]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath/ath9k/hw.c
Merge branch 'for-patrick' of git://git.kernel.org/pub/scm/linux/kernel/git/horms...
[mv-sheeva.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32
33 static int __init ath9k_init(void)
34 {
35         return 0;
36 }
37 module_init(ath9k_init);
38
39 static void __exit ath9k_exit(void)
40 {
41         return;
42 }
43 module_exit(ath9k_exit);
44
45 /* Private hardware callbacks */
46
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49         ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54         ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58 {
59         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61         return priv_ops->macversion_supported(ah->hw_version.macVersion);
62 }
63
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65                                         struct ath9k_channel *chan)
66 {
67         return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68 }
69
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71 {
72         if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73                 return;
74
75         ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76 }
77
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79 {
80         /* You will not have this callback if using the old ANI */
81         if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82                 return;
83
84         ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85 }
86
87 /********************/
88 /* Helper Functions */
89 /********************/
90
91 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
92 {
93         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95         if (!ah->curchan) /* should really check for CCK instead */
96                 return usecs *ATH9K_CLOCK_RATE_CCK;
97         if (conf->channel->band == IEEE80211_BAND_2GHZ)
98                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
99
100         if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101                 return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102         else
103                 return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
104 }
105
106 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
107 {
108         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
109
110         if (conf_is_ht40(conf))
111                 return ath9k_hw_mac_clks(ah, usecs) * 2;
112         else
113                 return ath9k_hw_mac_clks(ah, usecs);
114 }
115
116 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117 {
118         int i;
119
120         BUG_ON(timeout < AH_TIME_QUANTUM);
121
122         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123                 if ((REG_READ(ah, reg) & mask) == val)
124                         return true;
125
126                 udelay(AH_TIME_QUANTUM);
127         }
128
129         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131                   timeout, reg, REG_READ(ah, reg), mask, val);
132
133         return false;
134 }
135 EXPORT_SYMBOL(ath9k_hw_wait);
136
137 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
138 {
139         u32 retval;
140         int i;
141
142         for (i = 0, retval = 0; i < n; i++) {
143                 retval = (retval << 1) | (val & 1);
144                 val >>= 1;
145         }
146         return retval;
147 }
148
149 bool ath9k_get_channel_edges(struct ath_hw *ah,
150                              u16 flags, u16 *low,
151                              u16 *high)
152 {
153         struct ath9k_hw_capabilities *pCap = &ah->caps;
154
155         if (flags & CHANNEL_5GHZ) {
156                 *low = pCap->low_5ghz_chan;
157                 *high = pCap->high_5ghz_chan;
158                 return true;
159         }
160         if ((flags & CHANNEL_2GHZ)) {
161                 *low = pCap->low_2ghz_chan;
162                 *high = pCap->high_2ghz_chan;
163                 return true;
164         }
165         return false;
166 }
167
168 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169                            u8 phy, int kbps,
170                            u32 frameLen, u16 rateix,
171                            bool shortPreamble)
172 {
173         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
174
175         if (kbps == 0)
176                 return 0;
177
178         switch (phy) {
179         case WLAN_RC_PHY_CCK:
180                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181                 if (shortPreamble)
182                         phyTime >>= 1;
183                 numBits = frameLen << 3;
184                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185                 break;
186         case WLAN_RC_PHY_OFDM:
187                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
190                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191                         txTime = OFDM_SIFS_TIME_QUARTER
192                                 + OFDM_PREAMBLE_TIME_QUARTER
193                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194                 } else if (ah->curchan &&
195                            IS_CHAN_HALF_RATE(ah->curchan)) {
196                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
198                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199                         txTime = OFDM_SIFS_TIME_HALF +
200                                 OFDM_PREAMBLE_TIME_HALF
201                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
202                 } else {
203                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
205                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207                                 + (numSymbols * OFDM_SYMBOL_TIME);
208                 }
209                 break;
210         default:
211                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
213                 txTime = 0;
214                 break;
215         }
216
217         return txTime;
218 }
219 EXPORT_SYMBOL(ath9k_hw_computetxtime);
220
221 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222                                   struct ath9k_channel *chan,
223                                   struct chan_centers *centers)
224 {
225         int8_t extoff;
226
227         if (!IS_CHAN_HT40(chan)) {
228                 centers->ctl_center = centers->ext_center =
229                         centers->synth_center = chan->channel;
230                 return;
231         }
232
233         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235                 centers->synth_center =
236                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237                 extoff = 1;
238         } else {
239                 centers->synth_center =
240                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241                 extoff = -1;
242         }
243
244         centers->ctl_center =
245                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246         /* 25 MHz spacing is supported by hw but not on upper layers */
247         centers->ext_center =
248                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 }
250
251 /******************/
252 /* Chip Revisions */
253 /******************/
254
255 static void ath9k_hw_read_revisions(struct ath_hw *ah)
256 {
257         u32 val;
258
259         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
260
261         if (val == 0xFF) {
262                 val = REG_READ(ah, AR_SREV);
263                 ah->hw_version.macVersion =
264                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267         } else {
268                 if (!AR_SREV_9100(ah))
269                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270
271                 ah->hw_version.macRev = val & AR_SREV_REVISION;
272
273                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274                         ah->is_pciexpress = true;
275         }
276 }
277
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
281
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
283 {
284         if (AR_SREV_9100(ah))
285                 return;
286
287         ENABLE_REGWRITE_BUFFER(ah);
288
289         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298
299         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300
301         REGWRITE_BUFFER_FLUSH(ah);
302         DISABLE_REGWRITE_BUFFER(ah);
303 }
304
305 /* This should work for all families including legacy */
306 static bool ath9k_hw_chip_test(struct ath_hw *ah)
307 {
308         struct ath_common *common = ath9k_hw_common(ah);
309         u32 regAddr[2] = { AR_STA_ID0 };
310         u32 regHold[2];
311         u32 patternData[4] = { 0x55555555,
312                                0xaaaaaaaa,
313                                0x66666666,
314                                0x99999999 };
315         int i, j, loop_max;
316
317         if (!AR_SREV_9300_20_OR_LATER(ah)) {
318                 loop_max = 2;
319                 regAddr[1] = AR_PHY_BASE + (8 << 2);
320         } else
321                 loop_max = 1;
322
323         for (i = 0; i < loop_max; i++) {
324                 u32 addr = regAddr[i];
325                 u32 wrData, rdData;
326
327                 regHold[i] = REG_READ(ah, addr);
328                 for (j = 0; j < 0x100; j++) {
329                         wrData = (j << 16) | j;
330                         REG_WRITE(ah, addr, wrData);
331                         rdData = REG_READ(ah, addr);
332                         if (rdData != wrData) {
333                                 ath_print(common, ATH_DBG_FATAL,
334                                           "address test failed "
335                                           "addr: 0x%08x - wr:0x%08x != "
336                                           "rd:0x%08x\n",
337                                           addr, wrData, rdData);
338                                 return false;
339                         }
340                 }
341                 for (j = 0; j < 4; j++) {
342                         wrData = patternData[j];
343                         REG_WRITE(ah, addr, wrData);
344                         rdData = REG_READ(ah, addr);
345                         if (wrData != rdData) {
346                                 ath_print(common, ATH_DBG_FATAL,
347                                           "address test failed "
348                                           "addr: 0x%08x - wr:0x%08x != "
349                                           "rd:0x%08x\n",
350                                           addr, wrData, rdData);
351                                 return false;
352                         }
353                 }
354                 REG_WRITE(ah, regAddr[i], regHold[i]);
355         }
356         udelay(100);
357
358         return true;
359 }
360
361 static void ath9k_hw_init_config(struct ath_hw *ah)
362 {
363         int i;
364
365         ah->config.dma_beacon_response_time = 2;
366         ah->config.sw_beacon_response_time = 10;
367         ah->config.additional_swba_backoff = 0;
368         ah->config.ack_6mb = 0x0;
369         ah->config.cwm_ignore_extcca = 0;
370         ah->config.pcie_powersave_enable = 0;
371         ah->config.pcie_clock_req = 0;
372         ah->config.pcie_waen = 0;
373         ah->config.analog_shiftreg = 1;
374         ah->config.ofdm_trig_low = 200;
375         ah->config.ofdm_trig_high = 500;
376         ah->config.cck_trig_high = 200;
377         ah->config.cck_trig_low = 100;
378         ah->config.enable_ani = true;
379
380         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381                 ah->config.spurchans[i][0] = AR_NO_SPUR;
382                 ah->config.spurchans[i][1] = AR_NO_SPUR;
383         }
384
385         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386                 ah->config.ht_enable = 1;
387         else
388                 ah->config.ht_enable = 0;
389
390         ah->config.rx_intr_mitigation = true;
391         ah->config.pcieSerDesWrite = true;
392
393         /*
394          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
395          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
396          * This means we use it for all AR5416 devices, and the few
397          * minor PCI AR9280 devices out there.
398          *
399          * Serialization is required because these devices do not handle
400          * well the case of two concurrent reads/writes due to the latency
401          * involved. During one read/write another read/write can be issued
402          * on another CPU while the previous read/write may still be working
403          * on our hardware, if we hit this case the hardware poops in a loop.
404          * We prevent this by serializing reads and writes.
405          *
406          * This issue is not present on PCI-Express devices or pre-AR5416
407          * devices (legacy, 802.11abg).
408          */
409         if (num_possible_cpus() > 1)
410                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
411 }
412
413 static void ath9k_hw_init_defaults(struct ath_hw *ah)
414 {
415         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
416
417         regulatory->country_code = CTRY_DEFAULT;
418         regulatory->power_limit = MAX_RATE_POWER;
419         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
420
421         ah->hw_version.magic = AR5416_MAGIC;
422         ah->hw_version.subvendorid = 0;
423
424         ah->ah_flags = 0;
425         if (!AR_SREV_9100(ah))
426                 ah->ah_flags = AH_USE_EEPROM;
427
428         ah->atim_window = 0;
429         ah->sta_id1_defaults =
430                 AR_STA_ID1_CRPT_MIC_ENABLE |
431                 AR_STA_ID1_MCAST_KSRCH;
432         ah->beacon_interval = 100;
433         ah->enable_32kHz_clock = DONT_USE_32KHZ;
434         ah->slottime = (u32) -1;
435         ah->globaltxtimeout = (u32) -1;
436         ah->power_mode = ATH9K_PM_UNDEFINED;
437 }
438
439 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
440 {
441         struct ath_common *common = ath9k_hw_common(ah);
442         u32 sum;
443         int i;
444         u16 eeval;
445         u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
446
447         sum = 0;
448         for (i = 0; i < 3; i++) {
449                 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
450                 sum += eeval;
451                 common->macaddr[2 * i] = eeval >> 8;
452                 common->macaddr[2 * i + 1] = eeval & 0xff;
453         }
454         if (sum == 0 || sum == 0xffff * 3)
455                 return -EADDRNOTAVAIL;
456
457         return 0;
458 }
459
460 static int ath9k_hw_post_init(struct ath_hw *ah)
461 {
462         int ecode;
463
464         if (!AR_SREV_9271(ah)) {
465                 if (!ath9k_hw_chip_test(ah))
466                         return -ENODEV;
467         }
468
469         if (!AR_SREV_9300_20_OR_LATER(ah)) {
470                 ecode = ar9002_hw_rf_claim(ah);
471                 if (ecode != 0)
472                         return ecode;
473         }
474
475         ecode = ath9k_hw_eeprom_init(ah);
476         if (ecode != 0)
477                 return ecode;
478
479         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
480                   "Eeprom VER: %d, REV: %d\n",
481                   ah->eep_ops->get_eeprom_ver(ah),
482                   ah->eep_ops->get_eeprom_rev(ah));
483
484         ecode = ath9k_hw_rf_alloc_ext_banks(ah);
485         if (ecode) {
486                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
487                           "Failed allocating banks for "
488                           "external radio\n");
489                 return ecode;
490         }
491
492         if (!AR_SREV_9100(ah)) {
493                 ath9k_hw_ani_setup(ah);
494                 ath9k_hw_ani_init(ah);
495         }
496
497         return 0;
498 }
499
500 static void ath9k_hw_attach_ops(struct ath_hw *ah)
501 {
502         if (AR_SREV_9300_20_OR_LATER(ah))
503                 ar9003_hw_attach_ops(ah);
504         else
505                 ar9002_hw_attach_ops(ah);
506 }
507
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw *ah)
510 {
511         struct ath_common *common = ath9k_hw_common(ah);
512         int r = 0;
513
514         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
515                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
516
517         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
518                 ath_print(common, ATH_DBG_FATAL,
519                           "Couldn't reset chip\n");
520                 return -EIO;
521         }
522
523         ath9k_hw_init_defaults(ah);
524         ath9k_hw_init_config(ah);
525
526         ath9k_hw_attach_ops(ah);
527
528         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
529                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
530                 return -EIO;
531         }
532
533         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
534                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
535                     ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
536                      !ah->is_pciexpress)) {
537                         ah->config.serialize_regmode =
538                                 SER_REG_MODE_ON;
539                 } else {
540                         ah->config.serialize_regmode =
541                                 SER_REG_MODE_OFF;
542                 }
543         }
544
545         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
546                 ah->config.serialize_regmode);
547
548         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
549                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
550         else
551                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
552
553         if (!ath9k_hw_macversion_supported(ah)) {
554                 ath_print(common, ATH_DBG_FATAL,
555                           "Mac Chip Rev 0x%02x.%x is not supported by "
556                           "this driver\n", ah->hw_version.macVersion,
557                           ah->hw_version.macRev);
558                 return -EOPNOTSUPP;
559         }
560
561         if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
562                 ah->is_pciexpress = false;
563
564         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
565         ath9k_hw_init_cal_settings(ah);
566
567         ah->ani_function = ATH9K_ANI_ALL;
568         if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
569                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
570         if (!AR_SREV_9300_20_OR_LATER(ah))
571                 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
572
573         ath9k_hw_init_mode_regs(ah);
574
575         /*
576          * Read back AR_WA into a permanent copy and set bits 14 and 17.
577          * We need to do this to avoid RMW of this register. We cannot
578          * read the reg when chip is asleep.
579          */
580         ah->WARegVal = REG_READ(ah, AR_WA);
581         ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
582                          AR_WA_ASPM_TIMER_BASED_DISABLE);
583
584         if (ah->is_pciexpress)
585                 ath9k_hw_configpcipowersave(ah, 0, 0);
586         else
587                 ath9k_hw_disablepcie(ah);
588
589         if (!AR_SREV_9300_20_OR_LATER(ah))
590                 ar9002_hw_cck_chan14_spread(ah);
591
592         r = ath9k_hw_post_init(ah);
593         if (r)
594                 return r;
595
596         ath9k_hw_init_mode_gain_regs(ah);
597         r = ath9k_hw_fill_cap_info(ah);
598         if (r)
599                 return r;
600
601         r = ath9k_hw_init_macaddr(ah);
602         if (r) {
603                 ath_print(common, ATH_DBG_FATAL,
604                           "Failed to initialize MAC address\n");
605                 return r;
606         }
607
608         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
609                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
610         else
611                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
612
613         ah->bb_watchdog_timeout_ms = 25;
614
615         common->state = ATH_HW_INITIALIZED;
616
617         return 0;
618 }
619
620 int ath9k_hw_init(struct ath_hw *ah)
621 {
622         int ret;
623         struct ath_common *common = ath9k_hw_common(ah);
624
625         /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
626         switch (ah->hw_version.devid) {
627         case AR5416_DEVID_PCI:
628         case AR5416_DEVID_PCIE:
629         case AR5416_AR9100_DEVID:
630         case AR9160_DEVID_PCI:
631         case AR9280_DEVID_PCI:
632         case AR9280_DEVID_PCIE:
633         case AR9285_DEVID_PCIE:
634         case AR9287_DEVID_PCI:
635         case AR9287_DEVID_PCIE:
636         case AR2427_DEVID_PCIE:
637         case AR9300_DEVID_PCIE:
638                 break;
639         default:
640                 if (common->bus_ops->ath_bus_type == ATH_USB)
641                         break;
642                 ath_print(common, ATH_DBG_FATAL,
643                           "Hardware device ID 0x%04x not supported\n",
644                           ah->hw_version.devid);
645                 return -EOPNOTSUPP;
646         }
647
648         ret = __ath9k_hw_init(ah);
649         if (ret) {
650                 ath_print(common, ATH_DBG_FATAL,
651                           "Unable to initialize hardware; "
652                           "initialization status: %d\n", ret);
653                 return ret;
654         }
655
656         return 0;
657 }
658 EXPORT_SYMBOL(ath9k_hw_init);
659
660 static void ath9k_hw_init_qos(struct ath_hw *ah)
661 {
662         ENABLE_REGWRITE_BUFFER(ah);
663
664         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
665         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
666
667         REG_WRITE(ah, AR_QOS_NO_ACK,
668                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
669                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
670                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
671
672         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
673         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
674         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
675         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
676         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
677
678         REGWRITE_BUFFER_FLUSH(ah);
679         DISABLE_REGWRITE_BUFFER(ah);
680 }
681
682 static void ath9k_hw_init_pll(struct ath_hw *ah,
683                               struct ath9k_channel *chan)
684 {
685         u32 pll = ath9k_hw_compute_pll_control(ah, chan);
686
687         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
688
689         /* Switch the core clock for ar9271 to 117Mhz */
690         if (AR_SREV_9271(ah)) {
691                 udelay(500);
692                 REG_WRITE(ah, 0x50040, 0x304);
693         }
694
695         udelay(RTC_PLL_SETTLE_DELAY);
696
697         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
698 }
699
700 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
701                                           enum nl80211_iftype opmode)
702 {
703         u32 imr_reg = AR_IMR_TXERR |
704                 AR_IMR_TXURN |
705                 AR_IMR_RXERR |
706                 AR_IMR_RXORN |
707                 AR_IMR_BCNMISC;
708
709         if (AR_SREV_9300_20_OR_LATER(ah)) {
710                 imr_reg |= AR_IMR_RXOK_HP;
711                 if (ah->config.rx_intr_mitigation)
712                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
713                 else
714                         imr_reg |= AR_IMR_RXOK_LP;
715
716         } else {
717                 if (ah->config.rx_intr_mitigation)
718                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
719                 else
720                         imr_reg |= AR_IMR_RXOK;
721         }
722
723         if (ah->config.tx_intr_mitigation)
724                 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
725         else
726                 imr_reg |= AR_IMR_TXOK;
727
728         if (opmode == NL80211_IFTYPE_AP)
729                 imr_reg |= AR_IMR_MIB;
730
731         ENABLE_REGWRITE_BUFFER(ah);
732
733         REG_WRITE(ah, AR_IMR, imr_reg);
734         ah->imrs2_reg |= AR_IMR_S2_GTT;
735         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
736
737         if (!AR_SREV_9100(ah)) {
738                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
739                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
740                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
741         }
742
743         REGWRITE_BUFFER_FLUSH(ah);
744         DISABLE_REGWRITE_BUFFER(ah);
745
746         if (AR_SREV_9300_20_OR_LATER(ah)) {
747                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
748                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
749                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
750                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
751         }
752 }
753
754 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
755 {
756         u32 val = ath9k_hw_mac_to_clks(ah, us);
757         val = min(val, (u32) 0xFFFF);
758         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
759 }
760
761 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
762 {
763         u32 val = ath9k_hw_mac_to_clks(ah, us);
764         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
765         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
766 }
767
768 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
769 {
770         u32 val = ath9k_hw_mac_to_clks(ah, us);
771         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
772         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
773 }
774
775 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
776 {
777         if (tu > 0xFFFF) {
778                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
779                           "bad global tx timeout %u\n", tu);
780                 ah->globaltxtimeout = (u32) -1;
781                 return false;
782         } else {
783                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
784                 ah->globaltxtimeout = tu;
785                 return true;
786         }
787 }
788
789 void ath9k_hw_init_global_settings(struct ath_hw *ah)
790 {
791         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
792         int acktimeout;
793         int slottime;
794         int sifstime;
795
796         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
797                   ah->misc_mode);
798
799         if (ah->misc_mode != 0)
800                 REG_WRITE(ah, AR_PCU_MISC,
801                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
802
803         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
804                 sifstime = 16;
805         else
806                 sifstime = 10;
807
808         /* As defined by IEEE 802.11-2007 17.3.8.6 */
809         slottime = ah->slottime + 3 * ah->coverage_class;
810         acktimeout = slottime + sifstime;
811
812         /*
813          * Workaround for early ACK timeouts, add an offset to match the
814          * initval's 64us ack timeout value.
815          * This was initially only meant to work around an issue with delayed
816          * BA frames in some implementations, but it has been found to fix ACK
817          * timeout issues in other cases as well.
818          */
819         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
820                 acktimeout += 64 - sifstime - ah->slottime;
821
822         ath9k_hw_setslottime(ah, slottime);
823         ath9k_hw_set_ack_timeout(ah, acktimeout);
824         ath9k_hw_set_cts_timeout(ah, acktimeout);
825         if (ah->globaltxtimeout != (u32) -1)
826                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
827 }
828 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
829
830 void ath9k_hw_deinit(struct ath_hw *ah)
831 {
832         struct ath_common *common = ath9k_hw_common(ah);
833
834         if (common->state < ATH_HW_INITIALIZED)
835                 goto free_hw;
836
837         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
838
839 free_hw:
840         ath9k_hw_rf_free_ext_banks(ah);
841 }
842 EXPORT_SYMBOL(ath9k_hw_deinit);
843
844 /*******/
845 /* INI */
846 /*******/
847
848 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
849 {
850         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
851
852         if (IS_CHAN_B(chan))
853                 ctl |= CTL_11B;
854         else if (IS_CHAN_G(chan))
855                 ctl |= CTL_11G;
856         else
857                 ctl |= CTL_11A;
858
859         return ctl;
860 }
861
862 /****************************************/
863 /* Reset and Channel Switching Routines */
864 /****************************************/
865
866 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
867 {
868         struct ath_common *common = ath9k_hw_common(ah);
869         u32 regval;
870
871         ENABLE_REGWRITE_BUFFER(ah);
872
873         /*
874          * set AHB_MODE not to do cacheline prefetches
875         */
876         if (!AR_SREV_9300_20_OR_LATER(ah)) {
877                 regval = REG_READ(ah, AR_AHB_MODE);
878                 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
879         }
880
881         /*
882          * let mac dma reads be in 128 byte chunks
883          */
884         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
885         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
886
887         REGWRITE_BUFFER_FLUSH(ah);
888         DISABLE_REGWRITE_BUFFER(ah);
889
890         /*
891          * Restore TX Trigger Level to its pre-reset value.
892          * The initial value depends on whether aggregation is enabled, and is
893          * adjusted whenever underruns are detected.
894          */
895         if (!AR_SREV_9300_20_OR_LATER(ah))
896                 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
897
898         ENABLE_REGWRITE_BUFFER(ah);
899
900         /*
901          * let mac dma writes be in 128 byte chunks
902          */
903         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
904         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
905
906         /*
907          * Setup receive FIFO threshold to hold off TX activities
908          */
909         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
910
911         if (AR_SREV_9300_20_OR_LATER(ah)) {
912                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
913                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
914
915                 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
916                         ah->caps.rx_status_len);
917         }
918
919         /*
920          * reduce the number of usable entries in PCU TXBUF to avoid
921          * wrap around issues.
922          */
923         if (AR_SREV_9285(ah)) {
924                 /* For AR9285 the number of Fifos are reduced to half.
925                  * So set the usable tx buf size also to half to
926                  * avoid data/delimiter underruns
927                  */
928                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
929                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
930         } else if (!AR_SREV_9271(ah)) {
931                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
932                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
933         }
934
935         REGWRITE_BUFFER_FLUSH(ah);
936         DISABLE_REGWRITE_BUFFER(ah);
937
938         if (AR_SREV_9300_20_OR_LATER(ah))
939                 ath9k_hw_reset_txstatus_ring(ah);
940 }
941
942 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
943 {
944         u32 val;
945
946         val = REG_READ(ah, AR_STA_ID1);
947         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
948         switch (opmode) {
949         case NL80211_IFTYPE_AP:
950                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
951                           | AR_STA_ID1_KSRCH_MODE);
952                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
953                 break;
954         case NL80211_IFTYPE_ADHOC:
955         case NL80211_IFTYPE_MESH_POINT:
956                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
957                           | AR_STA_ID1_KSRCH_MODE);
958                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
959                 break;
960         case NL80211_IFTYPE_STATION:
961         case NL80211_IFTYPE_MONITOR:
962                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
963                 break;
964         }
965 }
966
967 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
968                                    u32 *coef_mantissa, u32 *coef_exponent)
969 {
970         u32 coef_exp, coef_man;
971
972         for (coef_exp = 31; coef_exp > 0; coef_exp--)
973                 if ((coef_scaled >> coef_exp) & 0x1)
974                         break;
975
976         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
977
978         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
979
980         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
981         *coef_exponent = coef_exp - 16;
982 }
983
984 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
985 {
986         u32 rst_flags;
987         u32 tmpReg;
988
989         if (AR_SREV_9100(ah)) {
990                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
991                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
992                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
993                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
994                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
995         }
996
997         ENABLE_REGWRITE_BUFFER(ah);
998
999         if (AR_SREV_9300_20_OR_LATER(ah)) {
1000                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1001                 udelay(10);
1002         }
1003
1004         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1005                   AR_RTC_FORCE_WAKE_ON_INT);
1006
1007         if (AR_SREV_9100(ah)) {
1008                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1009                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1010         } else {
1011                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1012                 if (tmpReg &
1013                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1014                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1015                         u32 val;
1016                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1017
1018                         val = AR_RC_HOSTIF;
1019                         if (!AR_SREV_9300_20_OR_LATER(ah))
1020                                 val |= AR_RC_AHB;
1021                         REG_WRITE(ah, AR_RC, val);
1022
1023                 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1024                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1025
1026                 rst_flags = AR_RTC_RC_MAC_WARM;
1027                 if (type == ATH9K_RESET_COLD)
1028                         rst_flags |= AR_RTC_RC_MAC_COLD;
1029         }
1030
1031         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1032
1033         REGWRITE_BUFFER_FLUSH(ah);
1034         DISABLE_REGWRITE_BUFFER(ah);
1035
1036         udelay(50);
1037
1038         REG_WRITE(ah, AR_RTC_RC, 0);
1039         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1040                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1041                           "RTC stuck in MAC reset\n");
1042                 return false;
1043         }
1044
1045         if (!AR_SREV_9100(ah))
1046                 REG_WRITE(ah, AR_RC, 0);
1047
1048         if (AR_SREV_9100(ah))
1049                 udelay(50);
1050
1051         return true;
1052 }
1053
1054 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1055 {
1056         ENABLE_REGWRITE_BUFFER(ah);
1057
1058         if (AR_SREV_9300_20_OR_LATER(ah)) {
1059                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1060                 udelay(10);
1061         }
1062
1063         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1064                   AR_RTC_FORCE_WAKE_ON_INT);
1065
1066         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1067                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1068
1069         REG_WRITE(ah, AR_RTC_RESET, 0);
1070         udelay(2);
1071
1072         REGWRITE_BUFFER_FLUSH(ah);
1073         DISABLE_REGWRITE_BUFFER(ah);
1074
1075         if (!AR_SREV_9300_20_OR_LATER(ah))
1076                 udelay(2);
1077
1078         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1079                 REG_WRITE(ah, AR_RC, 0);
1080
1081         REG_WRITE(ah, AR_RTC_RESET, 1);
1082
1083         if (!ath9k_hw_wait(ah,
1084                            AR_RTC_STATUS,
1085                            AR_RTC_STATUS_M,
1086                            AR_RTC_STATUS_ON,
1087                            AH_WAIT_TIMEOUT)) {
1088                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1089                           "RTC not waking up\n");
1090                 return false;
1091         }
1092
1093         ath9k_hw_read_revisions(ah);
1094
1095         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1096 }
1097
1098 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1099 {
1100         if (AR_SREV_9300_20_OR_LATER(ah)) {
1101                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1102                 udelay(10);
1103         }
1104
1105         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1106                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1107
1108         switch (type) {
1109         case ATH9K_RESET_POWER_ON:
1110                 return ath9k_hw_set_reset_power_on(ah);
1111         case ATH9K_RESET_WARM:
1112         case ATH9K_RESET_COLD:
1113                 return ath9k_hw_set_reset(ah, type);
1114         default:
1115                 return false;
1116         }
1117 }
1118
1119 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1120                                 struct ath9k_channel *chan)
1121 {
1122         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1123                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1124                         return false;
1125         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1126                 return false;
1127
1128         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1129                 return false;
1130
1131         ah->chip_fullsleep = false;
1132         ath9k_hw_init_pll(ah, chan);
1133         ath9k_hw_set_rfmode(ah, chan);
1134
1135         return true;
1136 }
1137
1138 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1139                                     struct ath9k_channel *chan)
1140 {
1141         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1142         struct ath_common *common = ath9k_hw_common(ah);
1143         struct ieee80211_channel *channel = chan->chan;
1144         u32 qnum;
1145         int r;
1146
1147         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1148                 if (ath9k_hw_numtxpending(ah, qnum)) {
1149                         ath_print(common, ATH_DBG_QUEUE,
1150                                   "Transmit frames pending on "
1151                                   "queue %d\n", qnum);
1152                         return false;
1153                 }
1154         }
1155
1156         if (!ath9k_hw_rfbus_req(ah)) {
1157                 ath_print(common, ATH_DBG_FATAL,
1158                           "Could not kill baseband RX\n");
1159                 return false;
1160         }
1161
1162         ath9k_hw_set_channel_regs(ah, chan);
1163
1164         r = ath9k_hw_rf_set_freq(ah, chan);
1165         if (r) {
1166                 ath_print(common, ATH_DBG_FATAL,
1167                           "Failed to set channel\n");
1168                 return false;
1169         }
1170
1171         ah->eep_ops->set_txpower(ah, chan,
1172                              ath9k_regd_get_ctl(regulatory, chan),
1173                              channel->max_antenna_gain * 2,
1174                              channel->max_power * 2,
1175                              min((u32) MAX_RATE_POWER,
1176                              (u32) regulatory->power_limit));
1177
1178         ath9k_hw_rfbus_done(ah);
1179
1180         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1181                 ath9k_hw_set_delta_slope(ah, chan);
1182
1183         ath9k_hw_spur_mitigate_freq(ah, chan);
1184
1185         return true;
1186 }
1187
1188 bool ath9k_hw_check_alive(struct ath_hw *ah)
1189 {
1190         int count = 50;
1191         u32 reg;
1192
1193         if (AR_SREV_9285_10_OR_LATER(ah))
1194                 return true;
1195
1196         do {
1197                 reg = REG_READ(ah, AR_OBS_BUS_1);
1198
1199                 if ((reg & 0x7E7FFFEF) == 0x00702400)
1200                         continue;
1201
1202                 switch (reg & 0x7E000B00) {
1203                 case 0x1E000000:
1204                 case 0x52000B00:
1205                 case 0x18000B00:
1206                         continue;
1207                 default:
1208                         return true;
1209                 }
1210         } while (count-- > 0);
1211
1212         return false;
1213 }
1214 EXPORT_SYMBOL(ath9k_hw_check_alive);
1215
1216 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1217                    struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1218 {
1219         struct ath_common *common = ath9k_hw_common(ah);
1220         u32 saveLedState;
1221         struct ath9k_channel *curchan = ah->curchan;
1222         u32 saveDefAntenna;
1223         u32 macStaId1;
1224         u64 tsf = 0;
1225         int i, r;
1226
1227         ah->txchainmask = common->tx_chainmask;
1228         ah->rxchainmask = common->rx_chainmask;
1229
1230         if (!ah->chip_fullsleep) {
1231                 ath9k_hw_abortpcurecv(ah);
1232                 if (!ath9k_hw_stopdmarecv(ah)) {
1233                         ath_print(common, ATH_DBG_XMIT,
1234                                 "Failed to stop receive dma\n");
1235                         bChannelChange = false;
1236                 }
1237         }
1238
1239         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1240                 return -EIO;
1241
1242         if (curchan && !ah->chip_fullsleep && ah->caldata)
1243                 ath9k_hw_getnf(ah, curchan);
1244
1245         ah->caldata = caldata;
1246         if (caldata &&
1247             (chan->channel != caldata->channel ||
1248              (chan->channelFlags & ~CHANNEL_CW_INT) !=
1249              (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1250                 /* Operating channel changed, reset channel calibration data */
1251                 memset(caldata, 0, sizeof(*caldata));
1252                 ath9k_init_nfcal_hist_buffer(ah, chan);
1253         }
1254
1255         if (bChannelChange &&
1256             (ah->chip_fullsleep != true) &&
1257             (ah->curchan != NULL) &&
1258             (chan->channel != ah->curchan->channel) &&
1259             ((chan->channelFlags & CHANNEL_ALL) ==
1260              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1261             !AR_SREV_9280(ah)) {
1262
1263                 if (ath9k_hw_channel_change(ah, chan)) {
1264                         ath9k_hw_loadnf(ah, ah->curchan);
1265                         ath9k_hw_start_nfcal(ah, true);
1266                         return 0;
1267                 }
1268         }
1269
1270         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1271         if (saveDefAntenna == 0)
1272                 saveDefAntenna = 1;
1273
1274         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1275
1276         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1277         if (AR_SREV_9100(ah) ||
1278             (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1279                 tsf = ath9k_hw_gettsf64(ah);
1280
1281         saveLedState = REG_READ(ah, AR_CFG_LED) &
1282                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1283                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1284
1285         ath9k_hw_mark_phy_inactive(ah);
1286
1287         /* Only required on the first reset */
1288         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1289                 REG_WRITE(ah,
1290                           AR9271_RESET_POWER_DOWN_CONTROL,
1291                           AR9271_RADIO_RF_RST);
1292                 udelay(50);
1293         }
1294
1295         if (!ath9k_hw_chip_reset(ah, chan)) {
1296                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1297                 return -EINVAL;
1298         }
1299
1300         /* Only required on the first reset */
1301         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1302                 ah->htc_reset_init = false;
1303                 REG_WRITE(ah,
1304                           AR9271_RESET_POWER_DOWN_CONTROL,
1305                           AR9271_GATE_MAC_CTL);
1306                 udelay(50);
1307         }
1308
1309         /* Restore TSF */
1310         if (tsf)
1311                 ath9k_hw_settsf64(ah, tsf);
1312
1313         if (AR_SREV_9280_10_OR_LATER(ah))
1314                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1315
1316         if (!AR_SREV_9300_20_OR_LATER(ah))
1317                 ar9002_hw_enable_async_fifo(ah);
1318
1319         r = ath9k_hw_process_ini(ah, chan);
1320         if (r)
1321                 return r;
1322
1323         /*
1324          * Some AR91xx SoC devices frequently fail to accept TSF writes
1325          * right after the chip reset. When that happens, write a new
1326          * value after the initvals have been applied, with an offset
1327          * based on measured time difference
1328          */
1329         if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1330                 tsf += 1500;
1331                 ath9k_hw_settsf64(ah, tsf);
1332         }
1333
1334         /* Setup MFP options for CCMP */
1335         if (AR_SREV_9280_20_OR_LATER(ah)) {
1336                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1337                  * frames when constructing CCMP AAD. */
1338                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1339                               0xc7ff);
1340                 ah->sw_mgmt_crypto = false;
1341         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1342                 /* Disable hardware crypto for management frames */
1343                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1344                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1345                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1346                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1347                 ah->sw_mgmt_crypto = true;
1348         } else
1349                 ah->sw_mgmt_crypto = true;
1350
1351         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1352                 ath9k_hw_set_delta_slope(ah, chan);
1353
1354         ath9k_hw_spur_mitigate_freq(ah, chan);
1355         ah->eep_ops->set_board_values(ah, chan);
1356
1357         ath9k_hw_set_operating_mode(ah, ah->opmode);
1358
1359         ENABLE_REGWRITE_BUFFER(ah);
1360
1361         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1362         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1363                   | macStaId1
1364                   | AR_STA_ID1_RTS_USE_DEF
1365                   | (ah->config.
1366                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1367                   | ah->sta_id1_defaults);
1368         ath_hw_setbssidmask(common);
1369         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1370         ath9k_hw_write_associd(ah);
1371         REG_WRITE(ah, AR_ISR, ~0);
1372         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1373
1374         REGWRITE_BUFFER_FLUSH(ah);
1375         DISABLE_REGWRITE_BUFFER(ah);
1376
1377         r = ath9k_hw_rf_set_freq(ah, chan);
1378         if (r)
1379                 return r;
1380
1381         ENABLE_REGWRITE_BUFFER(ah);
1382
1383         for (i = 0; i < AR_NUM_DCU; i++)
1384                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1385
1386         REGWRITE_BUFFER_FLUSH(ah);
1387         DISABLE_REGWRITE_BUFFER(ah);
1388
1389         ah->intr_txqs = 0;
1390         for (i = 0; i < ah->caps.total_queues; i++)
1391                 ath9k_hw_resettxqueue(ah, i);
1392
1393         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1394         ath9k_hw_ani_cache_ini_regs(ah);
1395         ath9k_hw_init_qos(ah);
1396
1397         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1398                 ath9k_enable_rfkill(ah);
1399
1400         ath9k_hw_init_global_settings(ah);
1401
1402         if (!AR_SREV_9300_20_OR_LATER(ah)) {
1403                 ar9002_hw_update_async_fifo(ah);
1404                 ar9002_hw_enable_wep_aggregation(ah);
1405         }
1406
1407         REG_WRITE(ah, AR_STA_ID1,
1408                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1409
1410         ath9k_hw_set_dma(ah);
1411
1412         REG_WRITE(ah, AR_OBS, 8);
1413
1414         if (ah->config.rx_intr_mitigation) {
1415                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1416                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1417         }
1418
1419         if (ah->config.tx_intr_mitigation) {
1420                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1421                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1422         }
1423
1424         ath9k_hw_init_bb(ah, chan);
1425
1426         if (!ath9k_hw_init_cal(ah, chan))
1427                 return -EIO;
1428
1429         ENABLE_REGWRITE_BUFFER(ah);
1430
1431         ath9k_hw_restore_chainmask(ah);
1432         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1433
1434         REGWRITE_BUFFER_FLUSH(ah);
1435         DISABLE_REGWRITE_BUFFER(ah);
1436
1437         /*
1438          * For big endian systems turn on swapping for descriptors
1439          */
1440         if (AR_SREV_9100(ah)) {
1441                 u32 mask;
1442                 mask = REG_READ(ah, AR_CFG);
1443                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1444                         ath_print(common, ATH_DBG_RESET,
1445                                 "CFG Byte Swap Set 0x%x\n", mask);
1446                 } else {
1447                         mask =
1448                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1449                         REG_WRITE(ah, AR_CFG, mask);
1450                         ath_print(common, ATH_DBG_RESET,
1451                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1452                 }
1453         } else {
1454                 if (common->bus_ops->ath_bus_type == ATH_USB) {
1455                         /* Configure AR9271 target WLAN */
1456                         if (AR_SREV_9271(ah))
1457                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1458                         else
1459                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1460                 }
1461 #ifdef __BIG_ENDIAN
1462                 else
1463                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1464 #endif
1465         }
1466
1467         if (ah->btcoex_hw.enabled)
1468                 ath9k_hw_btcoex_enable(ah);
1469
1470         if (AR_SREV_9300_20_OR_LATER(ah))
1471                 ar9003_hw_bb_watchdog_config(ah);
1472
1473         return 0;
1474 }
1475 EXPORT_SYMBOL(ath9k_hw_reset);
1476
1477 /************************/
1478 /* Key Cache Management */
1479 /************************/
1480
1481 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1482 {
1483         u32 keyType;
1484
1485         if (entry >= ah->caps.keycache_size) {
1486                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1487                           "keychache entry %u out of range\n", entry);
1488                 return false;
1489         }
1490
1491         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1492
1493         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1494         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1495         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1496         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1497         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1498         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1499         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1500         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1501
1502         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1503                 u16 micentry = entry + 64;
1504
1505                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1506                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1507                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1508                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1509
1510         }
1511
1512         return true;
1513 }
1514 EXPORT_SYMBOL(ath9k_hw_keyreset);
1515
1516 static bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1517 {
1518         u32 macHi, macLo;
1519         u32 unicast_flag = AR_KEYTABLE_VALID;
1520
1521         if (entry >= ah->caps.keycache_size) {
1522                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1523                           "keychache entry %u out of range\n", entry);
1524                 return false;
1525         }
1526
1527         if (mac != NULL) {
1528                 /*
1529                  * AR_KEYTABLE_VALID indicates that the address is a unicast
1530                  * address, which must match the transmitter address for
1531                  * decrypting frames.
1532                  * Not setting this bit allows the hardware to use the key
1533                  * for multicast frame decryption.
1534                  */
1535                 if (mac[0] & 0x01)
1536                         unicast_flag = 0;
1537
1538                 macHi = (mac[5] << 8) | mac[4];
1539                 macLo = (mac[3] << 24) |
1540                         (mac[2] << 16) |
1541                         (mac[1] << 8) |
1542                         mac[0];
1543                 macLo >>= 1;
1544                 macLo |= (macHi & 1) << 31;
1545                 macHi >>= 1;
1546         } else {
1547                 macLo = macHi = 0;
1548         }
1549         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1550         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1551
1552         return true;
1553 }
1554
1555 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1556                                  const struct ath9k_keyval *k,
1557                                  const u8 *mac)
1558 {
1559         const struct ath9k_hw_capabilities *pCap = &ah->caps;
1560         struct ath_common *common = ath9k_hw_common(ah);
1561         u32 key0, key1, key2, key3, key4;
1562         u32 keyType;
1563
1564         if (entry >= pCap->keycache_size) {
1565                 ath_print(common, ATH_DBG_FATAL,
1566                           "keycache entry %u out of range\n", entry);
1567                 return false;
1568         }
1569
1570         switch (k->kv_type) {
1571         case ATH9K_CIPHER_AES_OCB:
1572                 keyType = AR_KEYTABLE_TYPE_AES;
1573                 break;
1574         case ATH9K_CIPHER_AES_CCM:
1575                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1576                         ath_print(common, ATH_DBG_ANY,
1577                                   "AES-CCM not supported by mac rev 0x%x\n",
1578                                   ah->hw_version.macRev);
1579                         return false;
1580                 }
1581                 keyType = AR_KEYTABLE_TYPE_CCM;
1582                 break;
1583         case ATH9K_CIPHER_TKIP:
1584                 keyType = AR_KEYTABLE_TYPE_TKIP;
1585                 if (ATH9K_IS_MIC_ENABLED(ah)
1586                     && entry + 64 >= pCap->keycache_size) {
1587                         ath_print(common, ATH_DBG_ANY,
1588                                   "entry %u inappropriate for TKIP\n", entry);
1589                         return false;
1590                 }
1591                 break;
1592         case ATH9K_CIPHER_WEP:
1593                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1594                         ath_print(common, ATH_DBG_ANY,
1595                                   "WEP key length %u too small\n", k->kv_len);
1596                         return false;
1597                 }
1598                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1599                         keyType = AR_KEYTABLE_TYPE_40;
1600                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1601                         keyType = AR_KEYTABLE_TYPE_104;
1602                 else
1603                         keyType = AR_KEYTABLE_TYPE_128;
1604                 break;
1605         case ATH9K_CIPHER_CLR:
1606                 keyType = AR_KEYTABLE_TYPE_CLR;
1607                 break;
1608         default:
1609                 ath_print(common, ATH_DBG_FATAL,
1610                           "cipher %u not supported\n", k->kv_type);
1611                 return false;
1612         }
1613
1614         key0 = get_unaligned_le32(k->kv_val + 0);
1615         key1 = get_unaligned_le16(k->kv_val + 4);
1616         key2 = get_unaligned_le32(k->kv_val + 6);
1617         key3 = get_unaligned_le16(k->kv_val + 10);
1618         key4 = get_unaligned_le32(k->kv_val + 12);
1619         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1620                 key4 &= 0xff;
1621
1622         /*
1623          * Note: Key cache registers access special memory area that requires
1624          * two 32-bit writes to actually update the values in the internal
1625          * memory. Consequently, the exact order and pairs used here must be
1626          * maintained.
1627          */
1628
1629         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1630                 u16 micentry = entry + 64;
1631
1632                 /*
1633                  * Write inverted key[47:0] first to avoid Michael MIC errors
1634                  * on frames that could be sent or received at the same time.
1635                  * The correct key will be written in the end once everything
1636                  * else is ready.
1637                  */
1638                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1639                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1640
1641                 /* Write key[95:48] */
1642                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1643                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1644
1645                 /* Write key[127:96] and key type */
1646                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1647                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1648
1649                 /* Write MAC address for the entry */
1650                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1651
1652                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1653                         /*
1654                          * TKIP uses two key cache entries:
1655                          * Michael MIC TX/RX keys in the same key cache entry
1656                          * (idx = main index + 64):
1657                          * key0 [31:0] = RX key [31:0]
1658                          * key1 [15:0] = TX key [31:16]
1659                          * key1 [31:16] = reserved
1660                          * key2 [31:0] = RX key [63:32]
1661                          * key3 [15:0] = TX key [15:0]
1662                          * key3 [31:16] = reserved
1663                          * key4 [31:0] = TX key [63:32]
1664                          */
1665                         u32 mic0, mic1, mic2, mic3, mic4;
1666
1667                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1668                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1669                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1670                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1671                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
1672
1673                         /* Write RX[31:0] and TX[31:16] */
1674                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1675                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1676
1677                         /* Write RX[63:32] and TX[15:0] */
1678                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1679                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1680
1681                         /* Write TX[63:32] and keyType(reserved) */
1682                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1683                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1684                                   AR_KEYTABLE_TYPE_CLR);
1685
1686                 } else {
1687                         /*
1688                          * TKIP uses four key cache entries (two for group
1689                          * keys):
1690                          * Michael MIC TX/RX keys are in different key cache
1691                          * entries (idx = main index + 64 for TX and
1692                          * main index + 32 + 96 for RX):
1693                          * key0 [31:0] = TX/RX MIC key [31:0]
1694                          * key1 [31:0] = reserved
1695                          * key2 [31:0] = TX/RX MIC key [63:32]
1696                          * key3 [31:0] = reserved
1697                          * key4 [31:0] = reserved
1698                          *
1699                          * Upper layer code will call this function separately
1700                          * for TX and RX keys when these registers offsets are
1701                          * used.
1702                          */
1703                         u32 mic0, mic2;
1704
1705                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1706                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1707
1708                         /* Write MIC key[31:0] */
1709                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1710                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1711
1712                         /* Write MIC key[63:32] */
1713                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1714                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1715
1716                         /* Write TX[63:32] and keyType(reserved) */
1717                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1718                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1719                                   AR_KEYTABLE_TYPE_CLR);
1720                 }
1721
1722                 /* MAC address registers are reserved for the MIC entry */
1723                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1724                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1725
1726                 /*
1727                  * Write the correct (un-inverted) key[47:0] last to enable
1728                  * TKIP now that all other registers are set with correct
1729                  * values.
1730                  */
1731                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1732                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1733         } else {
1734                 /* Write key[47:0] */
1735                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1736                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1737
1738                 /* Write key[95:48] */
1739                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1740                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1741
1742                 /* Write key[127:96] and key type */
1743                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1744                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1745
1746                 /* Write MAC address for the entry */
1747                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1748         }
1749
1750         return true;
1751 }
1752 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1753
1754 /******************************/
1755 /* Power Management (Chipset) */
1756 /******************************/
1757
1758 /*
1759  * Notify Power Mgt is disabled in self-generated frames.
1760  * If requested, force chip to sleep.
1761  */
1762 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1763 {
1764         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1765         if (setChip) {
1766                 /*
1767                  * Clear the RTC force wake bit to allow the
1768                  * mac to go to sleep.
1769                  */
1770                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1771                             AR_RTC_FORCE_WAKE_EN);
1772                 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1773                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1774
1775                 /* Shutdown chip. Active low */
1776                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1777                         REG_CLR_BIT(ah, (AR_RTC_RESET),
1778                                     AR_RTC_RESET_EN);
1779         }
1780
1781         /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1782         if (AR_SREV_9300_20_OR_LATER(ah))
1783                 REG_WRITE(ah, AR_WA,
1784                           ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1785 }
1786
1787 /*
1788  * Notify Power Management is enabled in self-generating
1789  * frames. If request, set power mode of chip to
1790  * auto/normal.  Duration in units of 128us (1/8 TU).
1791  */
1792 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1793 {
1794         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1795         if (setChip) {
1796                 struct ath9k_hw_capabilities *pCap = &ah->caps;
1797
1798                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1799                         /* Set WakeOnInterrupt bit; clear ForceWake bit */
1800                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1801                                   AR_RTC_FORCE_WAKE_ON_INT);
1802                 } else {
1803                         /*
1804                          * Clear the RTC force wake bit to allow the
1805                          * mac to go to sleep.
1806                          */
1807                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1808                                     AR_RTC_FORCE_WAKE_EN);
1809                 }
1810         }
1811
1812         /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1813         if (AR_SREV_9300_20_OR_LATER(ah))
1814                 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1815 }
1816
1817 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1818 {
1819         u32 val;
1820         int i;
1821
1822         /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1823         if (AR_SREV_9300_20_OR_LATER(ah)) {
1824                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1825                 udelay(10);
1826         }
1827
1828         if (setChip) {
1829                 if ((REG_READ(ah, AR_RTC_STATUS) &
1830                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1831                         if (ath9k_hw_set_reset_reg(ah,
1832                                            ATH9K_RESET_POWER_ON) != true) {
1833                                 return false;
1834                         }
1835                         if (!AR_SREV_9300_20_OR_LATER(ah))
1836                                 ath9k_hw_init_pll(ah, NULL);
1837                 }
1838                 if (AR_SREV_9100(ah))
1839                         REG_SET_BIT(ah, AR_RTC_RESET,
1840                                     AR_RTC_RESET_EN);
1841
1842                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1843                             AR_RTC_FORCE_WAKE_EN);
1844                 udelay(50);
1845
1846                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1847                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1848                         if (val == AR_RTC_STATUS_ON)
1849                                 break;
1850                         udelay(50);
1851                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1852                                     AR_RTC_FORCE_WAKE_EN);
1853                 }
1854                 if (i == 0) {
1855                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1856                                   "Failed to wakeup in %uus\n",
1857                                   POWER_UP_TIME / 20);
1858                         return false;
1859                 }
1860         }
1861
1862         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1863
1864         return true;
1865 }
1866
1867 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1868 {
1869         struct ath_common *common = ath9k_hw_common(ah);
1870         int status = true, setChip = true;
1871         static const char *modes[] = {
1872                 "AWAKE",
1873                 "FULL-SLEEP",
1874                 "NETWORK SLEEP",
1875                 "UNDEFINED"
1876         };
1877
1878         if (ah->power_mode == mode)
1879                 return status;
1880
1881         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1882                   modes[ah->power_mode], modes[mode]);
1883
1884         switch (mode) {
1885         case ATH9K_PM_AWAKE:
1886                 status = ath9k_hw_set_power_awake(ah, setChip);
1887                 break;
1888         case ATH9K_PM_FULL_SLEEP:
1889                 ath9k_set_power_sleep(ah, setChip);
1890                 ah->chip_fullsleep = true;
1891                 break;
1892         case ATH9K_PM_NETWORK_SLEEP:
1893                 ath9k_set_power_network_sleep(ah, setChip);
1894                 break;
1895         default:
1896                 ath_print(common, ATH_DBG_FATAL,
1897                           "Unknown power mode %u\n", mode);
1898                 return false;
1899         }
1900         ah->power_mode = mode;
1901
1902         return status;
1903 }
1904 EXPORT_SYMBOL(ath9k_hw_setpower);
1905
1906 /*******************/
1907 /* Beacon Handling */
1908 /*******************/
1909
1910 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1911 {
1912         int flags = 0;
1913
1914         ah->beacon_interval = beacon_period;
1915
1916         ENABLE_REGWRITE_BUFFER(ah);
1917
1918         switch (ah->opmode) {
1919         case NL80211_IFTYPE_STATION:
1920         case NL80211_IFTYPE_MONITOR:
1921                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1922                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1923                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1924                 flags |= AR_TBTT_TIMER_EN;
1925                 break;
1926         case NL80211_IFTYPE_ADHOC:
1927         case NL80211_IFTYPE_MESH_POINT:
1928                 REG_SET_BIT(ah, AR_TXCFG,
1929                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1930                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1931                           TU_TO_USEC(next_beacon +
1932                                      (ah->atim_window ? ah->
1933                                       atim_window : 1)));
1934                 flags |= AR_NDP_TIMER_EN;
1935         case NL80211_IFTYPE_AP:
1936                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1937                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1938                           TU_TO_USEC(next_beacon -
1939                                      ah->config.
1940                                      dma_beacon_response_time));
1941                 REG_WRITE(ah, AR_NEXT_SWBA,
1942                           TU_TO_USEC(next_beacon -
1943                                      ah->config.
1944                                      sw_beacon_response_time));
1945                 flags |=
1946                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1947                 break;
1948         default:
1949                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1950                           "%s: unsupported opmode: %d\n",
1951                           __func__, ah->opmode);
1952                 return;
1953                 break;
1954         }
1955
1956         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1957         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1958         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1959         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1960
1961         REGWRITE_BUFFER_FLUSH(ah);
1962         DISABLE_REGWRITE_BUFFER(ah);
1963
1964         beacon_period &= ~ATH9K_BEACON_ENA;
1965         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1966                 ath9k_hw_reset_tsf(ah);
1967         }
1968
1969         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1970 }
1971 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1972
1973 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1974                                     const struct ath9k_beacon_state *bs)
1975 {
1976         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1977         struct ath9k_hw_capabilities *pCap = &ah->caps;
1978         struct ath_common *common = ath9k_hw_common(ah);
1979
1980         ENABLE_REGWRITE_BUFFER(ah);
1981
1982         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1983
1984         REG_WRITE(ah, AR_BEACON_PERIOD,
1985                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1986         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1987                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1988
1989         REGWRITE_BUFFER_FLUSH(ah);
1990         DISABLE_REGWRITE_BUFFER(ah);
1991
1992         REG_RMW_FIELD(ah, AR_RSSI_THR,
1993                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1994
1995         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1996
1997         if (bs->bs_sleepduration > beaconintval)
1998                 beaconintval = bs->bs_sleepduration;
1999
2000         dtimperiod = bs->bs_dtimperiod;
2001         if (bs->bs_sleepduration > dtimperiod)
2002                 dtimperiod = bs->bs_sleepduration;
2003
2004         if (beaconintval == dtimperiod)
2005                 nextTbtt = bs->bs_nextdtim;
2006         else
2007                 nextTbtt = bs->bs_nexttbtt;
2008
2009         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2010         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2011         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2012         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2013
2014         ENABLE_REGWRITE_BUFFER(ah);
2015
2016         REG_WRITE(ah, AR_NEXT_DTIM,
2017                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2018         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2019
2020         REG_WRITE(ah, AR_SLEEP1,
2021                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2022                   | AR_SLEEP1_ASSUME_DTIM);
2023
2024         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2025                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2026         else
2027                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2028
2029         REG_WRITE(ah, AR_SLEEP2,
2030                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2031
2032         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2033         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2034
2035         REGWRITE_BUFFER_FLUSH(ah);
2036         DISABLE_REGWRITE_BUFFER(ah);
2037
2038         REG_SET_BIT(ah, AR_TIMER_MODE,
2039                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2040                     AR_DTIM_TIMER_EN);
2041
2042         /* TSF Out of Range Threshold */
2043         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2044 }
2045 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2046
2047 /*******************/
2048 /* HW Capabilities */
2049 /*******************/
2050
2051 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2052 {
2053         struct ath9k_hw_capabilities *pCap = &ah->caps;
2054         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2055         struct ath_common *common = ath9k_hw_common(ah);
2056         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2057
2058         u16 capField = 0, eeval;
2059
2060         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2061         regulatory->current_rd = eeval;
2062
2063         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2064         if (AR_SREV_9285_10_OR_LATER(ah))
2065                 eeval |= AR9285_RDEXT_DEFAULT;
2066         regulatory->current_rd_ext = eeval;
2067
2068         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2069
2070         if (ah->opmode != NL80211_IFTYPE_AP &&
2071             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2072                 if (regulatory->current_rd == 0x64 ||
2073                     regulatory->current_rd == 0x65)
2074                         regulatory->current_rd += 5;
2075                 else if (regulatory->current_rd == 0x41)
2076                         regulatory->current_rd = 0x43;
2077                 ath_print(common, ATH_DBG_REGULATORY,
2078                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
2079         }
2080
2081         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2082         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2083                 ath_print(common, ATH_DBG_FATAL,
2084                           "no band has been marked as supported in EEPROM.\n");
2085                 return -EINVAL;
2086         }
2087
2088         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2089
2090         if (eeval & AR5416_OPFLAGS_11A) {
2091                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2092                 if (ah->config.ht_enable) {
2093                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2094                                 set_bit(ATH9K_MODE_11NA_HT20,
2095                                         pCap->wireless_modes);
2096                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2097                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2098                                         pCap->wireless_modes);
2099                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2100                                         pCap->wireless_modes);
2101                         }
2102                 }
2103         }
2104
2105         if (eeval & AR5416_OPFLAGS_11G) {
2106                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2107                 if (ah->config.ht_enable) {
2108                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2109                                 set_bit(ATH9K_MODE_11NG_HT20,
2110                                         pCap->wireless_modes);
2111                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2112                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2113                                         pCap->wireless_modes);
2114                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2115                                         pCap->wireless_modes);
2116                         }
2117                 }
2118         }
2119
2120         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2121         /*
2122          * For AR9271 we will temporarilly uses the rx chainmax as read from
2123          * the EEPROM.
2124          */
2125         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2126             !(eeval & AR5416_OPFLAGS_11A) &&
2127             !(AR_SREV_9271(ah)))
2128                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2129                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2130         else
2131                 /* Use rx_chainmask from EEPROM. */
2132                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2133
2134         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2135                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2136
2137         pCap->low_2ghz_chan = 2312;
2138         pCap->high_2ghz_chan = 2732;
2139
2140         pCap->low_5ghz_chan = 4920;
2141         pCap->high_5ghz_chan = 6100;
2142
2143         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2144         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2145         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2146
2147         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2148         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2149         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2150
2151         if (ah->config.ht_enable)
2152                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2153         else
2154                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2155
2156         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2157         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2158         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2159         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2160
2161         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2162                 pCap->total_queues =
2163                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2164         else
2165                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2166
2167         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2168                 pCap->keycache_size =
2169                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2170         else
2171                 pCap->keycache_size = AR_KEYTABLE_SIZE;
2172
2173         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2174
2175         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2176                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2177         else
2178                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2179
2180         if (AR_SREV_9271(ah))
2181                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2182         else if (AR_DEVID_7010(ah))
2183                 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2184         else if (AR_SREV_9285_10_OR_LATER(ah))
2185                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2186         else if (AR_SREV_9280_10_OR_LATER(ah))
2187                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2188         else
2189                 pCap->num_gpio_pins = AR_NUM_GPIO;
2190
2191         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2192                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2193                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2194         } else {
2195                 pCap->rts_aggr_limit = (8 * 1024);
2196         }
2197
2198         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2199
2200 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2201         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2202         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2203                 ah->rfkill_gpio =
2204                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2205                 ah->rfkill_polarity =
2206                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2207
2208                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2209         }
2210 #endif
2211         if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2212                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2213         else
2214                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2215
2216         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2217                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2218         else
2219                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2220
2221         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2222                 pCap->reg_cap =
2223                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2224                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2225                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
2226                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2227         } else {
2228                 pCap->reg_cap =
2229                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2230                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2231         }
2232
2233         /* Advertise midband for AR5416 with FCC midband set in eeprom */
2234         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2235             AR_SREV_5416(ah))
2236                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2237
2238         pCap->num_antcfg_5ghz =
2239                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2240         pCap->num_antcfg_2ghz =
2241                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2242
2243         if (AR_SREV_9280_10_OR_LATER(ah) &&
2244             ath9k_hw_btcoex_supported(ah)) {
2245                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2246                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2247
2248                 if (AR_SREV_9285(ah)) {
2249                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2250                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2251                 } else {
2252                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2253                 }
2254         } else {
2255                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2256         }
2257
2258         if (AR_SREV_9300_20_OR_LATER(ah)) {
2259                 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2260                                  ATH9K_HW_CAP_FASTCLOCK;
2261                 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2262                 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2263                 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2264                 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2265                 pCap->txs_len = sizeof(struct ar9003_txs);
2266                 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2267                         pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2268         } else {
2269                 pCap->tx_desc_len = sizeof(struct ath_desc);
2270                 if (AR_SREV_9280_20(ah) &&
2271                     ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2272                       AR5416_EEP_MINOR_VER_16) ||
2273                      ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2274                         pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2275         }
2276
2277         if (AR_SREV_9300_20_OR_LATER(ah))
2278                 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2279
2280         if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2281                 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2282
2283         return 0;
2284 }
2285
2286 /****************************/
2287 /* GPIO / RFKILL / Antennae */
2288 /****************************/
2289
2290 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2291                                          u32 gpio, u32 type)
2292 {
2293         int addr;
2294         u32 gpio_shift, tmp;
2295
2296         if (gpio > 11)
2297                 addr = AR_GPIO_OUTPUT_MUX3;
2298         else if (gpio > 5)
2299                 addr = AR_GPIO_OUTPUT_MUX2;
2300         else
2301                 addr = AR_GPIO_OUTPUT_MUX1;
2302
2303         gpio_shift = (gpio % 6) * 5;
2304
2305         if (AR_SREV_9280_20_OR_LATER(ah)
2306             || (addr != AR_GPIO_OUTPUT_MUX1)) {
2307                 REG_RMW(ah, addr, (type << gpio_shift),
2308                         (0x1f << gpio_shift));
2309         } else {
2310                 tmp = REG_READ(ah, addr);
2311                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2312                 tmp &= ~(0x1f << gpio_shift);
2313                 tmp |= (type << gpio_shift);
2314                 REG_WRITE(ah, addr, tmp);
2315         }
2316 }
2317
2318 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2319 {
2320         u32 gpio_shift;
2321
2322         BUG_ON(gpio >= ah->caps.num_gpio_pins);
2323
2324         if (AR_DEVID_7010(ah)) {
2325                 gpio_shift = gpio;
2326                 REG_RMW(ah, AR7010_GPIO_OE,
2327                         (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2328                         (AR7010_GPIO_OE_MASK << gpio_shift));
2329                 return;
2330         }
2331
2332         gpio_shift = gpio << 1;
2333         REG_RMW(ah,
2334                 AR_GPIO_OE_OUT,
2335                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2336                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2337 }
2338 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2339
2340 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2341 {
2342 #define MS_REG_READ(x, y) \
2343         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2344
2345         if (gpio >= ah->caps.num_gpio_pins)
2346                 return 0xffffffff;
2347
2348         if (AR_DEVID_7010(ah)) {
2349                 u32 val;
2350                 val = REG_READ(ah, AR7010_GPIO_IN);
2351                 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2352         } else if (AR_SREV_9300_20_OR_LATER(ah))
2353                 return MS_REG_READ(AR9300, gpio) != 0;
2354         else if (AR_SREV_9271(ah))
2355                 return MS_REG_READ(AR9271, gpio) != 0;
2356         else if (AR_SREV_9287_10_OR_LATER(ah))
2357                 return MS_REG_READ(AR9287, gpio) != 0;
2358         else if (AR_SREV_9285_10_OR_LATER(ah))
2359                 return MS_REG_READ(AR9285, gpio) != 0;
2360         else if (AR_SREV_9280_10_OR_LATER(ah))
2361                 return MS_REG_READ(AR928X, gpio) != 0;
2362         else
2363                 return MS_REG_READ(AR, gpio) != 0;
2364 }
2365 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2366
2367 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2368                          u32 ah_signal_type)
2369 {
2370         u32 gpio_shift;
2371
2372         if (AR_DEVID_7010(ah)) {
2373                 gpio_shift = gpio;
2374                 REG_RMW(ah, AR7010_GPIO_OE,
2375                         (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2376                         (AR7010_GPIO_OE_MASK << gpio_shift));
2377                 return;
2378         }
2379
2380         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2381         gpio_shift = 2 * gpio;
2382         REG_RMW(ah,
2383                 AR_GPIO_OE_OUT,
2384                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2385                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2386 }
2387 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2388
2389 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2390 {
2391         if (AR_DEVID_7010(ah)) {
2392                 val = val ? 0 : 1;
2393                 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2394                         AR_GPIO_BIT(gpio));
2395                 return;
2396         }
2397
2398         if (AR_SREV_9271(ah))
2399                 val = ~val;
2400
2401         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2402                 AR_GPIO_BIT(gpio));
2403 }
2404 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2405
2406 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2407 {
2408         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2409 }
2410 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2411
2412 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2413 {
2414         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2415 }
2416 EXPORT_SYMBOL(ath9k_hw_setantenna);
2417
2418 /*********************/
2419 /* General Operation */
2420 /*********************/
2421
2422 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2423 {
2424         u32 bits = REG_READ(ah, AR_RX_FILTER);
2425         u32 phybits = REG_READ(ah, AR_PHY_ERR);
2426
2427         if (phybits & AR_PHY_ERR_RADAR)
2428                 bits |= ATH9K_RX_FILTER_PHYRADAR;
2429         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2430                 bits |= ATH9K_RX_FILTER_PHYERR;
2431
2432         return bits;
2433 }
2434 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2435
2436 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2437 {
2438         u32 phybits;
2439
2440         ENABLE_REGWRITE_BUFFER(ah);
2441
2442         REG_WRITE(ah, AR_RX_FILTER, bits);
2443
2444         phybits = 0;
2445         if (bits & ATH9K_RX_FILTER_PHYRADAR)
2446                 phybits |= AR_PHY_ERR_RADAR;
2447         if (bits & ATH9K_RX_FILTER_PHYERR)
2448                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2449         REG_WRITE(ah, AR_PHY_ERR, phybits);
2450
2451         if (phybits)
2452                 REG_WRITE(ah, AR_RXCFG,
2453                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2454         else
2455                 REG_WRITE(ah, AR_RXCFG,
2456                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2457
2458         REGWRITE_BUFFER_FLUSH(ah);
2459         DISABLE_REGWRITE_BUFFER(ah);
2460 }
2461 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2462
2463 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2464 {
2465         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2466                 return false;
2467
2468         ath9k_hw_init_pll(ah, NULL);
2469         return true;
2470 }
2471 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2472
2473 bool ath9k_hw_disable(struct ath_hw *ah)
2474 {
2475         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2476                 return false;
2477
2478         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2479                 return false;
2480
2481         ath9k_hw_init_pll(ah, NULL);
2482         return true;
2483 }
2484 EXPORT_SYMBOL(ath9k_hw_disable);
2485
2486 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2487 {
2488         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2489         struct ath9k_channel *chan = ah->curchan;
2490         struct ieee80211_channel *channel = chan->chan;
2491
2492         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2493
2494         ah->eep_ops->set_txpower(ah, chan,
2495                                  ath9k_regd_get_ctl(regulatory, chan),
2496                                  channel->max_antenna_gain * 2,
2497                                  channel->max_power * 2,
2498                                  min((u32) MAX_RATE_POWER,
2499                                  (u32) regulatory->power_limit));
2500 }
2501 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2502
2503 void ath9k_hw_setopmode(struct ath_hw *ah)
2504 {
2505         ath9k_hw_set_operating_mode(ah, ah->opmode);
2506 }
2507 EXPORT_SYMBOL(ath9k_hw_setopmode);
2508
2509 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2510 {
2511         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2512         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2513 }
2514 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2515
2516 void ath9k_hw_write_associd(struct ath_hw *ah)
2517 {
2518         struct ath_common *common = ath9k_hw_common(ah);
2519
2520         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2521         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2522                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2523 }
2524 EXPORT_SYMBOL(ath9k_hw_write_associd);
2525
2526 #define ATH9K_MAX_TSF_READ 10
2527
2528 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2529 {
2530         u32 tsf_lower, tsf_upper1, tsf_upper2;
2531         int i;
2532
2533         tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2534         for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2535                 tsf_lower = REG_READ(ah, AR_TSF_L32);
2536                 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2537                 if (tsf_upper2 == tsf_upper1)
2538                         break;
2539                 tsf_upper1 = tsf_upper2;
2540         }
2541
2542         WARN_ON( i == ATH9K_MAX_TSF_READ );
2543
2544         return (((u64)tsf_upper1 << 32) | tsf_lower);
2545 }
2546 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2547
2548 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2549 {
2550         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2551         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2552 }
2553 EXPORT_SYMBOL(ath9k_hw_settsf64);
2554
2555 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2556 {
2557         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2558                            AH_TSF_WRITE_TIMEOUT))
2559                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2560                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2561
2562         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2563 }
2564 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2565
2566 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2567 {
2568         if (setting)
2569                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2570         else
2571                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2572 }
2573 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2574
2575 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2576 {
2577         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2578         u32 macmode;
2579
2580         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2581                 macmode = AR_2040_JOINED_RX_CLEAR;
2582         else
2583                 macmode = 0;
2584
2585         REG_WRITE(ah, AR_2040_MODE, macmode);
2586 }
2587
2588 /* HW Generic timers configuration */
2589
2590 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2591 {
2592         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2593         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2594         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2595         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2596         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2597         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2598         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2599         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2600         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2601         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2602                                 AR_NDP2_TIMER_MODE, 0x0002},
2603         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2604                                 AR_NDP2_TIMER_MODE, 0x0004},
2605         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2606                                 AR_NDP2_TIMER_MODE, 0x0008},
2607         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2608                                 AR_NDP2_TIMER_MODE, 0x0010},
2609         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2610                                 AR_NDP2_TIMER_MODE, 0x0020},
2611         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2612                                 AR_NDP2_TIMER_MODE, 0x0040},
2613         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2614                                 AR_NDP2_TIMER_MODE, 0x0080}
2615 };
2616
2617 /* HW generic timer primitives */
2618
2619 /* compute and clear index of rightmost 1 */
2620 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2621 {
2622         u32 b;
2623
2624         b = *mask;
2625         b &= (0-b);
2626         *mask &= ~b;
2627         b *= debruijn32;
2628         b >>= 27;
2629
2630         return timer_table->gen_timer_index[b];
2631 }
2632
2633 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2634 {
2635         return REG_READ(ah, AR_TSF_L32);
2636 }
2637 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2638
2639 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2640                                           void (*trigger)(void *),
2641                                           void (*overflow)(void *),
2642                                           void *arg,
2643                                           u8 timer_index)
2644 {
2645         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2646         struct ath_gen_timer *timer;
2647
2648         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2649
2650         if (timer == NULL) {
2651                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2652                           "Failed to allocate memory"
2653                           "for hw timer[%d]\n", timer_index);
2654                 return NULL;
2655         }
2656
2657         /* allocate a hardware generic timer slot */
2658         timer_table->timers[timer_index] = timer;
2659         timer->index = timer_index;
2660         timer->trigger = trigger;
2661         timer->overflow = overflow;
2662         timer->arg = arg;
2663
2664         return timer;
2665 }
2666 EXPORT_SYMBOL(ath_gen_timer_alloc);
2667
2668 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2669                               struct ath_gen_timer *timer,
2670                               u32 timer_next,
2671                               u32 timer_period)
2672 {
2673         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2674         u32 tsf;
2675
2676         BUG_ON(!timer_period);
2677
2678         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2679
2680         tsf = ath9k_hw_gettsf32(ah);
2681
2682         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2683                   "curent tsf %x period %x"
2684                   "timer_next %x\n", tsf, timer_period, timer_next);
2685
2686         /*
2687          * Pull timer_next forward if the current TSF already passed it
2688          * because of software latency
2689          */
2690         if (timer_next < tsf)
2691                 timer_next = tsf + timer_period;
2692
2693         /*
2694          * Program generic timer registers
2695          */
2696         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2697                  timer_next);
2698         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2699                   timer_period);
2700         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2701                     gen_tmr_configuration[timer->index].mode_mask);
2702
2703         /* Enable both trigger and thresh interrupt masks */
2704         REG_SET_BIT(ah, AR_IMR_S5,
2705                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2706                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2707 }
2708 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2709
2710 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2711 {
2712         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2713
2714         if ((timer->index < AR_FIRST_NDP_TIMER) ||
2715                 (timer->index >= ATH_MAX_GEN_TIMER)) {
2716                 return;
2717         }
2718
2719         /* Clear generic timer enable bits. */
2720         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2721                         gen_tmr_configuration[timer->index].mode_mask);
2722
2723         /* Disable both trigger and thresh interrupt masks */
2724         REG_CLR_BIT(ah, AR_IMR_S5,
2725                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2726                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2727
2728         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2729 }
2730 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2731
2732 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2733 {
2734         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2735
2736         /* free the hardware generic timer slot */
2737         timer_table->timers[timer->index] = NULL;
2738         kfree(timer);
2739 }
2740 EXPORT_SYMBOL(ath_gen_timer_free);
2741
2742 /*
2743  * Generic Timer Interrupts handling
2744  */
2745 void ath_gen_timer_isr(struct ath_hw *ah)
2746 {
2747         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2748         struct ath_gen_timer *timer;
2749         struct ath_common *common = ath9k_hw_common(ah);
2750         u32 trigger_mask, thresh_mask, index;
2751
2752         /* get hardware generic timer interrupt status */
2753         trigger_mask = ah->intr_gen_timer_trigger;
2754         thresh_mask = ah->intr_gen_timer_thresh;
2755         trigger_mask &= timer_table->timer_mask.val;
2756         thresh_mask &= timer_table->timer_mask.val;
2757
2758         trigger_mask &= ~thresh_mask;
2759
2760         while (thresh_mask) {
2761                 index = rightmost_index(timer_table, &thresh_mask);
2762                 timer = timer_table->timers[index];
2763                 BUG_ON(!timer);
2764                 ath_print(common, ATH_DBG_HWTIMER,
2765                           "TSF overflow for Gen timer %d\n", index);
2766                 timer->overflow(timer->arg);
2767         }
2768
2769         while (trigger_mask) {
2770                 index = rightmost_index(timer_table, &trigger_mask);
2771                 timer = timer_table->timers[index];
2772                 BUG_ON(!timer);
2773                 ath_print(common, ATH_DBG_HWTIMER,
2774                           "Gen timer[%d] trigger\n", index);
2775                 timer->trigger(timer->arg);
2776         }
2777 }
2778 EXPORT_SYMBOL(ath_gen_timer_isr);
2779
2780 /********/
2781 /* HTC  */
2782 /********/
2783
2784 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2785 {
2786         ah->htc_reset_init = true;
2787 }
2788 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2789
2790 static struct {
2791         u32 version;
2792         const char * name;
2793 } ath_mac_bb_names[] = {
2794         /* Devices with external radios */
2795         { AR_SREV_VERSION_5416_PCI,     "5416" },
2796         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2797         { AR_SREV_VERSION_9100,         "9100" },
2798         { AR_SREV_VERSION_9160,         "9160" },
2799         /* Single-chip solutions */
2800         { AR_SREV_VERSION_9280,         "9280" },
2801         { AR_SREV_VERSION_9285,         "9285" },
2802         { AR_SREV_VERSION_9287,         "9287" },
2803         { AR_SREV_VERSION_9271,         "9271" },
2804         { AR_SREV_VERSION_9300,         "9300" },
2805 };
2806
2807 /* For devices with external radios */
2808 static struct {
2809         u16 version;
2810         const char * name;
2811 } ath_rf_names[] = {
2812         { 0,                            "5133" },
2813         { AR_RAD5133_SREV_MAJOR,        "5133" },
2814         { AR_RAD5122_SREV_MAJOR,        "5122" },
2815         { AR_RAD2133_SREV_MAJOR,        "2133" },
2816         { AR_RAD2122_SREV_MAJOR,        "2122" }
2817 };
2818
2819 /*
2820  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2821  */
2822 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2823 {
2824         int i;
2825
2826         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2827                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2828                         return ath_mac_bb_names[i].name;
2829                 }
2830         }
2831
2832         return "????";
2833 }
2834
2835 /*
2836  * Return the RF name. "????" is returned if the RF is unknown.
2837  * Used for devices with external radios.
2838  */
2839 static const char *ath9k_hw_rf_name(u16 rf_version)
2840 {
2841         int i;
2842
2843         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2844                 if (ath_rf_names[i].version == rf_version) {
2845                         return ath_rf_names[i].name;
2846                 }
2847         }
2848
2849         return "????";
2850 }
2851
2852 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2853 {
2854         int used;
2855
2856         /* chipsets >= AR9280 are single-chip */
2857         if (AR_SREV_9280_10_OR_LATER(ah)) {
2858                 used = snprintf(hw_name, len,
2859                                "Atheros AR%s Rev:%x",
2860                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2861                                ah->hw_version.macRev);
2862         }
2863         else {
2864                 used = snprintf(hw_name, len,
2865                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2866                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2867                                ah->hw_version.macRev,
2868                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2869                                                 AR_RADIO_SREV_MAJOR)),
2870                                ah->hw_version.phyRev);
2871         }
2872
2873         hw_name[used] = '\0';
2874 }
2875 EXPORT_SYMBOL(ath9k_hw_name);