ? true : false;
276                 else
277                         return false;
278         case EEP_RC_CHAIN_MASK:
279                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
280                         return pBase->rcChainMask;
281                 else
282                         return 0;
283         case EEP_DAC_HPWR_5G:
284                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
285                         return pBase->dacHiPwrMode_5G;
286                 else
287                         return 0;
288         case EEP_FRAC_N_5G:
289                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
290                         return pBase->frac_n_5g;
291                 else
292                         return 0;
293         default:
294                 return 0;
295         }
296 }
297
298 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
299                                   struct modal_eep_header *pModal,
300                                   struct ar5416_eeprom_def *eep,
301                                   u8 txRxAttenLocal, int regChainOffset, int i)
302 {
303         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
304                 txRxAttenLocal = pModal->txRxAttenCh[i];
305
306                 if (AR_SREV_9280_10_OR_LATER(ah)) {
307                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
308                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
309                               pModal->bswMargin[i]);
310                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
311                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
312                               pModal->bswAtten[i]);
313                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
314                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
315                               pModal->xatten2Margin[i]);
316                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
317                               AR_PHY_GAIN_2GHZ_XATTEN2_DB,
318                               pModal->xatten2Db[i]);
319                 } else {
320                         REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
321                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
322                            ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
323                           | SM(pModal-> bswMargin[i],
324                                AR_PHY_GAIN_2GHZ_BSW_MARGIN));
325                         REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
326                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
327                            ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
328                           | SM(pModal->bswAtten[i],
329                                AR_PHY_GAIN_2GHZ_BSW_ATTEN));
330                 }
331         }
332
333         if (AR_SREV_9280_10_OR_LATER(ah)) {
334                 REG_RMW_FIELD(ah,
335                       AR_PHY_RXGAIN + regChainOffset,
336                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
337                 REG_RMW_FIELD(ah,
338                       AR_PHY_RXGAIN + regChainOffset,
339                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
340         } else {
341                 REG_WRITE(ah,
342                           AR_PHY_RXGAIN + regChainOffset,
343                           (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
344                            ~AR_PHY_RXGAIN_TXRX_ATTEN)
345                           | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
346                 REG_WRITE(ah,
347                           AR_PHY_GAIN_2GHZ + regChainOffset,
348                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
349                            ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
350                           SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
351         }
352 }
353
354 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
355                                           struct ath9k_channel *chan)
356 {
357         struct modal_eep_header *pModal;
358         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
359         int i, regChainOffset;
360         u8 txRxAttenLocal;
361
362         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
363         txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
364
365         REG_WRITE(ah, AR_PHY_SWITCH_COM,
366                   ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
367
368         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
369                 if (AR_SREV_9280(ah)) {
370                         if (i >= 2)
371                                 break;
372                 }
373
374                 if (AR_SREV_5416_20_OR_LATER(ah) &&
375                     (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
376                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
377                 else
378                         regChainOffset = i * 0x1000;
379
380                 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
381                           pModal->antCtrlChain[i]);
382
383                 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
384                           (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
385                            ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
386                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
387                           SM(pModal->iqCalICh[i],
388                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
389                           SM(pModal->iqCalQCh[i],
390                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
391
392                 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
393                         ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
394                                               regChainOffset, i);
395         }
396
397         if (AR_SREV_9280_10_OR_LATER(ah)) {
398                 if (IS_CHAN_2GHZ(chan)) {
399                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
400                                                   AR_AN_RF2G1_CH0_OB,
401                                                   AR_AN_RF2G1_CH0_OB_S,
402                                                   pModal->ob);
403                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
404                                                   AR_AN_RF2G1_CH0_DB,
405                                                   AR_AN_RF2G1_CH0_DB_S,
406                                                   pModal->db);
407                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
408                                                   AR_AN_RF2G1_CH1_OB,
409                                                   AR_AN_RF2G1_CH1_OB_S,
410                                                   pModal->ob_ch1);
411                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
412                                                   AR_AN_RF2G1_CH1_DB,
413                                                   AR_AN_RF2G1_CH1_DB_S,
414                                                   pModal->db_ch1);
415                 } else {
416                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
417                                                   AR_AN_RF5G1_CH0_OB5,
418                                                   AR_AN_RF5G1_CH0_OB5_S,
419                                                   pModal->ob);
420                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
421                                                   AR_AN_RF5G1_CH0_DB5,
422                                                   AR_AN_RF5G1_CH0_DB5_S,
423                                                   pModal->db);
424                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
425                                                   AR_AN_RF5G1_CH1_OB5,
426                                                   AR_AN_RF5G1_CH1_OB5_S,
427                                                   pModal->ob_ch1);
428                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
429                                                   AR_AN_RF5G1_CH1_DB5,
430                                                   AR_AN_RF5G1_CH1_DB5_S,
431                                                   pModal->db_ch1);
432                 }
433                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
434                                           AR_AN_TOP2_XPABIAS_LVL,
435                                           AR_AN_TOP2_XPABIAS_LVL_S,
436                                           pModal->xpaBiasLvl);
437                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
438                                           AR_AN_TOP2_LOCALBIAS,
439                                           AR_AN_TOP2_LOCALBIAS_S,
440                                           pModal->local_bias);
441                 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
442                               pModal->force_xpaon);
443         }
444
445         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
446                       pModal->switchSettling);
447         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
448                       pModal->adcDesiredSize);
449
450         if (!AR_SREV_9280_10_OR_LATER(ah))
451                 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
452                               AR_PHY_DESIRED_SZ_PGA,
453                               pModal->pgaDesiredSize);
454
455         REG_WRITE(ah, AR_PHY_RF_CTL4,
456                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
457                   | SM(pModal->txEndToXpaOff,
458                        AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
459                   | SM(pModal->txFrameToXpaOn,
460                        AR_PHY_RF_CTL4_FRAME_XPAA_ON)
461                   | SM(pModal->txFrameToXpaOn,
462                        AR_PHY_RF_CTL4_FRAME_XPAB_ON));
463
464         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
465                       pModal->txEndToRxOn);
466
467         if (AR_SREV_9280_10_OR_LATER(ah)) {
468                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
469                               pModal->thresh62);
470                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
471                               AR_PHY_EXT_CCA0_THRESH62,
472                               pModal->thresh62);
473         } else {
474                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
475                               pModal->thresh62);
476                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
477                               AR_PHY_EXT_CCA_THRESH62,
478                               pModal->thresh62);
479         }
480
481         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
482                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
483                               AR_PHY_TX_END_DATA_START,
484                               pModal->txFrameToDataStart);
485                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
486                               pModal->txFrameToPaOn);
487         }
488
489         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
490                 if (IS_CHAN_HT40(chan))
491                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
492                                       AR_PHY_SETTLING_SWITCH,
493                                       pModal->swSettleHt40);
494         }
495
496         if (AR_SREV_9280_20_OR_LATER(ah) &&
497             AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
498                 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
499                               AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
500                               pModal->miscBits);
501
502
503         if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
504                 if (IS_CHAN_2GHZ(chan))
505                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
506                                         eep->baseEepHeader.dacLpMode);
507                 else if (eep->baseEepHeader.dacHiPwrMode_5G)
508                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
509                 else
510                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
511                                       eep->baseEepHeader.dacLpMode);
512
513                 udelay(100);
514
515                 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
516                               pModal->miscBits >> 2);
517
518                 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
519                               AR_PHY_TX_DESIRED_SCALE_CCK,
520                               eep->baseEepHeader.desiredScaleCCK);
521         }
522 }
523
524 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
525                                    struct ath9k_channel *chan)
526 {
527 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
528         struct modal_eep_header *pModal;
529         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
530         u8 biaslevel;
531
532         if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
533                 return;
534
535         if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
536                 return;
537
538         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
539
540         if (pModal->xpaBiasLvl != 0xff) {
541                 biaslevel = pModal->xpaBiasLvl;
542         } else {
543                 u16 resetFreqBin, freqBin, freqCount = 0;
544                 struct chan_centers centers;
545
546                 ath9k_hw_get_channel_centers(ah, chan, &centers);
547
548                 resetFreqBin = FREQ2FBIN(centers.synth_center,
549                                          IS_CHAN_2GHZ(chan));
550                 freqBin = XPA_LVL_FREQ(0) & 0xff;
551                 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
552
553                 freqCount++;
554
555                 while (freqCount < 3) {
556                         if (XPA_LVL_FREQ(freqCount) == 0x0)
557                                 break;
558
559                         freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
560                         if (resetFreqBin >= freqBin)
561                                 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
562                         else
563                                 break;
564                         freqCount++;
565                 }
566         }
567
568         if (IS_CHAN_2GHZ(chan)) {
569                 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
570                                         7, 1) & (~0x18)) | biaslevel << 3;
571         } else {
572                 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
573                                         6, 1) & (~0xc0)) | biaslevel << 6;
574         }
575 #undef XPA_LVL_FREQ
576 }
577
578 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
579                                 struct ath9k_channel *chan,
580                                 struct cal_data_per_freq *pRawDataSet,
581                                 u8 *bChans, u16 availPiers,
582                                 u16 tPdGainOverlap, int16_t *pMinCalPower,
583                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
584                                 u16 numXpdGains)
585 {
586         int i, j, k;
587         int16_t ss;
588         u16 idxL = 0, idxR = 0, numPiers;
589         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
590                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
591         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
592                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
593         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
594                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
595
596         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
597         u8 minPwrT4[AR5416_NUM_PD_GAINS];
598         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
599         int16_t vpdStep;
600         int16_t tmpVal;
601         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
602         bool match;
603         int16_t minDelta = 0;
604         struct chan_centers centers;
605
606         ath9k_hw_get_channel_centers(ah, chan, &centers);
607
608         for (numPiers = 0; numPiers < availPiers; numPiers++) {
609                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
610                         break;
611         }
612
613         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
614                                                              IS_CHAN_2GHZ(chan)),
615                                                bChans, numPiers, &idxL, &idxR);
616
617         if (match) {
618                 for (i = 0; i < numXpdGains; i++) {
619                         minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
620                         maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
621                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
622                                         pRawDataSet[idxL].pwrPdg[i],
623                                         pRawDataSet[idxL].vpdPdg[i],
624                                         AR5416_PD_GAIN_ICEPTS,
625                                         vpdTableI[i]);
626                 }
627         } else {
628                 for (i = 0; i < numXpdGains; i++) {
629                         pVpdL = pRawDataSet[idxL].vpdPdg[i];
630                         pPwrL = pRawDataSet[idxL].pwrPdg[i];
631                         pVpdR = pRawDataSet[idxR].vpdPdg[i];
632                         pPwrR = pRawDataSet[idxR].pwrPdg[i];
633
634                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
635
636                         maxPwrT4[i] =
637                                 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
638                                     pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
639
640
641                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
642                                                 pPwrL, pVpdL,
643                                                 AR5416_PD_GAIN_ICEPTS,
644                                                 vpdTableL[i]);
645                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
646                                                 pPwrR, pVpdR,
647                                                 AR5416_PD_GAIN_ICEPTS,
648                                                 vpdTableR[i]);
649
650                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
651                                 vpdTableI[i][j] =
652                                         (u8)(ath9k_hw_interpolate((u16)
653                                              FREQ2FBIN(centers.
654                                                        synth_center,
655                                                        IS_CHAN_2GHZ
656                                                        (chan)),
657                                              bChans[idxL], bChans[idxR],
658                                              vpdTableL[i][j], vpdTableR[i][j]));
659                         }
660                 }
661         }
662
663         *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
664
665         k = 0;
666
667         for (i = 0; i < numXpdGains; i++) {
668                 if (i == (numXpdGains - 1))
669                         pPdGainBoundaries[i] =
670                                 (u16)(maxPwrT4[i] / 2);
671                 else
672                         pPdGainBoundaries[i] =
673                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
674
675                 pPdGainBoundaries[i] =
676                         min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
677
678                 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
679                         minDelta = pPdGainBoundaries[0] - 23;
680                         pPdGainBoundaries[0] = 23;
681                 } else {
682                         minDelta = 0;
683                 }
684
685                 if (i == 0) {
686                         if (AR_SREV_9280_10_OR_LATER(ah))
687                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
688                         else
689                                 ss = 0;
690                 } else {
691                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
692                                         (minPwrT4[i] / 2)) -
693                                        tPdGainOverlap + 1 + minDelta);
694                 }
695                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
696                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
697
698                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
699                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
700                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
701                         ss++;
702                 }
703
704                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
705                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
706                                 (minPwrT4[i] / 2));
707                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
708                         tgtIndex : sizeCurrVpdTable;
709
710                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
711                         pPDADCValues[k++] = vpdTableI[i][ss++];
712                 }
713
714                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
715                                     vpdTableI[i][sizeCurrVpdTable - 2]);
716                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
717
718                 if (tgtIndex > maxIndex) {
719                         while ((ss <= tgtIndex) &&
720                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
721                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
722                                                     (ss - maxIndex + 1) * vpdStep));
723                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
724                                                          255 : tmpVal);
725                                 ss++;
726                         }
727                 }
728         }
729
730         while (i < AR5416_PD_GAINS_IN_MASK) {
731                 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
732                 i++;
733         }
734
735         while (k < AR5416_NUM_PDADC_VALUES) {
736                 pPDADCValues[k] = pPDADCValues[k - 1];
737                 k++;
738         }
739
740         return;
741 }
742
743 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
744                                   struct ath9k_channel *chan,
745                                   int16_t *pTxPowerIndexOffset)
746 {
747 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
748 #define SM_PDGAIN_B(x, y) \
749                 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
750         struct ath_common *common = ath9k_hw_common(ah);
751         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
752         struct cal_data_per_freq *pRawDataset;
753         u8 *pCalBChans = NULL;
754         u16 pdGainOverlap_t2;
755         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
756         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
757         u16 numPiers, i, j;
758         int16_t tMinCalPower;
759         u16 numXpdGain, xpdMask;
760         u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
761         u32 reg32, regOffset, regChainOffset;
762         int16_t modalIdx;
763
764         modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
765         xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
766
767         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
768             AR5416_EEP_MINOR_VER_2) {
769                 pdGainOverlap_t2 =
770                         pEepData->modalHeader[modalIdx].pdGainOverlap;
771         } else {
772                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
773                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
774         }
775
776         if (IS_CHAN_2GHZ(chan)) {
777                 pCalBChans = pEepData->calFreqPier2G;
778                 numPiers = AR5416_NUM_2G_CAL_PIERS;
779         } else {
780                 pCalBChans = pEepData->calFreqPier5G;
781                 numPiers = AR5416_NUM_5G_CAL_PIERS;
782         }
783
784         if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
785                 pRawDataset = pEepData->calPierData2G[0];
786                 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
787                                  pRawDataset)->vpdPdg[0][0];
788         }
789
790         numXpdGain = 0;
791
792         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
793                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
794                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
795                                 break;
796                         xpdGainValues[numXpdGain] =
797                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
798                         numXpdGain++;
799                 }
800         }
801
802         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
803                       (numXpdGain - 1) & 0x3);
804         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
805                       xpdGainValues[0]);
806         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
807                       xpdGainValues[1]);
808         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
809                       xpdGainValues[2]);
810
811         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
812                 if (AR_SREV_5416_20_OR_LATER(ah) &&
813                     (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
814                     (i != 0)) {
815                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
816                 } else
817                         regChainOffset = i * 0x1000;
818
819                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
820                         if (IS_CHAN_2GHZ(chan))
821                                 pRawDataset = pEepData->calPierData2G[i];
822                         else
823                                 pRawDataset = pEepData->calPierData5G[i];
824
825
826                         if (OLC_FOR_AR9280_20_LATER) {
827                                 u8 pcdacIdx;
828                                 u8 txPower;
829
830                                 ath9k_get_txgain_index(ah, chan,
831                                 (struct calDataPerFreqOpLoop *)pRawDataset,
832                                 pCalBChans, numPiers, &txPower, &pcdacIdx);
833                                 ath9k_olc_get_pdadcs(ah, pcdacIdx,
834                                                      txPower/2, pdadcValues);
835                         } else {
836                                 ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
837                                                         chan, pRawDataset,
838                                                         pCalBChans, numPiers,
839                                                         pdGainOverlap_t2,
840                                                         &tMinCalPower,
841                                                         gainBoundaries,
842                                                         pdadcValues,
843                                                         numXpdGain);
844                         }
845
846                         if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
847                                 if (OLC_FOR_AR9280_20_LATER) {
848                                         REG_WRITE(ah,
849                                                 AR_PHY_TPCRG5 + regChainOffset,
850                                                 SM(0x6,
851                                                 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
852                                                 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
853                                                 SM_PD_GAIN(3) | SM_PD_GAIN(4));
854                                 } else {
855                                         REG_WRITE(ah,
856                                                 AR_PHY_TPCRG5 + regChainOffset,
857                                                 SM(pdGainOverlap_t2,
858                                                 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
859                                                 SM_PDGAIN_B(0, 1) |
860                                                 SM_PDGAIN_B(1, 2) |
861                                                 SM_PDGAIN_B(2, 3) |
862                                                 SM_PDGAIN_B(3, 4));
863                                 }
864                         }
865
866                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
867                         for (j = 0; j < 32; j++) {
868                                 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
869                                         ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
870                                         ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
871                                         ((pdadcValues[4 * j + 3] & 0xFF) << 24);
872                                 REG_WRITE(ah, regOffset, reg32);
873
874                                 ath_print(common, ATH_DBG_EEPROM,
875                                           "PDADC (%d,%4x): %4.4x %8.8x\n",
876                                           i, regChainOffset, regOffset,
877                                           reg32);
878                                 ath_print(common, ATH_DBG_EEPROM,
879                                           "PDADC: Chain %d | PDADC %3d "
880                                           "Value %3d | PDADC %3d Value %3d | "
881                                           "PDADC %3d Value %3d | PDADC %3d "
882                                           "Value %3d |\n",
883                                           i, 4 * j, pdadcValues[4 * j],
884                                           4 * j + 1, pdadcValues[4 * j + 1],
885                                           4 * j + 2, pdadcValues[4 * j + 2],
886                                           4 * j + 3,
887                                           pdadcValues[4 * j + 3]);
888
889                                 regOffset += 4;
890                         }
891                 }
892         }
893
894         *pTxPowerIndexOffset = 0;
895 #undef SM_PD_GAIN
896 #undef SM_PDGAIN_B
897 }
898
899 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
900                                                   struct ath9k_channel *chan,
901                                                   int16_t *ratesArray,
902                                                   u16 cfgCtl,
903                                                   u16 AntennaReduction,
904                                                   u16 twiceMaxRegulatoryPower,
905                                                   u16 powerLimit)
906 {
907 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
908 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */
909
910         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
911         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
912         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
913         static const u16 tpScaleReductionTable[5] =
914                 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
915
916         int i;
917         int16_t twiceLargestAntenna;
918         struct cal_ctl_data *rep;
919         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
920                 0, { 0, 0, 0, 0}
921         };
922         struct cal_target_power_leg targetPowerOfdmExt = {
923                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
924                 0, { 0, 0, 0, 0 }
925         };
926         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
927                 0, {0, 0, 0, 0}
928         };
929         u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
930         u16 ctlModesFor11a[] =
931                 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
932         u16 ctlModesFor11g[] =
933                 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
934                   CTL_2GHT40
935                 };
936         u16 numCtlModes, *pCtlMode, ctlMode, freq;
937         struct chan_centers centers;
938         int tx_chainmask;
939         u16 twiceMinEdgePower;
940
941         tx_chainmask = ah->txchainmask;
942
943         ath9k_hw_get_channel_centers(ah, chan, &centers);
944
945         twiceLargestAntenna = max(
946                 pEepData->modalHeader
947                         [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
948                 pEepData->modalHeader
949                         [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
950
951         twiceLargestAntenna = max((u8)twiceLargestAntenna,
952                                   pEepData->modalHeader
953                                   [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
954
955         twiceLargestAntenna = (int16_t)min(AntennaReduction -
956                                            twiceLargestAntenna, 0);
957
958         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
959
960         if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
961                 maxRegAllowedPower -=
962                         (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
963         }
964
965         scaledPower = min(powerLimit, maxRegAllowedPower);
966
967         switch (ar5416_get_ntxchains(tx_chainmask)) {
968         case 1:
969                 break;
970         case 2:
971                 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
972                 break;
973         case 3:
974                 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
975                 break;
976         }
977
978         scaledPower = max((u16)0, scaledPower);
979
980         if (IS_CHAN_2GHZ(chan)) {
981                 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
982                         SUB_NUM_CTL_MODES_AT_2G_40;
983                 pCtlMode = ctlModesFor11g;
984
985                 ath9k_hw_get_legacy_target_powers(ah, chan,
986                         pEepData->calTargetPowerCck,
987                         AR5416_NUM_2G_CCK_TARGET_POWERS,
988                         &targetPowerCck, 4, false);
989                 ath9k_hw_get_legacy_target_powers(ah, chan,
990                         pEepData->calTargetPower2G,
991                         AR5416_NUM_2G_20_TARGET_POWERS,
992                         &targetPowerOfdm, 4, false);
993                 ath9k_hw_get_target_powers(ah, chan,
994                         pEepData->calTargetPower2GHT20,
995                         AR5416_NUM_2G_20_TARGET_POWERS,
996                         &targetPowerHt20, 8, false);
997
998                 if (IS_CHAN_HT40(chan)) {
999                         numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1000                         ath9k_hw_get_target_powers(ah, chan,
1001                                 pEepData->calTargetPower2GHT40,
1002                                 AR5416_NUM_2G_40_TARGET_POWERS,
1003                                 &targetPowerHt40, 8, true);
1004                         ath9k_hw_get_legacy_target_powers(ah, chan,
1005                                 pEepData->calTargetPowerCck,
1006                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
1007                                 &targetPowerCckExt, 4, true);
1008                         ath9k_hw_get_legacy_target_powers(ah, chan,
1009                                 pEepData->calTargetPower2G,
1010                                 AR5416_NUM_2G_20_TARGET_POWERS,
1011                                 &targetPowerOfdmExt, 4, true);
1012                 }
1013         } else {
1014                 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1015                         SUB_NUM_CTL_MODES_AT_5G_40;
1016                 pCtlMode = ctlModesFor11a;
1017
1018                 ath9k_hw_get_legacy_target_powers(ah, chan,
1019                         pEepData->calTargetPower5G,
1020                         AR5416_NUM_5G_20_TARGET_POWERS,
1021                         &targetPowerOfdm, 4, false);
1022                 ath9k_hw_get_target_powers(ah, chan,
1023                         pEepData->calTargetPower5GHT20,
1024                         AR5416_NUM_5G_20_TARGET_POWERS,
1025                         &targetPowerHt20, 8, false);
1026
1027                 if (IS_CHAN_HT40(chan)) {
1028                         numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1029                         ath9k_hw_get_target_powers(ah, chan,
1030                                 pEepData->calTargetPower5GHT40,
1031                                 AR5416_NUM_5G_40_TARGET_POWERS,
1032                                 &targetPowerHt40, 8, true);
1033                         ath9k_hw_get_legacy_target_powers(ah, chan,
1034                                 pEepData->calTargetPower5G,
1035                                 AR5416_NUM_5G_20_TARGET_POWERS,
1036                                 &targetPowerOfdmExt, 4, true);
1037                 }
1038         }
1039
1040         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1041                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1042                         (pCtlMode[ctlMode] == CTL_2GHT40);
1043                 if (isHt40CtlMode)
1044                         freq = centers.synth_center;
1045                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1046                         freq = centers.ext_center;
1047                 else
1048                         freq = centers.ctl_center;
1049
1050                 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1051                     ah->eep_ops->get_eeprom_rev(ah) <= 2)
1052                         twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1053
1054                 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1055                         if ((((cfgCtl & ~CTL_MODE_M) |
1056                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1057                              pEepData->ctlIndex[i]) ||
1058                             (((cfgCtl & ~CTL_MODE_M) |
1059                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1060                              ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1061                                 rep = &(pEepData->ctlData[i]);
1062
1063                                 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1064                                 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1065                                 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1066
1067                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1068                                         twiceMaxEdgePower = min(twiceMaxEdgePower,
1069                                                                 twiceMinEdgePower);
1070                                 } else {
1071                                         twiceMaxEdgePower = twiceMinEdgePower;
1072                                         break;
1073                                 }
1074                         }
1075                 }
1076
1077                 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1078
1079                 switch (pCtlMode[ctlMode]) {
1080                 case CTL_11B:
1081                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1082                                 targetPowerCck.tPow2x[i] =
1083                                         min((u16)targetPowerCck.tPow2x[i],
1084                                             minCtlPower);
1085                         }
1086                         break;
1087                 case CTL_11A:
1088                 case CTL_11G:
1089                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1090                                 targetPowerOfdm.tPow2x[i] =
1091                                         min((u16)targetPowerOfdm.tPow2x[i],
1092                                             minCtlPower);
1093                         }
1094                         break;
1095                 case CTL_5GHT20:
1096                 case CTL_2GHT20:
1097                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1098                                 targetPowerHt20.tPow2x[i] =
1099                                         min((u16)targetPowerHt20.tPow2x[i],
1100                                             minCtlPower);
1101                         }
1102                         break;
1103                 case CTL_11B_EXT:
1104                         targetPowerCckExt.tPow2x[0] = min((u16)
1105                                         targetPowerCckExt.tPow2x[0],
1106                                         minCtlPower);
1107                         break;
1108                 case CTL_11A_EXT:
1109                 case CTL_11G_EXT:
1110                         targetPowerOfdmExt.tPow2x[0] = min((u16)
1111                                         targetPowerOfdmExt.tPow2x[0],
1112                                         minCtlPower);
1113                         break;
1114                 case CTL_5GHT40:
1115                 case CTL_2GHT40:
1116                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1117                                 targetPowerHt40.tPow2x[i] =
1118                                         min((u16)targetPowerHt40.tPow2x[i],
1119                                             minCtlPower);
1120                         }
1121                         break;
1122                 default:
1123                         break;
1124                 }
1125         }
1126
1127         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1128                 ratesArray[rate18mb] = ratesArray[rate24mb] =
1129                 targetPowerOfdm.tPow2x[0];
1130         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1131         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1132         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1133         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1134
1135         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1136                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1137
1138         if (IS_CHAN_2GHZ(chan)) {
1139                 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1140                 ratesArray[rate2s] = ratesArray[rate2l] =
1141                         targetPowerCck.tPow2x[1];
1142                 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1143                         targetPowerCck.tPow2x[2];
1144                 ratesArray[rate11s] = ratesArray[rate11l] =
1145                         targetPowerCck.tPow2x[3];
1146         }
1147         if (IS_CHAN_HT40(chan)) {
1148                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1149                         ratesArray[rateHt40_0 + i] =
1150                                 targetPowerHt40.tPow2x[i];
1151                 }
1152                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1153                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1154                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1155                 if (IS_CHAN_2GHZ(chan)) {
1156                         ratesArray[rateExtCck] =
1157                                 targetPowerCckExt.tPow2x[0];
1158                 }
1159         }
1160 }
1161
1162 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1163                                     struct ath9k_channel *chan,
1164                                     u16 cfgCtl,
1165                                     u8 twiceAntennaReduction,
1166                                     u8 twiceMaxRegulatoryPower,
1167                                     u8 powerLimit)
1168 {
1169 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1170         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1171         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1172         struct modal_eep_header *pModal =
1173                 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1174         int16_t ratesArray[Ar5416RateSize];
1175         int16_t txPowerIndexOffset = 0;
1176         u8 ht40PowerIncForPdadc = 2;
1177         int i, cck_ofdm_delta = 0;
1178
1179         memset(ratesArray, 0, sizeof(ratesArray));
1180
1181         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1182             AR5416_EEP_MINOR_VER_2) {
1183                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1184         }
1185
1186         ath9k_hw_set_def_power_per_rate_table(ah, chan,
1187                                                &ratesArray[0], cfgCtl,
1188                                                twiceAntennaReduction,
1189                                                twiceMaxRegulatoryPower,
1190                                                powerLimit);
1191
1192         ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1193
1194         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1195                 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1196                 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1197                         ratesArray[i] = AR5416_MAX_RATE_POWER;
1198         }
1199
1200         if (AR_SREV_9280_10_OR_LATER(ah)) {
1201                 for (i = 0; i < Ar5416RateSize; i++)
1202                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1203         }
1204
1205         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1206                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
1207                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1208                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1209                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1210         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1211                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
1212                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1213                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1214                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1215
1216         if (IS_CHAN_2GHZ(chan)) {
1217                 if (OLC_FOR_AR9280_20_LATER) {
1218                         cck_ofdm_delta = 2;
1219                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1220                                 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1221                                 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1222                                 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1223                                 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1224                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1225                                 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1226                                 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1227                                 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1228                                 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1229                 } else {
1230                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1231                                 ATH9K_POW_SM(ratesArray[rate2s], 24)
1232                                 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1233                                 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1234                                 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1235                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1236                                 ATH9K_POW_SM(ratesArray[rate11s], 24)
1237                                 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1238                                 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1239                                 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1240                 }
1241         }
1242
1243         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1244                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1245                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1246                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1247                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1248         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1249                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1250                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1251                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1252                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1253
1254         if (IS_CHAN_HT40(chan)) {
1255                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1256                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
1257                                        ht40PowerIncForPdadc, 24)
1258                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1259                                          ht40PowerIncForPdadc, 16)
1260                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1261                                          ht40PowerIncForPdadc, 8)
1262                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1263                                          ht40PowerIncForPdadc, 0));
1264                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1265                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
1266                                        ht40PowerIncForPdadc, 24)
1267                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1268                                          ht40PowerIncForPdadc, 16)
1269                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1270                                          ht40PowerIncForPdadc, 8)
1271                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1272                                          ht40PowerIncForPdadc, 0));
1273                 if (OLC_FOR_AR9280_20_LATER) {
1274                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1275                                 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1276                                 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1277                                 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1278                                 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1279                 } else {
1280                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1281                                 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1282                                 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1283                                 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1284                                 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1285                 }
1286         }
1287
1288         REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1289                   ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1290                   | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1291
1292         i = rate6mb;
1293
1294         if (IS_CHAN_HT40(chan))
1295                 i = rateHt40_0;
1296         else if (IS_CHAN_HT20(chan))
1297                 i = rateHt20_0;
1298
1299         if (AR_SREV_9280_10_OR_LATER(ah))
1300                 regulatory->max_power_level =
1301                         ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1302         else
1303                 regulatory->max_power_level = ratesArray[i];
1304
1305         switch(ar5416_get_ntxchains(ah->txchainmask)) {
1306         case 1:
1307                 break;
1308         case 2:
1309                 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1310                 break;
1311         case 3:
1312                 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1313                 break;
1314         default:
1315                 ath_print(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1316                           "Invalid chainmask configuration\n");
1317                 break;
1318         }
1319 }
1320
1321 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
1322                                           enum ieee80211_band freq_band)
1323 {
1324         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1325         struct modal_eep_header *pModal =
1326                 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
1327         struct base_eep_header *pBase = &eep->baseEepHeader;
1328         u8 num_ant_config;
1329
1330         num_ant_config = 1;
1331
1332         if (pBase->version >= 0x0E0D)
1333                 if (pModal->useAnt1)
1334                         num_ant_config += 1;
1335
1336         return num_ant_config;
1337 }
1338
1339 static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
1340                                                struct ath9k_channel *chan)
1341 {
1342         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1343         struct modal_eep_header *pModal =
1344                 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1345
1346         return pModal->antCtrlCommon & 0xFFFF;
1347 }
1348
1349 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1350 {
1351 #define EEP_DEF_SPURCHAN \
1352         (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1353         struct ath_common *common = ath9k_hw_common(ah);
1354
1355         u16 spur_val = AR_NO_SPUR;
1356
1357         ath_print(common, ATH_DBG_ANI,
1358                   "Getting spur idx %d is2Ghz. %d val %x\n",
1359                   i, is2GHz, ah->config.spurchans[i][is2GHz]);
1360
1361         switch (ah->config.spurmode) {
1362         case SPUR_DISABLE:
1363                 break;
1364         case SPUR_ENABLE_IOCTL:
1365                 spur_val = ah->config.spurchans[i][is2GHz];
1366                 ath_print(common, ATH_DBG_ANI,
1367                           "Getting spur val from new loc. %d\n", spur_val);
1368                 break;
1369         case SPUR_ENABLE_EEPROM:
1370                 spur_val = EEP_DEF_SPURCHAN;
1371                 break;
1372         }
1373
1374         return spur_val;
1375
1376 #undef EEP_DEF_SPURCHAN
1377 }
1378
1379 const struct eeprom_ops eep_def_ops = {
1380         .check_eeprom           = ath9k_hw_def_check_eeprom,
1381         .get_eeprom             = ath9k_hw_def_get_eeprom,
1382         .fill_eeprom            = ath9k_hw_def_fill_eeprom,
1383         .get_eeprom_ver         = ath9k_hw_def_get_eeprom_ver,
1384         .get_eeprom_rev         = ath9k_hw_def_get_eeprom_rev,
1385         .get_num_ant_config     = ath9k_hw_def_get_num_ant_config,
1386         .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
1387         .set_board_values       = ath9k_hw_def_set_board_values,
1388         .set_addac              = ath9k_hw_def_set_addac,
1389         .set_txpower            = ath9k_hw_def_set_txpower,
1390         .get_spur_channel       = ath9k_hw_def_get_spur_channel
1391 };