]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath9k/main.c
ath9k: Remove TIM from the interrupt mask
[mv-sheeva.git] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 /*
235  * Set/change channels.  If the channel is really being changed, it's done
236  * by reseting the chip.  To accomplish this we must first cleanup any pending
237  * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240                     struct ath9k_channel *hchan)
241 {
242         struct ath_hw *ah = sc->sc_ah;
243         bool fastcc = true, stopped;
244         struct ieee80211_channel *channel = hw->conf.channel;
245         int r;
246
247         if (sc->sc_flags & SC_OP_INVALID)
248                 return -EIO;
249
250         ath9k_ps_wakeup(sc);
251
252         /*
253          * This is only performed if the channel settings have
254          * actually changed.
255          *
256          * To switch channels clear any pending DMA operations;
257          * wait long enough for the RX fifo to drain, reset the
258          * hardware at the new frequency, and then re-enable
259          * the relevant bits of the h/w.
260          */
261         ath9k_hw_set_interrupts(ah, 0);
262         ath_drain_all_txq(sc, false);
263         stopped = ath_stoprecv(sc);
264
265         /* XXX: do not flush receive queue here. We don't want
266          * to flush data frames already in queue because of
267          * changing channel. */
268
269         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270                 fastcc = false;
271
272         DPRINTF(sc, ATH_DBG_CONFIG,
273                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274                 sc->sc_ah->curchan->channel,
275                 channel->center_freq, sc->tx_chan_width);
276
277         spin_lock_bh(&sc->sc_resetlock);
278
279         r = ath9k_hw_reset(ah, hchan, fastcc);
280         if (r) {
281                 DPRINTF(sc, ATH_DBG_FATAL,
282                         "Unable to reset channel (%u Mhz) "
283                         "reset status %u\n",
284                         channel->center_freq, r);
285                 spin_unlock_bh(&sc->sc_resetlock);
286                 return r;
287         }
288         spin_unlock_bh(&sc->sc_resetlock);
289
290         sc->sc_flags &= ~SC_OP_FULL_RESET;
291
292         if (ath_startrecv(sc) != 0) {
293                 DPRINTF(sc, ATH_DBG_FATAL,
294                         "Unable to restart recv logic\n");
295                 return -EIO;
296         }
297
298         ath_cache_conf_rate(sc, &hw->conf);
299         ath_update_txpow(sc);
300         ath9k_hw_set_interrupts(ah, sc->imask);
301         ath9k_ps_restore(sc);
302         return 0;
303 }
304
305 /*
306  *  This routine performs the periodic noise floor calibration function
307  *  that is used to adjust and optimize the chip performance.  This
308  *  takes environmental changes (location, temperature) into account.
309  *  When the task is complete, it reschedules itself depending on the
310  *  appropriate interval that was calculated.
311  */
312 static void ath_ani_calibrate(unsigned long data)
313 {
314         struct ath_softc *sc = (struct ath_softc *)data;
315         struct ath_hw *ah = sc->sc_ah;
316         bool longcal = false;
317         bool shortcal = false;
318         bool aniflag = false;
319         unsigned int timestamp = jiffies_to_msecs(jiffies);
320         u32 cal_interval, short_cal_interval;
321
322         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
324
325         /*
326         * don't calibrate when we're scanning.
327         * we are most likely not on our home channel.
328         */
329         if (sc->sc_flags & SC_OP_SCANNING)
330                 goto set_timer;
331
332         /* Long calibration runs independently of short calibration. */
333         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
334                 longcal = true;
335                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
336                 sc->ani.longcal_timer = timestamp;
337         }
338
339         /* Short calibration applies only while caldone is false */
340         if (!sc->ani.caldone) {
341                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
342                         shortcal = true;
343                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
344                         sc->ani.shortcal_timer = timestamp;
345                         sc->ani.resetcal_timer = timestamp;
346                 }
347         } else {
348                 if ((timestamp - sc->ani.resetcal_timer) >=
349                     ATH_RESTART_CALINTERVAL) {
350                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
351                         if (sc->ani.caldone)
352                                 sc->ani.resetcal_timer = timestamp;
353                 }
354         }
355
356         /* Verify whether we must check ANI */
357         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
358                 aniflag = true;
359                 sc->ani.checkani_timer = timestamp;
360         }
361
362         /* Skip all processing if there's nothing to do. */
363         if (longcal || shortcal || aniflag) {
364                 /* Call ANI routine if necessary */
365                 if (aniflag)
366                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
367
368                 /* Perform calibration if necessary */
369                 if (longcal || shortcal) {
370                         bool iscaldone = false;
371
372                         if (ath9k_hw_calibrate(ah, ah->curchan,
373                                                sc->rx_chainmask, longcal,
374                                                &iscaldone)) {
375                                 if (longcal)
376                                         sc->ani.noise_floor =
377                                                 ath9k_hw_getchan_noise(ah,
378                                                                ah->curchan);
379
380                                 DPRINTF(sc, ATH_DBG_ANI,
381                                         "calibrate chan %u/%x nf: %d\n",
382                                         ah->curchan->channel,
383                                         ah->curchan->channelFlags,
384                                         sc->ani.noise_floor);
385                         } else {
386                                 DPRINTF(sc, ATH_DBG_ANY,
387                                         "calibrate chan %u/%x failed\n",
388                                         ah->curchan->channel,
389                                         ah->curchan->channelFlags);
390                         }
391                         sc->ani.caldone = iscaldone;
392                 }
393         }
394
395 set_timer:
396         /*
397         * Set timer interval based on previous results.
398         * The interval must be the shortest necessary to satisfy ANI,
399         * short calibration and long calibration.
400         */
401         cal_interval = ATH_LONG_CALINTERVAL;
402         if (sc->sc_ah->config.enable_ani)
403                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
404         if (!sc->ani.caldone)
405                 cal_interval = min(cal_interval, (u32)short_cal_interval);
406
407         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
408 }
409
410 /*
411  * Update tx/rx chainmask. For legacy association,
412  * hard code chainmask to 1x1, for 11n association, use
413  * the chainmask configuration, for bt coexistence, use
414  * the chainmask configuration even in legacy mode.
415  */
416 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
417 {
418         if (is_ht ||
419             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
420                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
421                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
422         } else {
423                 sc->tx_chainmask = 1;
424                 sc->rx_chainmask = 1;
425         }
426
427         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
428                 sc->tx_chainmask, sc->rx_chainmask);
429 }
430
431 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
432 {
433         struct ath_node *an;
434
435         an = (struct ath_node *)sta->drv_priv;
436
437         if (sc->sc_flags & SC_OP_TXAGGR)
438                 ath_tx_node_init(sc, an);
439
440         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
441                              sta->ht_cap.ampdu_factor);
442         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
443 }
444
445 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
446 {
447         struct ath_node *an = (struct ath_node *)sta->drv_priv;
448
449         if (sc->sc_flags & SC_OP_TXAGGR)
450                 ath_tx_node_cleanup(sc, an);
451 }
452
453 static void ath9k_tasklet(unsigned long data)
454 {
455         struct ath_softc *sc = (struct ath_softc *)data;
456         u32 status = sc->intrstatus;
457
458         if (status & ATH9K_INT_FATAL) {
459                 /* need a chip reset */
460                 ath_reset(sc, false);
461                 return;
462         } else {
463
464                 if (status &
465                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
466                         spin_lock_bh(&sc->rx.rxflushlock);
467                         ath_rx_tasklet(sc, 0);
468                         spin_unlock_bh(&sc->rx.rxflushlock);
469                 }
470                 /* XXX: optimize this */
471                 if (status & ATH9K_INT_TX)
472                         ath_tx_tasklet(sc);
473         }
474
475         /* re-enable hardware interrupt */
476         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
477 }
478
479 irqreturn_t ath_isr(int irq, void *dev)
480 {
481         struct ath_softc *sc = dev;
482         struct ath_hw *ah = sc->sc_ah;
483         enum ath9k_int status;
484         bool sched = false;
485
486         do {
487                 if (sc->sc_flags & SC_OP_INVALID) {
488                         /*
489                          * The hardware is not ready/present, don't
490                          * touch anything. Note this can happen early
491                          * on if the IRQ is shared.
492                          */
493                         return IRQ_NONE;
494                 }
495                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
496                         return IRQ_NONE;
497                 }
498
499                 /*
500                  * Figure out the reason(s) for the interrupt.  Note
501                  * that the hal returns a pseudo-ISR that may include
502                  * bits we haven't explicitly enabled so we mask the
503                  * value to insure we only process bits we requested.
504                  */
505                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
506
507                 status &= sc->imask;    /* discard unasked-for bits */
508
509                 /*
510                  * If there are no status bits set, then this interrupt was not
511                  * for me (should have been caught above).
512                  */
513                 if (!status)
514                         return IRQ_NONE;
515
516                 sc->intrstatus = status;
517                 ath9k_ps_wakeup(sc);
518
519                 if (status & ATH9K_INT_FATAL) {
520                         /* need a chip reset */
521                         sched = true;
522                 } else if (status & ATH9K_INT_RXORN) {
523                         /* need a chip reset */
524                         sched = true;
525                 } else {
526                         if (status & ATH9K_INT_SWBA) {
527                                 /* schedule a tasklet for beacon handling */
528                                 tasklet_schedule(&sc->bcon_tasklet);
529                         }
530                         if (status & ATH9K_INT_RXEOL) {
531                                 /*
532                                  * NB: the hardware should re-read the link when
533                                  *     RXE bit is written, but it doesn't work
534                                  *     at least on older hardware revs.
535                                  */
536                                 sched = true;
537                         }
538
539                         if (status & ATH9K_INT_TXURN)
540                                 /* bump tx trigger level */
541                                 ath9k_hw_updatetxtriglevel(ah, true);
542                         /* XXX: optimize this */
543                         if (status & ATH9K_INT_RX)
544                                 sched = true;
545                         if (status & ATH9K_INT_TX)
546                                 sched = true;
547                         if (status & ATH9K_INT_BMISS)
548                                 sched = true;
549                         /* carrier sense timeout */
550                         if (status & ATH9K_INT_CST)
551                                 sched = true;
552                         if (status & ATH9K_INT_MIB) {
553                                 /*
554                                  * Disable interrupts until we service the MIB
555                                  * interrupt; otherwise it will continue to
556                                  * fire.
557                                  */
558                                 ath9k_hw_set_interrupts(ah, 0);
559                                 /*
560                                  * Let the hal handle the event. We assume
561                                  * it will clear whatever condition caused
562                                  * the interrupt.
563                                  */
564                                 ath9k_hw_procmibevent(ah, &sc->nodestats);
565                                 ath9k_hw_set_interrupts(ah, sc->imask);
566                         }
567                         if (status & ATH9K_INT_TIM_TIMER) {
568                                 if (!(ah->caps.hw_caps &
569                                       ATH9K_HW_CAP_AUTOSLEEP)) {
570                                         /* Clear RxAbort bit so that we can
571                                          * receive frames */
572                                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
573                                         ath9k_hw_setrxabort(ah, 0);
574                                         sched = true;
575                                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
576                                 }
577                         }
578                         if (status & ATH9K_INT_TSFOOR) {
579                                 /* FIXME: Handle this interrupt for power save */
580                                 sched = true;
581                         }
582                 }
583                 ath9k_ps_restore(sc);
584         } while (0);
585
586         ath_debug_stat_interrupt(sc, status);
587
588         if (sched) {
589                 /* turn off every interrupt except SWBA */
590                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
591                 tasklet_schedule(&sc->intr_tq);
592         }
593
594         return IRQ_HANDLED;
595 }
596
597 static u32 ath_get_extchanmode(struct ath_softc *sc,
598                                struct ieee80211_channel *chan,
599                                enum nl80211_channel_type channel_type)
600 {
601         u32 chanmode = 0;
602
603         switch (chan->band) {
604         case IEEE80211_BAND_2GHZ:
605                 switch(channel_type) {
606                 case NL80211_CHAN_NO_HT:
607                 case NL80211_CHAN_HT20:
608                         chanmode = CHANNEL_G_HT20;
609                         break;
610                 case NL80211_CHAN_HT40PLUS:
611                         chanmode = CHANNEL_G_HT40PLUS;
612                         break;
613                 case NL80211_CHAN_HT40MINUS:
614                         chanmode = CHANNEL_G_HT40MINUS;
615                         break;
616                 }
617                 break;
618         case IEEE80211_BAND_5GHZ:
619                 switch(channel_type) {
620                 case NL80211_CHAN_NO_HT:
621                 case NL80211_CHAN_HT20:
622                         chanmode = CHANNEL_A_HT20;
623                         break;
624                 case NL80211_CHAN_HT40PLUS:
625                         chanmode = CHANNEL_A_HT40PLUS;
626                         break;
627                 case NL80211_CHAN_HT40MINUS:
628                         chanmode = CHANNEL_A_HT40MINUS;
629                         break;
630                 }
631                 break;
632         default:
633                 break;
634         }
635
636         return chanmode;
637 }
638
639 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
640                            struct ath9k_keyval *hk, const u8 *addr,
641                            bool authenticator)
642 {
643         const u8 *key_rxmic;
644         const u8 *key_txmic;
645
646         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
647         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
648
649         if (addr == NULL) {
650                 /*
651                  * Group key installation - only two key cache entries are used
652                  * regardless of splitmic capability since group key is only
653                  * used either for TX or RX.
654                  */
655                 if (authenticator) {
656                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
657                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
658                 } else {
659                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
660                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
661                 }
662                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
663         }
664         if (!sc->splitmic) {
665                 /* TX and RX keys share the same key cache entry. */
666                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
667                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
668                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
669         }
670
671         /* Separate key cache entries for TX and RX */
672
673         /* TX key goes at first index, RX key at +32. */
674         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
675         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
676                 /* TX MIC entry failed. No need to proceed further */
677                 DPRINTF(sc, ATH_DBG_FATAL,
678                         "Setting TX MIC Key Failed\n");
679                 return 0;
680         }
681
682         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683         /* XXX delete tx key on failure? */
684         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
685 }
686
687 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
688 {
689         int i;
690
691         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
692                 if (test_bit(i, sc->keymap) ||
693                     test_bit(i + 64, sc->keymap))
694                         continue; /* At least one part of TKIP key allocated */
695                 if (sc->splitmic &&
696                     (test_bit(i + 32, sc->keymap) ||
697                      test_bit(i + 64 + 32, sc->keymap)))
698                         continue; /* At least one part of TKIP key allocated */
699
700                 /* Found a free slot for a TKIP key */
701                 return i;
702         }
703         return -1;
704 }
705
706 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
707 {
708         int i;
709
710         /* First, try to find slots that would not be available for TKIP. */
711         if (sc->splitmic) {
712                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
713                         if (!test_bit(i, sc->keymap) &&
714                             (test_bit(i + 32, sc->keymap) ||
715                              test_bit(i + 64, sc->keymap) ||
716                              test_bit(i + 64 + 32, sc->keymap)))
717                                 return i;
718                         if (!test_bit(i + 32, sc->keymap) &&
719                             (test_bit(i, sc->keymap) ||
720                              test_bit(i + 64, sc->keymap) ||
721                              test_bit(i + 64 + 32, sc->keymap)))
722                                 return i + 32;
723                         if (!test_bit(i + 64, sc->keymap) &&
724                             (test_bit(i , sc->keymap) ||
725                              test_bit(i + 32, sc->keymap) ||
726                              test_bit(i + 64 + 32, sc->keymap)))
727                                 return i + 64;
728                         if (!test_bit(i + 64 + 32, sc->keymap) &&
729                             (test_bit(i, sc->keymap) ||
730                              test_bit(i + 32, sc->keymap) ||
731                              test_bit(i + 64, sc->keymap)))
732                                 return i + 64 + 32;
733                 }
734         } else {
735                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
736                         if (!test_bit(i, sc->keymap) &&
737                             test_bit(i + 64, sc->keymap))
738                                 return i;
739                         if (test_bit(i, sc->keymap) &&
740                             !test_bit(i + 64, sc->keymap))
741                                 return i + 64;
742                 }
743         }
744
745         /* No partially used TKIP slots, pick any available slot */
746         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
747                 /* Do not allow slots that could be needed for TKIP group keys
748                  * to be used. This limitation could be removed if we know that
749                  * TKIP will not be used. */
750                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
751                         continue;
752                 if (sc->splitmic) {
753                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
754                                 continue;
755                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
756                                 continue;
757                 }
758
759                 if (!test_bit(i, sc->keymap))
760                         return i; /* Found a free slot for a key */
761         }
762
763         /* No free slot found */
764         return -1;
765 }
766
767 static int ath_key_config(struct ath_softc *sc,
768                           struct ieee80211_vif *vif,
769                           struct ieee80211_sta *sta,
770                           struct ieee80211_key_conf *key)
771 {
772         struct ath9k_keyval hk;
773         const u8 *mac = NULL;
774         int ret = 0;
775         int idx;
776
777         memset(&hk, 0, sizeof(hk));
778
779         switch (key->alg) {
780         case ALG_WEP:
781                 hk.kv_type = ATH9K_CIPHER_WEP;
782                 break;
783         case ALG_TKIP:
784                 hk.kv_type = ATH9K_CIPHER_TKIP;
785                 break;
786         case ALG_CCMP:
787                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
788                 break;
789         default:
790                 return -EOPNOTSUPP;
791         }
792
793         hk.kv_len = key->keylen;
794         memcpy(hk.kv_val, key->key, key->keylen);
795
796         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
797                 /* For now, use the default keys for broadcast keys. This may
798                  * need to change with virtual interfaces. */
799                 idx = key->keyidx;
800         } else if (key->keyidx) {
801                 if (WARN_ON(!sta))
802                         return -EOPNOTSUPP;
803                 mac = sta->addr;
804
805                 if (vif->type != NL80211_IFTYPE_AP) {
806                         /* Only keyidx 0 should be used with unicast key, but
807                          * allow this for client mode for now. */
808                         idx = key->keyidx;
809                 } else
810                         return -EIO;
811         } else {
812                 if (WARN_ON(!sta))
813                         return -EOPNOTSUPP;
814                 mac = sta->addr;
815
816                 if (key->alg == ALG_TKIP)
817                         idx = ath_reserve_key_cache_slot_tkip(sc);
818                 else
819                         idx = ath_reserve_key_cache_slot(sc);
820                 if (idx < 0)
821                         return -ENOSPC; /* no free key cache entries */
822         }
823
824         if (key->alg == ALG_TKIP)
825                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
826                                       vif->type == NL80211_IFTYPE_AP);
827         else
828                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
829
830         if (!ret)
831                 return -EIO;
832
833         set_bit(idx, sc->keymap);
834         if (key->alg == ALG_TKIP) {
835                 set_bit(idx + 64, sc->keymap);
836                 if (sc->splitmic) {
837                         set_bit(idx + 32, sc->keymap);
838                         set_bit(idx + 64 + 32, sc->keymap);
839                 }
840         }
841
842         return idx;
843 }
844
845 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
846 {
847         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
848         if (key->hw_key_idx < IEEE80211_WEP_NKID)
849                 return;
850
851         clear_bit(key->hw_key_idx, sc->keymap);
852         if (key->alg != ALG_TKIP)
853                 return;
854
855         clear_bit(key->hw_key_idx + 64, sc->keymap);
856         if (sc->splitmic) {
857                 clear_bit(key->hw_key_idx + 32, sc->keymap);
858                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
859         }
860 }
861
862 static void setup_ht_cap(struct ath_softc *sc,
863                          struct ieee80211_sta_ht_cap *ht_info)
864 {
865 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
866 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
867
868         ht_info->ht_supported = true;
869         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
870                        IEEE80211_HT_CAP_SM_PS |
871                        IEEE80211_HT_CAP_SGI_40 |
872                        IEEE80211_HT_CAP_DSSSCCK40;
873
874         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
875         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
876
877         /* set up supported mcs set */
878         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
879
880         switch(sc->rx_chainmask) {
881         case 1:
882                 ht_info->mcs.rx_mask[0] = 0xff;
883                 break;
884         case 3:
885         case 5:
886         case 7:
887         default:
888                 ht_info->mcs.rx_mask[0] = 0xff;
889                 ht_info->mcs.rx_mask[1] = 0xff;
890                 break;
891         }
892
893         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
894 }
895
896 static void ath9k_bss_assoc_info(struct ath_softc *sc,
897                                  struct ieee80211_vif *vif,
898                                  struct ieee80211_bss_conf *bss_conf)
899 {
900         struct ath_vif *avp = (void *)vif->drv_priv;
901
902         if (bss_conf->assoc) {
903                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
904                         bss_conf->aid, sc->curbssid);
905
906                 /* New association, store aid */
907                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
908                         sc->curaid = bss_conf->aid;
909                         ath9k_hw_write_associd(sc);
910                 }
911
912                 /* Configure the beacon */
913                 ath_beacon_config(sc, vif);
914
915                 /* Reset rssi stats */
916                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
917                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
918                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
919                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
920
921                 /* Start ANI */
922                 mod_timer(&sc->ani.timer,
923                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
924         } else {
925                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
926                 sc->curaid = 0;
927         }
928 }
929
930 /********************************/
931 /*       LED functions          */
932 /********************************/
933
934 static void ath_led_blink_work(struct work_struct *work)
935 {
936         struct ath_softc *sc = container_of(work, struct ath_softc,
937                                             ath_led_blink_work.work);
938
939         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
940                 return;
941
942         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
943             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
944                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
945         else
946                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
947                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
948
949         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
950                            (sc->sc_flags & SC_OP_LED_ON) ?
951                            msecs_to_jiffies(sc->led_off_duration) :
952                            msecs_to_jiffies(sc->led_on_duration));
953
954         sc->led_on_duration = sc->led_on_cnt ?
955                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
956                         ATH_LED_ON_DURATION_IDLE;
957         sc->led_off_duration = sc->led_off_cnt ?
958                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
959                         ATH_LED_OFF_DURATION_IDLE;
960         sc->led_on_cnt = sc->led_off_cnt = 0;
961         if (sc->sc_flags & SC_OP_LED_ON)
962                 sc->sc_flags &= ~SC_OP_LED_ON;
963         else
964                 sc->sc_flags |= SC_OP_LED_ON;
965 }
966
967 static void ath_led_brightness(struct led_classdev *led_cdev,
968                                enum led_brightness brightness)
969 {
970         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
971         struct ath_softc *sc = led->sc;
972
973         switch (brightness) {
974         case LED_OFF:
975                 if (led->led_type == ATH_LED_ASSOC ||
976                     led->led_type == ATH_LED_RADIO) {
977                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
978                                 (led->led_type == ATH_LED_RADIO));
979                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
980                         if (led->led_type == ATH_LED_RADIO)
981                                 sc->sc_flags &= ~SC_OP_LED_ON;
982                 } else {
983                         sc->led_off_cnt++;
984                 }
985                 break;
986         case LED_FULL:
987                 if (led->led_type == ATH_LED_ASSOC) {
988                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
989                         queue_delayed_work(sc->hw->workqueue,
990                                            &sc->ath_led_blink_work, 0);
991                 } else if (led->led_type == ATH_LED_RADIO) {
992                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
993                         sc->sc_flags |= SC_OP_LED_ON;
994                 } else {
995                         sc->led_on_cnt++;
996                 }
997                 break;
998         default:
999                 break;
1000         }
1001 }
1002
1003 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1004                             char *trigger)
1005 {
1006         int ret;
1007
1008         led->sc = sc;
1009         led->led_cdev.name = led->name;
1010         led->led_cdev.default_trigger = trigger;
1011         led->led_cdev.brightness_set = ath_led_brightness;
1012
1013         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1014         if (ret)
1015                 DPRINTF(sc, ATH_DBG_FATAL,
1016                         "Failed to register led:%s", led->name);
1017         else
1018                 led->registered = 1;
1019         return ret;
1020 }
1021
1022 static void ath_unregister_led(struct ath_led *led)
1023 {
1024         if (led->registered) {
1025                 led_classdev_unregister(&led->led_cdev);
1026                 led->registered = 0;
1027         }
1028 }
1029
1030 static void ath_deinit_leds(struct ath_softc *sc)
1031 {
1032         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1033         ath_unregister_led(&sc->assoc_led);
1034         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1035         ath_unregister_led(&sc->tx_led);
1036         ath_unregister_led(&sc->rx_led);
1037         ath_unregister_led(&sc->radio_led);
1038         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1039 }
1040
1041 static void ath_init_leds(struct ath_softc *sc)
1042 {
1043         char *trigger;
1044         int ret;
1045
1046         /* Configure gpio 1 for output */
1047         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1048                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1049         /* LED off, active low */
1050         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1051
1052         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1053
1054         trigger = ieee80211_get_radio_led_name(sc->hw);
1055         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1056                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1057         ret = ath_register_led(sc, &sc->radio_led, trigger);
1058         sc->radio_led.led_type = ATH_LED_RADIO;
1059         if (ret)
1060                 goto fail;
1061
1062         trigger = ieee80211_get_assoc_led_name(sc->hw);
1063         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1064                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1065         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1066         sc->assoc_led.led_type = ATH_LED_ASSOC;
1067         if (ret)
1068                 goto fail;
1069
1070         trigger = ieee80211_get_tx_led_name(sc->hw);
1071         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1072                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1073         ret = ath_register_led(sc, &sc->tx_led, trigger);
1074         sc->tx_led.led_type = ATH_LED_TX;
1075         if (ret)
1076                 goto fail;
1077
1078         trigger = ieee80211_get_rx_led_name(sc->hw);
1079         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1080                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1081         ret = ath_register_led(sc, &sc->rx_led, trigger);
1082         sc->rx_led.led_type = ATH_LED_RX;
1083         if (ret)
1084                 goto fail;
1085
1086         return;
1087
1088 fail:
1089         ath_deinit_leds(sc);
1090 }
1091
1092 void ath_radio_enable(struct ath_softc *sc)
1093 {
1094         struct ath_hw *ah = sc->sc_ah;
1095         struct ieee80211_channel *channel = sc->hw->conf.channel;
1096         int r;
1097
1098         ath9k_ps_wakeup(sc);
1099         spin_lock_bh(&sc->sc_resetlock);
1100
1101         r = ath9k_hw_reset(ah, ah->curchan, false);
1102
1103         if (r) {
1104                 DPRINTF(sc, ATH_DBG_FATAL,
1105                         "Unable to reset channel %u (%uMhz) ",
1106                         "reset status %u\n",
1107                         channel->center_freq, r);
1108         }
1109         spin_unlock_bh(&sc->sc_resetlock);
1110
1111         ath_update_txpow(sc);
1112         if (ath_startrecv(sc) != 0) {
1113                 DPRINTF(sc, ATH_DBG_FATAL,
1114                         "Unable to restart recv logic\n");
1115                 return;
1116         }
1117
1118         if (sc->sc_flags & SC_OP_BEACONS)
1119                 ath_beacon_config(sc, NULL);    /* restart beacons */
1120
1121         /* Re-Enable  interrupts */
1122         ath9k_hw_set_interrupts(ah, sc->imask);
1123
1124         /* Enable LED */
1125         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1126                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1127         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1128
1129         ieee80211_wake_queues(sc->hw);
1130         ath9k_ps_restore(sc);
1131 }
1132
1133 void ath_radio_disable(struct ath_softc *sc)
1134 {
1135         struct ath_hw *ah = sc->sc_ah;
1136         struct ieee80211_channel *channel = sc->hw->conf.channel;
1137         int r;
1138
1139         ath9k_ps_wakeup(sc);
1140         ieee80211_stop_queues(sc->hw);
1141
1142         /* Disable LED */
1143         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1144         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1145
1146         /* Disable interrupts */
1147         ath9k_hw_set_interrupts(ah, 0);
1148
1149         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1150         ath_stoprecv(sc);               /* turn off frame recv */
1151         ath_flushrecv(sc);              /* flush recv queue */
1152
1153         spin_lock_bh(&sc->sc_resetlock);
1154         r = ath9k_hw_reset(ah, ah->curchan, false);
1155         if (r) {
1156                 DPRINTF(sc, ATH_DBG_FATAL,
1157                         "Unable to reset channel %u (%uMhz) "
1158                         "reset status %u\n",
1159                         channel->center_freq, r);
1160         }
1161         spin_unlock_bh(&sc->sc_resetlock);
1162
1163         ath9k_hw_phy_disable(ah);
1164         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1165         ath9k_ps_restore(sc);
1166 }
1167
1168 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1169
1170 /*******************/
1171 /*      Rfkill     */
1172 /*******************/
1173
1174 static bool ath_is_rfkill_set(struct ath_softc *sc)
1175 {
1176         struct ath_hw *ah = sc->sc_ah;
1177
1178         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1179                                   ah->rfkill_polarity;
1180 }
1181
1182 /* h/w rfkill poll function */
1183 static void ath_rfkill_poll(struct work_struct *work)
1184 {
1185         struct ath_softc *sc = container_of(work, struct ath_softc,
1186                                             rf_kill.rfkill_poll.work);
1187         bool radio_on;
1188
1189         if (sc->sc_flags & SC_OP_INVALID)
1190                 return;
1191
1192         radio_on = !ath_is_rfkill_set(sc);
1193
1194         /*
1195          * enable/disable radio only when there is a
1196          * state change in RF switch
1197          */
1198         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1199                 enum rfkill_state state;
1200
1201                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1202                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1203                                 : RFKILL_STATE_HARD_BLOCKED;
1204                 } else if (radio_on) {
1205                         ath_radio_enable(sc);
1206                         state = RFKILL_STATE_UNBLOCKED;
1207                 } else {
1208                         ath_radio_disable(sc);
1209                         state = RFKILL_STATE_HARD_BLOCKED;
1210                 }
1211
1212                 if (state == RFKILL_STATE_HARD_BLOCKED)
1213                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1214                 else
1215                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1216
1217                 rfkill_force_state(sc->rf_kill.rfkill, state);
1218         }
1219
1220         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1221                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1222 }
1223
1224 /* s/w rfkill handler */
1225 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1226 {
1227         struct ath_softc *sc = data;
1228
1229         switch (state) {
1230         case RFKILL_STATE_SOFT_BLOCKED:
1231                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1232                     SC_OP_RFKILL_SW_BLOCKED)))
1233                         ath_radio_disable(sc);
1234                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1235                 return 0;
1236         case RFKILL_STATE_UNBLOCKED:
1237                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1238                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1239                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1240                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1241                                         "radio as it is disabled by h/w\n");
1242                                 return -EPERM;
1243                         }
1244                         ath_radio_enable(sc);
1245                 }
1246                 return 0;
1247         default:
1248                 return -EINVAL;
1249         }
1250 }
1251
1252 /* Init s/w rfkill */
1253 static int ath_init_sw_rfkill(struct ath_softc *sc)
1254 {
1255         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1256                                              RFKILL_TYPE_WLAN);
1257         if (!sc->rf_kill.rfkill) {
1258                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1259                 return -ENOMEM;
1260         }
1261
1262         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1263                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1264         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1265         sc->rf_kill.rfkill->data = sc;
1266         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1267         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1268
1269         return 0;
1270 }
1271
1272 /* Deinitialize rfkill */
1273 static void ath_deinit_rfkill(struct ath_softc *sc)
1274 {
1275         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1276                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1277
1278         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1279                 rfkill_unregister(sc->rf_kill.rfkill);
1280                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1281                 sc->rf_kill.rfkill = NULL;
1282         }
1283 }
1284
1285 static int ath_start_rfkill_poll(struct ath_softc *sc)
1286 {
1287         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1288                 queue_delayed_work(sc->hw->workqueue,
1289                                    &sc->rf_kill.rfkill_poll, 0);
1290
1291         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1292                 if (rfkill_register(sc->rf_kill.rfkill)) {
1293                         DPRINTF(sc, ATH_DBG_FATAL,
1294                                 "Unable to register rfkill\n");
1295                         rfkill_free(sc->rf_kill.rfkill);
1296
1297                         /* Deinitialize the device */
1298                         ath_cleanup(sc);
1299                         return -EIO;
1300                 } else {
1301                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1302                 }
1303         }
1304
1305         return 0;
1306 }
1307 #endif /* CONFIG_RFKILL */
1308
1309 void ath_cleanup(struct ath_softc *sc)
1310 {
1311         ath_detach(sc);
1312         free_irq(sc->irq, sc);
1313         ath_bus_cleanup(sc);
1314         kfree(sc->sec_wiphy);
1315         ieee80211_free_hw(sc->hw);
1316 }
1317
1318 void ath_detach(struct ath_softc *sc)
1319 {
1320         struct ieee80211_hw *hw = sc->hw;
1321         int i = 0;
1322
1323         ath9k_ps_wakeup(sc);
1324
1325         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1326
1327 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1328         ath_deinit_rfkill(sc);
1329 #endif
1330         ath_deinit_leds(sc);
1331         cancel_work_sync(&sc->chan_work);
1332         cancel_delayed_work_sync(&sc->wiphy_work);
1333
1334         for (i = 0; i < sc->num_sec_wiphy; i++) {
1335                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1336                 if (aphy == NULL)
1337                         continue;
1338                 sc->sec_wiphy[i] = NULL;
1339                 ieee80211_unregister_hw(aphy->hw);
1340                 ieee80211_free_hw(aphy->hw);
1341         }
1342         ieee80211_unregister_hw(hw);
1343         ath_rx_cleanup(sc);
1344         ath_tx_cleanup(sc);
1345
1346         tasklet_kill(&sc->intr_tq);
1347         tasklet_kill(&sc->bcon_tasklet);
1348
1349         if (!(sc->sc_flags & SC_OP_INVALID))
1350                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1351
1352         /* cleanup tx queues */
1353         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1354                 if (ATH_TXQ_SETUP(sc, i))
1355                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1356
1357         ath9k_hw_detach(sc->sc_ah);
1358         ath9k_exit_debug(sc);
1359         ath9k_ps_restore(sc);
1360 }
1361
1362 static int ath_init(u16 devid, struct ath_softc *sc)
1363 {
1364         struct ath_hw *ah = NULL;
1365         int status;
1366         int error = 0, i;
1367         int csz = 0;
1368
1369         /* XXX: hardware will not be ready until ath_open() being called */
1370         sc->sc_flags |= SC_OP_INVALID;
1371
1372         if (ath9k_init_debug(sc) < 0)
1373                 printk(KERN_ERR "Unable to create debugfs files\n");
1374
1375         spin_lock_init(&sc->wiphy_lock);
1376         spin_lock_init(&sc->sc_resetlock);
1377         spin_lock_init(&sc->sc_serial_rw);
1378         mutex_init(&sc->mutex);
1379         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1380         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1381                      (unsigned long)sc);
1382
1383         /*
1384          * Cache line size is used to size and align various
1385          * structures used to communicate with the hardware.
1386          */
1387         ath_read_cachesize(sc, &csz);
1388         /* XXX assert csz is non-zero */
1389         sc->cachelsz = csz << 2;        /* convert to bytes */
1390
1391         ah = ath9k_hw_attach(devid, sc, &status);
1392         if (ah == NULL) {
1393                 DPRINTF(sc, ATH_DBG_FATAL,
1394                         "Unable to attach hardware; HAL status %d\n", status);
1395                 error = -ENXIO;
1396                 goto bad;
1397         }
1398         sc->sc_ah = ah;
1399
1400         /* Get the hardware key cache size. */
1401         sc->keymax = ah->caps.keycache_size;
1402         if (sc->keymax > ATH_KEYMAX) {
1403                 DPRINTF(sc, ATH_DBG_ANY,
1404                         "Warning, using only %u entries in %u key cache\n",
1405                         ATH_KEYMAX, sc->keymax);
1406                 sc->keymax = ATH_KEYMAX;
1407         }
1408
1409         /*
1410          * Reset the key cache since some parts do not
1411          * reset the contents on initial power up.
1412          */
1413         for (i = 0; i < sc->keymax; i++)
1414                 ath9k_hw_keyreset(ah, (u16) i);
1415
1416         if (ath9k_regd_init(sc->sc_ah))
1417                 goto bad;
1418
1419         /* default to MONITOR mode */
1420         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1421
1422         /* Setup rate tables */
1423
1424         ath_rate_attach(sc);
1425         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1426         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1427
1428         /*
1429          * Allocate hardware transmit queues: one queue for
1430          * beacon frames and one data queue for each QoS
1431          * priority.  Note that the hal handles reseting
1432          * these queues at the needed time.
1433          */
1434         sc->beacon.beaconq = ath_beaconq_setup(ah);
1435         if (sc->beacon.beaconq == -1) {
1436                 DPRINTF(sc, ATH_DBG_FATAL,
1437                         "Unable to setup a beacon xmit queue\n");
1438                 error = -EIO;
1439                 goto bad2;
1440         }
1441         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1442         if (sc->beacon.cabq == NULL) {
1443                 DPRINTF(sc, ATH_DBG_FATAL,
1444                         "Unable to setup CAB xmit queue\n");
1445                 error = -EIO;
1446                 goto bad2;
1447         }
1448
1449         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1450         ath_cabq_update(sc);
1451
1452         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1453                 sc->tx.hwq_map[i] = -1;
1454
1455         /* Setup data queues */
1456         /* NB: ensure BK queue is the lowest priority h/w queue */
1457         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1458                 DPRINTF(sc, ATH_DBG_FATAL,
1459                         "Unable to setup xmit queue for BK traffic\n");
1460                 error = -EIO;
1461                 goto bad2;
1462         }
1463
1464         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1465                 DPRINTF(sc, ATH_DBG_FATAL,
1466                         "Unable to setup xmit queue for BE traffic\n");
1467                 error = -EIO;
1468                 goto bad2;
1469         }
1470         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1471                 DPRINTF(sc, ATH_DBG_FATAL,
1472                         "Unable to setup xmit queue for VI traffic\n");
1473                 error = -EIO;
1474                 goto bad2;
1475         }
1476         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1477                 DPRINTF(sc, ATH_DBG_FATAL,
1478                         "Unable to setup xmit queue for VO traffic\n");
1479                 error = -EIO;
1480                 goto bad2;
1481         }
1482
1483         /* Initializes the noise floor to a reasonable default value.
1484          * Later on this will be updated during ANI processing. */
1485
1486         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1487         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1488
1489         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1490                                    ATH9K_CIPHER_TKIP, NULL)) {
1491                 /*
1492                  * Whether we should enable h/w TKIP MIC.
1493                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1494                  * report WMM capable, so it's always safe to turn on
1495                  * TKIP MIC in this case.
1496                  */
1497                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1498                                        0, 1, NULL);
1499         }
1500
1501         /*
1502          * Check whether the separate key cache entries
1503          * are required to handle both tx+rx MIC keys.
1504          * With split mic keys the number of stations is limited
1505          * to 27 otherwise 59.
1506          */
1507         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1508                                    ATH9K_CIPHER_TKIP, NULL)
1509             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1510                                       ATH9K_CIPHER_MIC, NULL)
1511             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1512                                       0, NULL))
1513                 sc->splitmic = 1;
1514
1515         /* turn on mcast key search if possible */
1516         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1517                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1518                                              1, NULL);
1519
1520         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1521
1522         /* 11n Capabilities */
1523         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1524                 sc->sc_flags |= SC_OP_TXAGGR;
1525                 sc->sc_flags |= SC_OP_RXAGGR;
1526         }
1527
1528         sc->tx_chainmask = ah->caps.tx_chainmask;
1529         sc->rx_chainmask = ah->caps.rx_chainmask;
1530
1531         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1532         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1533
1534         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1535                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1536
1537         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1538
1539         /* initialize beacon slots */
1540         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1541                 sc->beacon.bslot[i] = NULL;
1542                 sc->beacon.bslot_aphy[i] = NULL;
1543         }
1544
1545         /* setup channels and rates */
1546
1547         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1548         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1549                 sc->rates[IEEE80211_BAND_2GHZ];
1550         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1551         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1552                 ARRAY_SIZE(ath9k_2ghz_chantable);
1553
1554         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1555                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1556                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1557                         sc->rates[IEEE80211_BAND_5GHZ];
1558                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1559                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1560                         ARRAY_SIZE(ath9k_5ghz_chantable);
1561         }
1562
1563         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1564                 ath9k_hw_btcoex_enable(sc->sc_ah);
1565
1566         return 0;
1567 bad2:
1568         /* cleanup tx queues */
1569         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1570                 if (ATH_TXQ_SETUP(sc, i))
1571                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1572 bad:
1573         if (ah)
1574                 ath9k_hw_detach(ah);
1575         ath9k_exit_debug(sc);
1576
1577         return error;
1578 }
1579
1580 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1581 {
1582         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1583                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1584                 IEEE80211_HW_SIGNAL_DBM |
1585                 IEEE80211_HW_AMPDU_AGGREGATION |
1586                 IEEE80211_HW_SUPPORTS_PS |
1587                 IEEE80211_HW_PS_NULLFUNC_STACK |
1588                 IEEE80211_HW_SPECTRUM_MGMT;
1589
1590         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1591                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1592
1593         hw->wiphy->interface_modes =
1594                 BIT(NL80211_IFTYPE_AP) |
1595                 BIT(NL80211_IFTYPE_STATION) |
1596                 BIT(NL80211_IFTYPE_ADHOC) |
1597                 BIT(NL80211_IFTYPE_MESH_POINT);
1598
1599         hw->wiphy->reg_notifier = ath9k_reg_notifier;
1600         hw->wiphy->strict_regulatory = true;
1601
1602         hw->queues = 4;
1603         hw->max_rates = 4;
1604         hw->channel_change_time = 5000;
1605         hw->max_listen_interval = 10;
1606         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1607         hw->sta_data_size = sizeof(struct ath_node);
1608         hw->vif_data_size = sizeof(struct ath_vif);
1609
1610         hw->rate_control_algorithm = "ath9k_rate_control";
1611
1612         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1613                 &sc->sbands[IEEE80211_BAND_2GHZ];
1614         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1615                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1616                         &sc->sbands[IEEE80211_BAND_5GHZ];
1617 }
1618
1619 int ath_attach(u16 devid, struct ath_softc *sc)
1620 {
1621         struct ieee80211_hw *hw = sc->hw;
1622         const struct ieee80211_regdomain *regd;
1623         int error = 0, i;
1624
1625         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1626
1627         error = ath_init(devid, sc);
1628         if (error != 0)
1629                 return error;
1630
1631         /* get mac address from hardware and set in mac80211 */
1632
1633         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1634
1635         ath_set_hw_capab(sc, hw);
1636
1637         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1638                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1639                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1640                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1641         }
1642
1643         /* initialize tx/rx engine */
1644         error = ath_tx_init(sc, ATH_TXBUF);
1645         if (error != 0)
1646                 goto error_attach;
1647
1648         error = ath_rx_init(sc, ATH_RXBUF);
1649         if (error != 0)
1650                 goto error_attach;
1651
1652 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1653         /* Initialze h/w Rfkill */
1654         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1655                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1656
1657         /* Initialize s/w rfkill */
1658         error = ath_init_sw_rfkill(sc);
1659         if (error)
1660                 goto error_attach;
1661 #endif
1662
1663         if (ath9k_is_world_regd(sc->sc_ah)) {
1664                 /* Anything applied here (prior to wiphy registration) gets
1665                  * saved on the wiphy orig_* parameters */
1666                 regd = ath9k_world_regdomain(sc->sc_ah);
1667                 hw->wiphy->custom_regulatory = true;
1668                 hw->wiphy->strict_regulatory = false;
1669         } else {
1670                 /* This gets applied in the case of the absense of CRDA,
1671                  * it's our own custom world regulatory domain, similar to
1672                  * cfg80211's but we enable passive scanning */
1673                 regd = ath9k_default_world_regdomain();
1674         }
1675         wiphy_apply_custom_regulatory(hw->wiphy, regd);
1676         ath9k_reg_apply_radar_flags(hw->wiphy);
1677         ath9k_reg_apply_world_flags(hw->wiphy, NL80211_REGDOM_SET_BY_DRIVER);
1678
1679         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1680         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1681         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1682
1683         error = ieee80211_register_hw(hw);
1684
1685         if (!ath9k_is_world_regd(sc->sc_ah)) {
1686                 error = regulatory_hint(hw->wiphy,
1687                         sc->sc_ah->regulatory.alpha2);
1688                 if (error)
1689                         goto error_attach;
1690         }
1691
1692         /* Initialize LED control */
1693         ath_init_leds(sc);
1694
1695
1696         return 0;
1697
1698 error_attach:
1699         /* cleanup tx queues */
1700         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1701                 if (ATH_TXQ_SETUP(sc, i))
1702                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1703
1704         ath9k_hw_detach(sc->sc_ah);
1705         ath9k_exit_debug(sc);
1706
1707         return error;
1708 }
1709
1710 int ath_reset(struct ath_softc *sc, bool retry_tx)
1711 {
1712         struct ath_hw *ah = sc->sc_ah;
1713         struct ieee80211_hw *hw = sc->hw;
1714         int r;
1715
1716         ath9k_hw_set_interrupts(ah, 0);
1717         ath_drain_all_txq(sc, retry_tx);
1718         ath_stoprecv(sc);
1719         ath_flushrecv(sc);
1720
1721         spin_lock_bh(&sc->sc_resetlock);
1722         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1723         if (r)
1724                 DPRINTF(sc, ATH_DBG_FATAL,
1725                         "Unable to reset hardware; reset status %u\n", r);
1726         spin_unlock_bh(&sc->sc_resetlock);
1727
1728         if (ath_startrecv(sc) != 0)
1729                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1730
1731         /*
1732          * We may be doing a reset in response to a request
1733          * that changes the channel so update any state that
1734          * might change as a result.
1735          */
1736         ath_cache_conf_rate(sc, &hw->conf);
1737
1738         ath_update_txpow(sc);
1739
1740         if (sc->sc_flags & SC_OP_BEACONS)
1741                 ath_beacon_config(sc, NULL);    /* restart beacons */
1742
1743         ath9k_hw_set_interrupts(ah, sc->imask);
1744
1745         if (retry_tx) {
1746                 int i;
1747                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1748                         if (ATH_TXQ_SETUP(sc, i)) {
1749                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1750                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1751                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1752                         }
1753                 }
1754         }
1755
1756         return r;
1757 }
1758
1759 /*
1760  *  This function will allocate both the DMA descriptor structure, and the
1761  *  buffers it contains.  These are used to contain the descriptors used
1762  *  by the system.
1763 */
1764 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1765                       struct list_head *head, const char *name,
1766                       int nbuf, int ndesc)
1767 {
1768 #define DS2PHYS(_dd, _ds)                                               \
1769         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1770 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1771 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1772
1773         struct ath_desc *ds;
1774         struct ath_buf *bf;
1775         int i, bsize, error;
1776
1777         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1778                 name, nbuf, ndesc);
1779
1780         INIT_LIST_HEAD(head);
1781         /* ath_desc must be a multiple of DWORDs */
1782         if ((sizeof(struct ath_desc) % 4) != 0) {
1783                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1784                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1785                 error = -ENOMEM;
1786                 goto fail;
1787         }
1788
1789         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1790
1791         /*
1792          * Need additional DMA memory because we can't use
1793          * descriptors that cross the 4K page boundary. Assume
1794          * one skipped descriptor per 4K page.
1795          */
1796         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1797                 u32 ndesc_skipped =
1798                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1799                 u32 dma_len;
1800
1801                 while (ndesc_skipped) {
1802                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1803                         dd->dd_desc_len += dma_len;
1804
1805                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1806                 };
1807         }
1808
1809         /* allocate descriptors */
1810         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1811                                          &dd->dd_desc_paddr, GFP_KERNEL);
1812         if (dd->dd_desc == NULL) {
1813                 error = -ENOMEM;
1814                 goto fail;
1815         }
1816         ds = dd->dd_desc;
1817         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1818                 name, ds, (u32) dd->dd_desc_len,
1819                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1820
1821         /* allocate buffers */
1822         bsize = sizeof(struct ath_buf) * nbuf;
1823         bf = kzalloc(bsize, GFP_KERNEL);
1824         if (bf == NULL) {
1825                 error = -ENOMEM;
1826                 goto fail2;
1827         }
1828         dd->dd_bufptr = bf;
1829
1830         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1831                 bf->bf_desc = ds;
1832                 bf->bf_daddr = DS2PHYS(dd, ds);
1833
1834                 if (!(sc->sc_ah->caps.hw_caps &
1835                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1836                         /*
1837                          * Skip descriptor addresses which can cause 4KB
1838                          * boundary crossing (addr + length) with a 32 dword
1839                          * descriptor fetch.
1840                          */
1841                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1842                                 ASSERT((caddr_t) bf->bf_desc <
1843                                        ((caddr_t) dd->dd_desc +
1844                                         dd->dd_desc_len));
1845
1846                                 ds += ndesc;
1847                                 bf->bf_desc = ds;
1848                                 bf->bf_daddr = DS2PHYS(dd, ds);
1849                         }
1850                 }
1851                 list_add_tail(&bf->list, head);
1852         }
1853         return 0;
1854 fail2:
1855         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1856                           dd->dd_desc_paddr);
1857 fail:
1858         memset(dd, 0, sizeof(*dd));
1859         return error;
1860 #undef ATH_DESC_4KB_BOUND_CHECK
1861 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1862 #undef DS2PHYS
1863 }
1864
1865 void ath_descdma_cleanup(struct ath_softc *sc,
1866                          struct ath_descdma *dd,
1867                          struct list_head *head)
1868 {
1869         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1870                           dd->dd_desc_paddr);
1871
1872         INIT_LIST_HEAD(head);
1873         kfree(dd->dd_bufptr);
1874         memset(dd, 0, sizeof(*dd));
1875 }
1876
1877 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1878 {
1879         int qnum;
1880
1881         switch (queue) {
1882         case 0:
1883                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1884                 break;
1885         case 1:
1886                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1887                 break;
1888         case 2:
1889                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1890                 break;
1891         case 3:
1892                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1893                 break;
1894         default:
1895                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1896                 break;
1897         }
1898
1899         return qnum;
1900 }
1901
1902 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1903 {
1904         int qnum;
1905
1906         switch (queue) {
1907         case ATH9K_WME_AC_VO:
1908                 qnum = 0;
1909                 break;
1910         case ATH9K_WME_AC_VI:
1911                 qnum = 1;
1912                 break;
1913         case ATH9K_WME_AC_BE:
1914                 qnum = 2;
1915                 break;
1916         case ATH9K_WME_AC_BK:
1917                 qnum = 3;
1918                 break;
1919         default:
1920                 qnum = -1;
1921                 break;
1922         }
1923
1924         return qnum;
1925 }
1926
1927 /* XXX: Remove me once we don't depend on ath9k_channel for all
1928  * this redundant data */
1929 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1930                            struct ath9k_channel *ichan)
1931 {
1932         struct ieee80211_channel *chan = hw->conf.channel;
1933         struct ieee80211_conf *conf = &hw->conf;
1934
1935         ichan->channel = chan->center_freq;
1936         ichan->chan = chan;
1937
1938         if (chan->band == IEEE80211_BAND_2GHZ) {
1939                 ichan->chanmode = CHANNEL_G;
1940                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1941         } else {
1942                 ichan->chanmode = CHANNEL_A;
1943                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1944         }
1945
1946         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1947
1948         if (conf_is_ht(conf)) {
1949                 if (conf_is_ht40(conf))
1950                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1951
1952                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1953                                             conf->channel_type);
1954         }
1955 }
1956
1957 /**********************/
1958 /* mac80211 callbacks */
1959 /**********************/
1960
1961 static int ath9k_start(struct ieee80211_hw *hw)
1962 {
1963         struct ath_wiphy *aphy = hw->priv;
1964         struct ath_softc *sc = aphy->sc;
1965         struct ieee80211_channel *curchan = hw->conf.channel;
1966         struct ath9k_channel *init_channel;
1967         int r, pos;
1968
1969         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1970                 "initial channel: %d MHz\n", curchan->center_freq);
1971
1972         mutex_lock(&sc->mutex);
1973
1974         if (ath9k_wiphy_started(sc)) {
1975                 if (sc->chan_idx == curchan->hw_value) {
1976                         /*
1977                          * Already on the operational channel, the new wiphy
1978                          * can be marked active.
1979                          */
1980                         aphy->state = ATH_WIPHY_ACTIVE;
1981                         ieee80211_wake_queues(hw);
1982                 } else {
1983                         /*
1984                          * Another wiphy is on another channel, start the new
1985                          * wiphy in paused state.
1986                          */
1987                         aphy->state = ATH_WIPHY_PAUSED;
1988                         ieee80211_stop_queues(hw);
1989                 }
1990                 mutex_unlock(&sc->mutex);
1991                 return 0;
1992         }
1993         aphy->state = ATH_WIPHY_ACTIVE;
1994
1995         /* setup initial channel */
1996
1997         pos = curchan->hw_value;
1998
1999         sc->chan_idx = pos;
2000         init_channel = &sc->sc_ah->channels[pos];
2001         ath9k_update_ichannel(sc, hw, init_channel);
2002
2003         /* Reset SERDES registers */
2004         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2005
2006         /*
2007          * The basic interface to setting the hardware in a good
2008          * state is ``reset''.  On return the hardware is known to
2009          * be powered up and with interrupts disabled.  This must
2010          * be followed by initialization of the appropriate bits
2011          * and then setup of the interrupt mask.
2012          */
2013         spin_lock_bh(&sc->sc_resetlock);
2014         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2015         if (r) {
2016                 DPRINTF(sc, ATH_DBG_FATAL,
2017                         "Unable to reset hardware; reset status %u "
2018                         "(freq %u MHz)\n", r,
2019                         curchan->center_freq);
2020                 spin_unlock_bh(&sc->sc_resetlock);
2021                 goto mutex_unlock;
2022         }
2023         spin_unlock_bh(&sc->sc_resetlock);
2024
2025         /*
2026          * This is needed only to setup initial state
2027          * but it's best done after a reset.
2028          */
2029         ath_update_txpow(sc);
2030
2031         /*
2032          * Setup the hardware after reset:
2033          * The receive engine is set going.
2034          * Frame transmit is handled entirely
2035          * in the frame output path; there's nothing to do
2036          * here except setup the interrupt mask.
2037          */
2038         if (ath_startrecv(sc) != 0) {
2039                 DPRINTF(sc, ATH_DBG_FATAL,
2040                         "Unable to start recv logic\n");
2041                 r = -EIO;
2042                 goto mutex_unlock;
2043         }
2044
2045         /* Setup our intr mask. */
2046         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2047                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2048                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2049
2050         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2051                 sc->imask |= ATH9K_INT_GTT;
2052
2053         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2054                 sc->imask |= ATH9K_INT_CST;
2055
2056         ath_cache_conf_rate(sc, &hw->conf);
2057
2058         sc->sc_flags &= ~SC_OP_INVALID;
2059
2060         /* Disable BMISS interrupt when we're not associated */
2061         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2062         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2063
2064         ieee80211_wake_queues(hw);
2065
2066 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2067         r = ath_start_rfkill_poll(sc);
2068 #endif
2069
2070 mutex_unlock:
2071         mutex_unlock(&sc->mutex);
2072
2073         return r;
2074 }
2075
2076 static int ath9k_tx(struct ieee80211_hw *hw,
2077                     struct sk_buff *skb)
2078 {
2079         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2080         struct ath_wiphy *aphy = hw->priv;
2081         struct ath_softc *sc = aphy->sc;
2082         struct ath_tx_control txctl;
2083         int hdrlen, padsize;
2084
2085         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2086                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2087                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2088                 goto exit;
2089         }
2090
2091         memset(&txctl, 0, sizeof(struct ath_tx_control));
2092
2093         /*
2094          * As a temporary workaround, assign seq# here; this will likely need
2095          * to be cleaned up to work better with Beacon transmission and virtual
2096          * BSSes.
2097          */
2098         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2099                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2100                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2101                         sc->tx.seq_no += 0x10;
2102                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2103                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2104         }
2105
2106         /* Add the padding after the header if this is not already done */
2107         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2108         if (hdrlen & 3) {
2109                 padsize = hdrlen % 4;
2110                 if (skb_headroom(skb) < padsize)
2111                         return -1;
2112                 skb_push(skb, padsize);
2113                 memmove(skb->data, skb->data + padsize, hdrlen);
2114         }
2115
2116         /* Check if a tx queue is available */
2117
2118         txctl.txq = ath_test_get_txq(sc, skb);
2119         if (!txctl.txq)
2120                 goto exit;
2121
2122         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2123
2124         if (ath_tx_start(hw, skb, &txctl) != 0) {
2125                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2126                 goto exit;
2127         }
2128
2129         return 0;
2130 exit:
2131         dev_kfree_skb_any(skb);
2132         return 0;
2133 }
2134
2135 static void ath9k_stop(struct ieee80211_hw *hw)
2136 {
2137         struct ath_wiphy *aphy = hw->priv;
2138         struct ath_softc *sc = aphy->sc;
2139
2140         aphy->state = ATH_WIPHY_INACTIVE;
2141
2142         if (sc->sc_flags & SC_OP_INVALID) {
2143                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2144                 return;
2145         }
2146
2147         mutex_lock(&sc->mutex);
2148
2149         ieee80211_stop_queues(hw);
2150
2151         if (ath9k_wiphy_started(sc)) {
2152                 mutex_unlock(&sc->mutex);
2153                 return; /* another wiphy still in use */
2154         }
2155
2156         /* make sure h/w will not generate any interrupt
2157          * before setting the invalid flag. */
2158         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2159
2160         if (!(sc->sc_flags & SC_OP_INVALID)) {
2161                 ath_drain_all_txq(sc, false);
2162                 ath_stoprecv(sc);
2163                 ath9k_hw_phy_disable(sc->sc_ah);
2164         } else
2165                 sc->rx.rxlink = NULL;
2166
2167 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2168         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2169                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2170 #endif
2171         /* disable HAL and put h/w to sleep */
2172         ath9k_hw_disable(sc->sc_ah);
2173         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2174
2175         sc->sc_flags |= SC_OP_INVALID;
2176
2177         mutex_unlock(&sc->mutex);
2178
2179         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2180 }
2181
2182 static int ath9k_add_interface(struct ieee80211_hw *hw,
2183                                struct ieee80211_if_init_conf *conf)
2184 {
2185         struct ath_wiphy *aphy = hw->priv;
2186         struct ath_softc *sc = aphy->sc;
2187         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2188         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2189         int ret = 0;
2190
2191         mutex_lock(&sc->mutex);
2192
2193         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2194             sc->nvifs > 0) {
2195                 ret = -ENOBUFS;
2196                 goto out;
2197         }
2198
2199         switch (conf->type) {
2200         case NL80211_IFTYPE_STATION:
2201                 ic_opmode = NL80211_IFTYPE_STATION;
2202                 break;
2203         case NL80211_IFTYPE_ADHOC:
2204         case NL80211_IFTYPE_AP:
2205         case NL80211_IFTYPE_MESH_POINT:
2206                 if (sc->nbcnvifs >= ATH_BCBUF) {
2207                         ret = -ENOBUFS;
2208                         goto out;
2209                 }
2210                 ic_opmode = conf->type;
2211                 break;
2212         default:
2213                 DPRINTF(sc, ATH_DBG_FATAL,
2214                         "Interface type %d not yet supported\n", conf->type);
2215                 ret = -EOPNOTSUPP;
2216                 goto out;
2217         }
2218
2219         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2220
2221         /* Set the VIF opmode */
2222         avp->av_opmode = ic_opmode;
2223         avp->av_bslot = -1;
2224
2225         sc->nvifs++;
2226
2227         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2228                 ath9k_set_bssid_mask(hw);
2229
2230         if (sc->nvifs > 1)
2231                 goto out; /* skip global settings for secondary vif */
2232
2233         if (ic_opmode == NL80211_IFTYPE_AP) {
2234                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2235                 sc->sc_flags |= SC_OP_TSF_RESET;
2236         }
2237
2238         /* Set the device opmode */
2239         sc->sc_ah->opmode = ic_opmode;
2240
2241         /*
2242          * Enable MIB interrupts when there are hardware phy counters.
2243          * Note we only do this (at the moment) for station mode.
2244          */
2245         if ((conf->type == NL80211_IFTYPE_STATION) ||
2246             (conf->type == NL80211_IFTYPE_ADHOC) ||
2247             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2248                 if (ath9k_hw_phycounters(sc->sc_ah))
2249                         sc->imask |= ATH9K_INT_MIB;
2250                 sc->imask |= ATH9K_INT_TSFOOR;
2251         }
2252
2253         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2254
2255         if (conf->type == NL80211_IFTYPE_AP) {
2256                 /* TODO: is this a suitable place to start ANI for AP mode? */
2257                 /* Start ANI */
2258                 mod_timer(&sc->ani.timer,
2259                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2260         }
2261
2262 out:
2263         mutex_unlock(&sc->mutex);
2264         return ret;
2265 }
2266
2267 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2268                                    struct ieee80211_if_init_conf *conf)
2269 {
2270         struct ath_wiphy *aphy = hw->priv;
2271         struct ath_softc *sc = aphy->sc;
2272         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2273         int i;
2274
2275         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2276
2277         mutex_lock(&sc->mutex);
2278
2279         /* Stop ANI */
2280         del_timer_sync(&sc->ani.timer);
2281
2282         /* Reclaim beacon resources */
2283         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2284             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2285             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2286                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2287                 ath_beacon_return(sc, avp);
2288         }
2289
2290         sc->sc_flags &= ~SC_OP_BEACONS;
2291
2292         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2293                 if (sc->beacon.bslot[i] == conf->vif) {
2294                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2295                                "slot\n", __func__);
2296                         sc->beacon.bslot[i] = NULL;
2297                         sc->beacon.bslot_aphy[i] = NULL;
2298                 }
2299         }
2300
2301         sc->nvifs--;
2302
2303         mutex_unlock(&sc->mutex);
2304 }
2305
2306 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2307 {
2308         struct ath_wiphy *aphy = hw->priv;
2309         struct ath_softc *sc = aphy->sc;
2310         struct ieee80211_conf *conf = &hw->conf;
2311         struct ath_hw *ah = sc->sc_ah;
2312
2313         mutex_lock(&sc->mutex);
2314
2315         if (changed & IEEE80211_CONF_CHANGE_PS) {
2316                 if (conf->flags & IEEE80211_CONF_PS) {
2317                         if (!(ah->caps.hw_caps &
2318                               ATH9K_HW_CAP_AUTOSLEEP)) {
2319                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2320                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2321                                         ath9k_hw_set_interrupts(sc->sc_ah,
2322                                                         sc->imask);
2323                                 }
2324                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2325                         }
2326                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2327                 } else {
2328                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2329                         if (!(ah->caps.hw_caps &
2330                               ATH9K_HW_CAP_AUTOSLEEP)) {
2331                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2332                                 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2333                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2334                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2335                                         ath9k_hw_set_interrupts(sc->sc_ah,
2336                                                         sc->imask);
2337                                 }
2338                         }
2339                 }
2340         }
2341
2342         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2343                 struct ieee80211_channel *curchan = hw->conf.channel;
2344                 int pos = curchan->hw_value;
2345
2346                 aphy->chan_idx = pos;
2347                 aphy->chan_is_ht = conf_is_ht(conf);
2348
2349                 if (aphy->state == ATH_WIPHY_SCAN ||
2350                     aphy->state == ATH_WIPHY_ACTIVE)
2351                         ath9k_wiphy_pause_all_forced(sc, aphy);
2352                 else {
2353                         /*
2354                          * Do not change operational channel based on a paused
2355                          * wiphy changes.
2356                          */
2357                         goto skip_chan_change;
2358                 }
2359
2360                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2361                         curchan->center_freq);
2362
2363                 /* XXX: remove me eventualy */
2364                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2365
2366                 ath_update_chainmask(sc, conf_is_ht(conf));
2367
2368                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2369                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2370                         mutex_unlock(&sc->mutex);
2371                         return -EINVAL;
2372                 }
2373         }
2374
2375 skip_chan_change:
2376         if (changed & IEEE80211_CONF_CHANGE_POWER)
2377                 sc->config.txpowlimit = 2 * conf->power_level;
2378
2379         /*
2380          * The HW TSF has to be reset when the beacon interval changes.
2381          * We set the flag here, and ath_beacon_config_ap() would take this
2382          * into account when it gets called through the subsequent
2383          * config_interface() call - with IFCC_BEACON in the changed field.
2384          */
2385
2386         if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
2387                 sc->sc_flags |= SC_OP_TSF_RESET;
2388
2389         mutex_unlock(&sc->mutex);
2390
2391         return 0;
2392 }
2393
2394 static int ath9k_config_interface(struct ieee80211_hw *hw,
2395                                   struct ieee80211_vif *vif,
2396                                   struct ieee80211_if_conf *conf)
2397 {
2398         struct ath_wiphy *aphy = hw->priv;
2399         struct ath_softc *sc = aphy->sc;
2400         struct ath_hw *ah = sc->sc_ah;
2401         struct ath_vif *avp = (void *)vif->drv_priv;
2402         u32 rfilt = 0;
2403         int error, i;
2404
2405         mutex_lock(&sc->mutex);
2406
2407         /* TODO: Need to decide which hw opmode to use for multi-interface
2408          * cases */
2409         if (vif->type == NL80211_IFTYPE_AP &&
2410             ah->opmode != NL80211_IFTYPE_AP) {
2411                 ah->opmode = NL80211_IFTYPE_STATION;
2412                 ath9k_hw_setopmode(ah);
2413                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2414                 sc->curaid = 0;
2415                 ath9k_hw_write_associd(sc);
2416                 /* Request full reset to get hw opmode changed properly */
2417                 sc->sc_flags |= SC_OP_FULL_RESET;
2418         }
2419
2420         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2421             !is_zero_ether_addr(conf->bssid)) {
2422                 switch (vif->type) {
2423                 case NL80211_IFTYPE_STATION:
2424                 case NL80211_IFTYPE_ADHOC:
2425                 case NL80211_IFTYPE_MESH_POINT:
2426                         /* Set BSSID */
2427                         memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2428                         memcpy(avp->bssid, conf->bssid, ETH_ALEN);
2429                         sc->curaid = 0;
2430                         ath9k_hw_write_associd(sc);
2431
2432                         /* Set aggregation protection mode parameters */
2433                         sc->config.ath_aggr_prot = 0;
2434
2435                         DPRINTF(sc, ATH_DBG_CONFIG,
2436                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2437                                 rfilt, sc->curbssid, sc->curaid);
2438
2439                         /* need to reconfigure the beacon */
2440                         sc->sc_flags &= ~SC_OP_BEACONS ;
2441
2442                         break;
2443                 default:
2444                         break;
2445                 }
2446         }
2447
2448         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2449             (vif->type == NL80211_IFTYPE_AP) ||
2450             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2451                 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2452                     (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2453                      conf->enable_beacon)) {
2454                         /*
2455                          * Allocate and setup the beacon frame.
2456                          *
2457                          * Stop any previous beacon DMA.  This may be
2458                          * necessary, for example, when an ibss merge
2459                          * causes reconfiguration; we may be called
2460                          * with beacon transmission active.
2461                          */
2462                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2463
2464                         error = ath_beacon_alloc(aphy, vif);
2465                         if (error != 0) {
2466                                 mutex_unlock(&sc->mutex);
2467                                 return error;
2468                         }
2469
2470                         ath_beacon_config(sc, vif);
2471                 }
2472         }
2473
2474         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2475         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2476                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2477                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2478                                 ath9k_hw_keysetmac(sc->sc_ah,
2479                                                    (u16)i,
2480                                                    sc->curbssid);
2481         }
2482
2483         /* Only legacy IBSS for now */
2484         if (vif->type == NL80211_IFTYPE_ADHOC)
2485                 ath_update_chainmask(sc, 0);
2486
2487         mutex_unlock(&sc->mutex);
2488
2489         return 0;
2490 }
2491
2492 #define SUPPORTED_FILTERS                       \
2493         (FIF_PROMISC_IN_BSS |                   \
2494         FIF_ALLMULTI |                          \
2495         FIF_CONTROL |                           \
2496         FIF_OTHER_BSS |                         \
2497         FIF_BCN_PRBRESP_PROMISC |               \
2498         FIF_FCSFAIL)
2499
2500 /* FIXME: sc->sc_full_reset ? */
2501 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2502                                    unsigned int changed_flags,
2503                                    unsigned int *total_flags,
2504                                    int mc_count,
2505                                    struct dev_mc_list *mclist)
2506 {
2507         struct ath_wiphy *aphy = hw->priv;
2508         struct ath_softc *sc = aphy->sc;
2509         u32 rfilt;
2510
2511         changed_flags &= SUPPORTED_FILTERS;
2512         *total_flags &= SUPPORTED_FILTERS;
2513
2514         sc->rx.rxfilter = *total_flags;
2515         rfilt = ath_calcrxfilter(sc);
2516         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2517
2518         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2519 }
2520
2521 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2522                              struct ieee80211_vif *vif,
2523                              enum sta_notify_cmd cmd,
2524                              struct ieee80211_sta *sta)
2525 {
2526         struct ath_wiphy *aphy = hw->priv;
2527         struct ath_softc *sc = aphy->sc;
2528
2529         switch (cmd) {
2530         case STA_NOTIFY_ADD:
2531                 ath_node_attach(sc, sta);
2532                 break;
2533         case STA_NOTIFY_REMOVE:
2534                 ath_node_detach(sc, sta);
2535                 break;
2536         default:
2537                 break;
2538         }
2539 }
2540
2541 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2542                          const struct ieee80211_tx_queue_params *params)
2543 {
2544         struct ath_wiphy *aphy = hw->priv;
2545         struct ath_softc *sc = aphy->sc;
2546         struct ath9k_tx_queue_info qi;
2547         int ret = 0, qnum;
2548
2549         if (queue >= WME_NUM_AC)
2550                 return 0;
2551
2552         mutex_lock(&sc->mutex);
2553
2554         qi.tqi_aifs = params->aifs;
2555         qi.tqi_cwmin = params->cw_min;
2556         qi.tqi_cwmax = params->cw_max;
2557         qi.tqi_burstTime = params->txop;
2558         qnum = ath_get_hal_qnum(queue, sc);
2559
2560         DPRINTF(sc, ATH_DBG_CONFIG,
2561                 "Configure tx [queue/halq] [%d/%d],  "
2562                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2563                 queue, qnum, params->aifs, params->cw_min,
2564                 params->cw_max, params->txop);
2565
2566         ret = ath_txq_update(sc, qnum, &qi);
2567         if (ret)
2568                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2569
2570         mutex_unlock(&sc->mutex);
2571
2572         return ret;
2573 }
2574
2575 static int ath9k_set_key(struct ieee80211_hw *hw,
2576                          enum set_key_cmd cmd,
2577                          struct ieee80211_vif *vif,
2578                          struct ieee80211_sta *sta,
2579                          struct ieee80211_key_conf *key)
2580 {
2581         struct ath_wiphy *aphy = hw->priv;
2582         struct ath_softc *sc = aphy->sc;
2583         int ret = 0;
2584
2585         if (modparam_nohwcrypt)
2586                 return -ENOSPC;
2587
2588         mutex_lock(&sc->mutex);
2589         ath9k_ps_wakeup(sc);
2590         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2591
2592         switch (cmd) {
2593         case SET_KEY:
2594                 ret = ath_key_config(sc, vif, sta, key);
2595                 if (ret >= 0) {
2596                         key->hw_key_idx = ret;
2597                         /* push IV and Michael MIC generation to stack */
2598                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2599                         if (key->alg == ALG_TKIP)
2600                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2601                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2602                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2603                         ret = 0;
2604                 }
2605                 break;
2606         case DISABLE_KEY:
2607                 ath_key_delete(sc, key);
2608                 break;
2609         default:
2610                 ret = -EINVAL;
2611         }
2612
2613         ath9k_ps_restore(sc);
2614         mutex_unlock(&sc->mutex);
2615
2616         return ret;
2617 }
2618
2619 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2620                                    struct ieee80211_vif *vif,
2621                                    struct ieee80211_bss_conf *bss_conf,
2622                                    u32 changed)
2623 {
2624         struct ath_wiphy *aphy = hw->priv;
2625         struct ath_softc *sc = aphy->sc;
2626
2627         mutex_lock(&sc->mutex);
2628
2629         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2630                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2631                         bss_conf->use_short_preamble);
2632                 if (bss_conf->use_short_preamble)
2633                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2634                 else
2635                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2636         }
2637
2638         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2639                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2640                         bss_conf->use_cts_prot);
2641                 if (bss_conf->use_cts_prot &&
2642                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2643                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2644                 else
2645                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2646         }
2647
2648         if (changed & BSS_CHANGED_ASSOC) {
2649                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2650                         bss_conf->assoc);
2651                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2652         }
2653
2654         mutex_unlock(&sc->mutex);
2655 }
2656
2657 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2658 {
2659         u64 tsf;
2660         struct ath_wiphy *aphy = hw->priv;
2661         struct ath_softc *sc = aphy->sc;
2662
2663         mutex_lock(&sc->mutex);
2664         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2665         mutex_unlock(&sc->mutex);
2666
2667         return tsf;
2668 }
2669
2670 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2671 {
2672         struct ath_wiphy *aphy = hw->priv;
2673         struct ath_softc *sc = aphy->sc;
2674
2675         mutex_lock(&sc->mutex);
2676         ath9k_hw_settsf64(sc->sc_ah, tsf);
2677         mutex_unlock(&sc->mutex);
2678 }
2679
2680 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2681 {
2682         struct ath_wiphy *aphy = hw->priv;
2683         struct ath_softc *sc = aphy->sc;
2684
2685         mutex_lock(&sc->mutex);
2686         ath9k_hw_reset_tsf(sc->sc_ah);
2687         mutex_unlock(&sc->mutex);
2688 }
2689
2690 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2691                               enum ieee80211_ampdu_mlme_action action,
2692                               struct ieee80211_sta *sta,
2693                               u16 tid, u16 *ssn)
2694 {
2695         struct ath_wiphy *aphy = hw->priv;
2696         struct ath_softc *sc = aphy->sc;
2697         int ret = 0;
2698
2699         switch (action) {
2700         case IEEE80211_AMPDU_RX_START:
2701                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2702                         ret = -ENOTSUPP;
2703                 break;
2704         case IEEE80211_AMPDU_RX_STOP:
2705                 break;
2706         case IEEE80211_AMPDU_TX_START:
2707                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2708                 if (ret < 0)
2709                         DPRINTF(sc, ATH_DBG_FATAL,
2710                                 "Unable to start TX aggregation\n");
2711                 else
2712                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2713                 break;
2714         case IEEE80211_AMPDU_TX_STOP:
2715                 ret = ath_tx_aggr_stop(sc, sta, tid);
2716                 if (ret < 0)
2717                         DPRINTF(sc, ATH_DBG_FATAL,
2718                                 "Unable to stop TX aggregation\n");
2719
2720                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2721                 break;
2722         case IEEE80211_AMPDU_TX_OPERATIONAL:
2723                 ath_tx_aggr_resume(sc, sta, tid);
2724                 break;
2725         default:
2726                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2727         }
2728
2729         return ret;
2730 }
2731
2732 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2733 {
2734         struct ath_wiphy *aphy = hw->priv;
2735         struct ath_softc *sc = aphy->sc;
2736
2737         if (ath9k_wiphy_scanning(sc)) {
2738                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2739                        "same time\n");
2740                 /*
2741                  * Do not allow the concurrent scanning state for now. This
2742                  * could be improved with scanning control moved into ath9k.
2743                  */
2744                 return;
2745         }
2746
2747         aphy->state = ATH_WIPHY_SCAN;
2748         ath9k_wiphy_pause_all_forced(sc, aphy);
2749
2750         mutex_lock(&sc->mutex);
2751         sc->sc_flags |= SC_OP_SCANNING;
2752         mutex_unlock(&sc->mutex);
2753 }
2754
2755 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2756 {
2757         struct ath_wiphy *aphy = hw->priv;
2758         struct ath_softc *sc = aphy->sc;
2759
2760         mutex_lock(&sc->mutex);
2761         aphy->state = ATH_WIPHY_ACTIVE;
2762         sc->sc_flags &= ~SC_OP_SCANNING;
2763         mutex_unlock(&sc->mutex);
2764 }
2765
2766 struct ieee80211_ops ath9k_ops = {
2767         .tx                 = ath9k_tx,
2768         .start              = ath9k_start,
2769         .stop               = ath9k_stop,
2770         .add_interface      = ath9k_add_interface,
2771         .remove_interface   = ath9k_remove_interface,
2772         .config             = ath9k_config,
2773         .config_interface   = ath9k_config_interface,
2774         .configure_filter   = ath9k_configure_filter,
2775         .sta_notify         = ath9k_sta_notify,
2776         .conf_tx            = ath9k_conf_tx,
2777         .bss_info_changed   = ath9k_bss_info_changed,
2778         .set_key            = ath9k_set_key,
2779         .get_tsf            = ath9k_get_tsf,
2780         .set_tsf            = ath9k_set_tsf,
2781         .reset_tsf          = ath9k_reset_tsf,
2782         .ampdu_action       = ath9k_ampdu_action,
2783         .sw_scan_start      = ath9k_sw_scan_start,
2784         .sw_scan_complete   = ath9k_sw_scan_complete,
2785 };
2786
2787 static struct {
2788         u32 version;
2789         const char * name;
2790 } ath_mac_bb_names[] = {
2791         { AR_SREV_VERSION_5416_PCI,     "5416" },
2792         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2793         { AR_SREV_VERSION_9100,         "9100" },
2794         { AR_SREV_VERSION_9160,         "9160" },
2795         { AR_SREV_VERSION_9280,         "9280" },
2796         { AR_SREV_VERSION_9285,         "9285" }
2797 };
2798
2799 static struct {
2800         u16 version;
2801         const char * name;
2802 } ath_rf_names[] = {
2803         { 0,                            "5133" },
2804         { AR_RAD5133_SREV_MAJOR,        "5133" },
2805         { AR_RAD5122_SREV_MAJOR,        "5122" },
2806         { AR_RAD2133_SREV_MAJOR,        "2133" },
2807         { AR_RAD2122_SREV_MAJOR,        "2122" }
2808 };
2809
2810 /*
2811  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2812  */
2813 const char *
2814 ath_mac_bb_name(u32 mac_bb_version)
2815 {
2816         int i;
2817
2818         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2819                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2820                         return ath_mac_bb_names[i].name;
2821                 }
2822         }
2823
2824         return "????";
2825 }
2826
2827 /*
2828  * Return the RF name. "????" is returned if the RF is unknown.
2829  */
2830 const char *
2831 ath_rf_name(u16 rf_version)
2832 {
2833         int i;
2834
2835         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2836                 if (ath_rf_names[i].version == rf_version) {
2837                         return ath_rf_names[i].name;
2838                 }
2839         }
2840
2841         return "????";
2842 }
2843
2844 static int __init ath9k_init(void)
2845 {
2846         int error;
2847
2848         /* Register rate control algorithm */
2849         error = ath_rate_control_register();
2850         if (error != 0) {
2851                 printk(KERN_ERR
2852                         "ath9k: Unable to register rate control "
2853                         "algorithm: %d\n",
2854                         error);
2855                 goto err_out;
2856         }
2857
2858         error = ath9k_debug_create_root();
2859         if (error) {
2860                 printk(KERN_ERR
2861                         "ath9k: Unable to create debugfs root: %d\n",
2862                         error);
2863                 goto err_rate_unregister;
2864         }
2865
2866         error = ath_pci_init();
2867         if (error < 0) {
2868                 printk(KERN_ERR
2869                         "ath9k: No PCI devices found, driver not installed.\n");
2870                 error = -ENODEV;
2871                 goto err_remove_root;
2872         }
2873
2874         error = ath_ahb_init();
2875         if (error < 0) {
2876                 error = -ENODEV;
2877                 goto err_pci_exit;
2878         }
2879
2880         return 0;
2881
2882  err_pci_exit:
2883         ath_pci_exit();
2884
2885  err_remove_root:
2886         ath9k_debug_remove_root();
2887  err_rate_unregister:
2888         ath_rate_control_unregister();
2889  err_out:
2890         return error;
2891 }
2892 module_init(ath9k_init);
2893
2894 static void __exit ath9k_exit(void)
2895 {
2896         ath_ahb_exit();
2897         ath_pci_exit();
2898         ath9k_debug_remove_root();
2899         ath_rate_control_unregister();
2900         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2901 }
2902 module_exit(ath9k_exit);