]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath/ath9k/main.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mv-sheeva.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19 #include "btcoex.h"
20
21 static char *dev_info = "ath9k";
22
23 MODULE_AUTHOR("Atheros Communications");
24 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
25 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
26 MODULE_LICENSE("Dual BSD/GPL");
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
31
32 static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
33 module_param_named(debug, ath9k_debug, uint, 0);
34 MODULE_PARM_DESC(debug, "Debugging mask");
35
36 /* We use the hw_value as an index into our private channel structure */
37
38 #define CHAN2G(_freq, _idx)  { \
39         .center_freq = (_freq), \
40         .hw_value = (_idx), \
41         .max_power = 20, \
42 }
43
44 #define CHAN5G(_freq, _idx) { \
45         .band = IEEE80211_BAND_5GHZ, \
46         .center_freq = (_freq), \
47         .hw_value = (_idx), \
48         .max_power = 20, \
49 }
50
51 /* Some 2 GHz radios are actually tunable on 2312-2732
52  * on 5 MHz steps, we support the channels which we know
53  * we have calibration data for all cards though to make
54  * this static */
55 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
56         CHAN2G(2412, 0), /* Channel 1 */
57         CHAN2G(2417, 1), /* Channel 2 */
58         CHAN2G(2422, 2), /* Channel 3 */
59         CHAN2G(2427, 3), /* Channel 4 */
60         CHAN2G(2432, 4), /* Channel 5 */
61         CHAN2G(2437, 5), /* Channel 6 */
62         CHAN2G(2442, 6), /* Channel 7 */
63         CHAN2G(2447, 7), /* Channel 8 */
64         CHAN2G(2452, 8), /* Channel 9 */
65         CHAN2G(2457, 9), /* Channel 10 */
66         CHAN2G(2462, 10), /* Channel 11 */
67         CHAN2G(2467, 11), /* Channel 12 */
68         CHAN2G(2472, 12), /* Channel 13 */
69         CHAN2G(2484, 13), /* Channel 14 */
70 };
71
72 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
73  * on 5 MHz steps, we support the channels which we know
74  * we have calibration data for all cards though to make
75  * this static */
76 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
77         /* _We_ call this UNII 1 */
78         CHAN5G(5180, 14), /* Channel 36 */
79         CHAN5G(5200, 15), /* Channel 40 */
80         CHAN5G(5220, 16), /* Channel 44 */
81         CHAN5G(5240, 17), /* Channel 48 */
82         /* _We_ call this UNII 2 */
83         CHAN5G(5260, 18), /* Channel 52 */
84         CHAN5G(5280, 19), /* Channel 56 */
85         CHAN5G(5300, 20), /* Channel 60 */
86         CHAN5G(5320, 21), /* Channel 64 */
87         /* _We_ call this "Middle band" */
88         CHAN5G(5500, 22), /* Channel 100 */
89         CHAN5G(5520, 23), /* Channel 104 */
90         CHAN5G(5540, 24), /* Channel 108 */
91         CHAN5G(5560, 25), /* Channel 112 */
92         CHAN5G(5580, 26), /* Channel 116 */
93         CHAN5G(5600, 27), /* Channel 120 */
94         CHAN5G(5620, 28), /* Channel 124 */
95         CHAN5G(5640, 29), /* Channel 128 */
96         CHAN5G(5660, 30), /* Channel 132 */
97         CHAN5G(5680, 31), /* Channel 136 */
98         CHAN5G(5700, 32), /* Channel 140 */
99         /* _We_ call this UNII 3 */
100         CHAN5G(5745, 33), /* Channel 149 */
101         CHAN5G(5765, 34), /* Channel 153 */
102         CHAN5G(5785, 35), /* Channel 157 */
103         CHAN5G(5805, 36), /* Channel 161 */
104         CHAN5G(5825, 37), /* Channel 165 */
105 };
106
107 static void ath_cache_conf_rate(struct ath_softc *sc,
108                                 struct ieee80211_conf *conf)
109 {
110         switch (conf->channel->band) {
111         case IEEE80211_BAND_2GHZ:
112                 if (conf_is_ht20(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
115                 else if (conf_is_ht40_minus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
118                 else if (conf_is_ht40_plus(conf))
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
121                 else
122                         sc->cur_rate_table =
123                           sc->hw_rate_table[ATH9K_MODE_11G];
124                 break;
125         case IEEE80211_BAND_5GHZ:
126                 if (conf_is_ht20(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
129                 else if (conf_is_ht40_minus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
132                 else if (conf_is_ht40_plus(conf))
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
135                 else
136                         sc->cur_rate_table =
137                           sc->hw_rate_table[ATH9K_MODE_11A];
138                 break;
139         default:
140                 BUG_ON(1);
141                 break;
142         }
143 }
144
145 static void ath_update_txpow(struct ath_softc *sc)
146 {
147         struct ath_hw *ah = sc->sc_ah;
148         u32 txpow;
149
150         if (sc->curtxpow != sc->config.txpowlimit) {
151                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
152                 /* read back in case value is clamped */
153                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
154                 sc->curtxpow = txpow;
155         }
156 }
157
158 static u8 parse_mpdudensity(u8 mpdudensity)
159 {
160         /*
161          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
162          *   0 for no restriction
163          *   1 for 1/4 us
164          *   2 for 1/2 us
165          *   3 for 1 us
166          *   4 for 2 us
167          *   5 for 4 us
168          *   6 for 8 us
169          *   7 for 16 us
170          */
171         switch (mpdudensity) {
172         case 0:
173                 return 0;
174         case 1:
175         case 2:
176         case 3:
177                 /* Our lower layer calculations limit our precision to
178                    1 microsecond */
179                 return 1;
180         case 4:
181                 return 2;
182         case 5:
183                 return 4;
184         case 6:
185                 return 8;
186         case 7:
187                 return 16;
188         default:
189                 return 0;
190         }
191 }
192
193 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
194 {
195         const struct ath_rate_table *rate_table = NULL;
196         struct ieee80211_supported_band *sband;
197         struct ieee80211_rate *rate;
198         int i, maxrates;
199
200         switch (band) {
201         case IEEE80211_BAND_2GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
203                 break;
204         case IEEE80211_BAND_5GHZ:
205                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
206                 break;
207         default:
208                 break;
209         }
210
211         if (rate_table == NULL)
212                 return;
213
214         sband = &sc->sbands[band];
215         rate = sc->rates[band];
216
217         if (rate_table->rate_cnt > ATH_RATE_MAX)
218                 maxrates = ATH_RATE_MAX;
219         else
220                 maxrates = rate_table->rate_cnt;
221
222         for (i = 0; i < maxrates; i++) {
223                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
224                 rate[i].hw_value = rate_table->info[i].ratecode;
225                 if (rate_table->info[i].short_preamble) {
226                         rate[i].hw_value_short = rate_table->info[i].ratecode |
227                                 rate_table->info[i].short_preamble;
228                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
229                 }
230                 sband->n_bitrates++;
231
232                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
233                           "Rate: %2dMbps, ratecode: %2d\n",
234                           rate[i].bitrate / 10, rate[i].hw_value);
235         }
236 }
237
238 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
239                                                 struct ieee80211_hw *hw)
240 {
241         struct ieee80211_channel *curchan = hw->conf.channel;
242         struct ath9k_channel *channel;
243         u8 chan_idx;
244
245         chan_idx = curchan->hw_value;
246         channel = &sc->sc_ah->channels[chan_idx];
247         ath9k_update_ichannel(sc, hw, channel);
248         return channel;
249 }
250
251 static bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
252 {
253         unsigned long flags;
254         bool ret;
255
256         spin_lock_irqsave(&sc->sc_pm_lock, flags);
257         ret = ath9k_hw_setpower(sc->sc_ah, mode);
258         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
259
260         return ret;
261 }
262
263 void ath9k_ps_wakeup(struct ath_softc *sc)
264 {
265         unsigned long flags;
266
267         spin_lock_irqsave(&sc->sc_pm_lock, flags);
268         if (++sc->ps_usecount != 1)
269                 goto unlock;
270
271         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
272
273  unlock:
274         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
275 }
276
277 void ath9k_ps_restore(struct ath_softc *sc)
278 {
279         unsigned long flags;
280
281         spin_lock_irqsave(&sc->sc_pm_lock, flags);
282         if (--sc->ps_usecount != 0)
283                 goto unlock;
284
285         if (sc->ps_enabled &&
286             !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
287                               SC_OP_WAIT_FOR_CAB |
288                               SC_OP_WAIT_FOR_PSPOLL_DATA |
289                               SC_OP_WAIT_FOR_TX_ACK)))
290                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
291
292  unlock:
293         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
294 }
295
296 /*
297  * Set/change channels.  If the channel is really being changed, it's done
298  * by reseting the chip.  To accomplish this we must first cleanup any pending
299  * DMA, then restart stuff.
300 */
301 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
302                     struct ath9k_channel *hchan)
303 {
304         struct ath_hw *ah = sc->sc_ah;
305         struct ath_common *common = ath9k_hw_common(ah);
306         struct ieee80211_conf *conf = &common->hw->conf;
307         bool fastcc = true, stopped;
308         struct ieee80211_channel *channel = hw->conf.channel;
309         int r;
310
311         if (sc->sc_flags & SC_OP_INVALID)
312                 return -EIO;
313
314         ath9k_ps_wakeup(sc);
315
316         /*
317          * This is only performed if the channel settings have
318          * actually changed.
319          *
320          * To switch channels clear any pending DMA operations;
321          * wait long enough for the RX fifo to drain, reset the
322          * hardware at the new frequency, and then re-enable
323          * the relevant bits of the h/w.
324          */
325         ath9k_hw_set_interrupts(ah, 0);
326         ath_drain_all_txq(sc, false);
327         stopped = ath_stoprecv(sc);
328
329         /* XXX: do not flush receive queue here. We don't want
330          * to flush data frames already in queue because of
331          * changing channel. */
332
333         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
334                 fastcc = false;
335
336         ath_print(common, ATH_DBG_CONFIG,
337                   "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
338                   sc->sc_ah->curchan->channel,
339                   channel->center_freq, conf_is_ht40(conf));
340
341         spin_lock_bh(&sc->sc_resetlock);
342
343         r = ath9k_hw_reset(ah, hchan, fastcc);
344         if (r) {
345                 ath_print(common, ATH_DBG_FATAL,
346                           "Unable to reset channel (%u Mhz) "
347                           "reset status %d\n",
348                           channel->center_freq, r);
349                 spin_unlock_bh(&sc->sc_resetlock);
350                 goto ps_restore;
351         }
352         spin_unlock_bh(&sc->sc_resetlock);
353
354         sc->sc_flags &= ~SC_OP_FULL_RESET;
355
356         if (ath_startrecv(sc) != 0) {
357                 ath_print(common, ATH_DBG_FATAL,
358                           "Unable to restart recv logic\n");
359                 r = -EIO;
360                 goto ps_restore;
361         }
362
363         ath_cache_conf_rate(sc, &hw->conf);
364         ath_update_txpow(sc);
365         ath9k_hw_set_interrupts(ah, sc->imask);
366
367  ps_restore:
368         ath9k_ps_restore(sc);
369         return r;
370 }
371
372 /*
373  *  This routine performs the periodic noise floor calibration function
374  *  that is used to adjust and optimize the chip performance.  This
375  *  takes environmental changes (location, temperature) into account.
376  *  When the task is complete, it reschedules itself depending on the
377  *  appropriate interval that was calculated.
378  */
379 static void ath_ani_calibrate(unsigned long data)
380 {
381         struct ath_softc *sc = (struct ath_softc *)data;
382         struct ath_hw *ah = sc->sc_ah;
383         struct ath_common *common = ath9k_hw_common(ah);
384         bool longcal = false;
385         bool shortcal = false;
386         bool aniflag = false;
387         unsigned int timestamp = jiffies_to_msecs(jiffies);
388         u32 cal_interval, short_cal_interval;
389
390         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
391                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
392
393         /*
394         * don't calibrate when we're scanning.
395         * we are most likely not on our home channel.
396         */
397         spin_lock(&sc->ani_lock);
398         if (sc->sc_flags & SC_OP_SCANNING)
399                 goto set_timer;
400
401         /* Only calibrate if awake */
402         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
403                 goto set_timer;
404
405         ath9k_ps_wakeup(sc);
406
407         /* Long calibration runs independently of short calibration. */
408         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
409                 longcal = true;
410                 ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
411                 sc->ani.longcal_timer = timestamp;
412         }
413
414         /* Short calibration applies only while caldone is false */
415         if (!sc->ani.caldone) {
416                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
417                         shortcal = true;
418                         ath_print(common, ATH_DBG_ANI,
419                                   "shortcal @%lu\n", jiffies);
420                         sc->ani.shortcal_timer = timestamp;
421                         sc->ani.resetcal_timer = timestamp;
422                 }
423         } else {
424                 if ((timestamp - sc->ani.resetcal_timer) >=
425                     ATH_RESTART_CALINTERVAL) {
426                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
427                         if (sc->ani.caldone)
428                                 sc->ani.resetcal_timer = timestamp;
429                 }
430         }
431
432         /* Verify whether we must check ANI */
433         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
434                 aniflag = true;
435                 sc->ani.checkani_timer = timestamp;
436         }
437
438         /* Skip all processing if there's nothing to do. */
439         if (longcal || shortcal || aniflag) {
440                 /* Call ANI routine if necessary */
441                 if (aniflag)
442                         ath9k_hw_ani_monitor(ah, ah->curchan);
443
444                 /* Perform calibration if necessary */
445                 if (longcal || shortcal) {
446                         sc->ani.caldone =
447                                 ath9k_hw_calibrate(ah,
448                                                    ah->curchan,
449                                                    common->rx_chainmask,
450                                                    longcal);
451
452                         if (longcal)
453                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
454                                                                      ah->curchan);
455
456                         ath_print(common, ATH_DBG_ANI,
457                                   " calibrate chan %u/%x nf: %d\n",
458                                   ah->curchan->channel,
459                                   ah->curchan->channelFlags,
460                                   sc->ani.noise_floor);
461                 }
462         }
463
464         ath9k_ps_restore(sc);
465
466 set_timer:
467         spin_unlock(&sc->ani_lock);
468         /*
469         * Set timer interval based on previous results.
470         * The interval must be the shortest necessary to satisfy ANI,
471         * short calibration and long calibration.
472         */
473         cal_interval = ATH_LONG_CALINTERVAL;
474         if (sc->sc_ah->config.enable_ani)
475                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
476         if (!sc->ani.caldone)
477                 cal_interval = min(cal_interval, (u32)short_cal_interval);
478
479         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
480 }
481
482 static void ath_start_ani(struct ath_softc *sc)
483 {
484         unsigned long timestamp = jiffies_to_msecs(jiffies);
485
486         sc->ani.longcal_timer = timestamp;
487         sc->ani.shortcal_timer = timestamp;
488         sc->ani.checkani_timer = timestamp;
489
490         mod_timer(&sc->ani.timer,
491                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
492 }
493
494 /*
495  * Update tx/rx chainmask. For legacy association,
496  * hard code chainmask to 1x1, for 11n association, use
497  * the chainmask configuration, for bt coexistence, use
498  * the chainmask configuration even in legacy mode.
499  */
500 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
501 {
502         struct ath_hw *ah = sc->sc_ah;
503         struct ath_common *common = ath9k_hw_common(ah);
504
505         if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
506             (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
507                 common->tx_chainmask = ah->caps.tx_chainmask;
508                 common->rx_chainmask = ah->caps.rx_chainmask;
509         } else {
510                 common->tx_chainmask = 1;
511                 common->rx_chainmask = 1;
512         }
513
514         ath_print(common, ATH_DBG_CONFIG,
515                   "tx chmask: %d, rx chmask: %d\n",
516                   common->tx_chainmask,
517                   common->rx_chainmask);
518 }
519
520 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
521 {
522         struct ath_node *an;
523
524         an = (struct ath_node *)sta->drv_priv;
525
526         if (sc->sc_flags & SC_OP_TXAGGR) {
527                 ath_tx_node_init(sc, an);
528                 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
529                                      sta->ht_cap.ampdu_factor);
530                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
531                 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
532         }
533 }
534
535 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
536 {
537         struct ath_node *an = (struct ath_node *)sta->drv_priv;
538
539         if (sc->sc_flags & SC_OP_TXAGGR)
540                 ath_tx_node_cleanup(sc, an);
541 }
542
543 static void ath9k_tasklet(unsigned long data)
544 {
545         struct ath_softc *sc = (struct ath_softc *)data;
546         struct ath_hw *ah = sc->sc_ah;
547         struct ath_common *common = ath9k_hw_common(ah);
548
549         u32 status = sc->intrstatus;
550
551         ath9k_ps_wakeup(sc);
552
553         if (status & ATH9K_INT_FATAL) {
554                 ath_reset(sc, false);
555                 ath9k_ps_restore(sc);
556                 return;
557         }
558
559         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
560                 spin_lock_bh(&sc->rx.rxflushlock);
561                 ath_rx_tasklet(sc, 0);
562                 spin_unlock_bh(&sc->rx.rxflushlock);
563         }
564
565         if (status & ATH9K_INT_TX)
566                 ath_tx_tasklet(sc);
567
568         if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
569                 /*
570                  * TSF sync does not look correct; remain awake to sync with
571                  * the next Beacon.
572                  */
573                 ath_print(common, ATH_DBG_PS,
574                           "TSFOOR - Sync with next Beacon\n");
575                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
576         }
577
578         if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
579                 if (status & ATH9K_INT_GENTIMER)
580                         ath_gen_timer_isr(sc->sc_ah);
581
582         /* re-enable hardware interrupt */
583         ath9k_hw_set_interrupts(ah, sc->imask);
584         ath9k_ps_restore(sc);
585 }
586
587 irqreturn_t ath_isr(int irq, void *dev)
588 {
589 #define SCHED_INTR (                            \
590                 ATH9K_INT_FATAL |               \
591                 ATH9K_INT_RXORN |               \
592                 ATH9K_INT_RXEOL |               \
593                 ATH9K_INT_RX |                  \
594                 ATH9K_INT_TX |                  \
595                 ATH9K_INT_BMISS |               \
596                 ATH9K_INT_CST |                 \
597                 ATH9K_INT_TSFOOR |              \
598                 ATH9K_INT_GENTIMER)
599
600         struct ath_softc *sc = dev;
601         struct ath_hw *ah = sc->sc_ah;
602         enum ath9k_int status;
603         bool sched = false;
604
605         /*
606          * The hardware is not ready/present, don't
607          * touch anything. Note this can happen early
608          * on if the IRQ is shared.
609          */
610         if (sc->sc_flags & SC_OP_INVALID)
611                 return IRQ_NONE;
612
613
614         /* shared irq, not for us */
615
616         if (!ath9k_hw_intrpend(ah))
617                 return IRQ_NONE;
618
619         /*
620          * Figure out the reason(s) for the interrupt.  Note
621          * that the hal returns a pseudo-ISR that may include
622          * bits we haven't explicitly enabled so we mask the
623          * value to insure we only process bits we requested.
624          */
625         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
626         status &= sc->imask;    /* discard unasked-for bits */
627
628         /*
629          * If there are no status bits set, then this interrupt was not
630          * for me (should have been caught above).
631          */
632         if (!status)
633                 return IRQ_NONE;
634
635         /* Cache the status */
636         sc->intrstatus = status;
637
638         if (status & SCHED_INTR)
639                 sched = true;
640
641         /*
642          * If a FATAL or RXORN interrupt is received, we have to reset the
643          * chip immediately.
644          */
645         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
646                 goto chip_reset;
647
648         if (status & ATH9K_INT_SWBA)
649                 tasklet_schedule(&sc->bcon_tasklet);
650
651         if (status & ATH9K_INT_TXURN)
652                 ath9k_hw_updatetxtriglevel(ah, true);
653
654         if (status & ATH9K_INT_MIB) {
655                 /*
656                  * Disable interrupts until we service the MIB
657                  * interrupt; otherwise it will continue to
658                  * fire.
659                  */
660                 ath9k_hw_set_interrupts(ah, 0);
661                 /*
662                  * Let the hal handle the event. We assume
663                  * it will clear whatever condition caused
664                  * the interrupt.
665                  */
666                 ath9k_hw_procmibevent(ah);
667                 ath9k_hw_set_interrupts(ah, sc->imask);
668         }
669
670         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
671                 if (status & ATH9K_INT_TIM_TIMER) {
672                         /* Clear RxAbort bit so that we can
673                          * receive frames */
674                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
675                         ath9k_hw_setrxabort(sc->sc_ah, 0);
676                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
677                 }
678
679 chip_reset:
680
681         ath_debug_stat_interrupt(sc, status);
682
683         if (sched) {
684                 /* turn off every interrupt except SWBA */
685                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
686                 tasklet_schedule(&sc->intr_tq);
687         }
688
689         return IRQ_HANDLED;
690
691 #undef SCHED_INTR
692 }
693
694 static u32 ath_get_extchanmode(struct ath_softc *sc,
695                                struct ieee80211_channel *chan,
696                                enum nl80211_channel_type channel_type)
697 {
698         u32 chanmode = 0;
699
700         switch (chan->band) {
701         case IEEE80211_BAND_2GHZ:
702                 switch(channel_type) {
703                 case NL80211_CHAN_NO_HT:
704                 case NL80211_CHAN_HT20:
705                         chanmode = CHANNEL_G_HT20;
706                         break;
707                 case NL80211_CHAN_HT40PLUS:
708                         chanmode = CHANNEL_G_HT40PLUS;
709                         break;
710                 case NL80211_CHAN_HT40MINUS:
711                         chanmode = CHANNEL_G_HT40MINUS;
712                         break;
713                 }
714                 break;
715         case IEEE80211_BAND_5GHZ:
716                 switch(channel_type) {
717                 case NL80211_CHAN_NO_HT:
718                 case NL80211_CHAN_HT20:
719                         chanmode = CHANNEL_A_HT20;
720                         break;
721                 case NL80211_CHAN_HT40PLUS:
722                         chanmode = CHANNEL_A_HT40PLUS;
723                         break;
724                 case NL80211_CHAN_HT40MINUS:
725                         chanmode = CHANNEL_A_HT40MINUS;
726                         break;
727                 }
728                 break;
729         default:
730                 break;
731         }
732
733         return chanmode;
734 }
735
736 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
737                            struct ath9k_keyval *hk, const u8 *addr,
738                            bool authenticator)
739 {
740         const u8 *key_rxmic;
741         const u8 *key_txmic;
742
743         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
744         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
745
746         if (addr == NULL) {
747                 /*
748                  * Group key installation - only two key cache entries are used
749                  * regardless of splitmic capability since group key is only
750                  * used either for TX or RX.
751                  */
752                 if (authenticator) {
753                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
754                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
755                 } else {
756                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
757                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
758                 }
759                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
760         }
761         if (!sc->splitmic) {
762                 /* TX and RX keys share the same key cache entry. */
763                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
764                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
765                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
766         }
767
768         /* Separate key cache entries for TX and RX */
769
770         /* TX key goes at first index, RX key at +32. */
771         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
772         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
773                 /* TX MIC entry failed. No need to proceed further */
774                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
775                           "Setting TX MIC Key Failed\n");
776                 return 0;
777         }
778
779         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
780         /* XXX delete tx key on failure? */
781         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
782 }
783
784 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
785 {
786         int i;
787
788         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
789                 if (test_bit(i, sc->keymap) ||
790                     test_bit(i + 64, sc->keymap))
791                         continue; /* At least one part of TKIP key allocated */
792                 if (sc->splitmic &&
793                     (test_bit(i + 32, sc->keymap) ||
794                      test_bit(i + 64 + 32, sc->keymap)))
795                         continue; /* At least one part of TKIP key allocated */
796
797                 /* Found a free slot for a TKIP key */
798                 return i;
799         }
800         return -1;
801 }
802
803 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
804 {
805         int i;
806
807         /* First, try to find slots that would not be available for TKIP. */
808         if (sc->splitmic) {
809                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
810                         if (!test_bit(i, sc->keymap) &&
811                             (test_bit(i + 32, sc->keymap) ||
812                              test_bit(i + 64, sc->keymap) ||
813                              test_bit(i + 64 + 32, sc->keymap)))
814                                 return i;
815                         if (!test_bit(i + 32, sc->keymap) &&
816                             (test_bit(i, sc->keymap) ||
817                              test_bit(i + 64, sc->keymap) ||
818                              test_bit(i + 64 + 32, sc->keymap)))
819                                 return i + 32;
820                         if (!test_bit(i + 64, sc->keymap) &&
821                             (test_bit(i , sc->keymap) ||
822                              test_bit(i + 32, sc->keymap) ||
823                              test_bit(i + 64 + 32, sc->keymap)))
824                                 return i + 64;
825                         if (!test_bit(i + 64 + 32, sc->keymap) &&
826                             (test_bit(i, sc->keymap) ||
827                              test_bit(i + 32, sc->keymap) ||
828                              test_bit(i + 64, sc->keymap)))
829                                 return i + 64 + 32;
830                 }
831         } else {
832                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
833                         if (!test_bit(i, sc->keymap) &&
834                             test_bit(i + 64, sc->keymap))
835                                 return i;
836                         if (test_bit(i, sc->keymap) &&
837                             !test_bit(i + 64, sc->keymap))
838                                 return i + 64;
839                 }
840         }
841
842         /* No partially used TKIP slots, pick any available slot */
843         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
844                 /* Do not allow slots that could be needed for TKIP group keys
845                  * to be used. This limitation could be removed if we know that
846                  * TKIP will not be used. */
847                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
848                         continue;
849                 if (sc->splitmic) {
850                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
851                                 continue;
852                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
853                                 continue;
854                 }
855
856                 if (!test_bit(i, sc->keymap))
857                         return i; /* Found a free slot for a key */
858         }
859
860         /* No free slot found */
861         return -1;
862 }
863
864 static int ath_key_config(struct ath_softc *sc,
865                           struct ieee80211_vif *vif,
866                           struct ieee80211_sta *sta,
867                           struct ieee80211_key_conf *key)
868 {
869         struct ath9k_keyval hk;
870         const u8 *mac = NULL;
871         int ret = 0;
872         int idx;
873
874         memset(&hk, 0, sizeof(hk));
875
876         switch (key->alg) {
877         case ALG_WEP:
878                 hk.kv_type = ATH9K_CIPHER_WEP;
879                 break;
880         case ALG_TKIP:
881                 hk.kv_type = ATH9K_CIPHER_TKIP;
882                 break;
883         case ALG_CCMP:
884                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
885                 break;
886         default:
887                 return -EOPNOTSUPP;
888         }
889
890         hk.kv_len = key->keylen;
891         memcpy(hk.kv_val, key->key, key->keylen);
892
893         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
894                 /* For now, use the default keys for broadcast keys. This may
895                  * need to change with virtual interfaces. */
896                 idx = key->keyidx;
897         } else if (key->keyidx) {
898                 if (WARN_ON(!sta))
899                         return -EOPNOTSUPP;
900                 mac = sta->addr;
901
902                 if (vif->type != NL80211_IFTYPE_AP) {
903                         /* Only keyidx 0 should be used with unicast key, but
904                          * allow this for client mode for now. */
905                         idx = key->keyidx;
906                 } else
907                         return -EIO;
908         } else {
909                 if (WARN_ON(!sta))
910                         return -EOPNOTSUPP;
911                 mac = sta->addr;
912
913                 if (key->alg == ALG_TKIP)
914                         idx = ath_reserve_key_cache_slot_tkip(sc);
915                 else
916                         idx = ath_reserve_key_cache_slot(sc);
917                 if (idx < 0)
918                         return -ENOSPC; /* no free key cache entries */
919         }
920
921         if (key->alg == ALG_TKIP)
922                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
923                                       vif->type == NL80211_IFTYPE_AP);
924         else
925                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
926
927         if (!ret)
928                 return -EIO;
929
930         set_bit(idx, sc->keymap);
931         if (key->alg == ALG_TKIP) {
932                 set_bit(idx + 64, sc->keymap);
933                 if (sc->splitmic) {
934                         set_bit(idx + 32, sc->keymap);
935                         set_bit(idx + 64 + 32, sc->keymap);
936                 }
937         }
938
939         return idx;
940 }
941
942 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
943 {
944         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
945         if (key->hw_key_idx < IEEE80211_WEP_NKID)
946                 return;
947
948         clear_bit(key->hw_key_idx, sc->keymap);
949         if (key->alg != ALG_TKIP)
950                 return;
951
952         clear_bit(key->hw_key_idx + 64, sc->keymap);
953         if (sc->splitmic) {
954                 clear_bit(key->hw_key_idx + 32, sc->keymap);
955                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
956         }
957 }
958
959 static void setup_ht_cap(struct ath_softc *sc,
960                          struct ieee80211_sta_ht_cap *ht_info)
961 {
962         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
963         u8 tx_streams, rx_streams;
964
965         ht_info->ht_supported = true;
966         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
967                        IEEE80211_HT_CAP_SM_PS |
968                        IEEE80211_HT_CAP_SGI_40 |
969                        IEEE80211_HT_CAP_DSSSCCK40;
970
971         ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
972         ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
973
974         /* set up supported mcs set */
975         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
976         tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ?
977                      1 : 2;
978         rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ?
979                      1 : 2;
980
981         if (tx_streams != rx_streams) {
982                 ath_print(common, ATH_DBG_CONFIG,
983                           "TX streams %d, RX streams: %d\n",
984                           tx_streams, rx_streams);
985                 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
986                 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
987                                 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
988         }
989
990         ht_info->mcs.rx_mask[0] = 0xff;
991         if (rx_streams >= 2)
992                 ht_info->mcs.rx_mask[1] = 0xff;
993
994         ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
995 }
996
997 static void ath9k_bss_assoc_info(struct ath_softc *sc,
998                                  struct ieee80211_vif *vif,
999                                  struct ieee80211_bss_conf *bss_conf)
1000 {
1001         struct ath_hw *ah = sc->sc_ah;
1002         struct ath_common *common = ath9k_hw_common(ah);
1003
1004         if (bss_conf->assoc) {
1005                 ath_print(common, ATH_DBG_CONFIG,
1006                           "Bss Info ASSOC %d, bssid: %pM\n",
1007                            bss_conf->aid, common->curbssid);
1008
1009                 /* New association, store aid */
1010                 common->curaid = bss_conf->aid;
1011                 ath9k_hw_write_associd(ah);
1012
1013                 /*
1014                  * Request a re-configuration of Beacon related timers
1015                  * on the receipt of the first Beacon frame (i.e.,
1016                  * after time sync with the AP).
1017                  */
1018                 sc->sc_flags |= SC_OP_BEACON_SYNC;
1019
1020                 /* Configure the beacon */
1021                 ath_beacon_config(sc, vif);
1022
1023                 /* Reset rssi stats */
1024                 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
1025
1026                 ath_start_ani(sc);
1027         } else {
1028                 ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
1029                 common->curaid = 0;
1030                 /* Stop ANI */
1031                 del_timer_sync(&sc->ani.timer);
1032         }
1033 }
1034
1035 /********************************/
1036 /*       LED functions          */
1037 /********************************/
1038
1039 static void ath_led_blink_work(struct work_struct *work)
1040 {
1041         struct ath_softc *sc = container_of(work, struct ath_softc,
1042                                             ath_led_blink_work.work);
1043
1044         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
1045                 return;
1046
1047         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
1048             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
1049                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1050         else
1051                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1052                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
1053
1054         ieee80211_queue_delayed_work(sc->hw,
1055                                      &sc->ath_led_blink_work,
1056                                      (sc->sc_flags & SC_OP_LED_ON) ?
1057                                         msecs_to_jiffies(sc->led_off_duration) :
1058                                         msecs_to_jiffies(sc->led_on_duration));
1059
1060         sc->led_on_duration = sc->led_on_cnt ?
1061                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
1062                         ATH_LED_ON_DURATION_IDLE;
1063         sc->led_off_duration = sc->led_off_cnt ?
1064                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
1065                         ATH_LED_OFF_DURATION_IDLE;
1066         sc->led_on_cnt = sc->led_off_cnt = 0;
1067         if (sc->sc_flags & SC_OP_LED_ON)
1068                 sc->sc_flags &= ~SC_OP_LED_ON;
1069         else
1070                 sc->sc_flags |= SC_OP_LED_ON;
1071 }
1072
1073 static void ath_led_brightness(struct led_classdev *led_cdev,
1074                                enum led_brightness brightness)
1075 {
1076         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1077         struct ath_softc *sc = led->sc;
1078
1079         switch (brightness) {
1080         case LED_OFF:
1081                 if (led->led_type == ATH_LED_ASSOC ||
1082                     led->led_type == ATH_LED_RADIO) {
1083                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1084                                 (led->led_type == ATH_LED_RADIO));
1085                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1086                         if (led->led_type == ATH_LED_RADIO)
1087                                 sc->sc_flags &= ~SC_OP_LED_ON;
1088                 } else {
1089                         sc->led_off_cnt++;
1090                 }
1091                 break;
1092         case LED_FULL:
1093                 if (led->led_type == ATH_LED_ASSOC) {
1094                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1095                         ieee80211_queue_delayed_work(sc->hw,
1096                                                      &sc->ath_led_blink_work, 0);
1097                 } else if (led->led_type == ATH_LED_RADIO) {
1098                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1099                         sc->sc_flags |= SC_OP_LED_ON;
1100                 } else {
1101                         sc->led_on_cnt++;
1102                 }
1103                 break;
1104         default:
1105                 break;
1106         }
1107 }
1108
1109 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1110                             char *trigger)
1111 {
1112         int ret;
1113
1114         led->sc = sc;
1115         led->led_cdev.name = led->name;
1116         led->led_cdev.default_trigger = trigger;
1117         led->led_cdev.brightness_set = ath_led_brightness;
1118
1119         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1120         if (ret)
1121                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1122                           "Failed to register led:%s", led->name);
1123         else
1124                 led->registered = 1;
1125         return ret;
1126 }
1127
1128 static void ath_unregister_led(struct ath_led *led)
1129 {
1130         if (led->registered) {
1131                 led_classdev_unregister(&led->led_cdev);
1132                 led->registered = 0;
1133         }
1134 }
1135
1136 static void ath_deinit_leds(struct ath_softc *sc)
1137 {
1138         ath_unregister_led(&sc->assoc_led);
1139         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1140         ath_unregister_led(&sc->tx_led);
1141         ath_unregister_led(&sc->rx_led);
1142         ath_unregister_led(&sc->radio_led);
1143         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1144 }
1145
1146 static void ath_init_leds(struct ath_softc *sc)
1147 {
1148         char *trigger;
1149         int ret;
1150
1151         if (AR_SREV_9287(sc->sc_ah))
1152                 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1153         else
1154                 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1155
1156         /* Configure gpio 1 for output */
1157         ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1158                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1159         /* LED off, active low */
1160         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1161
1162         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1163
1164         trigger = ieee80211_get_radio_led_name(sc->hw);
1165         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1166                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1167         ret = ath_register_led(sc, &sc->radio_led, trigger);
1168         sc->radio_led.led_type = ATH_LED_RADIO;
1169         if (ret)
1170                 goto fail;
1171
1172         trigger = ieee80211_get_assoc_led_name(sc->hw);
1173         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1174                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1175         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1176         sc->assoc_led.led_type = ATH_LED_ASSOC;
1177         if (ret)
1178                 goto fail;
1179
1180         trigger = ieee80211_get_tx_led_name(sc->hw);
1181         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1182                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1183         ret = ath_register_led(sc, &sc->tx_led, trigger);
1184         sc->tx_led.led_type = ATH_LED_TX;
1185         if (ret)
1186                 goto fail;
1187
1188         trigger = ieee80211_get_rx_led_name(sc->hw);
1189         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1190                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1191         ret = ath_register_led(sc, &sc->rx_led, trigger);
1192         sc->rx_led.led_type = ATH_LED_RX;
1193         if (ret)
1194                 goto fail;
1195
1196         return;
1197
1198 fail:
1199         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1200         ath_deinit_leds(sc);
1201 }
1202
1203 void ath_radio_enable(struct ath_softc *sc)
1204 {
1205         struct ath_hw *ah = sc->sc_ah;
1206         struct ath_common *common = ath9k_hw_common(ah);
1207         struct ieee80211_channel *channel = sc->hw->conf.channel;
1208         int r;
1209
1210         ath9k_ps_wakeup(sc);
1211         ath9k_hw_configpcipowersave(ah, 0, 0);
1212
1213         if (!ah->curchan)
1214                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1215
1216         spin_lock_bh(&sc->sc_resetlock);
1217         r = ath9k_hw_reset(ah, ah->curchan, false);
1218         if (r) {
1219                 ath_print(common, ATH_DBG_FATAL,
1220                           "Unable to reset channel %u (%uMhz) ",
1221                           "reset status %d\n",
1222                           channel->center_freq, r);
1223         }
1224         spin_unlock_bh(&sc->sc_resetlock);
1225
1226         ath_update_txpow(sc);
1227         if (ath_startrecv(sc) != 0) {
1228                 ath_print(common, ATH_DBG_FATAL,
1229                           "Unable to restart recv logic\n");
1230                 return;
1231         }
1232
1233         if (sc->sc_flags & SC_OP_BEACONS)
1234                 ath_beacon_config(sc, NULL);    /* restart beacons */
1235
1236         /* Re-Enable  interrupts */
1237         ath9k_hw_set_interrupts(ah, sc->imask);
1238
1239         /* Enable LED */
1240         ath9k_hw_cfg_output(ah, ah->led_pin,
1241                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1242         ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1243
1244         ieee80211_wake_queues(sc->hw);
1245         ath9k_ps_restore(sc);
1246 }
1247
1248 void ath_radio_disable(struct ath_softc *sc)
1249 {
1250         struct ath_hw *ah = sc->sc_ah;
1251         struct ieee80211_channel *channel = sc->hw->conf.channel;
1252         int r;
1253
1254         ath9k_ps_wakeup(sc);
1255         ieee80211_stop_queues(sc->hw);
1256
1257         /* Disable LED */
1258         ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1259         ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1260
1261         /* Disable interrupts */
1262         ath9k_hw_set_interrupts(ah, 0);
1263
1264         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1265         ath_stoprecv(sc);               /* turn off frame recv */
1266         ath_flushrecv(sc);              /* flush recv queue */
1267
1268         if (!ah->curchan)
1269                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1270
1271         spin_lock_bh(&sc->sc_resetlock);
1272         r = ath9k_hw_reset(ah, ah->curchan, false);
1273         if (r) {
1274                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1275                           "Unable to reset channel %u (%uMhz) "
1276                           "reset status %d\n",
1277                           channel->center_freq, r);
1278         }
1279         spin_unlock_bh(&sc->sc_resetlock);
1280
1281         ath9k_hw_phy_disable(ah);
1282         ath9k_hw_configpcipowersave(ah, 1, 1);
1283         ath9k_ps_restore(sc);
1284         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
1285 }
1286
1287 /*******************/
1288 /*      Rfkill     */
1289 /*******************/
1290
1291 static bool ath_is_rfkill_set(struct ath_softc *sc)
1292 {
1293         struct ath_hw *ah = sc->sc_ah;
1294
1295         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1296                                   ah->rfkill_polarity;
1297 }
1298
1299 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1300 {
1301         struct ath_wiphy *aphy = hw->priv;
1302         struct ath_softc *sc = aphy->sc;
1303         bool blocked = !!ath_is_rfkill_set(sc);
1304
1305         wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1306 }
1307
1308 static void ath_start_rfkill_poll(struct ath_softc *sc)
1309 {
1310         struct ath_hw *ah = sc->sc_ah;
1311
1312         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1313                 wiphy_rfkill_start_polling(sc->hw->wiphy);
1314 }
1315
1316 static void ath9k_uninit_hw(struct ath_softc *sc)
1317 {
1318         struct ath_hw *ah = sc->sc_ah;
1319
1320         BUG_ON(!ah);
1321
1322         ath9k_exit_debug(ah);
1323         ath9k_hw_detach(ah);
1324         sc->sc_ah = NULL;
1325 }
1326
1327 static void ath_clean_core(struct ath_softc *sc)
1328 {
1329         struct ieee80211_hw *hw = sc->hw;
1330         struct ath_hw *ah = sc->sc_ah;
1331         int i = 0;
1332
1333         ath9k_ps_wakeup(sc);
1334
1335         dev_dbg(sc->dev, "Detach ATH hw\n");
1336
1337         ath_deinit_leds(sc);
1338         wiphy_rfkill_stop_polling(sc->hw->wiphy);
1339
1340         for (i = 0; i < sc->num_sec_wiphy; i++) {
1341                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1342                 if (aphy == NULL)
1343                         continue;
1344                 sc->sec_wiphy[i] = NULL;
1345                 ieee80211_unregister_hw(aphy->hw);
1346                 ieee80211_free_hw(aphy->hw);
1347         }
1348         ieee80211_unregister_hw(hw);
1349         ath_rx_cleanup(sc);
1350         ath_tx_cleanup(sc);
1351
1352         tasklet_kill(&sc->intr_tq);
1353         tasklet_kill(&sc->bcon_tasklet);
1354
1355         if (!(sc->sc_flags & SC_OP_INVALID))
1356                 ath9k_setpower(sc, ATH9K_PM_AWAKE);
1357
1358         /* cleanup tx queues */
1359         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1360                 if (ATH_TXQ_SETUP(sc, i))
1361                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1362
1363         if ((sc->btcoex.no_stomp_timer) &&
1364             ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1365                 ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer);
1366 }
1367
1368 void ath_detach(struct ath_softc *sc)
1369 {
1370         ath_clean_core(sc);
1371         ath9k_uninit_hw(sc);
1372 }
1373
1374 void ath_cleanup(struct ath_softc *sc)
1375 {
1376         struct ath_hw *ah = sc->sc_ah;
1377         struct ath_common *common = ath9k_hw_common(ah);
1378
1379         ath_clean_core(sc);
1380         free_irq(sc->irq, sc);
1381         ath_bus_cleanup(common);
1382         kfree(sc->sec_wiphy);
1383         ieee80211_free_hw(sc->hw);
1384
1385         ath9k_uninit_hw(sc);
1386 }
1387
1388 static int ath9k_reg_notifier(struct wiphy *wiphy,
1389                               struct regulatory_request *request)
1390 {
1391         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1392         struct ath_wiphy *aphy = hw->priv;
1393         struct ath_softc *sc = aphy->sc;
1394         struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah);
1395
1396         return ath_reg_notifier_apply(wiphy, request, reg);
1397 }
1398
1399 /*
1400  * Detects if there is any priority bt traffic
1401  */
1402 static void ath_detect_bt_priority(struct ath_softc *sc)
1403 {
1404         struct ath_btcoex *btcoex = &sc->btcoex;
1405         struct ath_hw *ah = sc->sc_ah;
1406
1407         if (ath9k_hw_gpio_get(sc->sc_ah, ah->btcoex_hw.btpriority_gpio))
1408                 btcoex->bt_priority_cnt++;
1409
1410         if (time_after(jiffies, btcoex->bt_priority_time +
1411                         msecs_to_jiffies(ATH_BT_PRIORITY_TIME_THRESHOLD))) {
1412                 if (btcoex->bt_priority_cnt >= ATH_BT_CNT_THRESHOLD) {
1413                         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_BTCOEX,
1414                                   "BT priority traffic detected");
1415                         sc->sc_flags |= SC_OP_BT_PRIORITY_DETECTED;
1416                 } else {
1417                         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
1418                 }
1419
1420                 btcoex->bt_priority_cnt = 0;
1421                 btcoex->bt_priority_time = jiffies;
1422         }
1423 }
1424
1425 /*
1426  * Configures appropriate weight based on stomp type.
1427  */
1428 static void ath9k_btcoex_bt_stomp(struct ath_softc *sc,
1429                                   enum ath_stomp_type stomp_type)
1430 {
1431         struct ath_hw *ah = sc->sc_ah;
1432
1433         switch (stomp_type) {
1434         case ATH_BTCOEX_STOMP_ALL:
1435                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1436                                            AR_STOMP_ALL_WLAN_WGHT);
1437                 break;
1438         case ATH_BTCOEX_STOMP_LOW:
1439                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1440                                            AR_STOMP_LOW_WLAN_WGHT);
1441                 break;
1442         case ATH_BTCOEX_STOMP_NONE:
1443                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1444                                            AR_STOMP_NONE_WLAN_WGHT);
1445                 break;
1446         default:
1447                 ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1448                           "Invalid Stomptype\n");
1449                 break;
1450         }
1451
1452         ath9k_hw_btcoex_enable(ah);
1453 }
1454
1455 static void ath9k_gen_timer_start(struct ath_hw *ah,
1456                                   struct ath_gen_timer *timer,
1457                                   u32 timer_next,
1458                                   u32 timer_period)
1459 {
1460         struct ath_common *common = ath9k_hw_common(ah);
1461         struct ath_softc *sc = (struct ath_softc *) common->priv;
1462
1463         ath9k_hw_gen_timer_start(ah, timer, timer_next, timer_period);
1464
1465         if ((sc->imask & ATH9K_INT_GENTIMER) == 0) {
1466                 ath9k_hw_set_interrupts(ah, 0);
1467                 sc->imask |= ATH9K_INT_GENTIMER;
1468                 ath9k_hw_set_interrupts(ah, sc->imask);
1469         }
1470 }
1471
1472 static void ath9k_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
1473 {
1474         struct ath_common *common = ath9k_hw_common(ah);
1475         struct ath_softc *sc = (struct ath_softc *) common->priv;
1476         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
1477
1478         ath9k_hw_gen_timer_stop(ah, timer);
1479
1480         /* if no timer is enabled, turn off interrupt mask */
1481         if (timer_table->timer_mask.val == 0) {
1482                 ath9k_hw_set_interrupts(ah, 0);
1483                 sc->imask &= ~ATH9K_INT_GENTIMER;
1484                 ath9k_hw_set_interrupts(ah, sc->imask);
1485         }
1486 }
1487
1488 /*
1489  * This is the master bt coex timer which runs for every
1490  * 45ms, bt traffic will be given priority during 55% of this
1491  * period while wlan gets remaining 45%
1492  */
1493 static void ath_btcoex_period_timer(unsigned long data)
1494 {
1495         struct ath_softc *sc = (struct ath_softc *) data;
1496         struct ath_hw *ah = sc->sc_ah;
1497         struct ath_btcoex *btcoex = &sc->btcoex;
1498
1499         ath_detect_bt_priority(sc);
1500
1501         spin_lock_bh(&btcoex->btcoex_lock);
1502
1503         ath9k_btcoex_bt_stomp(sc, btcoex->bt_stomp_type);
1504
1505         spin_unlock_bh(&btcoex->btcoex_lock);
1506
1507         if (btcoex->btcoex_period != btcoex->btcoex_no_stomp) {
1508                 if (btcoex->hw_timer_enabled)
1509                         ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
1510
1511                 ath9k_gen_timer_start(ah,
1512                                       btcoex->no_stomp_timer,
1513                                       (ath9k_hw_gettsf32(ah) +
1514                                        btcoex->btcoex_no_stomp),
1515                                        btcoex->btcoex_no_stomp * 10);
1516                 btcoex->hw_timer_enabled = true;
1517         }
1518
1519         mod_timer(&btcoex->period_timer, jiffies +
1520                                   msecs_to_jiffies(ATH_BTCOEX_DEF_BT_PERIOD));
1521 }
1522
1523 /*
1524  * Generic tsf based hw timer which configures weight
1525  * registers to time slice between wlan and bt traffic
1526  */
1527 static void ath_btcoex_no_stomp_timer(void *arg)
1528 {
1529         struct ath_softc *sc = (struct ath_softc *)arg;
1530         struct ath_hw *ah = sc->sc_ah;
1531         struct ath_btcoex *btcoex = &sc->btcoex;
1532
1533         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
1534                   "no stomp timer running \n");
1535
1536         spin_lock_bh(&btcoex->btcoex_lock);
1537
1538         if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_LOW)
1539                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_NONE);
1540          else if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_ALL)
1541                 ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_LOW);
1542
1543         spin_unlock_bh(&btcoex->btcoex_lock);
1544 }
1545
1546 static int ath_init_btcoex_timer(struct ath_softc *sc)
1547 {
1548         struct ath_btcoex *btcoex = &sc->btcoex;
1549
1550         btcoex->btcoex_period = ATH_BTCOEX_DEF_BT_PERIOD * 1000;
1551         btcoex->btcoex_no_stomp = (100 - ATH_BTCOEX_DEF_DUTY_CYCLE) *
1552                 btcoex->btcoex_period / 100;
1553
1554         setup_timer(&btcoex->period_timer, ath_btcoex_period_timer,
1555                         (unsigned long) sc);
1556
1557         spin_lock_init(&btcoex->btcoex_lock);
1558
1559         btcoex->no_stomp_timer = ath_gen_timer_alloc(sc->sc_ah,
1560                         ath_btcoex_no_stomp_timer,
1561                         ath_btcoex_no_stomp_timer,
1562                         (void *) sc, AR_FIRST_NDP_TIMER);
1563
1564         if (!btcoex->no_stomp_timer)
1565                 return -ENOMEM;
1566
1567         return 0;
1568 }
1569
1570 /*
1571  * Read and write, they both share the same lock. We do this to serialize
1572  * reads and writes on Atheros 802.11n PCI devices only. This is required
1573  * as the FIFO on these devices can only accept sanely 2 requests. After
1574  * that the device goes bananas. Serializing the reads/writes prevents this
1575  * from happening.
1576  */
1577
1578 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
1579 {
1580         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1581         struct ath_common *common = ath9k_hw_common(ah);
1582         struct ath_softc *sc = (struct ath_softc *) common->priv;
1583
1584         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1585                 unsigned long flags;
1586                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1587                 iowrite32(val, sc->mem + reg_offset);
1588                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1589         } else
1590                 iowrite32(val, sc->mem + reg_offset);
1591 }
1592
1593 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
1594 {
1595         struct ath_hw *ah = (struct ath_hw *) hw_priv;
1596         struct ath_common *common = ath9k_hw_common(ah);
1597         struct ath_softc *sc = (struct ath_softc *) common->priv;
1598         u32 val;
1599
1600         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
1601                 unsigned long flags;
1602                 spin_lock_irqsave(&sc->sc_serial_rw, flags);
1603                 val = ioread32(sc->mem + reg_offset);
1604                 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
1605         } else
1606                 val = ioread32(sc->mem + reg_offset);
1607         return val;
1608 }
1609
1610 static const struct ath_ops ath9k_common_ops = {
1611         .read = ath9k_ioread32,
1612         .write = ath9k_iowrite32,
1613 };
1614
1615 /*
1616  * Initialize and fill ath_softc, ath_sofct is the
1617  * "Software Carrier" struct. Historically it has existed
1618  * to allow the separation between hardware specific
1619  * variables (now in ath_hw) and driver specific variables.
1620  */
1621 static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid,
1622                           const struct ath_bus_ops *bus_ops)
1623 {
1624         struct ath_hw *ah = NULL;
1625         struct ath_common *common;
1626         int r = 0, i;
1627         int csz = 0;
1628         int qnum;
1629
1630         /* XXX: hardware will not be ready until ath_open() being called */
1631         sc->sc_flags |= SC_OP_INVALID;
1632
1633         spin_lock_init(&sc->wiphy_lock);
1634         spin_lock_init(&sc->sc_resetlock);
1635         spin_lock_init(&sc->sc_serial_rw);
1636         spin_lock_init(&sc->ani_lock);
1637         spin_lock_init(&sc->sc_pm_lock);
1638         mutex_init(&sc->mutex);
1639         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1640         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1641                      (unsigned long)sc);
1642
1643         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1644         if (!ah)
1645                 return -ENOMEM;
1646
1647         ah->hw_version.devid = devid;
1648         ah->hw_version.subsysid = subsysid;
1649         sc->sc_ah = ah;
1650
1651         common = ath9k_hw_common(ah);
1652         common->ops = &ath9k_common_ops;
1653         common->bus_ops = bus_ops;
1654         common->ah = ah;
1655         common->hw = sc->hw;
1656         common->priv = sc;
1657         common->debug_mask = ath9k_debug;
1658
1659         /*
1660          * Cache line size is used to size and align various
1661          * structures used to communicate with the hardware.
1662          */
1663         ath_read_cachesize(common, &csz);
1664         /* XXX assert csz is non-zero */
1665         common->cachelsz = csz << 2;    /* convert to bytes */
1666
1667         r = ath9k_hw_init(ah);
1668         if (r) {
1669                 ath_print(common, ATH_DBG_FATAL,
1670                           "Unable to initialize hardware; "
1671                           "initialization status: %d\n", r);
1672                 goto bad_free_hw;
1673         }
1674
1675         if (ath9k_init_debug(ah) < 0) {
1676                 ath_print(common, ATH_DBG_FATAL,
1677                           "Unable to create debugfs files\n");
1678                 goto bad_free_hw;
1679         }
1680
1681         /* Get the hardware key cache size. */
1682         sc->keymax = ah->caps.keycache_size;
1683         if (sc->keymax > ATH_KEYMAX) {
1684                 ath_print(common, ATH_DBG_ANY,
1685                           "Warning, using only %u entries in %u key cache\n",
1686                           ATH_KEYMAX, sc->keymax);
1687                 sc->keymax = ATH_KEYMAX;
1688         }
1689
1690         /*
1691          * Reset the key cache since some parts do not
1692          * reset the contents on initial power up.
1693          */
1694         for (i = 0; i < sc->keymax; i++)
1695                 ath9k_hw_keyreset(ah, (u16) i);
1696
1697         /* default to MONITOR mode */
1698         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1699
1700         /* Setup rate tables */
1701
1702         ath_rate_attach(sc);
1703         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1704         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1705
1706         /*
1707          * Allocate hardware transmit queues: one queue for
1708          * beacon frames and one data queue for each QoS
1709          * priority.  Note that the hal handles reseting
1710          * these queues at the needed time.
1711          */
1712         sc->beacon.beaconq = ath9k_hw_beaconq_setup(ah);
1713         if (sc->beacon.beaconq == -1) {
1714                 ath_print(common, ATH_DBG_FATAL,
1715                           "Unable to setup a beacon xmit queue\n");
1716                 r = -EIO;
1717                 goto bad2;
1718         }
1719         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1720         if (sc->beacon.cabq == NULL) {
1721                 ath_print(common, ATH_DBG_FATAL,
1722                           "Unable to setup CAB xmit queue\n");
1723                 r = -EIO;
1724                 goto bad2;
1725         }
1726
1727         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1728         ath_cabq_update(sc);
1729
1730         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1731                 sc->tx.hwq_map[i] = -1;
1732
1733         /* Setup data queues */
1734         /* NB: ensure BK queue is the lowest priority h/w queue */
1735         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1736                 ath_print(common, ATH_DBG_FATAL,
1737                           "Unable to setup xmit queue for BK traffic\n");
1738                 r = -EIO;
1739                 goto bad2;
1740         }
1741
1742         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1743                 ath_print(common, ATH_DBG_FATAL,
1744                           "Unable to setup xmit queue for BE traffic\n");
1745                 r = -EIO;
1746                 goto bad2;
1747         }
1748         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1749                 ath_print(common, ATH_DBG_FATAL,
1750                           "Unable to setup xmit queue for VI traffic\n");
1751                 r = -EIO;
1752                 goto bad2;
1753         }
1754         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1755                 ath_print(common, ATH_DBG_FATAL,
1756                           "Unable to setup xmit queue for VO traffic\n");
1757                 r = -EIO;
1758                 goto bad2;
1759         }
1760
1761         /* Initializes the noise floor to a reasonable default value.
1762          * Later on this will be updated during ANI processing. */
1763
1764         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1765         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1766
1767         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1768                                    ATH9K_CIPHER_TKIP, NULL)) {
1769                 /*
1770                  * Whether we should enable h/w TKIP MIC.
1771                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1772                  * report WMM capable, so it's always safe to turn on
1773                  * TKIP MIC in this case.
1774                  */
1775                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1776                                        0, 1, NULL);
1777         }
1778
1779         /*
1780          * Check whether the separate key cache entries
1781          * are required to handle both tx+rx MIC keys.
1782          * With split mic keys the number of stations is limited
1783          * to 27 otherwise 59.
1784          */
1785         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1786                                    ATH9K_CIPHER_TKIP, NULL)
1787             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1788                                       ATH9K_CIPHER_MIC, NULL)
1789             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1790                                       0, NULL))
1791                 sc->splitmic = 1;
1792
1793         /* turn on mcast key search if possible */
1794         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1795                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1796                                              1, NULL);
1797
1798         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1799
1800         /* 11n Capabilities */
1801         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1802                 sc->sc_flags |= SC_OP_TXAGGR;
1803                 sc->sc_flags |= SC_OP_RXAGGR;
1804         }
1805
1806         common->tx_chainmask = ah->caps.tx_chainmask;
1807         common->rx_chainmask = ah->caps.rx_chainmask;
1808
1809         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1810         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1811
1812         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1813                 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
1814
1815         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1816
1817         /* initialize beacon slots */
1818         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1819                 sc->beacon.bslot[i] = NULL;
1820                 sc->beacon.bslot_aphy[i] = NULL;
1821         }
1822
1823         /* setup channels and rates */
1824
1825         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1826         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1827                 sc->rates[IEEE80211_BAND_2GHZ];
1828         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1829         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1830                 ARRAY_SIZE(ath9k_2ghz_chantable);
1831
1832         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1833                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1834                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1835                         sc->rates[IEEE80211_BAND_5GHZ];
1836                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1837                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1838                         ARRAY_SIZE(ath9k_5ghz_chantable);
1839         }
1840
1841         switch (ah->btcoex_hw.scheme) {
1842         case ATH_BTCOEX_CFG_NONE:
1843                 break;
1844         case ATH_BTCOEX_CFG_2WIRE:
1845                 ath9k_hw_btcoex_init_2wire(ah);
1846                 break;
1847         case ATH_BTCOEX_CFG_3WIRE:
1848                 ath9k_hw_btcoex_init_3wire(ah);
1849                 r = ath_init_btcoex_timer(sc);
1850                 if (r)
1851                         goto bad2;
1852                 qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
1853                 ath9k_hw_init_btcoex_hw(ah, qnum);
1854                 sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW;
1855                 break;
1856         default:
1857                 WARN_ON(1);
1858                 break;
1859         }
1860
1861         return 0;
1862 bad2:
1863         /* cleanup tx queues */
1864         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1865                 if (ATH_TXQ_SETUP(sc, i))
1866                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1867
1868 bad_free_hw:
1869         ath9k_uninit_hw(sc);
1870         return r;
1871 }
1872
1873 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1874 {
1875         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1876                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1877                 IEEE80211_HW_SIGNAL_DBM |
1878                 IEEE80211_HW_AMPDU_AGGREGATION |
1879                 IEEE80211_HW_SUPPORTS_PS |
1880                 IEEE80211_HW_PS_NULLFUNC_STACK |
1881                 IEEE80211_HW_SPECTRUM_MGMT;
1882
1883         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1884                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1885
1886         hw->wiphy->interface_modes =
1887                 BIT(NL80211_IFTYPE_AP) |
1888                 BIT(NL80211_IFTYPE_STATION) |
1889                 BIT(NL80211_IFTYPE_ADHOC) |
1890                 BIT(NL80211_IFTYPE_MESH_POINT);
1891
1892         hw->queues = 4;
1893         hw->max_rates = 4;
1894         hw->channel_change_time = 5000;
1895         hw->max_listen_interval = 10;
1896         /* Hardware supports 10 but we use 4 */
1897         hw->max_rate_tries = 4;
1898         hw->sta_data_size = sizeof(struct ath_node);
1899         hw->vif_data_size = sizeof(struct ath_vif);
1900
1901         hw->rate_control_algorithm = "ath9k_rate_control";
1902
1903         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1904                 &sc->sbands[IEEE80211_BAND_2GHZ];
1905         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1906                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1907                         &sc->sbands[IEEE80211_BAND_5GHZ];
1908 }
1909
1910 /* Device driver core initialization */
1911 int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid,
1912                     const struct ath_bus_ops *bus_ops)
1913 {
1914         struct ieee80211_hw *hw = sc->hw;
1915         struct ath_common *common;
1916         struct ath_hw *ah;
1917         int error = 0, i;
1918         struct ath_regulatory *reg;
1919
1920         dev_dbg(sc->dev, "Attach ATH hw\n");
1921
1922         error = ath_init_softc(devid, sc, subsysid, bus_ops);
1923         if (error != 0)
1924                 return error;
1925
1926         ah = sc->sc_ah;
1927         common = ath9k_hw_common(ah);
1928
1929         /* get mac address from hardware and set in mac80211 */
1930
1931         SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
1932
1933         ath_set_hw_capab(sc, hw);
1934
1935         error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
1936                               ath9k_reg_notifier);
1937         if (error)
1938                 return error;
1939
1940         reg = &common->regulatory;
1941
1942         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1943                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1944                 if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes))
1945                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1946         }
1947
1948         /* initialize tx/rx engine */
1949         error = ath_tx_init(sc, ATH_TXBUF);
1950         if (error != 0)
1951                 goto error_attach;
1952
1953         error = ath_rx_init(sc, ATH_RXBUF);
1954         if (error != 0)
1955                 goto error_attach;
1956
1957         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1958         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1959         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1960
1961         error = ieee80211_register_hw(hw);
1962
1963         if (!ath_is_world_regd(reg)) {
1964                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1965                 if (error)
1966                         goto error_attach;
1967         }
1968
1969         /* Initialize LED control */
1970         ath_init_leds(sc);
1971
1972         ath_start_rfkill_poll(sc);
1973
1974         return 0;
1975
1976 error_attach:
1977         /* cleanup tx queues */
1978         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1979                 if (ATH_TXQ_SETUP(sc, i))
1980                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1981
1982         ath9k_uninit_hw(sc);
1983
1984         return error;
1985 }
1986
1987 int ath_reset(struct ath_softc *sc, bool retry_tx)
1988 {
1989         struct ath_hw *ah = sc->sc_ah;
1990         struct ath_common *common = ath9k_hw_common(ah);
1991         struct ieee80211_hw *hw = sc->hw;
1992         int r;
1993
1994         ath9k_hw_set_interrupts(ah, 0);
1995         ath_drain_all_txq(sc, retry_tx);
1996         ath_stoprecv(sc);
1997         ath_flushrecv(sc);
1998
1999         spin_lock_bh(&sc->sc_resetlock);
2000         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
2001         if (r)
2002                 ath_print(common, ATH_DBG_FATAL,
2003                           "Unable to reset hardware; reset status %d\n", r);
2004         spin_unlock_bh(&sc->sc_resetlock);
2005
2006         if (ath_startrecv(sc) != 0)
2007                 ath_print(common, ATH_DBG_FATAL,
2008                           "Unable to start recv logic\n");
2009
2010         /*
2011          * We may be doing a reset in response to a request
2012          * that changes the channel so update any state that
2013          * might change as a result.
2014          */
2015         ath_cache_conf_rate(sc, &hw->conf);
2016
2017         ath_update_txpow(sc);
2018
2019         if (sc->sc_flags & SC_OP_BEACONS)
2020                 ath_beacon_config(sc, NULL);    /* restart beacons */
2021
2022         ath9k_hw_set_interrupts(ah, sc->imask);
2023
2024         if (retry_tx) {
2025                 int i;
2026                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2027                         if (ATH_TXQ_SETUP(sc, i)) {
2028                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
2029                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
2030                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
2031                         }
2032                 }
2033         }
2034
2035         return r;
2036 }
2037
2038 /*
2039  *  This function will allocate both the DMA descriptor structure, and the
2040  *  buffers it contains.  These are used to contain the descriptors used
2041  *  by the system.
2042 */
2043 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
2044                       struct list_head *head, const char *name,
2045                       int nbuf, int ndesc)
2046 {
2047 #define DS2PHYS(_dd, _ds)                                               \
2048         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2049 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
2050 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
2051         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2052         struct ath_desc *ds;
2053         struct ath_buf *bf;
2054         int i, bsize, error;
2055
2056         ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
2057                   name, nbuf, ndesc);
2058
2059         INIT_LIST_HEAD(head);
2060         /* ath_desc must be a multiple of DWORDs */
2061         if ((sizeof(struct ath_desc) % 4) != 0) {
2062                 ath_print(common, ATH_DBG_FATAL,
2063                           "ath_desc not DWORD aligned\n");
2064                 BUG_ON((sizeof(struct ath_desc) % 4) != 0);
2065                 error = -ENOMEM;
2066                 goto fail;
2067         }
2068
2069         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2070
2071         /*
2072          * Need additional DMA memory because we can't use
2073          * descriptors that cross the 4K page boundary. Assume
2074          * one skipped descriptor per 4K page.
2075          */
2076         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2077                 u32 ndesc_skipped =
2078                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
2079                 u32 dma_len;
2080
2081                 while (ndesc_skipped) {
2082                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
2083                         dd->dd_desc_len += dma_len;
2084
2085                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
2086                 };
2087         }
2088
2089         /* allocate descriptors */
2090         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2091                                          &dd->dd_desc_paddr, GFP_KERNEL);
2092         if (dd->dd_desc == NULL) {
2093                 error = -ENOMEM;
2094                 goto fail;
2095         }
2096         ds = dd->dd_desc;
2097         ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
2098                   name, ds, (u32) dd->dd_desc_len,
2099                   ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
2100
2101         /* allocate buffers */
2102         bsize = sizeof(struct ath_buf) * nbuf;
2103         bf = kzalloc(bsize, GFP_KERNEL);
2104         if (bf == NULL) {
2105                 error = -ENOMEM;
2106                 goto fail2;
2107         }
2108         dd->dd_bufptr = bf;
2109
2110         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2111                 bf->bf_desc = ds;
2112                 bf->bf_daddr = DS2PHYS(dd, ds);
2113
2114                 if (!(sc->sc_ah->caps.hw_caps &
2115                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
2116                         /*
2117                          * Skip descriptor addresses which can cause 4KB
2118                          * boundary crossing (addr + length) with a 32 dword
2119                          * descriptor fetch.
2120                          */
2121                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
2122                                 BUG_ON((caddr_t) bf->bf_desc >=
2123                                        ((caddr_t) dd->dd_desc +
2124                                         dd->dd_desc_len));
2125
2126                                 ds += ndesc;
2127                                 bf->bf_desc = ds;
2128                                 bf->bf_daddr = DS2PHYS(dd, ds);
2129                         }
2130                 }
2131                 list_add_tail(&bf->list, head);
2132         }
2133         return 0;
2134 fail2:
2135         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2136                           dd->dd_desc_paddr);
2137 fail:
2138         memset(dd, 0, sizeof(*dd));
2139         return error;
2140 #undef ATH_DESC_4KB_BOUND_CHECK
2141 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
2142 #undef DS2PHYS
2143 }
2144
2145 void ath_descdma_cleanup(struct ath_softc *sc,
2146                          struct ath_descdma *dd,
2147                          struct list_head *head)
2148 {
2149         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2150                           dd->dd_desc_paddr);
2151
2152         INIT_LIST_HEAD(head);
2153         kfree(dd->dd_bufptr);
2154         memset(dd, 0, sizeof(*dd));
2155 }
2156
2157 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
2158 {
2159         int qnum;
2160
2161         switch (queue) {
2162         case 0:
2163                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
2164                 break;
2165         case 1:
2166                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
2167                 break;
2168         case 2:
2169                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2170                 break;
2171         case 3:
2172                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
2173                 break;
2174         default:
2175                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
2176                 break;
2177         }
2178
2179         return qnum;
2180 }
2181
2182 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
2183 {
2184         int qnum;
2185
2186         switch (queue) {
2187         case ATH9K_WME_AC_VO:
2188                 qnum = 0;
2189                 break;
2190         case ATH9K_WME_AC_VI:
2191                 qnum = 1;
2192                 break;
2193         case ATH9K_WME_AC_BE:
2194                 qnum = 2;
2195                 break;
2196         case ATH9K_WME_AC_BK:
2197                 qnum = 3;
2198                 break;
2199         default:
2200                 qnum = -1;
2201                 break;
2202         }
2203
2204         return qnum;
2205 }
2206
2207 /* XXX: Remove me once we don't depend on ath9k_channel for all
2208  * this redundant data */
2209 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
2210                            struct ath9k_channel *ichan)
2211 {
2212         struct ieee80211_channel *chan = hw->conf.channel;
2213         struct ieee80211_conf *conf = &hw->conf;
2214
2215         ichan->channel = chan->center_freq;
2216         ichan->chan = chan;
2217
2218         if (chan->band == IEEE80211_BAND_2GHZ) {
2219                 ichan->chanmode = CHANNEL_G;
2220                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
2221         } else {
2222                 ichan->chanmode = CHANNEL_A;
2223                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
2224         }
2225
2226         if (conf_is_ht(conf))
2227                 ichan->chanmode = ath_get_extchanmode(sc, chan,
2228                                             conf->channel_type);
2229 }
2230
2231 /**********************/
2232 /* mac80211 callbacks */
2233 /**********************/
2234
2235 /*
2236  * (Re)start btcoex timers
2237  */
2238 static void ath9k_btcoex_timer_resume(struct ath_softc *sc)
2239 {
2240         struct ath_btcoex *btcoex = &sc->btcoex;
2241         struct ath_hw *ah = sc->sc_ah;
2242
2243         ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX,
2244                   "Starting btcoex timers");
2245
2246         /* make sure duty cycle timer is also stopped when resuming */
2247         if (btcoex->hw_timer_enabled)
2248                 ath9k_gen_timer_stop(sc->sc_ah, btcoex->no_stomp_timer);
2249
2250         btcoex->bt_priority_cnt = 0;
2251         btcoex->bt_priority_time = jiffies;
2252         sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED;
2253
2254         mod_timer(&btcoex->period_timer, jiffies);
2255 }
2256
2257 static int ath9k_start(struct ieee80211_hw *hw)
2258 {
2259         struct ath_wiphy *aphy = hw->priv;
2260         struct ath_softc *sc = aphy->sc;
2261         struct ath_hw *ah = sc->sc_ah;
2262         struct ath_common *common = ath9k_hw_common(ah);
2263         struct ieee80211_channel *curchan = hw->conf.channel;
2264         struct ath9k_channel *init_channel;
2265         int r;
2266
2267         ath_print(common, ATH_DBG_CONFIG,
2268                   "Starting driver with initial channel: %d MHz\n",
2269                   curchan->center_freq);
2270
2271         mutex_lock(&sc->mutex);
2272
2273         if (ath9k_wiphy_started(sc)) {
2274                 if (sc->chan_idx == curchan->hw_value) {
2275                         /*
2276                          * Already on the operational channel, the new wiphy
2277                          * can be marked active.
2278                          */
2279                         aphy->state = ATH_WIPHY_ACTIVE;
2280                         ieee80211_wake_queues(hw);
2281                 } else {
2282                         /*
2283                          * Another wiphy is on another channel, start the new
2284                          * wiphy in paused state.
2285                          */
2286                         aphy->state = ATH_WIPHY_PAUSED;
2287                         ieee80211_stop_queues(hw);
2288                 }
2289                 mutex_unlock(&sc->mutex);
2290                 return 0;
2291         }
2292         aphy->state = ATH_WIPHY_ACTIVE;
2293
2294         /* setup initial channel */
2295
2296         sc->chan_idx = curchan->hw_value;
2297
2298         init_channel = ath_get_curchannel(sc, hw);
2299
2300         /* Reset SERDES registers */
2301         ath9k_hw_configpcipowersave(ah, 0, 0);
2302
2303         /*
2304          * The basic interface to setting the hardware in a good
2305          * state is ``reset''.  On return the hardware is known to
2306          * be powered up and with interrupts disabled.  This must
2307          * be followed by initialization of the appropriate bits
2308          * and then setup of the interrupt mask.
2309          */
2310         spin_lock_bh(&sc->sc_resetlock);
2311         r = ath9k_hw_reset(ah, init_channel, false);
2312         if (r) {
2313                 ath_print(common, ATH_DBG_FATAL,
2314                           "Unable to reset hardware; reset status %d "
2315                           "(freq %u MHz)\n", r,
2316                           curchan->center_freq);
2317                 spin_unlock_bh(&sc->sc_resetlock);
2318                 goto mutex_unlock;
2319         }
2320         spin_unlock_bh(&sc->sc_resetlock);
2321
2322         /*
2323          * This is needed only to setup initial state
2324          * but it's best done after a reset.
2325          */
2326         ath_update_txpow(sc);
2327
2328         /*
2329          * Setup the hardware after reset:
2330          * The receive engine is set going.
2331          * Frame transmit is handled entirely
2332          * in the frame output path; there's nothing to do
2333          * here except setup the interrupt mask.
2334          */
2335         if (ath_startrecv(sc) != 0) {
2336                 ath_print(common, ATH_DBG_FATAL,
2337                           "Unable to start recv logic\n");
2338                 r = -EIO;
2339                 goto mutex_unlock;
2340         }
2341
2342         /* Setup our intr mask. */
2343         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2344                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2345                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2346
2347         if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2348                 sc->imask |= ATH9K_INT_GTT;
2349
2350         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2351                 sc->imask |= ATH9K_INT_CST;
2352
2353         ath_cache_conf_rate(sc, &hw->conf);
2354
2355         sc->sc_flags &= ~SC_OP_INVALID;
2356
2357         /* Disable BMISS interrupt when we're not associated */
2358         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2359         ath9k_hw_set_interrupts(ah, sc->imask);
2360
2361         ieee80211_wake_queues(hw);
2362
2363         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2364
2365         if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
2366             !ah->btcoex_hw.enabled) {
2367                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
2368                                            AR_STOMP_LOW_WLAN_WGHT);
2369                 ath9k_hw_btcoex_enable(ah);
2370
2371                 if (common->bus_ops->bt_coex_prep)
2372                         common->bus_ops->bt_coex_prep(common);
2373                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2374                         ath9k_btcoex_timer_resume(sc);
2375         }
2376
2377 mutex_unlock:
2378         mutex_unlock(&sc->mutex);
2379
2380         return r;
2381 }
2382
2383 static int ath9k_tx(struct ieee80211_hw *hw,
2384                     struct sk_buff *skb)
2385 {
2386         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2387         struct ath_wiphy *aphy = hw->priv;
2388         struct ath_softc *sc = aphy->sc;
2389         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2390         struct ath_tx_control txctl;
2391         int hdrlen, padsize;
2392
2393         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2394                 ath_print(common, ATH_DBG_XMIT,
2395                           "ath9k: %s: TX in unexpected wiphy state "
2396                           "%d\n", wiphy_name(hw->wiphy), aphy->state);
2397                 goto exit;
2398         }
2399
2400         if (sc->ps_enabled) {
2401                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2402                 /*
2403                  * mac80211 does not set PM field for normal data frames, so we
2404                  * need to update that based on the current PS mode.
2405                  */
2406                 if (ieee80211_is_data(hdr->frame_control) &&
2407                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2408                     !ieee80211_has_pm(hdr->frame_control)) {
2409                         ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
2410                                   "while in PS mode\n");
2411                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2412                 }
2413         }
2414
2415         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2416                 /*
2417                  * We are using PS-Poll and mac80211 can request TX while in
2418                  * power save mode. Need to wake up hardware for the TX to be
2419                  * completed and if needed, also for RX of buffered frames.
2420                  */
2421                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2422                 ath9k_ps_wakeup(sc);
2423                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2424                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2425                         ath_print(common, ATH_DBG_PS,
2426                                   "Sending PS-Poll to pick a buffered frame\n");
2427                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2428                 } else {
2429                         ath_print(common, ATH_DBG_PS,
2430                                   "Wake up to complete TX\n");
2431                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2432                 }
2433                 /*
2434                  * The actual restore operation will happen only after
2435                  * the sc_flags bit is cleared. We are just dropping
2436                  * the ps_usecount here.
2437                  */
2438                 ath9k_ps_restore(sc);
2439         }
2440
2441         memset(&txctl, 0, sizeof(struct ath_tx_control));
2442
2443         /*
2444          * As a temporary workaround, assign seq# here; this will likely need
2445          * to be cleaned up to work better with Beacon transmission and virtual
2446          * BSSes.
2447          */
2448         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2449                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2450                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2451                         sc->tx.seq_no += 0x10;
2452                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2453                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2454         }
2455
2456         /* Add the padding after the header if this is not already done */
2457         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2458         if (hdrlen & 3) {
2459                 padsize = hdrlen % 4;
2460                 if (skb_headroom(skb) < padsize)
2461                         return -1;
2462                 skb_push(skb, padsize);
2463                 memmove(skb->data, skb->data + padsize, hdrlen);
2464         }
2465
2466         /* Check if a tx queue is available */
2467
2468         txctl.txq = ath_test_get_txq(sc, skb);
2469         if (!txctl.txq)
2470                 goto exit;
2471
2472         ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2473
2474         if (ath_tx_start(hw, skb, &txctl) != 0) {
2475                 ath_print(common, ATH_DBG_XMIT, "TX failed\n");
2476                 goto exit;
2477         }
2478
2479         return 0;
2480 exit:
2481         dev_kfree_skb_any(skb);
2482         return 0;
2483 }
2484
2485 /*
2486  * Pause btcoex timer and bt duty cycle timer
2487  */
2488 static void ath9k_btcoex_timer_pause(struct ath_softc *sc)
2489 {
2490         struct ath_btcoex *btcoex = &sc->btcoex;
2491         struct ath_hw *ah = sc->sc_ah;
2492
2493         del_timer_sync(&btcoex->period_timer);
2494
2495         if (btcoex->hw_timer_enabled)
2496                 ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer);
2497
2498         btcoex->hw_timer_enabled = false;
2499 }
2500
2501 static void ath9k_stop(struct ieee80211_hw *hw)
2502 {
2503         struct ath_wiphy *aphy = hw->priv;
2504         struct ath_softc *sc = aphy->sc;
2505         struct ath_hw *ah = sc->sc_ah;
2506         struct ath_common *common = ath9k_hw_common(ah);
2507
2508         mutex_lock(&sc->mutex);
2509
2510         aphy->state = ATH_WIPHY_INACTIVE;
2511
2512         cancel_delayed_work_sync(&sc->ath_led_blink_work);
2513         cancel_delayed_work_sync(&sc->tx_complete_work);
2514
2515         if (!sc->num_sec_wiphy) {
2516                 cancel_delayed_work_sync(&sc->wiphy_work);
2517                 cancel_work_sync(&sc->chan_work);
2518         }
2519
2520         if (sc->sc_flags & SC_OP_INVALID) {
2521                 ath_print(common, ATH_DBG_ANY, "Device not present\n");
2522                 mutex_unlock(&sc->mutex);
2523                 return;
2524         }
2525
2526         if (ath9k_wiphy_started(sc)) {
2527                 mutex_unlock(&sc->mutex);
2528                 return; /* another wiphy still in use */
2529         }
2530
2531         if (ah->btcoex_hw.enabled) {
2532                 ath9k_hw_btcoex_disable(ah);
2533                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
2534                         ath9k_btcoex_timer_pause(sc);
2535         }
2536
2537         /* make sure h/w will not generate any interrupt
2538          * before setting the invalid flag. */
2539         ath9k_hw_set_interrupts(ah, 0);
2540
2541         if (!(sc->sc_flags & SC_OP_INVALID)) {
2542                 ath_drain_all_txq(sc, false);
2543                 ath_stoprecv(sc);
2544                 ath9k_hw_phy_disable(ah);
2545         } else
2546                 sc->rx.rxlink = NULL;
2547
2548         /* disable HAL and put h/w to sleep */
2549         ath9k_hw_disable(ah);
2550         ath9k_hw_configpcipowersave(ah, 1, 1);
2551         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
2552
2553         sc->sc_flags |= SC_OP_INVALID;
2554
2555         mutex_unlock(&sc->mutex);
2556
2557         ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
2558 }
2559
2560 static int ath9k_add_interface(struct ieee80211_hw *hw,
2561                                struct ieee80211_if_init_conf *conf)
2562 {
2563         struct ath_wiphy *aphy = hw->priv;
2564         struct ath_softc *sc = aphy->sc;
2565         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2566         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2567         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2568         int ret = 0;
2569
2570         mutex_lock(&sc->mutex);
2571
2572         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2573             sc->nvifs > 0) {
2574                 ret = -ENOBUFS;
2575                 goto out;
2576         }
2577
2578         switch (conf->type) {
2579         case NL80211_IFTYPE_STATION:
2580                 ic_opmode = NL80211_IFTYPE_STATION;
2581                 break;
2582         case NL80211_IFTYPE_ADHOC:
2583         case NL80211_IFTYPE_AP:
2584         case NL80211_IFTYPE_MESH_POINT:
2585                 if (sc->nbcnvifs >= ATH_BCBUF) {
2586                         ret = -ENOBUFS;
2587                         goto out;
2588                 }
2589                 ic_opmode = conf->type;
2590                 break;
2591         default:
2592                 ath_print(common, ATH_DBG_FATAL,
2593                         "Interface type %d not yet supported\n", conf->type);
2594                 ret = -EOPNOTSUPP;
2595                 goto out;
2596         }
2597
2598         ath_print(common, ATH_DBG_CONFIG,
2599                   "Attach a VIF of type: %d\n", ic_opmode);
2600
2601         /* Set the VIF opmode */
2602         avp->av_opmode = ic_opmode;
2603         avp->av_bslot = -1;
2604
2605         sc->nvifs++;
2606
2607         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2608                 ath9k_set_bssid_mask(hw);
2609
2610         if (sc->nvifs > 1)
2611                 goto out; /* skip global settings for secondary vif */
2612
2613         if (ic_opmode == NL80211_IFTYPE_AP) {
2614                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2615                 sc->sc_flags |= SC_OP_TSF_RESET;
2616         }
2617
2618         /* Set the device opmode */
2619         sc->sc_ah->opmode = ic_opmode;
2620
2621         /*
2622          * Enable MIB interrupts when there are hardware phy counters.
2623          * Note we only do this (at the moment) for station mode.
2624          */
2625         if ((conf->type == NL80211_IFTYPE_STATION) ||
2626             (conf->type == NL80211_IFTYPE_ADHOC) ||
2627             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2628                 sc->imask |= ATH9K_INT_MIB;
2629                 sc->imask |= ATH9K_INT_TSFOOR;
2630         }
2631
2632         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2633
2634         if (conf->type == NL80211_IFTYPE_AP    ||
2635             conf->type == NL80211_IFTYPE_ADHOC ||
2636             conf->type == NL80211_IFTYPE_MONITOR)
2637                 ath_start_ani(sc);
2638
2639 out:
2640         mutex_unlock(&sc->mutex);
2641         return ret;
2642 }
2643
2644 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2645                                    struct ieee80211_if_init_conf *conf)
2646 {
2647         struct ath_wiphy *aphy = hw->priv;
2648         struct ath_softc *sc = aphy->sc;
2649         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2650         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2651         int i;
2652
2653         ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
2654
2655         mutex_lock(&sc->mutex);
2656
2657         /* Stop ANI */
2658         del_timer_sync(&sc->ani.timer);
2659
2660         /* Reclaim beacon resources */
2661         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2662             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2663             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2664                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2665                 ath_beacon_return(sc, avp);
2666         }
2667
2668         sc->sc_flags &= ~SC_OP_BEACONS;
2669
2670         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2671                 if (sc->beacon.bslot[i] == conf->vif) {
2672                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2673                                "slot\n", __func__);
2674                         sc->beacon.bslot[i] = NULL;
2675                         sc->beacon.bslot_aphy[i] = NULL;
2676                 }
2677         }
2678
2679         sc->nvifs--;
2680
2681         mutex_unlock(&sc->mutex);
2682 }
2683
2684 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2685 {
2686         struct ath_wiphy *aphy = hw->priv;
2687         struct ath_softc *sc = aphy->sc;
2688         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2689         struct ieee80211_conf *conf = &hw->conf;
2690         struct ath_hw *ah = sc->sc_ah;
2691         bool all_wiphys_idle = false, disable_radio = false;
2692
2693         mutex_lock(&sc->mutex);
2694
2695         /* Leave this as the first check */
2696         if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2697
2698                 spin_lock_bh(&sc->wiphy_lock);
2699                 all_wiphys_idle =  ath9k_all_wiphys_idle(sc);
2700                 spin_unlock_bh(&sc->wiphy_lock);
2701
2702                 if (conf->flags & IEEE80211_CONF_IDLE){
2703                         if (all_wiphys_idle)
2704                                 disable_radio = true;
2705                 }
2706                 else if (all_wiphys_idle) {
2707                         ath_radio_enable(sc);
2708                         ath_print(common, ATH_DBG_CONFIG,
2709                                   "not-idle: enabling radio\n");
2710                 }
2711         }
2712
2713         if (changed & IEEE80211_CONF_CHANGE_PS) {
2714                 if (conf->flags & IEEE80211_CONF_PS) {
2715                         if (!(ah->caps.hw_caps &
2716                               ATH9K_HW_CAP_AUTOSLEEP)) {
2717                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2718                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2719                                         ath9k_hw_set_interrupts(sc->sc_ah,
2720                                                         sc->imask);
2721                                 }
2722                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2723                         }
2724                         sc->ps_enabled = true;
2725                 } else {
2726                         sc->ps_enabled = false;
2727                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
2728                         if (!(ah->caps.hw_caps &
2729                               ATH9K_HW_CAP_AUTOSLEEP)) {
2730                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2731                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2732                                                   SC_OP_WAIT_FOR_CAB |
2733                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2734                                                   SC_OP_WAIT_FOR_TX_ACK);
2735                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2736                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2737                                         ath9k_hw_set_interrupts(sc->sc_ah,
2738                                                         sc->imask);
2739                                 }
2740                         }
2741                 }
2742         }
2743
2744         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2745                 struct ieee80211_channel *curchan = hw->conf.channel;
2746                 int pos = curchan->hw_value;
2747
2748                 aphy->chan_idx = pos;
2749                 aphy->chan_is_ht = conf_is_ht(conf);
2750
2751                 if (aphy->state == ATH_WIPHY_SCAN ||
2752                     aphy->state == ATH_WIPHY_ACTIVE)
2753                         ath9k_wiphy_pause_all_forced(sc, aphy);
2754                 else {
2755                         /*
2756                          * Do not change operational channel based on a paused
2757                          * wiphy changes.
2758                          */
2759                         goto skip_chan_change;
2760                 }
2761
2762                 ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2763                           curchan->center_freq);
2764
2765                 /* XXX: remove me eventualy */
2766                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2767
2768                 ath_update_chainmask(sc, conf_is_ht(conf));
2769
2770                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2771                         ath_print(common, ATH_DBG_FATAL,
2772                                   "Unable to set channel\n");
2773                         mutex_unlock(&sc->mutex);
2774                         return -EINVAL;
2775                 }
2776         }
2777
2778 skip_chan_change:
2779         if (changed & IEEE80211_CONF_CHANGE_POWER)
2780                 sc->config.txpowlimit = 2 * conf->power_level;
2781
2782         if (disable_radio) {
2783                 ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
2784                 ath_radio_disable(sc);
2785         }
2786
2787         mutex_unlock(&sc->mutex);
2788
2789         return 0;
2790 }
2791
2792 #define SUPPORTED_FILTERS                       \
2793         (FIF_PROMISC_IN_BSS |                   \
2794         FIF_ALLMULTI |                          \
2795         FIF_CONTROL |                           \
2796         FIF_PSPOLL |                            \
2797         FIF_OTHER_BSS |                         \
2798         FIF_BCN_PRBRESP_PROMISC |               \
2799         FIF_FCSFAIL)
2800
2801 /* FIXME: sc->sc_full_reset ? */
2802 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2803                                    unsigned int changed_flags,
2804                                    unsigned int *total_flags,
2805                                    u64 multicast)
2806 {
2807         struct ath_wiphy *aphy = hw->priv;
2808         struct ath_softc *sc = aphy->sc;
2809         u32 rfilt;
2810
2811         changed_flags &= SUPPORTED_FILTERS;
2812         *total_flags &= SUPPORTED_FILTERS;
2813
2814         sc->rx.rxfilter = *total_flags;
2815         ath9k_ps_wakeup(sc);
2816         rfilt = ath_calcrxfilter(sc);
2817         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2818         ath9k_ps_restore(sc);
2819
2820         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
2821                   "Set HW RX filter: 0x%x\n", rfilt);
2822 }
2823
2824 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2825                              struct ieee80211_vif *vif,
2826                              enum sta_notify_cmd cmd,
2827                              struct ieee80211_sta *sta)
2828 {
2829         struct ath_wiphy *aphy = hw->priv;
2830         struct ath_softc *sc = aphy->sc;
2831
2832         switch (cmd) {
2833         case STA_NOTIFY_ADD:
2834                 ath_node_attach(sc, sta);
2835                 break;
2836         case STA_NOTIFY_REMOVE:
2837                 ath_node_detach(sc, sta);
2838                 break;
2839         default:
2840                 break;
2841         }
2842 }
2843
2844 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2845                          const struct ieee80211_tx_queue_params *params)
2846 {
2847         struct ath_wiphy *aphy = hw->priv;
2848         struct ath_softc *sc = aphy->sc;
2849         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2850         struct ath9k_tx_queue_info qi;
2851         int ret = 0, qnum;
2852
2853         if (queue >= WME_NUM_AC)
2854                 return 0;
2855
2856         mutex_lock(&sc->mutex);
2857
2858         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2859
2860         qi.tqi_aifs = params->aifs;
2861         qi.tqi_cwmin = params->cw_min;
2862         qi.tqi_cwmax = params->cw_max;
2863         qi.tqi_burstTime = params->txop;
2864         qnum = ath_get_hal_qnum(queue, sc);
2865
2866         ath_print(common, ATH_DBG_CONFIG,
2867                   "Configure tx [queue/halq] [%d/%d],  "
2868                   "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2869                   queue, qnum, params->aifs, params->cw_min,
2870                   params->cw_max, params->txop);
2871
2872         ret = ath_txq_update(sc, qnum, &qi);
2873         if (ret)
2874                 ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
2875
2876         mutex_unlock(&sc->mutex);
2877
2878         return ret;
2879 }
2880
2881 static int ath9k_set_key(struct ieee80211_hw *hw,
2882                          enum set_key_cmd cmd,
2883                          struct ieee80211_vif *vif,
2884                          struct ieee80211_sta *sta,
2885                          struct ieee80211_key_conf *key)
2886 {
2887         struct ath_wiphy *aphy = hw->priv;
2888         struct ath_softc *sc = aphy->sc;
2889         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2890         int ret = 0;
2891
2892         if (modparam_nohwcrypt)
2893                 return -ENOSPC;
2894
2895         mutex_lock(&sc->mutex);
2896         ath9k_ps_wakeup(sc);
2897         ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
2898
2899         switch (cmd) {
2900         case SET_KEY:
2901                 ret = ath_key_config(sc, vif, sta, key);
2902                 if (ret >= 0) {
2903                         key->hw_key_idx = ret;
2904                         /* push IV and Michael MIC generation to stack */
2905                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2906                         if (key->alg == ALG_TKIP)
2907                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2908                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2909                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2910                         ret = 0;
2911                 }
2912                 break;
2913         case DISABLE_KEY:
2914                 ath_key_delete(sc, key);
2915                 break;
2916         default:
2917                 ret = -EINVAL;
2918         }
2919
2920         ath9k_ps_restore(sc);
2921         mutex_unlock(&sc->mutex);
2922
2923         return ret;
2924 }
2925
2926 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2927                                    struct ieee80211_vif *vif,
2928                                    struct ieee80211_bss_conf *bss_conf,
2929                                    u32 changed)
2930 {
2931         struct ath_wiphy *aphy = hw->priv;
2932         struct ath_softc *sc = aphy->sc;
2933         struct ath_hw *ah = sc->sc_ah;
2934         struct ath_common *common = ath9k_hw_common(ah);
2935         struct ath_vif *avp = (void *)vif->drv_priv;
2936         u32 rfilt = 0;
2937         int error, i;
2938
2939         mutex_lock(&sc->mutex);
2940
2941         /*
2942          * TODO: Need to decide which hw opmode to use for
2943          *       multi-interface cases
2944          * XXX: This belongs into add_interface!
2945          */
2946         if (vif->type == NL80211_IFTYPE_AP &&
2947             ah->opmode != NL80211_IFTYPE_AP) {
2948                 ah->opmode = NL80211_IFTYPE_STATION;
2949                 ath9k_hw_setopmode(ah);
2950                 memcpy(common->curbssid, common->macaddr, ETH_ALEN);
2951                 common->curaid = 0;
2952                 ath9k_hw_write_associd(ah);
2953                 /* Request full reset to get hw opmode changed properly */
2954                 sc->sc_flags |= SC_OP_FULL_RESET;
2955         }
2956
2957         if ((changed & BSS_CHANGED_BSSID) &&
2958             !is_zero_ether_addr(bss_conf->bssid)) {
2959                 switch (vif->type) {
2960                 case NL80211_IFTYPE_STATION:
2961                 case NL80211_IFTYPE_ADHOC:
2962                 case NL80211_IFTYPE_MESH_POINT:
2963                         /* Set BSSID */
2964                         memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
2965                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2966                         common->curaid = 0;
2967                         ath9k_hw_write_associd(ah);
2968
2969                         /* Set aggregation protection mode parameters */
2970                         sc->config.ath_aggr_prot = 0;
2971
2972                         ath_print(common, ATH_DBG_CONFIG,
2973                                   "RX filter 0x%x bssid %pM aid 0x%x\n",
2974                                   rfilt, common->curbssid, common->curaid);
2975
2976                         /* need to reconfigure the beacon */
2977                         sc->sc_flags &= ~SC_OP_BEACONS ;
2978
2979                         break;
2980                 default:
2981                         break;
2982                 }
2983         }
2984
2985         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2986             (vif->type == NL80211_IFTYPE_AP) ||
2987             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2988                 if ((changed & BSS_CHANGED_BEACON) ||
2989                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2990                      bss_conf->enable_beacon)) {
2991                         /*
2992                          * Allocate and setup the beacon frame.
2993                          *
2994                          * Stop any previous beacon DMA.  This may be
2995                          * necessary, for example, when an ibss merge
2996                          * causes reconfiguration; we may be called
2997                          * with beacon transmission active.
2998                          */
2999                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
3000
3001                         error = ath_beacon_alloc(aphy, vif);
3002                         if (!error)
3003                                 ath_beacon_config(sc, vif);
3004                 }
3005         }
3006
3007         /* Check for WLAN_CAPABILITY_PRIVACY ? */
3008         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
3009                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
3010                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
3011                                 ath9k_hw_keysetmac(sc->sc_ah,
3012                                                    (u16)i,
3013                                                    common->curbssid);
3014         }
3015
3016         /* Only legacy IBSS for now */
3017         if (vif->type == NL80211_IFTYPE_ADHOC)
3018                 ath_update_chainmask(sc, 0);
3019
3020         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3021                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
3022                           bss_conf->use_short_preamble);
3023                 if (bss_conf->use_short_preamble)
3024                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
3025                 else
3026                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
3027         }
3028
3029         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
3030                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
3031                           bss_conf->use_cts_prot);
3032                 if (bss_conf->use_cts_prot &&
3033                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
3034                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
3035                 else
3036                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
3037         }
3038
3039         if (changed & BSS_CHANGED_ASSOC) {
3040                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
3041                         bss_conf->assoc);
3042                 ath9k_bss_assoc_info(sc, vif, bss_conf);
3043         }
3044
3045         /*
3046          * The HW TSF has to be reset when the beacon interval changes.
3047          * We set the flag here, and ath_beacon_config_ap() would take this
3048          * into account when it gets called through the subsequent
3049          * config_interface() call - with IFCC_BEACON in the changed field.
3050          */
3051
3052         if (changed & BSS_CHANGED_BEACON_INT) {
3053                 sc->sc_flags |= SC_OP_TSF_RESET;
3054                 sc->beacon_interval = bss_conf->beacon_int;
3055         }
3056
3057         mutex_unlock(&sc->mutex);
3058 }
3059
3060 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
3061 {
3062         u64 tsf;
3063         struct ath_wiphy *aphy = hw->priv;
3064         struct ath_softc *sc = aphy->sc;
3065
3066         mutex_lock(&sc->mutex);
3067         tsf = ath9k_hw_gettsf64(sc->sc_ah);
3068         mutex_unlock(&sc->mutex);
3069
3070         return tsf;
3071 }
3072
3073 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3074 {
3075         struct ath_wiphy *aphy = hw->priv;
3076         struct ath_softc *sc = aphy->sc;
3077
3078         mutex_lock(&sc->mutex);
3079         ath9k_hw_settsf64(sc->sc_ah, tsf);
3080         mutex_unlock(&sc->mutex);
3081 }
3082
3083 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
3084 {
3085         struct ath_wiphy *aphy = hw->priv;
3086         struct ath_softc *sc = aphy->sc;
3087
3088         mutex_lock(&sc->mutex);
3089
3090         ath9k_ps_wakeup(sc);
3091         ath9k_hw_reset_tsf(sc->sc_ah);
3092         ath9k_ps_restore(sc);
3093
3094         mutex_unlock(&sc->mutex);
3095 }
3096
3097 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
3098                               enum ieee80211_ampdu_mlme_action action,
3099                               struct ieee80211_sta *sta,
3100                               u16 tid, u16 *ssn)
3101 {
3102         struct ath_wiphy *aphy = hw->priv;
3103         struct ath_softc *sc = aphy->sc;
3104         int ret = 0;
3105
3106         switch (action) {
3107         case IEEE80211_AMPDU_RX_START:
3108                 if (!(sc->sc_flags & SC_OP_RXAGGR))
3109                         ret = -ENOTSUPP;
3110                 break;
3111         case IEEE80211_AMPDU_RX_STOP:
3112                 break;
3113         case IEEE80211_AMPDU_TX_START:
3114                 ath_tx_aggr_start(sc, sta, tid, ssn);
3115                 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3116                 break;
3117         case IEEE80211_AMPDU_TX_STOP:
3118                 ath_tx_aggr_stop(sc, sta, tid);
3119                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
3120                 break;
3121         case IEEE80211_AMPDU_TX_OPERATIONAL:
3122                 ath_tx_aggr_resume(sc, sta, tid);
3123                 break;
3124         default:
3125                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
3126                           "Unknown AMPDU action\n");
3127         }
3128
3129         return ret;
3130 }
3131
3132 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
3133 {
3134         struct ath_wiphy *aphy = hw->priv;
3135         struct ath_softc *sc = aphy->sc;
3136
3137         mutex_lock(&sc->mutex);
3138         if (ath9k_wiphy_scanning(sc)) {
3139                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
3140                        "same time\n");
3141                 /*
3142                  * Do not allow the concurrent scanning state for now. This
3143                  * could be improved with scanning control moved into ath9k.
3144                  */
3145                 mutex_unlock(&sc->mutex);
3146                 return;
3147         }
3148
3149         aphy->state = ATH_WIPHY_SCAN;
3150         ath9k_wiphy_pause_all_forced(sc, aphy);
3151
3152         spin_lock_bh(&sc->ani_lock);
3153         sc->sc_flags |= SC_OP_SCANNING;
3154         spin_unlock_bh(&sc->ani_lock);
3155         mutex_unlock(&sc->mutex);
3156 }
3157
3158 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
3159 {
3160         struct ath_wiphy *aphy = hw->priv;
3161         struct ath_softc *sc = aphy->sc;
3162
3163         mutex_lock(&sc->mutex);
3164         spin_lock_bh(&sc->ani_lock);
3165         aphy->state = ATH_WIPHY_ACTIVE;
3166         sc->sc_flags &= ~SC_OP_SCANNING;
3167         sc->sc_flags |= SC_OP_FULL_RESET;
3168         spin_unlock_bh(&sc->ani_lock);
3169         ath_beacon_config(sc, NULL);
3170         mutex_unlock(&sc->mutex);
3171 }
3172
3173 struct ieee80211_ops ath9k_ops = {
3174         .tx                 = ath9k_tx,
3175         .start              = ath9k_start,
3176         .stop               = ath9k_stop,
3177         .add_interface      = ath9k_add_interface,
3178         .remove_interface   = ath9k_remove_interface,
3179         .config             = ath9k_config,
3180         .configure_filter   = ath9k_configure_filter,
3181         .sta_notify         = ath9k_sta_notify,
3182         .conf_tx            = ath9k_conf_tx,
3183         .bss_info_changed   = ath9k_bss_info_changed,
3184         .set_key            = ath9k_set_key,
3185         .get_tsf            = ath9k_get_tsf,
3186         .set_tsf            = ath9k_set_tsf,
3187         .reset_tsf          = ath9k_reset_tsf,
3188         .ampdu_action       = ath9k_ampdu_action,
3189         .sw_scan_start      = ath9k_sw_scan_start,
3190         .sw_scan_complete   = ath9k_sw_scan_complete,
3191         .rfkill_poll        = ath9k_rfkill_poll_state,
3192 };
3193
3194 static int __init ath9k_init(void)
3195 {
3196         int error;
3197
3198         /* Register rate control algorithm */
3199         error = ath_rate_control_register();
3200         if (error != 0) {
3201                 printk(KERN_ERR
3202                         "ath9k: Unable to register rate control "
3203                         "algorithm: %d\n",
3204                         error);
3205                 goto err_out;
3206         }
3207
3208         error = ath9k_debug_create_root();
3209         if (error) {
3210                 printk(KERN_ERR
3211                         "ath9k: Unable to create debugfs root: %d\n",
3212                         error);
3213                 goto err_rate_unregister;
3214         }
3215
3216         error = ath_pci_init();
3217         if (error < 0) {
3218                 printk(KERN_ERR
3219                         "ath9k: No PCI devices found, driver not installed.\n");
3220                 error = -ENODEV;
3221                 goto err_remove_root;
3222         }
3223
3224         error = ath_ahb_init();
3225         if (error < 0) {
3226                 error = -ENODEV;
3227                 goto err_pci_exit;
3228         }
3229
3230         return 0;
3231
3232  err_pci_exit:
3233         ath_pci_exit();
3234
3235  err_remove_root:
3236         ath9k_debug_remove_root();
3237  err_rate_unregister:
3238         ath_rate_control_unregister();
3239  err_out:
3240         return error;
3241 }
3242 module_init(ath9k_init);
3243
3244 static void __exit ath9k_exit(void)
3245 {
3246         ath_ahb_exit();
3247         ath_pci_exit();
3248         ath9k_debug_remove_root();
3249         ath_rate_control_unregister();
3250         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
3251 }
3252 module_exit(ath9k_exit);