]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/ath9k/main.c
ath9k: Check for root debugfs file
[mv-sheeva.git] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 /*
235  * Set/change channels.  If the channel is really being changed, it's done
236  * by reseting the chip.  To accomplish this we must first cleanup any pending
237  * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240                     struct ath9k_channel *hchan)
241 {
242         struct ath_hw *ah = sc->sc_ah;
243         bool fastcc = true, stopped;
244         struct ieee80211_channel *channel = hw->conf.channel;
245         int r;
246
247         if (sc->sc_flags & SC_OP_INVALID)
248                 return -EIO;
249
250         ath9k_ps_wakeup(sc);
251
252         /*
253          * This is only performed if the channel settings have
254          * actually changed.
255          *
256          * To switch channels clear any pending DMA operations;
257          * wait long enough for the RX fifo to drain, reset the
258          * hardware at the new frequency, and then re-enable
259          * the relevant bits of the h/w.
260          */
261         ath9k_hw_set_interrupts(ah, 0);
262         ath_drain_all_txq(sc, false);
263         stopped = ath_stoprecv(sc);
264
265         /* XXX: do not flush receive queue here. We don't want
266          * to flush data frames already in queue because of
267          * changing channel. */
268
269         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270                 fastcc = false;
271
272         DPRINTF(sc, ATH_DBG_CONFIG,
273                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274                 sc->sc_ah->curchan->channel,
275                 channel->center_freq, sc->tx_chan_width);
276
277         spin_lock_bh(&sc->sc_resetlock);
278
279         r = ath9k_hw_reset(ah, hchan, fastcc);
280         if (r) {
281                 DPRINTF(sc, ATH_DBG_FATAL,
282                         "Unable to reset channel (%u Mhz) "
283                         "reset status %u\n",
284                         channel->center_freq, r);
285                 spin_unlock_bh(&sc->sc_resetlock);
286                 return r;
287         }
288         spin_unlock_bh(&sc->sc_resetlock);
289
290         sc->sc_flags &= ~SC_OP_FULL_RESET;
291
292         if (ath_startrecv(sc) != 0) {
293                 DPRINTF(sc, ATH_DBG_FATAL,
294                         "Unable to restart recv logic\n");
295                 return -EIO;
296         }
297
298         ath_cache_conf_rate(sc, &hw->conf);
299         ath_update_txpow(sc);
300         ath9k_hw_set_interrupts(ah, sc->imask);
301         ath9k_ps_restore(sc);
302         return 0;
303 }
304
305 /*
306  *  This routine performs the periodic noise floor calibration function
307  *  that is used to adjust and optimize the chip performance.  This
308  *  takes environmental changes (location, temperature) into account.
309  *  When the task is complete, it reschedules itself depending on the
310  *  appropriate interval that was calculated.
311  */
312 static void ath_ani_calibrate(unsigned long data)
313 {
314         struct ath_softc *sc = (struct ath_softc *)data;
315         struct ath_hw *ah = sc->sc_ah;
316         bool longcal = false;
317         bool shortcal = false;
318         bool aniflag = false;
319         unsigned int timestamp = jiffies_to_msecs(jiffies);
320         u32 cal_interval, short_cal_interval;
321
322         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
324
325         /*
326         * don't calibrate when we're scanning.
327         * we are most likely not on our home channel.
328         */
329         if (sc->sc_flags & SC_OP_SCANNING)
330                 goto set_timer;
331
332         /* Long calibration runs independently of short calibration. */
333         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
334                 longcal = true;
335                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
336                 sc->ani.longcal_timer = timestamp;
337         }
338
339         /* Short calibration applies only while caldone is false */
340         if (!sc->ani.caldone) {
341                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
342                         shortcal = true;
343                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
344                         sc->ani.shortcal_timer = timestamp;
345                         sc->ani.resetcal_timer = timestamp;
346                 }
347         } else {
348                 if ((timestamp - sc->ani.resetcal_timer) >=
349                     ATH_RESTART_CALINTERVAL) {
350                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
351                         if (sc->ani.caldone)
352                                 sc->ani.resetcal_timer = timestamp;
353                 }
354         }
355
356         /* Verify whether we must check ANI */
357         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
358                 aniflag = true;
359                 sc->ani.checkani_timer = timestamp;
360         }
361
362         /* Skip all processing if there's nothing to do. */
363         if (longcal || shortcal || aniflag) {
364                 /* Call ANI routine if necessary */
365                 if (aniflag)
366                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
367
368                 /* Perform calibration if necessary */
369                 if (longcal || shortcal) {
370                         bool iscaldone = false;
371
372                         if (ath9k_hw_calibrate(ah, ah->curchan,
373                                                sc->rx_chainmask, longcal,
374                                                &iscaldone)) {
375                                 if (longcal)
376                                         sc->ani.noise_floor =
377                                                 ath9k_hw_getchan_noise(ah,
378                                                                ah->curchan);
379
380                                 DPRINTF(sc, ATH_DBG_ANI,
381                                         "calibrate chan %u/%x nf: %d\n",
382                                         ah->curchan->channel,
383                                         ah->curchan->channelFlags,
384                                         sc->ani.noise_floor);
385                         } else {
386                                 DPRINTF(sc, ATH_DBG_ANY,
387                                         "calibrate chan %u/%x failed\n",
388                                         ah->curchan->channel,
389                                         ah->curchan->channelFlags);
390                         }
391                         sc->ani.caldone = iscaldone;
392                 }
393         }
394
395 set_timer:
396         /*
397         * Set timer interval based on previous results.
398         * The interval must be the shortest necessary to satisfy ANI,
399         * short calibration and long calibration.
400         */
401         cal_interval = ATH_LONG_CALINTERVAL;
402         if (sc->sc_ah->config.enable_ani)
403                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
404         if (!sc->ani.caldone)
405                 cal_interval = min(cal_interval, (u32)short_cal_interval);
406
407         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
408 }
409
410 /*
411  * Update tx/rx chainmask. For legacy association,
412  * hard code chainmask to 1x1, for 11n association, use
413  * the chainmask configuration, for bt coexistence, use
414  * the chainmask configuration even in legacy mode.
415  */
416 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
417 {
418         if (is_ht ||
419             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
420                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
421                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
422         } else {
423                 sc->tx_chainmask = 1;
424                 sc->rx_chainmask = 1;
425         }
426
427         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
428                 sc->tx_chainmask, sc->rx_chainmask);
429 }
430
431 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
432 {
433         struct ath_node *an;
434
435         an = (struct ath_node *)sta->drv_priv;
436
437         if (sc->sc_flags & SC_OP_TXAGGR)
438                 ath_tx_node_init(sc, an);
439
440         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
441                              sta->ht_cap.ampdu_factor);
442         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
443 }
444
445 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
446 {
447         struct ath_node *an = (struct ath_node *)sta->drv_priv;
448
449         if (sc->sc_flags & SC_OP_TXAGGR)
450                 ath_tx_node_cleanup(sc, an);
451 }
452
453 static void ath9k_tasklet(unsigned long data)
454 {
455         struct ath_softc *sc = (struct ath_softc *)data;
456         u32 status = sc->intrstatus;
457
458         if (status & ATH9K_INT_FATAL) {
459                 /* need a chip reset */
460                 ath_reset(sc, false);
461                 return;
462         } else {
463
464                 if (status &
465                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
466                         spin_lock_bh(&sc->rx.rxflushlock);
467                         ath_rx_tasklet(sc, 0);
468                         spin_unlock_bh(&sc->rx.rxflushlock);
469                 }
470                 /* XXX: optimize this */
471                 if (status & ATH9K_INT_TX)
472                         ath_tx_tasklet(sc);
473         }
474
475         /* re-enable hardware interrupt */
476         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
477 }
478
479 irqreturn_t ath_isr(int irq, void *dev)
480 {
481         struct ath_softc *sc = dev;
482         struct ath_hw *ah = sc->sc_ah;
483         enum ath9k_int status;
484         bool sched = false;
485
486         do {
487                 if (sc->sc_flags & SC_OP_INVALID) {
488                         /*
489                          * The hardware is not ready/present, don't
490                          * touch anything. Note this can happen early
491                          * on if the IRQ is shared.
492                          */
493                         return IRQ_NONE;
494                 }
495                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
496                         return IRQ_NONE;
497                 }
498
499                 /*
500                  * Figure out the reason(s) for the interrupt.  Note
501                  * that the hal returns a pseudo-ISR that may include
502                  * bits we haven't explicitly enabled so we mask the
503                  * value to insure we only process bits we requested.
504                  */
505                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
506
507                 status &= sc->imask;    /* discard unasked-for bits */
508
509                 /*
510                  * If there are no status bits set, then this interrupt was not
511                  * for me (should have been caught above).
512                  */
513                 if (!status)
514                         return IRQ_NONE;
515
516                 sc->intrstatus = status;
517                 ath9k_ps_wakeup(sc);
518
519                 if (status & ATH9K_INT_FATAL) {
520                         /* need a chip reset */
521                         sched = true;
522                 } else if (status & ATH9K_INT_RXORN) {
523                         /* need a chip reset */
524                         sched = true;
525                 } else {
526                         if (status & ATH9K_INT_SWBA) {
527                                 /* schedule a tasklet for beacon handling */
528                                 tasklet_schedule(&sc->bcon_tasklet);
529                         }
530                         if (status & ATH9K_INT_RXEOL) {
531                                 /*
532                                  * NB: the hardware should re-read the link when
533                                  *     RXE bit is written, but it doesn't work
534                                  *     at least on older hardware revs.
535                                  */
536                                 sched = true;
537                         }
538
539                         if (status & ATH9K_INT_TXURN)
540                                 /* bump tx trigger level */
541                                 ath9k_hw_updatetxtriglevel(ah, true);
542                         /* XXX: optimize this */
543                         if (status & ATH9K_INT_RX)
544                                 sched = true;
545                         if (status & ATH9K_INT_TX)
546                                 sched = true;
547                         if (status & ATH9K_INT_BMISS)
548                                 sched = true;
549                         /* carrier sense timeout */
550                         if (status & ATH9K_INT_CST)
551                                 sched = true;
552                         if (status & ATH9K_INT_MIB) {
553                                 /*
554                                  * Disable interrupts until we service the MIB
555                                  * interrupt; otherwise it will continue to
556                                  * fire.
557                                  */
558                                 ath9k_hw_set_interrupts(ah, 0);
559                                 /*
560                                  * Let the hal handle the event. We assume
561                                  * it will clear whatever condition caused
562                                  * the interrupt.
563                                  */
564                                 ath9k_hw_procmibevent(ah, &sc->nodestats);
565                                 ath9k_hw_set_interrupts(ah, sc->imask);
566                         }
567                         if (status & ATH9K_INT_TIM_TIMER) {
568                                 if (!(ah->caps.hw_caps &
569                                       ATH9K_HW_CAP_AUTOSLEEP)) {
570                                         /* Clear RxAbort bit so that we can
571                                          * receive frames */
572                                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
573                                         ath9k_hw_setrxabort(ah, 0);
574                                         sched = true;
575                                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
576                                 }
577                         }
578                         if (status & ATH9K_INT_TSFOOR) {
579                                 /* FIXME: Handle this interrupt for power save */
580                                 sched = true;
581                         }
582                 }
583                 ath9k_ps_restore(sc);
584         } while (0);
585
586         ath_debug_stat_interrupt(sc, status);
587
588         if (sched) {
589                 /* turn off every interrupt except SWBA */
590                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
591                 tasklet_schedule(&sc->intr_tq);
592         }
593
594         return IRQ_HANDLED;
595 }
596
597 static u32 ath_get_extchanmode(struct ath_softc *sc,
598                                struct ieee80211_channel *chan,
599                                enum nl80211_channel_type channel_type)
600 {
601         u32 chanmode = 0;
602
603         switch (chan->band) {
604         case IEEE80211_BAND_2GHZ:
605                 switch(channel_type) {
606                 case NL80211_CHAN_NO_HT:
607                 case NL80211_CHAN_HT20:
608                         chanmode = CHANNEL_G_HT20;
609                         break;
610                 case NL80211_CHAN_HT40PLUS:
611                         chanmode = CHANNEL_G_HT40PLUS;
612                         break;
613                 case NL80211_CHAN_HT40MINUS:
614                         chanmode = CHANNEL_G_HT40MINUS;
615                         break;
616                 }
617                 break;
618         case IEEE80211_BAND_5GHZ:
619                 switch(channel_type) {
620                 case NL80211_CHAN_NO_HT:
621                 case NL80211_CHAN_HT20:
622                         chanmode = CHANNEL_A_HT20;
623                         break;
624                 case NL80211_CHAN_HT40PLUS:
625                         chanmode = CHANNEL_A_HT40PLUS;
626                         break;
627                 case NL80211_CHAN_HT40MINUS:
628                         chanmode = CHANNEL_A_HT40MINUS;
629                         break;
630                 }
631                 break;
632         default:
633                 break;
634         }
635
636         return chanmode;
637 }
638
639 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
640                            struct ath9k_keyval *hk, const u8 *addr,
641                            bool authenticator)
642 {
643         const u8 *key_rxmic;
644         const u8 *key_txmic;
645
646         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
647         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
648
649         if (addr == NULL) {
650                 /*
651                  * Group key installation - only two key cache entries are used
652                  * regardless of splitmic capability since group key is only
653                  * used either for TX or RX.
654                  */
655                 if (authenticator) {
656                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
657                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
658                 } else {
659                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
660                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
661                 }
662                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
663         }
664         if (!sc->splitmic) {
665                 /* TX and RX keys share the same key cache entry. */
666                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
667                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
668                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
669         }
670
671         /* Separate key cache entries for TX and RX */
672
673         /* TX key goes at first index, RX key at +32. */
674         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
675         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
676                 /* TX MIC entry failed. No need to proceed further */
677                 DPRINTF(sc, ATH_DBG_FATAL,
678                         "Setting TX MIC Key Failed\n");
679                 return 0;
680         }
681
682         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683         /* XXX delete tx key on failure? */
684         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
685 }
686
687 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
688 {
689         int i;
690
691         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
692                 if (test_bit(i, sc->keymap) ||
693                     test_bit(i + 64, sc->keymap))
694                         continue; /* At least one part of TKIP key allocated */
695                 if (sc->splitmic &&
696                     (test_bit(i + 32, sc->keymap) ||
697                      test_bit(i + 64 + 32, sc->keymap)))
698                         continue; /* At least one part of TKIP key allocated */
699
700                 /* Found a free slot for a TKIP key */
701                 return i;
702         }
703         return -1;
704 }
705
706 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
707 {
708         int i;
709
710         /* First, try to find slots that would not be available for TKIP. */
711         if (sc->splitmic) {
712                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
713                         if (!test_bit(i, sc->keymap) &&
714                             (test_bit(i + 32, sc->keymap) ||
715                              test_bit(i + 64, sc->keymap) ||
716                              test_bit(i + 64 + 32, sc->keymap)))
717                                 return i;
718                         if (!test_bit(i + 32, sc->keymap) &&
719                             (test_bit(i, sc->keymap) ||
720                              test_bit(i + 64, sc->keymap) ||
721                              test_bit(i + 64 + 32, sc->keymap)))
722                                 return i + 32;
723                         if (!test_bit(i + 64, sc->keymap) &&
724                             (test_bit(i , sc->keymap) ||
725                              test_bit(i + 32, sc->keymap) ||
726                              test_bit(i + 64 + 32, sc->keymap)))
727                                 return i + 64;
728                         if (!test_bit(i + 64 + 32, sc->keymap) &&
729                             (test_bit(i, sc->keymap) ||
730                              test_bit(i + 32, sc->keymap) ||
731                              test_bit(i + 64, sc->keymap)))
732                                 return i + 64 + 32;
733                 }
734         } else {
735                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
736                         if (!test_bit(i, sc->keymap) &&
737                             test_bit(i + 64, sc->keymap))
738                                 return i;
739                         if (test_bit(i, sc->keymap) &&
740                             !test_bit(i + 64, sc->keymap))
741                                 return i + 64;
742                 }
743         }
744
745         /* No partially used TKIP slots, pick any available slot */
746         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
747                 /* Do not allow slots that could be needed for TKIP group keys
748                  * to be used. This limitation could be removed if we know that
749                  * TKIP will not be used. */
750                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
751                         continue;
752                 if (sc->splitmic) {
753                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
754                                 continue;
755                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
756                                 continue;
757                 }
758
759                 if (!test_bit(i, sc->keymap))
760                         return i; /* Found a free slot for a key */
761         }
762
763         /* No free slot found */
764         return -1;
765 }
766
767 static int ath_key_config(struct ath_softc *sc,
768                           struct ieee80211_vif *vif,
769                           struct ieee80211_sta *sta,
770                           struct ieee80211_key_conf *key)
771 {
772         struct ath9k_keyval hk;
773         const u8 *mac = NULL;
774         int ret = 0;
775         int idx;
776
777         memset(&hk, 0, sizeof(hk));
778
779         switch (key->alg) {
780         case ALG_WEP:
781                 hk.kv_type = ATH9K_CIPHER_WEP;
782                 break;
783         case ALG_TKIP:
784                 hk.kv_type = ATH9K_CIPHER_TKIP;
785                 break;
786         case ALG_CCMP:
787                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
788                 break;
789         default:
790                 return -EOPNOTSUPP;
791         }
792
793         hk.kv_len = key->keylen;
794         memcpy(hk.kv_val, key->key, key->keylen);
795
796         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
797                 /* For now, use the default keys for broadcast keys. This may
798                  * need to change with virtual interfaces. */
799                 idx = key->keyidx;
800         } else if (key->keyidx) {
801                 if (WARN_ON(!sta))
802                         return -EOPNOTSUPP;
803                 mac = sta->addr;
804
805                 if (vif->type != NL80211_IFTYPE_AP) {
806                         /* Only keyidx 0 should be used with unicast key, but
807                          * allow this for client mode for now. */
808                         idx = key->keyidx;
809                 } else
810                         return -EIO;
811         } else {
812                 if (WARN_ON(!sta))
813                         return -EOPNOTSUPP;
814                 mac = sta->addr;
815
816                 if (key->alg == ALG_TKIP)
817                         idx = ath_reserve_key_cache_slot_tkip(sc);
818                 else
819                         idx = ath_reserve_key_cache_slot(sc);
820                 if (idx < 0)
821                         return -ENOSPC; /* no free key cache entries */
822         }
823
824         if (key->alg == ALG_TKIP)
825                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
826                                       vif->type == NL80211_IFTYPE_AP);
827         else
828                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
829
830         if (!ret)
831                 return -EIO;
832
833         set_bit(idx, sc->keymap);
834         if (key->alg == ALG_TKIP) {
835                 set_bit(idx + 64, sc->keymap);
836                 if (sc->splitmic) {
837                         set_bit(idx + 32, sc->keymap);
838                         set_bit(idx + 64 + 32, sc->keymap);
839                 }
840         }
841
842         return idx;
843 }
844
845 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
846 {
847         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
848         if (key->hw_key_idx < IEEE80211_WEP_NKID)
849                 return;
850
851         clear_bit(key->hw_key_idx, sc->keymap);
852         if (key->alg != ALG_TKIP)
853                 return;
854
855         clear_bit(key->hw_key_idx + 64, sc->keymap);
856         if (sc->splitmic) {
857                 clear_bit(key->hw_key_idx + 32, sc->keymap);
858                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
859         }
860 }
861
862 static void setup_ht_cap(struct ath_softc *sc,
863                          struct ieee80211_sta_ht_cap *ht_info)
864 {
865 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
866 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
867
868         ht_info->ht_supported = true;
869         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
870                        IEEE80211_HT_CAP_SM_PS |
871                        IEEE80211_HT_CAP_SGI_40 |
872                        IEEE80211_HT_CAP_DSSSCCK40;
873
874         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
875         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
876
877         /* set up supported mcs set */
878         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
879
880         switch(sc->rx_chainmask) {
881         case 1:
882                 ht_info->mcs.rx_mask[0] = 0xff;
883                 break;
884         case 3:
885         case 5:
886         case 7:
887         default:
888                 ht_info->mcs.rx_mask[0] = 0xff;
889                 ht_info->mcs.rx_mask[1] = 0xff;
890                 break;
891         }
892
893         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
894 }
895
896 static void ath9k_bss_assoc_info(struct ath_softc *sc,
897                                  struct ieee80211_vif *vif,
898                                  struct ieee80211_bss_conf *bss_conf)
899 {
900         struct ath_vif *avp = (void *)vif->drv_priv;
901
902         if (bss_conf->assoc) {
903                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
904                         bss_conf->aid, sc->curbssid);
905
906                 /* New association, store aid */
907                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
908                         sc->curaid = bss_conf->aid;
909                         ath9k_hw_write_associd(sc);
910                 }
911
912                 /* Configure the beacon */
913                 ath_beacon_config(sc, vif);
914
915                 /* Reset rssi stats */
916                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
917                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
918                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
919                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
920
921                 /* Start ANI */
922                 mod_timer(&sc->ani.timer,
923                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
924         } else {
925                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
926                 sc->curaid = 0;
927         }
928 }
929
930 /********************************/
931 /*       LED functions          */
932 /********************************/
933
934 static void ath_led_blink_work(struct work_struct *work)
935 {
936         struct ath_softc *sc = container_of(work, struct ath_softc,
937                                             ath_led_blink_work.work);
938
939         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
940                 return;
941
942         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
943             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
944                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
945         else
946                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
947                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
948
949         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
950                            (sc->sc_flags & SC_OP_LED_ON) ?
951                            msecs_to_jiffies(sc->led_off_duration) :
952                            msecs_to_jiffies(sc->led_on_duration));
953
954         sc->led_on_duration = sc->led_on_cnt ?
955                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
956                         ATH_LED_ON_DURATION_IDLE;
957         sc->led_off_duration = sc->led_off_cnt ?
958                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
959                         ATH_LED_OFF_DURATION_IDLE;
960         sc->led_on_cnt = sc->led_off_cnt = 0;
961         if (sc->sc_flags & SC_OP_LED_ON)
962                 sc->sc_flags &= ~SC_OP_LED_ON;
963         else
964                 sc->sc_flags |= SC_OP_LED_ON;
965 }
966
967 static void ath_led_brightness(struct led_classdev *led_cdev,
968                                enum led_brightness brightness)
969 {
970         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
971         struct ath_softc *sc = led->sc;
972
973         switch (brightness) {
974         case LED_OFF:
975                 if (led->led_type == ATH_LED_ASSOC ||
976                     led->led_type == ATH_LED_RADIO) {
977                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
978                                 (led->led_type == ATH_LED_RADIO));
979                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
980                         if (led->led_type == ATH_LED_RADIO)
981                                 sc->sc_flags &= ~SC_OP_LED_ON;
982                 } else {
983                         sc->led_off_cnt++;
984                 }
985                 break;
986         case LED_FULL:
987                 if (led->led_type == ATH_LED_ASSOC) {
988                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
989                         queue_delayed_work(sc->hw->workqueue,
990                                            &sc->ath_led_blink_work, 0);
991                 } else if (led->led_type == ATH_LED_RADIO) {
992                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
993                         sc->sc_flags |= SC_OP_LED_ON;
994                 } else {
995                         sc->led_on_cnt++;
996                 }
997                 break;
998         default:
999                 break;
1000         }
1001 }
1002
1003 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1004                             char *trigger)
1005 {
1006         int ret;
1007
1008         led->sc = sc;
1009         led->led_cdev.name = led->name;
1010         led->led_cdev.default_trigger = trigger;
1011         led->led_cdev.brightness_set = ath_led_brightness;
1012
1013         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1014         if (ret)
1015                 DPRINTF(sc, ATH_DBG_FATAL,
1016                         "Failed to register led:%s", led->name);
1017         else
1018                 led->registered = 1;
1019         return ret;
1020 }
1021
1022 static void ath_unregister_led(struct ath_led *led)
1023 {
1024         if (led->registered) {
1025                 led_classdev_unregister(&led->led_cdev);
1026                 led->registered = 0;
1027         }
1028 }
1029
1030 static void ath_deinit_leds(struct ath_softc *sc)
1031 {
1032         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1033         ath_unregister_led(&sc->assoc_led);
1034         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1035         ath_unregister_led(&sc->tx_led);
1036         ath_unregister_led(&sc->rx_led);
1037         ath_unregister_led(&sc->radio_led);
1038         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1039 }
1040
1041 static void ath_init_leds(struct ath_softc *sc)
1042 {
1043         char *trigger;
1044         int ret;
1045
1046         /* Configure gpio 1 for output */
1047         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1048                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1049         /* LED off, active low */
1050         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1051
1052         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1053
1054         trigger = ieee80211_get_radio_led_name(sc->hw);
1055         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1056                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1057         ret = ath_register_led(sc, &sc->radio_led, trigger);
1058         sc->radio_led.led_type = ATH_LED_RADIO;
1059         if (ret)
1060                 goto fail;
1061
1062         trigger = ieee80211_get_assoc_led_name(sc->hw);
1063         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1064                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1065         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1066         sc->assoc_led.led_type = ATH_LED_ASSOC;
1067         if (ret)
1068                 goto fail;
1069
1070         trigger = ieee80211_get_tx_led_name(sc->hw);
1071         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1072                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1073         ret = ath_register_led(sc, &sc->tx_led, trigger);
1074         sc->tx_led.led_type = ATH_LED_TX;
1075         if (ret)
1076                 goto fail;
1077
1078         trigger = ieee80211_get_rx_led_name(sc->hw);
1079         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1080                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1081         ret = ath_register_led(sc, &sc->rx_led, trigger);
1082         sc->rx_led.led_type = ATH_LED_RX;
1083         if (ret)
1084                 goto fail;
1085
1086         return;
1087
1088 fail:
1089         ath_deinit_leds(sc);
1090 }
1091
1092 void ath_radio_enable(struct ath_softc *sc)
1093 {
1094         struct ath_hw *ah = sc->sc_ah;
1095         struct ieee80211_channel *channel = sc->hw->conf.channel;
1096         int r;
1097
1098         ath9k_ps_wakeup(sc);
1099         spin_lock_bh(&sc->sc_resetlock);
1100
1101         r = ath9k_hw_reset(ah, ah->curchan, false);
1102
1103         if (r) {
1104                 DPRINTF(sc, ATH_DBG_FATAL,
1105                         "Unable to reset channel %u (%uMhz) ",
1106                         "reset status %u\n",
1107                         channel->center_freq, r);
1108         }
1109         spin_unlock_bh(&sc->sc_resetlock);
1110
1111         ath_update_txpow(sc);
1112         if (ath_startrecv(sc) != 0) {
1113                 DPRINTF(sc, ATH_DBG_FATAL,
1114                         "Unable to restart recv logic\n");
1115                 return;
1116         }
1117
1118         if (sc->sc_flags & SC_OP_BEACONS)
1119                 ath_beacon_config(sc, NULL);    /* restart beacons */
1120
1121         /* Re-Enable  interrupts */
1122         ath9k_hw_set_interrupts(ah, sc->imask);
1123
1124         /* Enable LED */
1125         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1126                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1127         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1128
1129         ieee80211_wake_queues(sc->hw);
1130         ath9k_ps_restore(sc);
1131 }
1132
1133 void ath_radio_disable(struct ath_softc *sc)
1134 {
1135         struct ath_hw *ah = sc->sc_ah;
1136         struct ieee80211_channel *channel = sc->hw->conf.channel;
1137         int r;
1138
1139         ath9k_ps_wakeup(sc);
1140         ieee80211_stop_queues(sc->hw);
1141
1142         /* Disable LED */
1143         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1144         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1145
1146         /* Disable interrupts */
1147         ath9k_hw_set_interrupts(ah, 0);
1148
1149         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1150         ath_stoprecv(sc);               /* turn off frame recv */
1151         ath_flushrecv(sc);              /* flush recv queue */
1152
1153         spin_lock_bh(&sc->sc_resetlock);
1154         r = ath9k_hw_reset(ah, ah->curchan, false);
1155         if (r) {
1156                 DPRINTF(sc, ATH_DBG_FATAL,
1157                         "Unable to reset channel %u (%uMhz) "
1158                         "reset status %u\n",
1159                         channel->center_freq, r);
1160         }
1161         spin_unlock_bh(&sc->sc_resetlock);
1162
1163         ath9k_hw_phy_disable(ah);
1164         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1165         ath9k_ps_restore(sc);
1166 }
1167
1168 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1169
1170 /*******************/
1171 /*      Rfkill     */
1172 /*******************/
1173
1174 static bool ath_is_rfkill_set(struct ath_softc *sc)
1175 {
1176         struct ath_hw *ah = sc->sc_ah;
1177
1178         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1179                                   ah->rfkill_polarity;
1180 }
1181
1182 /* h/w rfkill poll function */
1183 static void ath_rfkill_poll(struct work_struct *work)
1184 {
1185         struct ath_softc *sc = container_of(work, struct ath_softc,
1186                                             rf_kill.rfkill_poll.work);
1187         bool radio_on;
1188
1189         if (sc->sc_flags & SC_OP_INVALID)
1190                 return;
1191
1192         radio_on = !ath_is_rfkill_set(sc);
1193
1194         /*
1195          * enable/disable radio only when there is a
1196          * state change in RF switch
1197          */
1198         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1199                 enum rfkill_state state;
1200
1201                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1202                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1203                                 : RFKILL_STATE_HARD_BLOCKED;
1204                 } else if (radio_on) {
1205                         ath_radio_enable(sc);
1206                         state = RFKILL_STATE_UNBLOCKED;
1207                 } else {
1208                         ath_radio_disable(sc);
1209                         state = RFKILL_STATE_HARD_BLOCKED;
1210                 }
1211
1212                 if (state == RFKILL_STATE_HARD_BLOCKED)
1213                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1214                 else
1215                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1216
1217                 rfkill_force_state(sc->rf_kill.rfkill, state);
1218         }
1219
1220         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1221                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1222 }
1223
1224 /* s/w rfkill handler */
1225 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1226 {
1227         struct ath_softc *sc = data;
1228
1229         switch (state) {
1230         case RFKILL_STATE_SOFT_BLOCKED:
1231                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1232                     SC_OP_RFKILL_SW_BLOCKED)))
1233                         ath_radio_disable(sc);
1234                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1235                 return 0;
1236         case RFKILL_STATE_UNBLOCKED:
1237                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1238                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1239                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1240                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1241                                         "radio as it is disabled by h/w\n");
1242                                 return -EPERM;
1243                         }
1244                         ath_radio_enable(sc);
1245                 }
1246                 return 0;
1247         default:
1248                 return -EINVAL;
1249         }
1250 }
1251
1252 /* Init s/w rfkill */
1253 static int ath_init_sw_rfkill(struct ath_softc *sc)
1254 {
1255         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1256                                              RFKILL_TYPE_WLAN);
1257         if (!sc->rf_kill.rfkill) {
1258                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1259                 return -ENOMEM;
1260         }
1261
1262         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1263                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1264         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1265         sc->rf_kill.rfkill->data = sc;
1266         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1267         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1268
1269         return 0;
1270 }
1271
1272 /* Deinitialize rfkill */
1273 static void ath_deinit_rfkill(struct ath_softc *sc)
1274 {
1275         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1276                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1277
1278         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1279                 rfkill_unregister(sc->rf_kill.rfkill);
1280                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1281                 sc->rf_kill.rfkill = NULL;
1282         }
1283 }
1284
1285 static int ath_start_rfkill_poll(struct ath_softc *sc)
1286 {
1287         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1288                 queue_delayed_work(sc->hw->workqueue,
1289                                    &sc->rf_kill.rfkill_poll, 0);
1290
1291         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1292                 if (rfkill_register(sc->rf_kill.rfkill)) {
1293                         DPRINTF(sc, ATH_DBG_FATAL,
1294                                 "Unable to register rfkill\n");
1295                         rfkill_free(sc->rf_kill.rfkill);
1296
1297                         /* Deinitialize the device */
1298                         ath_cleanup(sc);
1299                         return -EIO;
1300                 } else {
1301                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1302                 }
1303         }
1304
1305         return 0;
1306 }
1307 #endif /* CONFIG_RFKILL */
1308
1309 void ath_cleanup(struct ath_softc *sc)
1310 {
1311         ath_detach(sc);
1312         free_irq(sc->irq, sc);
1313         ath_bus_cleanup(sc);
1314         kfree(sc->sec_wiphy);
1315         ieee80211_free_hw(sc->hw);
1316 }
1317
1318 void ath_detach(struct ath_softc *sc)
1319 {
1320         struct ieee80211_hw *hw = sc->hw;
1321         int i = 0;
1322
1323         ath9k_ps_wakeup(sc);
1324
1325         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1326
1327 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1328         ath_deinit_rfkill(sc);
1329 #endif
1330         ath_deinit_leds(sc);
1331         cancel_work_sync(&sc->chan_work);
1332         cancel_delayed_work_sync(&sc->wiphy_work);
1333
1334         for (i = 0; i < sc->num_sec_wiphy; i++) {
1335                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1336                 if (aphy == NULL)
1337                         continue;
1338                 sc->sec_wiphy[i] = NULL;
1339                 ieee80211_unregister_hw(aphy->hw);
1340                 ieee80211_free_hw(aphy->hw);
1341         }
1342         ieee80211_unregister_hw(hw);
1343         ath_rx_cleanup(sc);
1344         ath_tx_cleanup(sc);
1345
1346         tasklet_kill(&sc->intr_tq);
1347         tasklet_kill(&sc->bcon_tasklet);
1348
1349         if (!(sc->sc_flags & SC_OP_INVALID))
1350                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1351
1352         /* cleanup tx queues */
1353         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1354                 if (ATH_TXQ_SETUP(sc, i))
1355                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1356
1357         ath9k_hw_detach(sc->sc_ah);
1358         ath9k_exit_debug(sc);
1359         ath9k_ps_restore(sc);
1360 }
1361
1362 static int ath_init(u16 devid, struct ath_softc *sc)
1363 {
1364         struct ath_hw *ah = NULL;
1365         int status;
1366         int error = 0, i;
1367         int csz = 0;
1368
1369         /* XXX: hardware will not be ready until ath_open() being called */
1370         sc->sc_flags |= SC_OP_INVALID;
1371
1372         if (ath9k_init_debug(sc) < 0)
1373                 printk(KERN_ERR "Unable to create debugfs files\n");
1374
1375         spin_lock_init(&sc->wiphy_lock);
1376         spin_lock_init(&sc->sc_resetlock);
1377         spin_lock_init(&sc->sc_serial_rw);
1378         mutex_init(&sc->mutex);
1379         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1380         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1381                      (unsigned long)sc);
1382
1383         /*
1384          * Cache line size is used to size and align various
1385          * structures used to communicate with the hardware.
1386          */
1387         ath_read_cachesize(sc, &csz);
1388         /* XXX assert csz is non-zero */
1389         sc->cachelsz = csz << 2;        /* convert to bytes */
1390
1391         ah = ath9k_hw_attach(devid, sc, &status);
1392         if (ah == NULL) {
1393                 DPRINTF(sc, ATH_DBG_FATAL,
1394                         "Unable to attach hardware; HAL status %d\n", status);
1395                 error = -ENXIO;
1396                 goto bad;
1397         }
1398         sc->sc_ah = ah;
1399
1400         /* Get the hardware key cache size. */
1401         sc->keymax = ah->caps.keycache_size;
1402         if (sc->keymax > ATH_KEYMAX) {
1403                 DPRINTF(sc, ATH_DBG_ANY,
1404                         "Warning, using only %u entries in %u key cache\n",
1405                         ATH_KEYMAX, sc->keymax);
1406                 sc->keymax = ATH_KEYMAX;
1407         }
1408
1409         /*
1410          * Reset the key cache since some parts do not
1411          * reset the contents on initial power up.
1412          */
1413         for (i = 0; i < sc->keymax; i++)
1414                 ath9k_hw_keyreset(ah, (u16) i);
1415
1416         if (ath9k_regd_init(sc->sc_ah))
1417                 goto bad;
1418
1419         /* default to MONITOR mode */
1420         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1421
1422         /* Setup rate tables */
1423
1424         ath_rate_attach(sc);
1425         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1426         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1427
1428         /*
1429          * Allocate hardware transmit queues: one queue for
1430          * beacon frames and one data queue for each QoS
1431          * priority.  Note that the hal handles reseting
1432          * these queues at the needed time.
1433          */
1434         sc->beacon.beaconq = ath_beaconq_setup(ah);
1435         if (sc->beacon.beaconq == -1) {
1436                 DPRINTF(sc, ATH_DBG_FATAL,
1437                         "Unable to setup a beacon xmit queue\n");
1438                 error = -EIO;
1439                 goto bad2;
1440         }
1441         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1442         if (sc->beacon.cabq == NULL) {
1443                 DPRINTF(sc, ATH_DBG_FATAL,
1444                         "Unable to setup CAB xmit queue\n");
1445                 error = -EIO;
1446                 goto bad2;
1447         }
1448
1449         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1450         ath_cabq_update(sc);
1451
1452         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1453                 sc->tx.hwq_map[i] = -1;
1454
1455         /* Setup data queues */
1456         /* NB: ensure BK queue is the lowest priority h/w queue */
1457         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1458                 DPRINTF(sc, ATH_DBG_FATAL,
1459                         "Unable to setup xmit queue for BK traffic\n");
1460                 error = -EIO;
1461                 goto bad2;
1462         }
1463
1464         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1465                 DPRINTF(sc, ATH_DBG_FATAL,
1466                         "Unable to setup xmit queue for BE traffic\n");
1467                 error = -EIO;
1468                 goto bad2;
1469         }
1470         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1471                 DPRINTF(sc, ATH_DBG_FATAL,
1472                         "Unable to setup xmit queue for VI traffic\n");
1473                 error = -EIO;
1474                 goto bad2;
1475         }
1476         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1477                 DPRINTF(sc, ATH_DBG_FATAL,
1478                         "Unable to setup xmit queue for VO traffic\n");
1479                 error = -EIO;
1480                 goto bad2;
1481         }
1482
1483         /* Initializes the noise floor to a reasonable default value.
1484          * Later on this will be updated during ANI processing. */
1485
1486         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1487         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1488
1489         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1490                                    ATH9K_CIPHER_TKIP, NULL)) {
1491                 /*
1492                  * Whether we should enable h/w TKIP MIC.
1493                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1494                  * report WMM capable, so it's always safe to turn on
1495                  * TKIP MIC in this case.
1496                  */
1497                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1498                                        0, 1, NULL);
1499         }
1500
1501         /*
1502          * Check whether the separate key cache entries
1503          * are required to handle both tx+rx MIC keys.
1504          * With split mic keys the number of stations is limited
1505          * to 27 otherwise 59.
1506          */
1507         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1508                                    ATH9K_CIPHER_TKIP, NULL)
1509             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1510                                       ATH9K_CIPHER_MIC, NULL)
1511             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1512                                       0, NULL))
1513                 sc->splitmic = 1;
1514
1515         /* turn on mcast key search if possible */
1516         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1517                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1518                                              1, NULL);
1519
1520         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1521
1522         /* 11n Capabilities */
1523         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1524                 sc->sc_flags |= SC_OP_TXAGGR;
1525                 sc->sc_flags |= SC_OP_RXAGGR;
1526         }
1527
1528         sc->tx_chainmask = ah->caps.tx_chainmask;
1529         sc->rx_chainmask = ah->caps.rx_chainmask;
1530
1531         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1532         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1533
1534         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1535                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1536
1537         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1538
1539         /* initialize beacon slots */
1540         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1541                 sc->beacon.bslot[i] = NULL;
1542                 sc->beacon.bslot_aphy[i] = NULL;
1543         }
1544
1545         /* save MISC configurations */
1546         sc->config.swBeaconProcess = 1;
1547
1548         /* setup channels and rates */
1549
1550         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1551         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1552                 sc->rates[IEEE80211_BAND_2GHZ];
1553         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1554         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1555                 ARRAY_SIZE(ath9k_2ghz_chantable);
1556
1557         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1558                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1559                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1560                         sc->rates[IEEE80211_BAND_5GHZ];
1561                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1562                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1563                         ARRAY_SIZE(ath9k_5ghz_chantable);
1564         }
1565
1566         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1567                 ath9k_hw_btcoex_enable(sc->sc_ah);
1568
1569         return 0;
1570 bad2:
1571         /* cleanup tx queues */
1572         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1573                 if (ATH_TXQ_SETUP(sc, i))
1574                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1575 bad:
1576         if (ah)
1577                 ath9k_hw_detach(ah);
1578         ath9k_exit_debug(sc);
1579
1580         return error;
1581 }
1582
1583 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1584 {
1585         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1586                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1587                 IEEE80211_HW_SIGNAL_DBM |
1588                 IEEE80211_HW_AMPDU_AGGREGATION |
1589                 IEEE80211_HW_SUPPORTS_PS |
1590                 IEEE80211_HW_PS_NULLFUNC_STACK |
1591                 IEEE80211_HW_SPECTRUM_MGMT;
1592
1593         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1594                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1595
1596         hw->wiphy->interface_modes =
1597                 BIT(NL80211_IFTYPE_AP) |
1598                 BIT(NL80211_IFTYPE_STATION) |
1599                 BIT(NL80211_IFTYPE_ADHOC) |
1600                 BIT(NL80211_IFTYPE_MESH_POINT);
1601
1602         hw->wiphy->reg_notifier = ath9k_reg_notifier;
1603         hw->wiphy->strict_regulatory = true;
1604
1605         hw->queues = 4;
1606         hw->max_rates = 4;
1607         hw->channel_change_time = 5000;
1608         hw->max_listen_interval = 10;
1609         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1610         hw->sta_data_size = sizeof(struct ath_node);
1611         hw->vif_data_size = sizeof(struct ath_vif);
1612
1613         hw->rate_control_algorithm = "ath9k_rate_control";
1614
1615         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1616                 &sc->sbands[IEEE80211_BAND_2GHZ];
1617         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1618                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1619                         &sc->sbands[IEEE80211_BAND_5GHZ];
1620 }
1621
1622 int ath_attach(u16 devid, struct ath_softc *sc)
1623 {
1624         struct ieee80211_hw *hw = sc->hw;
1625         const struct ieee80211_regdomain *regd;
1626         int error = 0, i;
1627
1628         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1629
1630         error = ath_init(devid, sc);
1631         if (error != 0)
1632                 return error;
1633
1634         /* get mac address from hardware and set in mac80211 */
1635
1636         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1637
1638         ath_set_hw_capab(sc, hw);
1639
1640         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1641                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1642                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1643                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1644         }
1645
1646         /* initialize tx/rx engine */
1647         error = ath_tx_init(sc, ATH_TXBUF);
1648         if (error != 0)
1649                 goto error_attach;
1650
1651         error = ath_rx_init(sc, ATH_RXBUF);
1652         if (error != 0)
1653                 goto error_attach;
1654
1655 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1656         /* Initialze h/w Rfkill */
1657         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1658                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1659
1660         /* Initialize s/w rfkill */
1661         error = ath_init_sw_rfkill(sc);
1662         if (error)
1663                 goto error_attach;
1664 #endif
1665
1666         if (ath9k_is_world_regd(sc->sc_ah)) {
1667                 /* Anything applied here (prior to wiphy registration) gets
1668                  * saved on the wiphy orig_* parameters */
1669                 regd = ath9k_world_regdomain(sc->sc_ah);
1670                 hw->wiphy->custom_regulatory = true;
1671                 hw->wiphy->strict_regulatory = false;
1672         } else {
1673                 /* This gets applied in the case of the absense of CRDA,
1674                  * it's our own custom world regulatory domain, similar to
1675                  * cfg80211's but we enable passive scanning */
1676                 regd = ath9k_default_world_regdomain();
1677         }
1678         wiphy_apply_custom_regulatory(hw->wiphy, regd);
1679         ath9k_reg_apply_radar_flags(hw->wiphy);
1680         ath9k_reg_apply_world_flags(hw->wiphy, NL80211_REGDOM_SET_BY_DRIVER);
1681
1682         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1683         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1684         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1685
1686         error = ieee80211_register_hw(hw);
1687
1688         if (!ath9k_is_world_regd(sc->sc_ah)) {
1689                 error = regulatory_hint(hw->wiphy,
1690                         sc->sc_ah->regulatory.alpha2);
1691                 if (error)
1692                         goto error_attach;
1693         }
1694
1695         /* Initialize LED control */
1696         ath_init_leds(sc);
1697
1698
1699         return 0;
1700
1701 error_attach:
1702         /* cleanup tx queues */
1703         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1704                 if (ATH_TXQ_SETUP(sc, i))
1705                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1706
1707         ath9k_hw_detach(sc->sc_ah);
1708         ath9k_exit_debug(sc);
1709
1710         return error;
1711 }
1712
1713 int ath_reset(struct ath_softc *sc, bool retry_tx)
1714 {
1715         struct ath_hw *ah = sc->sc_ah;
1716         struct ieee80211_hw *hw = sc->hw;
1717         int r;
1718
1719         ath9k_hw_set_interrupts(ah, 0);
1720         ath_drain_all_txq(sc, retry_tx);
1721         ath_stoprecv(sc);
1722         ath_flushrecv(sc);
1723
1724         spin_lock_bh(&sc->sc_resetlock);
1725         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1726         if (r)
1727                 DPRINTF(sc, ATH_DBG_FATAL,
1728                         "Unable to reset hardware; reset status %u\n", r);
1729         spin_unlock_bh(&sc->sc_resetlock);
1730
1731         if (ath_startrecv(sc) != 0)
1732                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1733
1734         /*
1735          * We may be doing a reset in response to a request
1736          * that changes the channel so update any state that
1737          * might change as a result.
1738          */
1739         ath_cache_conf_rate(sc, &hw->conf);
1740
1741         ath_update_txpow(sc);
1742
1743         if (sc->sc_flags & SC_OP_BEACONS)
1744                 ath_beacon_config(sc, NULL);    /* restart beacons */
1745
1746         ath9k_hw_set_interrupts(ah, sc->imask);
1747
1748         if (retry_tx) {
1749                 int i;
1750                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1751                         if (ATH_TXQ_SETUP(sc, i)) {
1752                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1753                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1754                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1755                         }
1756                 }
1757         }
1758
1759         return r;
1760 }
1761
1762 /*
1763  *  This function will allocate both the DMA descriptor structure, and the
1764  *  buffers it contains.  These are used to contain the descriptors used
1765  *  by the system.
1766 */
1767 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1768                       struct list_head *head, const char *name,
1769                       int nbuf, int ndesc)
1770 {
1771 #define DS2PHYS(_dd, _ds)                                               \
1772         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1773 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1774 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1775
1776         struct ath_desc *ds;
1777         struct ath_buf *bf;
1778         int i, bsize, error;
1779
1780         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1781                 name, nbuf, ndesc);
1782
1783         INIT_LIST_HEAD(head);
1784         /* ath_desc must be a multiple of DWORDs */
1785         if ((sizeof(struct ath_desc) % 4) != 0) {
1786                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1787                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1788                 error = -ENOMEM;
1789                 goto fail;
1790         }
1791
1792         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1793
1794         /*
1795          * Need additional DMA memory because we can't use
1796          * descriptors that cross the 4K page boundary. Assume
1797          * one skipped descriptor per 4K page.
1798          */
1799         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1800                 u32 ndesc_skipped =
1801                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1802                 u32 dma_len;
1803
1804                 while (ndesc_skipped) {
1805                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1806                         dd->dd_desc_len += dma_len;
1807
1808                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1809                 };
1810         }
1811
1812         /* allocate descriptors */
1813         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1814                                          &dd->dd_desc_paddr, GFP_KERNEL);
1815         if (dd->dd_desc == NULL) {
1816                 error = -ENOMEM;
1817                 goto fail;
1818         }
1819         ds = dd->dd_desc;
1820         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1821                 name, ds, (u32) dd->dd_desc_len,
1822                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1823
1824         /* allocate buffers */
1825         bsize = sizeof(struct ath_buf) * nbuf;
1826         bf = kzalloc(bsize, GFP_KERNEL);
1827         if (bf == NULL) {
1828                 error = -ENOMEM;
1829                 goto fail2;
1830         }
1831         dd->dd_bufptr = bf;
1832
1833         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1834                 bf->bf_desc = ds;
1835                 bf->bf_daddr = DS2PHYS(dd, ds);
1836
1837                 if (!(sc->sc_ah->caps.hw_caps &
1838                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1839                         /*
1840                          * Skip descriptor addresses which can cause 4KB
1841                          * boundary crossing (addr + length) with a 32 dword
1842                          * descriptor fetch.
1843                          */
1844                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1845                                 ASSERT((caddr_t) bf->bf_desc <
1846                                        ((caddr_t) dd->dd_desc +
1847                                         dd->dd_desc_len));
1848
1849                                 ds += ndesc;
1850                                 bf->bf_desc = ds;
1851                                 bf->bf_daddr = DS2PHYS(dd, ds);
1852                         }
1853                 }
1854                 list_add_tail(&bf->list, head);
1855         }
1856         return 0;
1857 fail2:
1858         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1859                           dd->dd_desc_paddr);
1860 fail:
1861         memset(dd, 0, sizeof(*dd));
1862         return error;
1863 #undef ATH_DESC_4KB_BOUND_CHECK
1864 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1865 #undef DS2PHYS
1866 }
1867
1868 void ath_descdma_cleanup(struct ath_softc *sc,
1869                          struct ath_descdma *dd,
1870                          struct list_head *head)
1871 {
1872         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1873                           dd->dd_desc_paddr);
1874
1875         INIT_LIST_HEAD(head);
1876         kfree(dd->dd_bufptr);
1877         memset(dd, 0, sizeof(*dd));
1878 }
1879
1880 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1881 {
1882         int qnum;
1883
1884         switch (queue) {
1885         case 0:
1886                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1887                 break;
1888         case 1:
1889                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1890                 break;
1891         case 2:
1892                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1893                 break;
1894         case 3:
1895                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1896                 break;
1897         default:
1898                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1899                 break;
1900         }
1901
1902         return qnum;
1903 }
1904
1905 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1906 {
1907         int qnum;
1908
1909         switch (queue) {
1910         case ATH9K_WME_AC_VO:
1911                 qnum = 0;
1912                 break;
1913         case ATH9K_WME_AC_VI:
1914                 qnum = 1;
1915                 break;
1916         case ATH9K_WME_AC_BE:
1917                 qnum = 2;
1918                 break;
1919         case ATH9K_WME_AC_BK:
1920                 qnum = 3;
1921                 break;
1922         default:
1923                 qnum = -1;
1924                 break;
1925         }
1926
1927         return qnum;
1928 }
1929
1930 /* XXX: Remove me once we don't depend on ath9k_channel for all
1931  * this redundant data */
1932 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1933                            struct ath9k_channel *ichan)
1934 {
1935         struct ieee80211_channel *chan = hw->conf.channel;
1936         struct ieee80211_conf *conf = &hw->conf;
1937
1938         ichan->channel = chan->center_freq;
1939         ichan->chan = chan;
1940
1941         if (chan->band == IEEE80211_BAND_2GHZ) {
1942                 ichan->chanmode = CHANNEL_G;
1943                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1944         } else {
1945                 ichan->chanmode = CHANNEL_A;
1946                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1947         }
1948
1949         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1950
1951         if (conf_is_ht(conf)) {
1952                 if (conf_is_ht40(conf))
1953                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1954
1955                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1956                                             conf->channel_type);
1957         }
1958 }
1959
1960 /**********************/
1961 /* mac80211 callbacks */
1962 /**********************/
1963
1964 static int ath9k_start(struct ieee80211_hw *hw)
1965 {
1966         struct ath_wiphy *aphy = hw->priv;
1967         struct ath_softc *sc = aphy->sc;
1968         struct ieee80211_channel *curchan = hw->conf.channel;
1969         struct ath9k_channel *init_channel;
1970         int r, pos;
1971
1972         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1973                 "initial channel: %d MHz\n", curchan->center_freq);
1974
1975         mutex_lock(&sc->mutex);
1976
1977         if (ath9k_wiphy_started(sc)) {
1978                 if (sc->chan_idx == curchan->hw_value) {
1979                         /*
1980                          * Already on the operational channel, the new wiphy
1981                          * can be marked active.
1982                          */
1983                         aphy->state = ATH_WIPHY_ACTIVE;
1984                         ieee80211_wake_queues(hw);
1985                 } else {
1986                         /*
1987                          * Another wiphy is on another channel, start the new
1988                          * wiphy in paused state.
1989                          */
1990                         aphy->state = ATH_WIPHY_PAUSED;
1991                         ieee80211_stop_queues(hw);
1992                 }
1993                 mutex_unlock(&sc->mutex);
1994                 return 0;
1995         }
1996         aphy->state = ATH_WIPHY_ACTIVE;
1997
1998         /* setup initial channel */
1999
2000         pos = curchan->hw_value;
2001
2002         sc->chan_idx = pos;
2003         init_channel = &sc->sc_ah->channels[pos];
2004         ath9k_update_ichannel(sc, hw, init_channel);
2005
2006         /* Reset SERDES registers */
2007         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2008
2009         /*
2010          * The basic interface to setting the hardware in a good
2011          * state is ``reset''.  On return the hardware is known to
2012          * be powered up and with interrupts disabled.  This must
2013          * be followed by initialization of the appropriate bits
2014          * and then setup of the interrupt mask.
2015          */
2016         spin_lock_bh(&sc->sc_resetlock);
2017         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2018         if (r) {
2019                 DPRINTF(sc, ATH_DBG_FATAL,
2020                         "Unable to reset hardware; reset status %u "
2021                         "(freq %u MHz)\n", r,
2022                         curchan->center_freq);
2023                 spin_unlock_bh(&sc->sc_resetlock);
2024                 goto mutex_unlock;
2025         }
2026         spin_unlock_bh(&sc->sc_resetlock);
2027
2028         /*
2029          * This is needed only to setup initial state
2030          * but it's best done after a reset.
2031          */
2032         ath_update_txpow(sc);
2033
2034         /*
2035          * Setup the hardware after reset:
2036          * The receive engine is set going.
2037          * Frame transmit is handled entirely
2038          * in the frame output path; there's nothing to do
2039          * here except setup the interrupt mask.
2040          */
2041         if (ath_startrecv(sc) != 0) {
2042                 DPRINTF(sc, ATH_DBG_FATAL,
2043                         "Unable to start recv logic\n");
2044                 r = -EIO;
2045                 goto mutex_unlock;
2046         }
2047
2048         /* Setup our intr mask. */
2049         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2050                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2051                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2052
2053         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2054                 sc->imask |= ATH9K_INT_GTT;
2055
2056         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2057                 sc->imask |= ATH9K_INT_CST;
2058
2059         ath_cache_conf_rate(sc, &hw->conf);
2060
2061         sc->sc_flags &= ~SC_OP_INVALID;
2062
2063         /* Disable BMISS interrupt when we're not associated */
2064         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2065         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2066
2067         ieee80211_wake_queues(hw);
2068
2069 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2070         r = ath_start_rfkill_poll(sc);
2071 #endif
2072
2073 mutex_unlock:
2074         mutex_unlock(&sc->mutex);
2075
2076         return r;
2077 }
2078
2079 static int ath9k_tx(struct ieee80211_hw *hw,
2080                     struct sk_buff *skb)
2081 {
2082         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2083         struct ath_wiphy *aphy = hw->priv;
2084         struct ath_softc *sc = aphy->sc;
2085         struct ath_tx_control txctl;
2086         int hdrlen, padsize;
2087
2088         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2089                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2090                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2091                 goto exit;
2092         }
2093
2094         memset(&txctl, 0, sizeof(struct ath_tx_control));
2095
2096         /*
2097          * As a temporary workaround, assign seq# here; this will likely need
2098          * to be cleaned up to work better with Beacon transmission and virtual
2099          * BSSes.
2100          */
2101         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2102                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2103                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2104                         sc->tx.seq_no += 0x10;
2105                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2106                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2107         }
2108
2109         /* Add the padding after the header if this is not already done */
2110         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2111         if (hdrlen & 3) {
2112                 padsize = hdrlen % 4;
2113                 if (skb_headroom(skb) < padsize)
2114                         return -1;
2115                 skb_push(skb, padsize);
2116                 memmove(skb->data, skb->data + padsize, hdrlen);
2117         }
2118
2119         /* Check if a tx queue is available */
2120
2121         txctl.txq = ath_test_get_txq(sc, skb);
2122         if (!txctl.txq)
2123                 goto exit;
2124
2125         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2126
2127         if (ath_tx_start(hw, skb, &txctl) != 0) {
2128                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2129                 goto exit;
2130         }
2131
2132         return 0;
2133 exit:
2134         dev_kfree_skb_any(skb);
2135         return 0;
2136 }
2137
2138 static void ath9k_stop(struct ieee80211_hw *hw)
2139 {
2140         struct ath_wiphy *aphy = hw->priv;
2141         struct ath_softc *sc = aphy->sc;
2142
2143         aphy->state = ATH_WIPHY_INACTIVE;
2144
2145         if (sc->sc_flags & SC_OP_INVALID) {
2146                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2147                 return;
2148         }
2149
2150         mutex_lock(&sc->mutex);
2151
2152         ieee80211_stop_queues(hw);
2153
2154         if (ath9k_wiphy_started(sc)) {
2155                 mutex_unlock(&sc->mutex);
2156                 return; /* another wiphy still in use */
2157         }
2158
2159         /* make sure h/w will not generate any interrupt
2160          * before setting the invalid flag. */
2161         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2162
2163         if (!(sc->sc_flags & SC_OP_INVALID)) {
2164                 ath_drain_all_txq(sc, false);
2165                 ath_stoprecv(sc);
2166                 ath9k_hw_phy_disable(sc->sc_ah);
2167         } else
2168                 sc->rx.rxlink = NULL;
2169
2170 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2171         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2172                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2173 #endif
2174         /* disable HAL and put h/w to sleep */
2175         ath9k_hw_disable(sc->sc_ah);
2176         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2177
2178         sc->sc_flags |= SC_OP_INVALID;
2179
2180         mutex_unlock(&sc->mutex);
2181
2182         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2183 }
2184
2185 static int ath9k_add_interface(struct ieee80211_hw *hw,
2186                                struct ieee80211_if_init_conf *conf)
2187 {
2188         struct ath_wiphy *aphy = hw->priv;
2189         struct ath_softc *sc = aphy->sc;
2190         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2191         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2192         int ret = 0;
2193
2194         mutex_lock(&sc->mutex);
2195
2196         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2197             sc->nvifs > 0) {
2198                 ret = -ENOBUFS;
2199                 goto out;
2200         }
2201
2202         switch (conf->type) {
2203         case NL80211_IFTYPE_STATION:
2204                 ic_opmode = NL80211_IFTYPE_STATION;
2205                 break;
2206         case NL80211_IFTYPE_ADHOC:
2207         case NL80211_IFTYPE_AP:
2208         case NL80211_IFTYPE_MESH_POINT:
2209                 if (sc->nbcnvifs >= ATH_BCBUF) {
2210                         ret = -ENOBUFS;
2211                         goto out;
2212                 }
2213                 ic_opmode = conf->type;
2214                 break;
2215         default:
2216                 DPRINTF(sc, ATH_DBG_FATAL,
2217                         "Interface type %d not yet supported\n", conf->type);
2218                 ret = -EOPNOTSUPP;
2219                 goto out;
2220         }
2221
2222         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2223
2224         /* Set the VIF opmode */
2225         avp->av_opmode = ic_opmode;
2226         avp->av_bslot = -1;
2227
2228         sc->nvifs++;
2229
2230         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2231                 ath9k_set_bssid_mask(hw);
2232
2233         if (sc->nvifs > 1)
2234                 goto out; /* skip global settings for secondary vif */
2235
2236         if (ic_opmode == NL80211_IFTYPE_AP) {
2237                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2238                 sc->sc_flags |= SC_OP_TSF_RESET;
2239         }
2240
2241         /* Set the device opmode */
2242         sc->sc_ah->opmode = ic_opmode;
2243
2244         /*
2245          * Enable MIB interrupts when there are hardware phy counters.
2246          * Note we only do this (at the moment) for station mode.
2247          */
2248         if ((conf->type == NL80211_IFTYPE_STATION) ||
2249             (conf->type == NL80211_IFTYPE_ADHOC) ||
2250             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2251                 if (ath9k_hw_phycounters(sc->sc_ah))
2252                         sc->imask |= ATH9K_INT_MIB;
2253                 sc->imask |= ATH9K_INT_TSFOOR;
2254         }
2255
2256         /*
2257          * Some hardware processes the TIM IE and fires an
2258          * interrupt when the TIM bit is set.  For hardware
2259          * that does, if not overridden by configuration,
2260          * enable the TIM interrupt when operating as station.
2261          */
2262         if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2263             (conf->type == NL80211_IFTYPE_STATION) &&
2264             !sc->config.swBeaconProcess)
2265                 sc->imask |= ATH9K_INT_TIM;
2266
2267         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2268
2269         if (conf->type == NL80211_IFTYPE_AP) {
2270                 /* TODO: is this a suitable place to start ANI for AP mode? */
2271                 /* Start ANI */
2272                 mod_timer(&sc->ani.timer,
2273                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2274         }
2275
2276 out:
2277         mutex_unlock(&sc->mutex);
2278         return ret;
2279 }
2280
2281 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2282                                    struct ieee80211_if_init_conf *conf)
2283 {
2284         struct ath_wiphy *aphy = hw->priv;
2285         struct ath_softc *sc = aphy->sc;
2286         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2287         int i;
2288
2289         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2290
2291         mutex_lock(&sc->mutex);
2292
2293         /* Stop ANI */
2294         del_timer_sync(&sc->ani.timer);
2295
2296         /* Reclaim beacon resources */
2297         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2298             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2299             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2300                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2301                 ath_beacon_return(sc, avp);
2302         }
2303
2304         sc->sc_flags &= ~SC_OP_BEACONS;
2305
2306         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2307                 if (sc->beacon.bslot[i] == conf->vif) {
2308                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2309                                "slot\n", __func__);
2310                         sc->beacon.bslot[i] = NULL;
2311                         sc->beacon.bslot_aphy[i] = NULL;
2312                 }
2313         }
2314
2315         sc->nvifs--;
2316
2317         mutex_unlock(&sc->mutex);
2318 }
2319
2320 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2321 {
2322         struct ath_wiphy *aphy = hw->priv;
2323         struct ath_softc *sc = aphy->sc;
2324         struct ieee80211_conf *conf = &hw->conf;
2325         struct ath_hw *ah = sc->sc_ah;
2326
2327         mutex_lock(&sc->mutex);
2328
2329         if (changed & IEEE80211_CONF_CHANGE_PS) {
2330                 if (conf->flags & IEEE80211_CONF_PS) {
2331                         if (!(ah->caps.hw_caps &
2332                               ATH9K_HW_CAP_AUTOSLEEP)) {
2333                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2334                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2335                                         ath9k_hw_set_interrupts(sc->sc_ah,
2336                                                         sc->imask);
2337                                 }
2338                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2339                         }
2340                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2341                 } else {
2342                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2343                         if (!(ah->caps.hw_caps &
2344                               ATH9K_HW_CAP_AUTOSLEEP)) {
2345                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2346                                 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2347                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2348                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2349                                         ath9k_hw_set_interrupts(sc->sc_ah,
2350                                                         sc->imask);
2351                                 }
2352                         }
2353                 }
2354         }
2355
2356         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2357                 struct ieee80211_channel *curchan = hw->conf.channel;
2358                 int pos = curchan->hw_value;
2359
2360                 aphy->chan_idx = pos;
2361                 aphy->chan_is_ht = conf_is_ht(conf);
2362
2363                 if (aphy->state == ATH_WIPHY_SCAN ||
2364                     aphy->state == ATH_WIPHY_ACTIVE)
2365                         ath9k_wiphy_pause_all_forced(sc, aphy);
2366                 else {
2367                         /*
2368                          * Do not change operational channel based on a paused
2369                          * wiphy changes.
2370                          */
2371                         goto skip_chan_change;
2372                 }
2373
2374                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2375                         curchan->center_freq);
2376
2377                 /* XXX: remove me eventualy */
2378                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2379
2380                 ath_update_chainmask(sc, conf_is_ht(conf));
2381
2382                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2383                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2384                         mutex_unlock(&sc->mutex);
2385                         return -EINVAL;
2386                 }
2387         }
2388
2389 skip_chan_change:
2390         if (changed & IEEE80211_CONF_CHANGE_POWER)
2391                 sc->config.txpowlimit = 2 * conf->power_level;
2392
2393         /*
2394          * The HW TSF has to be reset when the beacon interval changes.
2395          * We set the flag here, and ath_beacon_config_ap() would take this
2396          * into account when it gets called through the subsequent
2397          * config_interface() call - with IFCC_BEACON in the changed field.
2398          */
2399
2400         if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
2401                 sc->sc_flags |= SC_OP_TSF_RESET;
2402
2403         mutex_unlock(&sc->mutex);
2404
2405         return 0;
2406 }
2407
2408 static int ath9k_config_interface(struct ieee80211_hw *hw,
2409                                   struct ieee80211_vif *vif,
2410                                   struct ieee80211_if_conf *conf)
2411 {
2412         struct ath_wiphy *aphy = hw->priv;
2413         struct ath_softc *sc = aphy->sc;
2414         struct ath_hw *ah = sc->sc_ah;
2415         struct ath_vif *avp = (void *)vif->drv_priv;
2416         u32 rfilt = 0;
2417         int error, i;
2418
2419         mutex_lock(&sc->mutex);
2420
2421         /* TODO: Need to decide which hw opmode to use for multi-interface
2422          * cases */
2423         if (vif->type == NL80211_IFTYPE_AP &&
2424             ah->opmode != NL80211_IFTYPE_AP) {
2425                 ah->opmode = NL80211_IFTYPE_STATION;
2426                 ath9k_hw_setopmode(ah);
2427                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2428                 sc->curaid = 0;
2429                 ath9k_hw_write_associd(sc);
2430                 /* Request full reset to get hw opmode changed properly */
2431                 sc->sc_flags |= SC_OP_FULL_RESET;
2432         }
2433
2434         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2435             !is_zero_ether_addr(conf->bssid)) {
2436                 switch (vif->type) {
2437                 case NL80211_IFTYPE_STATION:
2438                 case NL80211_IFTYPE_ADHOC:
2439                 case NL80211_IFTYPE_MESH_POINT:
2440                         /* Set BSSID */
2441                         memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2442                         memcpy(avp->bssid, conf->bssid, ETH_ALEN);
2443                         sc->curaid = 0;
2444                         ath9k_hw_write_associd(sc);
2445
2446                         /* Set aggregation protection mode parameters */
2447                         sc->config.ath_aggr_prot = 0;
2448
2449                         DPRINTF(sc, ATH_DBG_CONFIG,
2450                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2451                                 rfilt, sc->curbssid, sc->curaid);
2452
2453                         /* need to reconfigure the beacon */
2454                         sc->sc_flags &= ~SC_OP_BEACONS ;
2455
2456                         break;
2457                 default:
2458                         break;
2459                 }
2460         }
2461
2462         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2463             (vif->type == NL80211_IFTYPE_AP) ||
2464             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2465                 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2466                     (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2467                      conf->enable_beacon)) {
2468                         /*
2469                          * Allocate and setup the beacon frame.
2470                          *
2471                          * Stop any previous beacon DMA.  This may be
2472                          * necessary, for example, when an ibss merge
2473                          * causes reconfiguration; we may be called
2474                          * with beacon transmission active.
2475                          */
2476                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2477
2478                         error = ath_beacon_alloc(aphy, vif);
2479                         if (error != 0) {
2480                                 mutex_unlock(&sc->mutex);
2481                                 return error;
2482                         }
2483
2484                         ath_beacon_config(sc, vif);
2485                 }
2486         }
2487
2488         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2489         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2490                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2491                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2492                                 ath9k_hw_keysetmac(sc->sc_ah,
2493                                                    (u16)i,
2494                                                    sc->curbssid);
2495         }
2496
2497         /* Only legacy IBSS for now */
2498         if (vif->type == NL80211_IFTYPE_ADHOC)
2499                 ath_update_chainmask(sc, 0);
2500
2501         mutex_unlock(&sc->mutex);
2502
2503         return 0;
2504 }
2505
2506 #define SUPPORTED_FILTERS                       \
2507         (FIF_PROMISC_IN_BSS |                   \
2508         FIF_ALLMULTI |                          \
2509         FIF_CONTROL |                           \
2510         FIF_OTHER_BSS |                         \
2511         FIF_BCN_PRBRESP_PROMISC |               \
2512         FIF_FCSFAIL)
2513
2514 /* FIXME: sc->sc_full_reset ? */
2515 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2516                                    unsigned int changed_flags,
2517                                    unsigned int *total_flags,
2518                                    int mc_count,
2519                                    struct dev_mc_list *mclist)
2520 {
2521         struct ath_wiphy *aphy = hw->priv;
2522         struct ath_softc *sc = aphy->sc;
2523         u32 rfilt;
2524
2525         changed_flags &= SUPPORTED_FILTERS;
2526         *total_flags &= SUPPORTED_FILTERS;
2527
2528         sc->rx.rxfilter = *total_flags;
2529         rfilt = ath_calcrxfilter(sc);
2530         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2531
2532         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2533 }
2534
2535 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2536                              struct ieee80211_vif *vif,
2537                              enum sta_notify_cmd cmd,
2538                              struct ieee80211_sta *sta)
2539 {
2540         struct ath_wiphy *aphy = hw->priv;
2541         struct ath_softc *sc = aphy->sc;
2542
2543         switch (cmd) {
2544         case STA_NOTIFY_ADD:
2545                 ath_node_attach(sc, sta);
2546                 break;
2547         case STA_NOTIFY_REMOVE:
2548                 ath_node_detach(sc, sta);
2549                 break;
2550         default:
2551                 break;
2552         }
2553 }
2554
2555 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2556                          const struct ieee80211_tx_queue_params *params)
2557 {
2558         struct ath_wiphy *aphy = hw->priv;
2559         struct ath_softc *sc = aphy->sc;
2560         struct ath9k_tx_queue_info qi;
2561         int ret = 0, qnum;
2562
2563         if (queue >= WME_NUM_AC)
2564                 return 0;
2565
2566         mutex_lock(&sc->mutex);
2567
2568         qi.tqi_aifs = params->aifs;
2569         qi.tqi_cwmin = params->cw_min;
2570         qi.tqi_cwmax = params->cw_max;
2571         qi.tqi_burstTime = params->txop;
2572         qnum = ath_get_hal_qnum(queue, sc);
2573
2574         DPRINTF(sc, ATH_DBG_CONFIG,
2575                 "Configure tx [queue/halq] [%d/%d],  "
2576                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2577                 queue, qnum, params->aifs, params->cw_min,
2578                 params->cw_max, params->txop);
2579
2580         ret = ath_txq_update(sc, qnum, &qi);
2581         if (ret)
2582                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2583
2584         mutex_unlock(&sc->mutex);
2585
2586         return ret;
2587 }
2588
2589 static int ath9k_set_key(struct ieee80211_hw *hw,
2590                          enum set_key_cmd cmd,
2591                          struct ieee80211_vif *vif,
2592                          struct ieee80211_sta *sta,
2593                          struct ieee80211_key_conf *key)
2594 {
2595         struct ath_wiphy *aphy = hw->priv;
2596         struct ath_softc *sc = aphy->sc;
2597         int ret = 0;
2598
2599         if (modparam_nohwcrypt)
2600                 return -ENOSPC;
2601
2602         mutex_lock(&sc->mutex);
2603         ath9k_ps_wakeup(sc);
2604         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2605
2606         switch (cmd) {
2607         case SET_KEY:
2608                 ret = ath_key_config(sc, vif, sta, key);
2609                 if (ret >= 0) {
2610                         key->hw_key_idx = ret;
2611                         /* push IV and Michael MIC generation to stack */
2612                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2613                         if (key->alg == ALG_TKIP)
2614                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2615                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2616                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2617                         ret = 0;
2618                 }
2619                 break;
2620         case DISABLE_KEY:
2621                 ath_key_delete(sc, key);
2622                 break;
2623         default:
2624                 ret = -EINVAL;
2625         }
2626
2627         ath9k_ps_restore(sc);
2628         mutex_unlock(&sc->mutex);
2629
2630         return ret;
2631 }
2632
2633 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2634                                    struct ieee80211_vif *vif,
2635                                    struct ieee80211_bss_conf *bss_conf,
2636                                    u32 changed)
2637 {
2638         struct ath_wiphy *aphy = hw->priv;
2639         struct ath_softc *sc = aphy->sc;
2640
2641         mutex_lock(&sc->mutex);
2642
2643         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2644                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2645                         bss_conf->use_short_preamble);
2646                 if (bss_conf->use_short_preamble)
2647                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2648                 else
2649                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2650         }
2651
2652         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2653                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2654                         bss_conf->use_cts_prot);
2655                 if (bss_conf->use_cts_prot &&
2656                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2657                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2658                 else
2659                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2660         }
2661
2662         if (changed & BSS_CHANGED_ASSOC) {
2663                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2664                         bss_conf->assoc);
2665                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2666         }
2667
2668         mutex_unlock(&sc->mutex);
2669 }
2670
2671 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2672 {
2673         u64 tsf;
2674         struct ath_wiphy *aphy = hw->priv;
2675         struct ath_softc *sc = aphy->sc;
2676
2677         mutex_lock(&sc->mutex);
2678         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2679         mutex_unlock(&sc->mutex);
2680
2681         return tsf;
2682 }
2683
2684 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2685 {
2686         struct ath_wiphy *aphy = hw->priv;
2687         struct ath_softc *sc = aphy->sc;
2688
2689         mutex_lock(&sc->mutex);
2690         ath9k_hw_settsf64(sc->sc_ah, tsf);
2691         mutex_unlock(&sc->mutex);
2692 }
2693
2694 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2695 {
2696         struct ath_wiphy *aphy = hw->priv;
2697         struct ath_softc *sc = aphy->sc;
2698
2699         mutex_lock(&sc->mutex);
2700         ath9k_hw_reset_tsf(sc->sc_ah);
2701         mutex_unlock(&sc->mutex);
2702 }
2703
2704 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2705                               enum ieee80211_ampdu_mlme_action action,
2706                               struct ieee80211_sta *sta,
2707                               u16 tid, u16 *ssn)
2708 {
2709         struct ath_wiphy *aphy = hw->priv;
2710         struct ath_softc *sc = aphy->sc;
2711         int ret = 0;
2712
2713         switch (action) {
2714         case IEEE80211_AMPDU_RX_START:
2715                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2716                         ret = -ENOTSUPP;
2717                 break;
2718         case IEEE80211_AMPDU_RX_STOP:
2719                 break;
2720         case IEEE80211_AMPDU_TX_START:
2721                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2722                 if (ret < 0)
2723                         DPRINTF(sc, ATH_DBG_FATAL,
2724                                 "Unable to start TX aggregation\n");
2725                 else
2726                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2727                 break;
2728         case IEEE80211_AMPDU_TX_STOP:
2729                 ret = ath_tx_aggr_stop(sc, sta, tid);
2730                 if (ret < 0)
2731                         DPRINTF(sc, ATH_DBG_FATAL,
2732                                 "Unable to stop TX aggregation\n");
2733
2734                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2735                 break;
2736         case IEEE80211_AMPDU_TX_OPERATIONAL:
2737                 ath_tx_aggr_resume(sc, sta, tid);
2738                 break;
2739         default:
2740                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2741         }
2742
2743         return ret;
2744 }
2745
2746 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2747 {
2748         struct ath_wiphy *aphy = hw->priv;
2749         struct ath_softc *sc = aphy->sc;
2750
2751         if (ath9k_wiphy_scanning(sc)) {
2752                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2753                        "same time\n");
2754                 /*
2755                  * Do not allow the concurrent scanning state for now. This
2756                  * could be improved with scanning control moved into ath9k.
2757                  */
2758                 return;
2759         }
2760
2761         aphy->state = ATH_WIPHY_SCAN;
2762         ath9k_wiphy_pause_all_forced(sc, aphy);
2763
2764         mutex_lock(&sc->mutex);
2765         sc->sc_flags |= SC_OP_SCANNING;
2766         mutex_unlock(&sc->mutex);
2767 }
2768
2769 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2770 {
2771         struct ath_wiphy *aphy = hw->priv;
2772         struct ath_softc *sc = aphy->sc;
2773
2774         mutex_lock(&sc->mutex);
2775         aphy->state = ATH_WIPHY_ACTIVE;
2776         sc->sc_flags &= ~SC_OP_SCANNING;
2777         mutex_unlock(&sc->mutex);
2778 }
2779
2780 struct ieee80211_ops ath9k_ops = {
2781         .tx                 = ath9k_tx,
2782         .start              = ath9k_start,
2783         .stop               = ath9k_stop,
2784         .add_interface      = ath9k_add_interface,
2785         .remove_interface   = ath9k_remove_interface,
2786         .config             = ath9k_config,
2787         .config_interface   = ath9k_config_interface,
2788         .configure_filter   = ath9k_configure_filter,
2789         .sta_notify         = ath9k_sta_notify,
2790         .conf_tx            = ath9k_conf_tx,
2791         .bss_info_changed   = ath9k_bss_info_changed,
2792         .set_key            = ath9k_set_key,
2793         .get_tsf            = ath9k_get_tsf,
2794         .set_tsf            = ath9k_set_tsf,
2795         .reset_tsf          = ath9k_reset_tsf,
2796         .ampdu_action       = ath9k_ampdu_action,
2797         .sw_scan_start      = ath9k_sw_scan_start,
2798         .sw_scan_complete   = ath9k_sw_scan_complete,
2799 };
2800
2801 static struct {
2802         u32 version;
2803         const char * name;
2804 } ath_mac_bb_names[] = {
2805         { AR_SREV_VERSION_5416_PCI,     "5416" },
2806         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2807         { AR_SREV_VERSION_9100,         "9100" },
2808         { AR_SREV_VERSION_9160,         "9160" },
2809         { AR_SREV_VERSION_9280,         "9280" },
2810         { AR_SREV_VERSION_9285,         "9285" }
2811 };
2812
2813 static struct {
2814         u16 version;
2815         const char * name;
2816 } ath_rf_names[] = {
2817         { 0,                            "5133" },
2818         { AR_RAD5133_SREV_MAJOR,        "5133" },
2819         { AR_RAD5122_SREV_MAJOR,        "5122" },
2820         { AR_RAD2133_SREV_MAJOR,        "2133" },
2821         { AR_RAD2122_SREV_MAJOR,        "2122" }
2822 };
2823
2824 /*
2825  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2826  */
2827 const char *
2828 ath_mac_bb_name(u32 mac_bb_version)
2829 {
2830         int i;
2831
2832         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2833                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2834                         return ath_mac_bb_names[i].name;
2835                 }
2836         }
2837
2838         return "????";
2839 }
2840
2841 /*
2842  * Return the RF name. "????" is returned if the RF is unknown.
2843  */
2844 const char *
2845 ath_rf_name(u16 rf_version)
2846 {
2847         int i;
2848
2849         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2850                 if (ath_rf_names[i].version == rf_version) {
2851                         return ath_rf_names[i].name;
2852                 }
2853         }
2854
2855         return "????";
2856 }
2857
2858 static int __init ath9k_init(void)
2859 {
2860         int error;
2861
2862         /* Register rate control algorithm */
2863         error = ath_rate_control_register();
2864         if (error != 0) {
2865                 printk(KERN_ERR
2866                         "ath9k: Unable to register rate control "
2867                         "algorithm: %d\n",
2868                         error);
2869                 goto err_out;
2870         }
2871
2872         error = ath9k_debug_create_root();
2873         if (error) {
2874                 printk(KERN_ERR
2875                         "ath9k: Unable to create debugfs root: %d\n",
2876                         error);
2877                 goto err_rate_unregister;
2878         }
2879
2880         error = ath_pci_init();
2881         if (error < 0) {
2882                 printk(KERN_ERR
2883                         "ath9k: No PCI devices found, driver not installed.\n");
2884                 error = -ENODEV;
2885                 goto err_remove_root;
2886         }
2887
2888         error = ath_ahb_init();
2889         if (error < 0) {
2890                 error = -ENODEV;
2891                 goto err_pci_exit;
2892         }
2893
2894         return 0;
2895
2896  err_pci_exit:
2897         ath_pci_exit();
2898
2899  err_remove_root:
2900         ath9k_debug_remove_root();
2901  err_rate_unregister:
2902         ath_rate_control_unregister();
2903  err_out:
2904         return error;
2905 }
2906 module_init(ath9k_init);
2907
2908 static void __exit ath9k_exit(void)
2909 {
2910         ath_ahb_exit();
2911         ath_pci_exit();
2912         ath9k_debug_remove_root();
2913         ath_rate_control_unregister();
2914         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2915 }
2916 module_exit(ath9k_exit);