]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/intel/iwlwifi/pcie/rx.c
Fix warning messages when mounting to older servers
[karo-tx-linux.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
6  *
7  * Portions of this file are derived from the ipw3945 project, as well
8  * as portions of the ieee80211 subsystem header files.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc.,
21  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called LICENSE.
25  *
26  * Contact Information:
27  *  Intel Linux Wireless <linuxwifi@intel.com>
28  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29  *
30  *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39
40 /******************************************************************************
41  *
42  * RX path functions
43  *
44  ******************************************************************************/
45
46 /*
47  * Rx theory of operation
48  *
49  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50  * each of which point to Receive Buffers to be filled by the NIC.  These get
51  * used not only for Rx frames, but for any command response or notification
52  * from the NIC.  The driver and NIC manage the Rx buffers by means
53  * of indexes into the circular buffer.
54  *
55  * Rx Queue Indexes
56  * The host/firmware share two index registers for managing the Rx buffers.
57  *
58  * The READ index maps to the first position that the firmware may be writing
59  * to -- the driver can read up to (but not including) this position and get
60  * good data.
61  * The READ index is managed by the firmware once the card is enabled.
62  *
63  * The WRITE index maps to the last position the driver has read from -- the
64  * position preceding WRITE is the last slot the firmware can place a packet.
65  *
66  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67  * WRITE = READ.
68  *
69  * During initialization, the host sets up the READ queue position to the first
70  * INDEX position, and WRITE to the last (READ - 1 wrapped)
71  *
72  * When the firmware places a packet in a buffer, it will advance the READ index
73  * and fire the RX interrupt.  The driver can then query the READ index and
74  * process as many packets as possible, moving the WRITE index forward as it
75  * resets the Rx queue buffers with new memory.
76  *
77  * The management in the driver is as follows:
78  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79  *   When the interrupt handler is called, the request is processed.
80  *   The page is either stolen - transferred to the upper layer
81  *   or reused - added immediately to the iwl->rxq->rx_free list.
82  * + When the page is stolen - the driver updates the matching queue's used
83  *   count, detaches the RBD and transfers it to the queue used list.
84  *   When there are two used RBDs - they are transferred to the allocator empty
85  *   list. Work is then scheduled for the allocator to start allocating
86  *   eight buffers.
87  *   When there are another 6 used RBDs - they are transferred to the allocator
88  *   empty list and the driver tries to claim the pre-allocated buffers and
89  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90  *   until ready.
91  *   When there are 8+ buffers in the free list - either from allocation or from
92  *   8 reused unstolen pages - restock is called to update the FW and indexes.
93  * + In order to make sure the allocator always has RBDs to use for allocation
94  *   the allocator has initial pool in the size of num_queues*(8-2) - the
95  *   maximum missing RBDs per allocation request (request posted with 2
96  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97  *   The queues supplies the recycle of the rest of the RBDs.
98  * + A received packet is processed and handed to the kernel network stack,
99  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
100  * + If there are no allocated buffers in iwl->rxq->rx_free,
101  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102  *   If there were enough free buffers and RX_STALLED is set it is cleared.
103  *
104  *
105  * Driver sequence:
106  *
107  * iwl_rxq_alloc()            Allocates rx_free
108  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
109  *                            iwl_pcie_rxq_restock.
110  *                            Used only during initialization.
111  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
112  *                            queue, updates firmware pointers, and updates
113  *                            the WRITE index.
114  * iwl_pcie_rx_allocator()     Background work for allocating pages.
115  *
116  * -- enable interrupts --
117  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
118  *                            READ INDEX, detaching the SKB from the pool.
119  *                            Moves the packet buffer from queue to rx_used.
120  *                            Posts and claims requests to the allocator.
121  *                            Calls iwl_pcie_rxq_restock to refill any empty
122  *                            slots.
123  *
124  * RBD life-cycle:
125  *
126  * Init:
127  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128  *
129  * Regular Receive interrupt:
130  * Page Stolen:
131  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133  * Page not Stolen:
134  * rxq.queue -> rxq.rx_free -> rxq.queue
135  * ...
136  *
137  */
138
139 /*
140  * iwl_rxq_space - Return number of free slots available in queue.
141  */
142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144         /* Make sure rx queue size is a power of 2 */
145         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146
147         /*
148          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149          * between empty and completely full queues.
150          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151          * defined for negative dividends.
152          */
153         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155
156 /*
157  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158  */
159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161         return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163
164 /*
165  * iwl_pcie_rx_stop - stops the Rx DMA
166  */
167 int iwl_pcie_rx_stop(struct iwl_trans *trans)
168 {
169         if (trans->cfg->mq_rx_supported) {
170                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
171                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
172                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
173         } else {
174                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
175                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
176                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
177                                            1000);
178         }
179 }
180
181 /*
182  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183  */
184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185                                     struct iwl_rxq *rxq)
186 {
187         u32 reg;
188
189         lockdep_assert_held(&rxq->lock);
190
191         /*
192          * explicitly wake up the NIC if:
193          * 1. shadow registers aren't enabled
194          * 2. there is a chance that the NIC is asleep
195          */
196         if (!trans->cfg->base_params->shadow_reg_enable &&
197             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
199
200                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202                                        reg);
203                         iwl_set_bit(trans, CSR_GP_CNTRL,
204                                     CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205                         rxq->need_update = true;
206                         return;
207                 }
208         }
209
210         rxq->write_actual = round_down(rxq->write, 8);
211         if (trans->cfg->mq_rx_supported)
212                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213                             rxq->write_actual);
214         else
215                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
216 }
217
218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
219 {
220         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221         int i;
222
223         for (i = 0; i < trans->num_rx_queues; i++) {
224                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
225
226                 if (!rxq->need_update)
227                         continue;
228                 spin_lock(&rxq->lock);
229                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
230                 rxq->need_update = false;
231                 spin_unlock(&rxq->lock);
232         }
233 }
234
235 /*
236  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
237  */
238 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
239                                   struct iwl_rxq *rxq)
240 {
241         struct iwl_rx_mem_buffer *rxb;
242
243         /*
244          * If the device isn't enabled - no need to try to add buffers...
245          * This can happen when we stop the device and still have an interrupt
246          * pending. We stop the APM before we sync the interrupts because we
247          * have to (see comment there). On the other hand, since the APM is
248          * stopped, we cannot access the HW (in particular not prph).
249          * So don't try to restock if the APM has been already stopped.
250          */
251         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
252                 return;
253
254         spin_lock(&rxq->lock);
255         while (rxq->free_count) {
256                 __le64 *bd = (__le64 *)rxq->bd;
257
258                 /* Get next free Rx buffer, remove from free list */
259                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
260                                        list);
261                 list_del(&rxb->list);
262                 rxb->invalid = false;
263                 /* 12 first bits are expected to be empty */
264                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
265                 /* Point to Rx buffer via next RBD in circular buffer */
266                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
267                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
268                 rxq->free_count--;
269         }
270         spin_unlock(&rxq->lock);
271
272         /*
273          * If we've added more space for the firmware to place data, tell it.
274          * Increment device's write pointer in multiples of 8.
275          */
276         if (rxq->write_actual != (rxq->write & ~0x7)) {
277                 spin_lock(&rxq->lock);
278                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
279                 spin_unlock(&rxq->lock);
280         }
281 }
282
283 /*
284  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
285  */
286 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
287                                   struct iwl_rxq *rxq)
288 {
289         struct iwl_rx_mem_buffer *rxb;
290
291         /*
292          * If the device isn't enabled - not need to try to add buffers...
293          * This can happen when we stop the device and still have an interrupt
294          * pending. We stop the APM before we sync the interrupts because we
295          * have to (see comment there). On the other hand, since the APM is
296          * stopped, we cannot access the HW (in particular not prph).
297          * So don't try to restock if the APM has been already stopped.
298          */
299         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300                 return;
301
302         spin_lock(&rxq->lock);
303         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304                 __le32 *bd = (__le32 *)rxq->bd;
305                 /* The overwritten rxb must be a used one */
306                 rxb = rxq->queue[rxq->write];
307                 BUG_ON(rxb && rxb->page);
308
309                 /* Get next free Rx buffer, remove from free list */
310                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
311                                        list);
312                 list_del(&rxb->list);
313                 rxb->invalid = false;
314
315                 /* Point to Rx buffer via next RBD in circular buffer */
316                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
317                 rxq->queue[rxq->write] = rxb;
318                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
319                 rxq->free_count--;
320         }
321         spin_unlock(&rxq->lock);
322
323         /* If we've added more space for the firmware to place data, tell it.
324          * Increment device's write pointer in multiples of 8. */
325         if (rxq->write_actual != (rxq->write & ~0x7)) {
326                 spin_lock(&rxq->lock);
327                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
328                 spin_unlock(&rxq->lock);
329         }
330 }
331
332 /*
333  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
334  *
335  * If there are slots in the RX queue that need to be restocked,
336  * and we have free pre-allocated buffers, fill the ranks as much
337  * as we can, pulling from rx_free.
338  *
339  * This moves the 'write' index forward to catch up with 'processed', and
340  * also updates the memory address in the firmware to reference the new
341  * target buffer.
342  */
343 static
344 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
345 {
346         if (trans->cfg->mq_rx_supported)
347                 iwl_pcie_rxmq_restock(trans, rxq);
348         else
349                 iwl_pcie_rxsq_restock(trans, rxq);
350 }
351
352 /*
353  * iwl_pcie_rx_alloc_page - allocates and returns a page.
354  *
355  */
356 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
357                                            gfp_t priority)
358 {
359         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
360         struct page *page;
361         gfp_t gfp_mask = priority;
362
363         if (trans_pcie->rx_page_order > 0)
364                 gfp_mask |= __GFP_COMP;
365
366         /* Alloc a new receive buffer */
367         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
368         if (!page) {
369                 if (net_ratelimit())
370                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
371                                        trans_pcie->rx_page_order);
372                 /*
373                  * Issue an error if we don't have enough pre-allocated
374                   * buffers.
375 `                */
376                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
377                         IWL_CRIT(trans,
378                                  "Failed to alloc_pages\n");
379                 return NULL;
380         }
381         return page;
382 }
383
384 /*
385  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
386  *
387  * A used RBD is an Rx buffer that has been given to the stack. To use it again
388  * a page must be allocated and the RBD must point to the page. This function
389  * doesn't change the HW pointer but handles the list of pages that is used by
390  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
391  * allocated buffers.
392  */
393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
394                                    struct iwl_rxq *rxq)
395 {
396         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
397         struct iwl_rx_mem_buffer *rxb;
398         struct page *page;
399
400         while (1) {
401                 spin_lock(&rxq->lock);
402                 if (list_empty(&rxq->rx_used)) {
403                         spin_unlock(&rxq->lock);
404                         return;
405                 }
406                 spin_unlock(&rxq->lock);
407
408                 /* Alloc a new receive buffer */
409                 page = iwl_pcie_rx_alloc_page(trans, priority);
410                 if (!page)
411                         return;
412
413                 spin_lock(&rxq->lock);
414
415                 if (list_empty(&rxq->rx_used)) {
416                         spin_unlock(&rxq->lock);
417                         __free_pages(page, trans_pcie->rx_page_order);
418                         return;
419                 }
420                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
421                                        list);
422                 list_del(&rxb->list);
423                 spin_unlock(&rxq->lock);
424
425                 BUG_ON(rxb->page);
426                 rxb->page = page;
427                 /* Get physical address of the RB */
428                 rxb->page_dma =
429                         dma_map_page(trans->dev, page, 0,
430                                      PAGE_SIZE << trans_pcie->rx_page_order,
431                                      DMA_FROM_DEVICE);
432                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
433                         rxb->page = NULL;
434                         spin_lock(&rxq->lock);
435                         list_add(&rxb->list, &rxq->rx_used);
436                         spin_unlock(&rxq->lock);
437                         __free_pages(page, trans_pcie->rx_page_order);
438                         return;
439                 }
440
441                 spin_lock(&rxq->lock);
442
443                 list_add_tail(&rxb->list, &rxq->rx_free);
444                 rxq->free_count++;
445
446                 spin_unlock(&rxq->lock);
447         }
448 }
449
450 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
451 {
452         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
453         int i;
454
455         for (i = 0; i < RX_POOL_SIZE; i++) {
456                 if (!trans_pcie->rx_pool[i].page)
457                         continue;
458                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
459                                PAGE_SIZE << trans_pcie->rx_page_order,
460                                DMA_FROM_DEVICE);
461                 __free_pages(trans_pcie->rx_pool[i].page,
462                              trans_pcie->rx_page_order);
463                 trans_pcie->rx_pool[i].page = NULL;
464         }
465 }
466
467 /*
468  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
469  *
470  * Allocates for each received request 8 pages
471  * Called as a scheduled work item.
472  */
473 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
474 {
475         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
476         struct iwl_rb_allocator *rba = &trans_pcie->rba;
477         struct list_head local_empty;
478         int pending = atomic_xchg(&rba->req_pending, 0);
479
480         IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
481
482         /* If we were scheduled - there is at least one request */
483         spin_lock(&rba->lock);
484         /* swap out the rba->rbd_empty to a local list */
485         list_replace_init(&rba->rbd_empty, &local_empty);
486         spin_unlock(&rba->lock);
487
488         while (pending) {
489                 int i;
490                 LIST_HEAD(local_allocated);
491                 gfp_t gfp_mask = GFP_KERNEL;
492
493                 /* Do not post a warning if there are only a few requests */
494                 if (pending < RX_PENDING_WATERMARK)
495                         gfp_mask |= __GFP_NOWARN;
496
497                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
498                         struct iwl_rx_mem_buffer *rxb;
499                         struct page *page;
500
501                         /* List should never be empty - each reused RBD is
502                          * returned to the list, and initial pool covers any
503                          * possible gap between the time the page is allocated
504                          * to the time the RBD is added.
505                          */
506                         BUG_ON(list_empty(&local_empty));
507                         /* Get the first rxb from the rbd list */
508                         rxb = list_first_entry(&local_empty,
509                                                struct iwl_rx_mem_buffer, list);
510                         BUG_ON(rxb->page);
511
512                         /* Alloc a new receive buffer */
513                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
514                         if (!page)
515                                 continue;
516                         rxb->page = page;
517
518                         /* Get physical address of the RB */
519                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
520                                         PAGE_SIZE << trans_pcie->rx_page_order,
521                                         DMA_FROM_DEVICE);
522                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
523                                 rxb->page = NULL;
524                                 __free_pages(page, trans_pcie->rx_page_order);
525                                 continue;
526                         }
527
528                         /* move the allocated entry to the out list */
529                         list_move(&rxb->list, &local_allocated);
530                         i++;
531                 }
532
533                 pending--;
534                 if (!pending) {
535                         pending = atomic_xchg(&rba->req_pending, 0);
536                         IWL_DEBUG_RX(trans,
537                                      "Pending allocation requests = %d\n",
538                                      pending);
539                 }
540
541                 spin_lock(&rba->lock);
542                 /* add the allocated rbds to the allocator allocated list */
543                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
544                 /* get more empty RBDs for current pending requests */
545                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
546                 spin_unlock(&rba->lock);
547
548                 atomic_inc(&rba->req_ready);
549         }
550
551         spin_lock(&rba->lock);
552         /* return unused rbds to the allocator empty list */
553         list_splice_tail(&local_empty, &rba->rbd_empty);
554         spin_unlock(&rba->lock);
555 }
556
557 /*
558  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
559 .*
560 .* Called by queue when the queue posted allocation request and
561  * has freed 8 RBDs in order to restock itself.
562  * This function directly moves the allocated RBs to the queue's ownership
563  * and updates the relevant counters.
564  */
565 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
566                                       struct iwl_rxq *rxq)
567 {
568         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
569         struct iwl_rb_allocator *rba = &trans_pcie->rba;
570         int i;
571
572         lockdep_assert_held(&rxq->lock);
573
574         /*
575          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
576          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577          * function will return early, as there are no ready requests.
578          * atomic_dec_if_positive will perofrm the *actual* decrement only if
579          * req_ready > 0, i.e. - there are ready requests and the function
580          * hands one request to the caller.
581          */
582         if (atomic_dec_if_positive(&rba->req_ready) < 0)
583                 return;
584
585         spin_lock(&rba->lock);
586         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
587                 /* Get next free Rx buffer, remove it from free list */
588                 struct iwl_rx_mem_buffer *rxb =
589                         list_first_entry(&rba->rbd_allocated,
590                                          struct iwl_rx_mem_buffer, list);
591
592                 list_move(&rxb->list, &rxq->rx_free);
593         }
594         spin_unlock(&rba->lock);
595
596         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
597         rxq->free_count += RX_CLAIM_REQ_ALLOC;
598 }
599
600 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
601 {
602         struct iwl_rb_allocator *rba_p =
603                 container_of(data, struct iwl_rb_allocator, rx_alloc);
604         struct iwl_trans_pcie *trans_pcie =
605                 container_of(rba_p, struct iwl_trans_pcie, rba);
606
607         iwl_pcie_rx_allocator(trans_pcie->trans);
608 }
609
610 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
611 {
612         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
613         struct iwl_rb_allocator *rba = &trans_pcie->rba;
614         struct device *dev = trans->dev;
615         int i;
616         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
617                                                       sizeof(__le32);
618
619         if (WARN_ON(trans_pcie->rxq))
620                 return -EINVAL;
621
622         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
623                                   GFP_KERNEL);
624         if (!trans_pcie->rxq)
625                 return -EINVAL;
626
627         spin_lock_init(&rba->lock);
628
629         for (i = 0; i < trans->num_rx_queues; i++) {
630                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
631
632                 spin_lock_init(&rxq->lock);
633                 if (trans->cfg->mq_rx_supported)
634                         rxq->queue_size = MQ_RX_TABLE_SIZE;
635                 else
636                         rxq->queue_size = RX_QUEUE_SIZE;
637
638                 /*
639                  * Allocate the circular buffer of Read Buffer Descriptors
640                  * (RBDs)
641                  */
642                 rxq->bd = dma_zalloc_coherent(dev,
643                                              free_size * rxq->queue_size,
644                                              &rxq->bd_dma, GFP_KERNEL);
645                 if (!rxq->bd)
646                         goto err;
647
648                 if (trans->cfg->mq_rx_supported) {
649                         rxq->used_bd = dma_zalloc_coherent(dev,
650                                                            sizeof(__le32) *
651                                                            rxq->queue_size,
652                                                            &rxq->used_bd_dma,
653                                                            GFP_KERNEL);
654                         if (!rxq->used_bd)
655                                 goto err;
656                 }
657
658                 /*Allocate the driver's pointer to receive buffer status */
659                 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
660                                                    &rxq->rb_stts_dma,
661                                                    GFP_KERNEL);
662                 if (!rxq->rb_stts)
663                         goto err;
664         }
665         return 0;
666
667 err:
668         for (i = 0; i < trans->num_rx_queues; i++) {
669                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
670
671                 if (rxq->bd)
672                         dma_free_coherent(dev, free_size * rxq->queue_size,
673                                           rxq->bd, rxq->bd_dma);
674                 rxq->bd_dma = 0;
675                 rxq->bd = NULL;
676
677                 if (rxq->rb_stts)
678                         dma_free_coherent(trans->dev,
679                                           sizeof(struct iwl_rb_status),
680                                           rxq->rb_stts, rxq->rb_stts_dma);
681
682                 if (rxq->used_bd)
683                         dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
684                                           rxq->used_bd, rxq->used_bd_dma);
685                 rxq->used_bd_dma = 0;
686                 rxq->used_bd = NULL;
687         }
688         kfree(trans_pcie->rxq);
689
690         return -ENOMEM;
691 }
692
693 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
694 {
695         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696         u32 rb_size;
697         unsigned long flags;
698         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
699
700         switch (trans_pcie->rx_buf_size) {
701         case IWL_AMSDU_4K:
702                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
703                 break;
704         case IWL_AMSDU_8K:
705                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
706                 break;
707         case IWL_AMSDU_12K:
708                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
709                 break;
710         default:
711                 WARN_ON(1);
712                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
713         }
714
715         if (!iwl_trans_grab_nic_access(trans, &flags))
716                 return;
717
718         /* Stop Rx DMA */
719         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
720         /* reset and flush pointers */
721         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
722         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
723         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
724
725         /* Reset driver's Rx queue write index */
726         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
727
728         /* Tell device where to find RBD circular buffer in DRAM */
729         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
730                     (u32)(rxq->bd_dma >> 8));
731
732         /* Tell device where in DRAM to update its Rx status */
733         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
734                     rxq->rb_stts_dma >> 4);
735
736         /* Enable Rx DMA
737          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
738          *      the credit mechanism in 5000 HW RX FIFO
739          * Direct rx interrupts to hosts
740          * Rx buffer size 4 or 8k or 12k
741          * RB timeout 0x10
742          * 256 RBDs
743          */
744         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
745                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
746                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
747                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
748                     rb_size |
749                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
750                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
751
752         iwl_trans_release_nic_access(trans, &flags);
753
754         /* Set interrupt coalescing timer to default (2048 usecs) */
755         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
756
757         /* W/A for interrupt coalescing bug in 7260 and 3160 */
758         if (trans->cfg->host_interrupt_operation_mode)
759                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
760 }
761
762 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
763 {
764         if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000)
765                 return;
766
767         if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP)
768                 return;
769
770         if (!trans->cfg->integrated)
771                 return;
772
773         /*
774          * Turn on the chicken-bits that cause MAC wakeup for RX-related
775          * values.
776          * This costs some power, but needed for W/A 9000 integrated A-step
777          * bug where shadow registers are not in the retention list and their
778          * value is lost when NIC powers down
779          */
780         iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
781                     CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
782         iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
783                     CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
784 }
785
786 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
787 {
788         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
789         u32 rb_size, enabled = 0;
790         unsigned long flags;
791         int i;
792
793         switch (trans_pcie->rx_buf_size) {
794         case IWL_AMSDU_4K:
795                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
796                 break;
797         case IWL_AMSDU_8K:
798                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
799                 break;
800         case IWL_AMSDU_12K:
801                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
802                 break;
803         default:
804                 WARN_ON(1);
805                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
806         }
807
808         if (!iwl_trans_grab_nic_access(trans, &flags))
809                 return;
810
811         /* Stop Rx DMA */
812         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
813         /* disable free amd used rx queue operation */
814         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
815
816         for (i = 0; i < trans->num_rx_queues; i++) {
817                 /* Tell device where to find RBD free table in DRAM */
818                 iwl_write_prph64_no_grab(trans,
819                                          RFH_Q_FRBDCB_BA_LSB(i),
820                                          trans_pcie->rxq[i].bd_dma);
821                 /* Tell device where to find RBD used table in DRAM */
822                 iwl_write_prph64_no_grab(trans,
823                                          RFH_Q_URBDCB_BA_LSB(i),
824                                          trans_pcie->rxq[i].used_bd_dma);
825                 /* Tell device where in DRAM to update its Rx status */
826                 iwl_write_prph64_no_grab(trans,
827                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
828                                          trans_pcie->rxq[i].rb_stts_dma);
829                 /* Reset device indice tables */
830                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
831                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
832                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
833
834                 enabled |= BIT(i) | BIT(i + 16);
835         }
836
837         /*
838          * Enable Rx DMA
839          * Rx buffer size 4 or 8k or 12k
840          * Min RB size 4 or 8
841          * Drop frames that exceed RB size
842          * 512 RBDs
843          */
844         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
845                                RFH_DMA_EN_ENABLE_VAL | rb_size |
846                                RFH_RXF_DMA_MIN_RB_4_8 |
847                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
848                                RFH_RXF_DMA_RBDCB_SIZE_512);
849
850         /*
851          * Activate DMA snooping.
852          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
853          * Default queue is 0
854          */
855         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
856                                RFH_GEN_CFG_RFH_DMA_SNOOP |
857                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
858                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
859                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
860                                                trans->cfg->integrated ?
861                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
862                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
863         /* Enable the relevant rx queues */
864         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
865
866         iwl_trans_release_nic_access(trans, &flags);
867
868         /* Set interrupt coalescing timer to default (2048 usecs) */
869         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
870
871         iwl_pcie_enable_rx_wake(trans, true);
872 }
873
874 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
875 {
876         lockdep_assert_held(&rxq->lock);
877
878         INIT_LIST_HEAD(&rxq->rx_free);
879         INIT_LIST_HEAD(&rxq->rx_used);
880         rxq->free_count = 0;
881         rxq->used_count = 0;
882 }
883
884 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
885 {
886         WARN_ON(1);
887         return 0;
888 }
889
890 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
891 {
892         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
893         struct iwl_rxq *def_rxq;
894         struct iwl_rb_allocator *rba = &trans_pcie->rba;
895         int i, err, queue_size, allocator_pool_size, num_alloc;
896
897         if (!trans_pcie->rxq) {
898                 err = iwl_pcie_rx_alloc(trans);
899                 if (err)
900                         return err;
901         }
902         def_rxq = trans_pcie->rxq;
903         if (!rba->alloc_wq)
904                 rba->alloc_wq = alloc_workqueue("rb_allocator",
905                                                 WQ_HIGHPRI | WQ_UNBOUND, 1);
906         INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
907
908         spin_lock(&rba->lock);
909         atomic_set(&rba->req_pending, 0);
910         atomic_set(&rba->req_ready, 0);
911         INIT_LIST_HEAD(&rba->rbd_allocated);
912         INIT_LIST_HEAD(&rba->rbd_empty);
913         spin_unlock(&rba->lock);
914
915         /* free all first - we might be reconfigured for a different size */
916         iwl_pcie_free_rbs_pool(trans);
917
918         for (i = 0; i < RX_QUEUE_SIZE; i++)
919                 def_rxq->queue[i] = NULL;
920
921         for (i = 0; i < trans->num_rx_queues; i++) {
922                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
923
924                 rxq->id = i;
925
926                 spin_lock(&rxq->lock);
927                 /*
928                  * Set read write pointer to reflect that we have processed
929                  * and used all buffers, but have not restocked the Rx queue
930                  * with fresh buffers
931                  */
932                 rxq->read = 0;
933                 rxq->write = 0;
934                 rxq->write_actual = 0;
935                 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
936
937                 iwl_pcie_rx_init_rxb_lists(rxq);
938
939                 if (!rxq->napi.poll)
940                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
941                                        iwl_pcie_dummy_napi_poll, 64);
942
943                 spin_unlock(&rxq->lock);
944         }
945
946         /* move the pool to the default queue and allocator ownerships */
947         queue_size = trans->cfg->mq_rx_supported ?
948                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
949         allocator_pool_size = trans->num_rx_queues *
950                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
951         num_alloc = queue_size + allocator_pool_size;
952         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
953                      ARRAY_SIZE(trans_pcie->rx_pool));
954         for (i = 0; i < num_alloc; i++) {
955                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
956
957                 if (i < allocator_pool_size)
958                         list_add(&rxb->list, &rba->rbd_empty);
959                 else
960                         list_add(&rxb->list, &def_rxq->rx_used);
961                 trans_pcie->global_table[i] = rxb;
962                 rxb->vid = (u16)(i + 1);
963                 rxb->invalid = true;
964         }
965
966         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
967
968         return 0;
969 }
970
971 int iwl_pcie_rx_init(struct iwl_trans *trans)
972 {
973         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
974         int ret = _iwl_pcie_rx_init(trans);
975
976         if (ret)
977                 return ret;
978
979         if (trans->cfg->mq_rx_supported)
980                 iwl_pcie_rx_mq_hw_init(trans);
981         else
982                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
983
984         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
985
986         spin_lock(&trans_pcie->rxq->lock);
987         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
988         spin_unlock(&trans_pcie->rxq->lock);
989
990         return 0;
991 }
992
993 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
994 {
995         /*
996          * We don't configure the RFH.
997          * Restock will be done at alive, after firmware configured the RFH.
998          */
999         return _iwl_pcie_rx_init(trans);
1000 }
1001
1002 void iwl_pcie_rx_free(struct iwl_trans *trans)
1003 {
1004         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1005         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1006         int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
1007                                               sizeof(__le32);
1008         int i;
1009
1010         /*
1011          * if rxq is NULL, it means that nothing has been allocated,
1012          * exit now
1013          */
1014         if (!trans_pcie->rxq) {
1015                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1016                 return;
1017         }
1018
1019         cancel_work_sync(&rba->rx_alloc);
1020         if (rba->alloc_wq) {
1021                 destroy_workqueue(rba->alloc_wq);
1022                 rba->alloc_wq = NULL;
1023         }
1024
1025         iwl_pcie_free_rbs_pool(trans);
1026
1027         for (i = 0; i < trans->num_rx_queues; i++) {
1028                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1029
1030                 if (rxq->bd)
1031                         dma_free_coherent(trans->dev,
1032                                           free_size * rxq->queue_size,
1033                                           rxq->bd, rxq->bd_dma);
1034                 rxq->bd_dma = 0;
1035                 rxq->bd = NULL;
1036
1037                 if (rxq->rb_stts)
1038                         dma_free_coherent(trans->dev,
1039                                           sizeof(struct iwl_rb_status),
1040                                           rxq->rb_stts, rxq->rb_stts_dma);
1041                 else
1042                         IWL_DEBUG_INFO(trans,
1043                                        "Free rxq->rb_stts which is NULL\n");
1044
1045                 if (rxq->used_bd)
1046                         dma_free_coherent(trans->dev,
1047                                           sizeof(__le32) * rxq->queue_size,
1048                                           rxq->used_bd, rxq->used_bd_dma);
1049                 rxq->used_bd_dma = 0;
1050                 rxq->used_bd = NULL;
1051
1052                 if (rxq->napi.poll)
1053                         netif_napi_del(&rxq->napi);
1054         }
1055         kfree(trans_pcie->rxq);
1056 }
1057
1058 /*
1059  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1060  *
1061  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1062  * When there are 2 empty RBDs - a request for allocation is posted
1063  */
1064 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1065                                   struct iwl_rx_mem_buffer *rxb,
1066                                   struct iwl_rxq *rxq, bool emergency)
1067 {
1068         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1069         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1070
1071         /* Move the RBD to the used list, will be moved to allocator in batches
1072          * before claiming or posting a request*/
1073         list_add_tail(&rxb->list, &rxq->rx_used);
1074
1075         if (unlikely(emergency))
1076                 return;
1077
1078         /* Count the allocator owned RBDs */
1079         rxq->used_count++;
1080
1081         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1082          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1083          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1084          * after but we still need to post another request.
1085          */
1086         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1087                 /* Move the 2 RBDs to the allocator ownership.
1088                  Allocator has another 6 from pool for the request completion*/
1089                 spin_lock(&rba->lock);
1090                 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1091                 spin_unlock(&rba->lock);
1092
1093                 atomic_inc(&rba->req_pending);
1094                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1095         }
1096 }
1097
1098 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1099                                 struct iwl_rxq *rxq,
1100                                 struct iwl_rx_mem_buffer *rxb,
1101                                 bool emergency)
1102 {
1103         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1104         struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1105         bool page_stolen = false;
1106         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1107         u32 offset = 0;
1108
1109         if (WARN_ON(!rxb))
1110                 return;
1111
1112         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1113
1114         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1115                 struct iwl_rx_packet *pkt;
1116                 u16 sequence;
1117                 bool reclaim;
1118                 int index, cmd_index, len;
1119                 struct iwl_rx_cmd_buffer rxcb = {
1120                         ._offset = offset,
1121                         ._rx_page_order = trans_pcie->rx_page_order,
1122                         ._page = rxb->page,
1123                         ._page_stolen = false,
1124                         .truesize = max_len,
1125                 };
1126
1127                 pkt = rxb_addr(&rxcb);
1128
1129                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1130                         IWL_DEBUG_RX(trans,
1131                                      "Q %d: RB end marker at offset %d\n",
1132                                      rxq->id, offset);
1133                         break;
1134                 }
1135
1136                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1137                         FH_RSCSR_RXQ_POS != rxq->id,
1138                      "frame on invalid queue - is on %d and indicates %d\n",
1139                      rxq->id,
1140                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1141                         FH_RSCSR_RXQ_POS);
1142
1143                 IWL_DEBUG_RX(trans,
1144                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1145                              rxq->id, offset,
1146                              iwl_get_cmd_string(trans,
1147                                                 iwl_cmd_id(pkt->hdr.cmd,
1148                                                            pkt->hdr.group_id,
1149                                                            0)),
1150                              pkt->hdr.group_id, pkt->hdr.cmd,
1151                              le16_to_cpu(pkt->hdr.sequence));
1152
1153                 len = iwl_rx_packet_len(pkt);
1154                 len += sizeof(u32); /* account for status word */
1155                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1156                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1157
1158                 /* Reclaim a command buffer only if this packet is a response
1159                  *   to a (driver-originated) command.
1160                  * If the packet (e.g. Rx frame) originated from uCode,
1161                  *   there is no command buffer to reclaim.
1162                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1163                  *   but apparently a few don't get set; catch them here. */
1164                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1165                 if (reclaim && !pkt->hdr.group_id) {
1166                         int i;
1167
1168                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1169                                 if (trans_pcie->no_reclaim_cmds[i] ==
1170                                                         pkt->hdr.cmd) {
1171                                         reclaim = false;
1172                                         break;
1173                                 }
1174                         }
1175                 }
1176
1177                 sequence = le16_to_cpu(pkt->hdr.sequence);
1178                 index = SEQ_TO_INDEX(sequence);
1179                 cmd_index = get_cmd_index(txq, index);
1180
1181                 if (rxq->id == 0)
1182                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1183                                        &rxcb);
1184                 else
1185                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1186                                            &rxcb, rxq->id);
1187
1188                 if (reclaim) {
1189                         kzfree(txq->entries[cmd_index].free_buf);
1190                         txq->entries[cmd_index].free_buf = NULL;
1191                 }
1192
1193                 /*
1194                  * After here, we should always check rxcb._page_stolen,
1195                  * if it is true then one of the handlers took the page.
1196                  */
1197
1198                 if (reclaim) {
1199                         /* Invoke any callbacks, transfer the buffer to caller,
1200                          * and fire off the (possibly) blocking
1201                          * iwl_trans_send_cmd()
1202                          * as we reclaim the driver command queue */
1203                         if (!rxcb._page_stolen)
1204                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1205                         else
1206                                 IWL_WARN(trans, "Claim null rxb?\n");
1207                 }
1208
1209                 page_stolen |= rxcb._page_stolen;
1210                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1211         }
1212
1213         /* page was stolen from us -- free our reference */
1214         if (page_stolen) {
1215                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1216                 rxb->page = NULL;
1217         }
1218
1219         /* Reuse the page if possible. For notification packets and
1220          * SKBs that fail to Rx correctly, add them back into the
1221          * rx_free list for reuse later. */
1222         if (rxb->page != NULL) {
1223                 rxb->page_dma =
1224                         dma_map_page(trans->dev, rxb->page, 0,
1225                                      PAGE_SIZE << trans_pcie->rx_page_order,
1226                                      DMA_FROM_DEVICE);
1227                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1228                         /*
1229                          * free the page(s) as well to not break
1230                          * the invariant that the items on the used
1231                          * list have no page(s)
1232                          */
1233                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1234                         rxb->page = NULL;
1235                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1236                 } else {
1237                         list_add_tail(&rxb->list, &rxq->rx_free);
1238                         rxq->free_count++;
1239                 }
1240         } else
1241                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1242 }
1243
1244 /*
1245  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1246  */
1247 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1248 {
1249         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1250         struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1251         u32 r, i, count = 0;
1252         bool emergency = false;
1253
1254 restart:
1255         spin_lock(&rxq->lock);
1256         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1257          * buffer that the driver may process (last buffer filled by ucode). */
1258         r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1259         i = rxq->read;
1260
1261         /* W/A 9000 device step A0 wrap-around bug */
1262         r &= (rxq->queue_size - 1);
1263
1264         /* Rx interrupt, but nothing sent from uCode */
1265         if (i == r)
1266                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1267
1268         while (i != r) {
1269                 struct iwl_rx_mem_buffer *rxb;
1270
1271                 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1272                         emergency = true;
1273
1274                 if (trans->cfg->mq_rx_supported) {
1275                         /*
1276                          * used_bd is a 32 bit but only 12 are used to retrieve
1277                          * the vid
1278                          */
1279                         u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1280
1281                         if (WARN(!vid ||
1282                                  vid > ARRAY_SIZE(trans_pcie->global_table),
1283                                  "Invalid rxb index from HW %u\n", (u32)vid)) {
1284                                 iwl_force_nmi(trans);
1285                                 goto out;
1286                         }
1287                         rxb = trans_pcie->global_table[vid - 1];
1288                         if (WARN(rxb->invalid,
1289                                  "Invalid rxb from HW %u\n", (u32)vid)) {
1290                                 iwl_force_nmi(trans);
1291                                 goto out;
1292                         }
1293                         rxb->invalid = true;
1294                 } else {
1295                         rxb = rxq->queue[i];
1296                         rxq->queue[i] = NULL;
1297                 }
1298
1299                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1300                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1301
1302                 i = (i + 1) & (rxq->queue_size - 1);
1303
1304                 /*
1305                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1306                  * try to claim the pre-allocated buffers from the allocator.
1307                  * If not ready - will try to reclaim next time.
1308                  * There is no need to reschedule work - allocator exits only
1309                  * on success
1310                  */
1311                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1312                         iwl_pcie_rx_allocator_get(trans, rxq);
1313
1314                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1315                         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1316
1317                         /* Add the remaining empty RBDs for allocator use */
1318                         spin_lock(&rba->lock);
1319                         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1320                         spin_unlock(&rba->lock);
1321                 } else if (emergency) {
1322                         count++;
1323                         if (count == 8) {
1324                                 count = 0;
1325                                 if (rxq->used_count < rxq->queue_size / 3)
1326                                         emergency = false;
1327
1328                                 rxq->read = i;
1329                                 spin_unlock(&rxq->lock);
1330                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1331                                 iwl_pcie_rxq_restock(trans, rxq);
1332                                 goto restart;
1333                         }
1334                 }
1335         }
1336 out:
1337         /* Backtrack one entry */
1338         rxq->read = i;
1339         spin_unlock(&rxq->lock);
1340
1341         /*
1342          * handle a case where in emergency there are some unallocated RBDs.
1343          * those RBDs are in the used list, but are not tracked by the queue's
1344          * used_count which counts allocator owned RBDs.
1345          * unallocated emergency RBDs must be allocated on exit, otherwise
1346          * when called again the function may not be in emergency mode and
1347          * they will be handed to the allocator with no tracking in the RBD
1348          * allocator counters, which will lead to them never being claimed back
1349          * by the queue.
1350          * by allocating them here, they are now in the queue free list, and
1351          * will be restocked by the next call of iwl_pcie_rxq_restock.
1352          */
1353         if (unlikely(emergency && count))
1354                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1355
1356         if (rxq->napi.poll)
1357                 napi_gro_flush(&rxq->napi, false);
1358
1359         iwl_pcie_rxq_restock(trans, rxq);
1360 }
1361
1362 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1363 {
1364         u8 queue = entry->entry;
1365         struct msix_entry *entries = entry - queue;
1366
1367         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1368 }
1369
1370 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1371                                       struct msix_entry *entry)
1372 {
1373         /*
1374          * Before sending the interrupt the HW disables it to prevent
1375          * a nested interrupt. This is done by writing 1 to the corresponding
1376          * bit in the mask register. After handling the interrupt, it should be
1377          * re-enabled by clearing this bit. This register is defined as
1378          * write 1 clear (W1C) register, meaning that it's being clear
1379          * by writing 1 to the bit.
1380          */
1381         iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1382 }
1383
1384 /*
1385  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1386  * This interrupt handler should be used with RSS queue only.
1387  */
1388 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1389 {
1390         struct msix_entry *entry = dev_id;
1391         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1392         struct iwl_trans *trans = trans_pcie->trans;
1393
1394         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1395
1396         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1397                 return IRQ_NONE;
1398
1399         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1400
1401         local_bh_disable();
1402         iwl_pcie_rx_handle(trans, entry->entry);
1403         local_bh_enable();
1404
1405         iwl_pcie_clear_irq(trans, entry);
1406
1407         lock_map_release(&trans->sync_cmd_lockdep_map);
1408
1409         return IRQ_HANDLED;
1410 }
1411
1412 /*
1413  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1414  */
1415 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1416 {
1417         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1418         int i;
1419
1420         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1421         if (trans->cfg->internal_wimax_coex &&
1422             !trans->cfg->apmg_not_supported &&
1423             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1424                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1425              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1426                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1427                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1428                 iwl_op_mode_wimax_active(trans->op_mode);
1429                 wake_up(&trans_pcie->wait_command_queue);
1430                 return;
1431         }
1432
1433         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1434                 if (!trans_pcie->txq[i])
1435                         continue;
1436                 del_timer(&trans_pcie->txq[i]->stuck_timer);
1437         }
1438
1439         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1440          * before we wake up the command caller, to ensure a proper cleanup. */
1441         iwl_trans_fw_error(trans);
1442
1443         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1444         wake_up(&trans_pcie->wait_command_queue);
1445 }
1446
1447 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1448 {
1449         u32 inta;
1450
1451         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1452
1453         trace_iwlwifi_dev_irq(trans->dev);
1454
1455         /* Discover which interrupts are active/pending */
1456         inta = iwl_read32(trans, CSR_INT);
1457
1458         /* the thread will service interrupts and re-enable them */
1459         return inta;
1460 }
1461
1462 /* a device (PCI-E) page is 4096 bytes long */
1463 #define ICT_SHIFT       12
1464 #define ICT_SIZE        (1 << ICT_SHIFT)
1465 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1466
1467 /* interrupt handler using ict table, with this interrupt driver will
1468  * stop using INTA register to get device's interrupt, reading this register
1469  * is expensive, device will write interrupts in ICT dram table, increment
1470  * index then will fire interrupt to driver, driver will OR all ICT table
1471  * entries from current index up to table entry with 0 value. the result is
1472  * the interrupt we need to service, driver will set the entries back to 0 and
1473  * set index.
1474  */
1475 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1476 {
1477         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1478         u32 inta;
1479         u32 val = 0;
1480         u32 read;
1481
1482         trace_iwlwifi_dev_irq(trans->dev);
1483
1484         /* Ignore interrupt if there's nothing in NIC to service.
1485          * This may be due to IRQ shared with another device,
1486          * or due to sporadic interrupts thrown from our NIC. */
1487         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1488         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1489         if (!read)
1490                 return 0;
1491
1492         /*
1493          * Collect all entries up to the first 0, starting from ict_index;
1494          * note we already read at ict_index.
1495          */
1496         do {
1497                 val |= read;
1498                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1499                                 trans_pcie->ict_index, read);
1500                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1501                 trans_pcie->ict_index =
1502                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1503
1504                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1505                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1506                                            read);
1507         } while (read);
1508
1509         /* We should not get this value, just ignore it. */
1510         if (val == 0xffffffff)
1511                 val = 0;
1512
1513         /*
1514          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1515          * (bit 15 before shifting it to 31) to clear when using interrupt
1516          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1517          * so we use them to decide on the real state of the Rx bit.
1518          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1519          */
1520         if (val & 0xC0000)
1521                 val |= 0x8000;
1522
1523         inta = (0xff & val) | ((0xff00 & val) << 16);
1524         return inta;
1525 }
1526
1527 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1528 {
1529         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1530         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1531         bool hw_rfkill, prev, report;
1532
1533         mutex_lock(&trans_pcie->mutex);
1534         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1535         hw_rfkill = iwl_is_rfkill_set(trans);
1536         if (hw_rfkill) {
1537                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1538                 set_bit(STATUS_RFKILL_HW, &trans->status);
1539         }
1540         if (trans_pcie->opmode_down)
1541                 report = hw_rfkill;
1542         else
1543                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1544
1545         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1546                  hw_rfkill ? "disable radio" : "enable radio");
1547
1548         isr_stats->rfkill++;
1549
1550         if (prev != report)
1551                 iwl_trans_pcie_rf_kill(trans, report);
1552         mutex_unlock(&trans_pcie->mutex);
1553
1554         if (hw_rfkill) {
1555                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1556                                        &trans->status))
1557                         IWL_DEBUG_RF_KILL(trans,
1558                                           "Rfkill while SYNC HCMD in flight\n");
1559                 wake_up(&trans_pcie->wait_command_queue);
1560         } else {
1561                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1562                 if (trans_pcie->opmode_down)
1563                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1564         }
1565 }
1566
1567 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1568 {
1569         struct iwl_trans *trans = dev_id;
1570         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1571         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1572         u32 inta = 0;
1573         u32 handled = 0;
1574
1575         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1576
1577         spin_lock(&trans_pcie->irq_lock);
1578
1579         /* dram interrupt table not set yet,
1580          * use legacy interrupt.
1581          */
1582         if (likely(trans_pcie->use_ict))
1583                 inta = iwl_pcie_int_cause_ict(trans);
1584         else
1585                 inta = iwl_pcie_int_cause_non_ict(trans);
1586
1587         if (iwl_have_debug_level(IWL_DL_ISR)) {
1588                 IWL_DEBUG_ISR(trans,
1589                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1590                               inta, trans_pcie->inta_mask,
1591                               iwl_read32(trans, CSR_INT_MASK),
1592                               iwl_read32(trans, CSR_FH_INT_STATUS));
1593                 if (inta & (~trans_pcie->inta_mask))
1594                         IWL_DEBUG_ISR(trans,
1595                                       "We got a masked interrupt (0x%08x)\n",
1596                                       inta & (~trans_pcie->inta_mask));
1597         }
1598
1599         inta &= trans_pcie->inta_mask;
1600
1601         /*
1602          * Ignore interrupt if there's nothing in NIC to service.
1603          * This may be due to IRQ shared with another device,
1604          * or due to sporadic interrupts thrown from our NIC.
1605          */
1606         if (unlikely(!inta)) {
1607                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1608                 /*
1609                  * Re-enable interrupts here since we don't
1610                  * have anything to service
1611                  */
1612                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1613                         _iwl_enable_interrupts(trans);
1614                 spin_unlock(&trans_pcie->irq_lock);
1615                 lock_map_release(&trans->sync_cmd_lockdep_map);
1616                 return IRQ_NONE;
1617         }
1618
1619         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1620                 /*
1621                  * Hardware disappeared. It might have
1622                  * already raised an interrupt.
1623                  */
1624                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1625                 spin_unlock(&trans_pcie->irq_lock);
1626                 goto out;
1627         }
1628
1629         /* Ack/clear/reset pending uCode interrupts.
1630          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1631          */
1632         /* There is a hardware bug in the interrupt mask function that some
1633          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1634          * they are disabled in the CSR_INT_MASK register. Furthermore the
1635          * ICT interrupt handling mechanism has another bug that might cause
1636          * these unmasked interrupts fail to be detected. We workaround the
1637          * hardware bugs here by ACKing all the possible interrupts so that
1638          * interrupt coalescing can still be achieved.
1639          */
1640         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1641
1642         if (iwl_have_debug_level(IWL_DL_ISR))
1643                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1644                               inta, iwl_read32(trans, CSR_INT_MASK));
1645
1646         spin_unlock(&trans_pcie->irq_lock);
1647
1648         /* Now service all interrupt bits discovered above. */
1649         if (inta & CSR_INT_BIT_HW_ERR) {
1650                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1651
1652                 /* Tell the device to stop sending interrupts */
1653                 iwl_disable_interrupts(trans);
1654
1655                 isr_stats->hw++;
1656                 iwl_pcie_irq_handle_error(trans);
1657
1658                 handled |= CSR_INT_BIT_HW_ERR;
1659
1660                 goto out;
1661         }
1662
1663         if (iwl_have_debug_level(IWL_DL_ISR)) {
1664                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1665                 if (inta & CSR_INT_BIT_SCD) {
1666                         IWL_DEBUG_ISR(trans,
1667                                       "Scheduler finished to transmit the frame/frames.\n");
1668                         isr_stats->sch++;
1669                 }
1670
1671                 /* Alive notification via Rx interrupt will do the real work */
1672                 if (inta & CSR_INT_BIT_ALIVE) {
1673                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1674                         isr_stats->alive++;
1675                         if (trans->cfg->gen2) {
1676                                 /*
1677                                  * We can restock, since firmware configured
1678                                  * the RFH
1679                                  */
1680                                 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1681                         }
1682                 }
1683         }
1684
1685         /* Safely ignore these bits for debug checks below */
1686         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1687
1688         /* HW RF KILL switch toggled */
1689         if (inta & CSR_INT_BIT_RF_KILL) {
1690                 iwl_pcie_handle_rfkill_irq(trans);
1691                 handled |= CSR_INT_BIT_RF_KILL;
1692         }
1693
1694         /* Chip got too hot and stopped itself */
1695         if (inta & CSR_INT_BIT_CT_KILL) {
1696                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1697                 isr_stats->ctkill++;
1698                 handled |= CSR_INT_BIT_CT_KILL;
1699         }
1700
1701         /* Error detected by uCode */
1702         if (inta & CSR_INT_BIT_SW_ERR) {
1703                 IWL_ERR(trans, "Microcode SW error detected. "
1704                         " Restarting 0x%X.\n", inta);
1705                 isr_stats->sw++;
1706                 iwl_pcie_irq_handle_error(trans);
1707                 handled |= CSR_INT_BIT_SW_ERR;
1708         }
1709
1710         /* uCode wakes up after power-down sleep */
1711         if (inta & CSR_INT_BIT_WAKEUP) {
1712                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1713                 iwl_pcie_rxq_check_wrptr(trans);
1714                 iwl_pcie_txq_check_wrptrs(trans);
1715
1716                 isr_stats->wakeup++;
1717
1718                 handled |= CSR_INT_BIT_WAKEUP;
1719         }
1720
1721         /* All uCode command responses, including Tx command responses,
1722          * Rx "responses" (frame-received notification), and other
1723          * notifications from uCode come through here*/
1724         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1725                     CSR_INT_BIT_RX_PERIODIC)) {
1726                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1727                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1728                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1729                         iwl_write32(trans, CSR_FH_INT_STATUS,
1730                                         CSR_FH_INT_RX_MASK);
1731                 }
1732                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1733                         handled |= CSR_INT_BIT_RX_PERIODIC;
1734                         iwl_write32(trans,
1735                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1736                 }
1737                 /* Sending RX interrupt require many steps to be done in the
1738                  * the device:
1739                  * 1- write interrupt to current index in ICT table.
1740                  * 2- dma RX frame.
1741                  * 3- update RX shared data to indicate last write index.
1742                  * 4- send interrupt.
1743                  * This could lead to RX race, driver could receive RX interrupt
1744                  * but the shared data changes does not reflect this;
1745                  * periodic interrupt will detect any dangling Rx activity.
1746                  */
1747
1748                 /* Disable periodic interrupt; we use it as just a one-shot. */
1749                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1750                             CSR_INT_PERIODIC_DIS);
1751
1752                 /*
1753                  * Enable periodic interrupt in 8 msec only if we received
1754                  * real RX interrupt (instead of just periodic int), to catch
1755                  * any dangling Rx interrupt.  If it was just the periodic
1756                  * interrupt, there was no dangling Rx activity, and no need
1757                  * to extend the periodic interrupt; one-shot is enough.
1758                  */
1759                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1760                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1761                                    CSR_INT_PERIODIC_ENA);
1762
1763                 isr_stats->rx++;
1764
1765                 local_bh_disable();
1766                 iwl_pcie_rx_handle(trans, 0);
1767                 local_bh_enable();
1768         }
1769
1770         /* This "Tx" DMA channel is used only for loading uCode */
1771         if (inta & CSR_INT_BIT_FH_TX) {
1772                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1773                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1774                 isr_stats->tx++;
1775                 handled |= CSR_INT_BIT_FH_TX;
1776                 /* Wake up uCode load routine, now that load is complete */
1777                 trans_pcie->ucode_write_complete = true;
1778                 wake_up(&trans_pcie->ucode_write_waitq);
1779         }
1780
1781         if (inta & ~handled) {
1782                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1783                 isr_stats->unhandled++;
1784         }
1785
1786         if (inta & ~(trans_pcie->inta_mask)) {
1787                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1788                          inta & ~trans_pcie->inta_mask);
1789         }
1790
1791         spin_lock(&trans_pcie->irq_lock);
1792         /* only Re-enable all interrupt if disabled by irq */
1793         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1794                 _iwl_enable_interrupts(trans);
1795         /* we are loading the firmware, enable FH_TX interrupt only */
1796         else if (handled & CSR_INT_BIT_FH_TX)
1797                 iwl_enable_fw_load_int(trans);
1798         /* Re-enable RF_KILL if it occurred */
1799         else if (handled & CSR_INT_BIT_RF_KILL)
1800                 iwl_enable_rfkill_int(trans);
1801         spin_unlock(&trans_pcie->irq_lock);
1802
1803 out:
1804         lock_map_release(&trans->sync_cmd_lockdep_map);
1805         return IRQ_HANDLED;
1806 }
1807
1808 /******************************************************************************
1809  *
1810  * ICT functions
1811  *
1812  ******************************************************************************/
1813
1814 /* Free dram table */
1815 void iwl_pcie_free_ict(struct iwl_trans *trans)
1816 {
1817         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1818
1819         if (trans_pcie->ict_tbl) {
1820                 dma_free_coherent(trans->dev, ICT_SIZE,
1821                                   trans_pcie->ict_tbl,
1822                                   trans_pcie->ict_tbl_dma);
1823                 trans_pcie->ict_tbl = NULL;
1824                 trans_pcie->ict_tbl_dma = 0;
1825         }
1826 }
1827
1828 /*
1829  * allocate dram shared table, it is an aligned memory
1830  * block of ICT_SIZE.
1831  * also reset all data related to ICT table interrupt.
1832  */
1833 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1834 {
1835         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1836
1837         trans_pcie->ict_tbl =
1838                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1839                                    &trans_pcie->ict_tbl_dma,
1840                                    GFP_KERNEL);
1841         if (!trans_pcie->ict_tbl)
1842                 return -ENOMEM;
1843
1844         /* just an API sanity check ... it is guaranteed to be aligned */
1845         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1846                 iwl_pcie_free_ict(trans);
1847                 return -EINVAL;
1848         }
1849
1850         return 0;
1851 }
1852
1853 /* Device is going up inform it about using ICT interrupt table,
1854  * also we need to tell the driver to start using ICT interrupt.
1855  */
1856 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1857 {
1858         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1859         u32 val;
1860
1861         if (!trans_pcie->ict_tbl)
1862                 return;
1863
1864         spin_lock(&trans_pcie->irq_lock);
1865         _iwl_disable_interrupts(trans);
1866
1867         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1868
1869         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1870
1871         val |= CSR_DRAM_INT_TBL_ENABLE |
1872                CSR_DRAM_INIT_TBL_WRAP_CHECK |
1873                CSR_DRAM_INIT_TBL_WRITE_POINTER;
1874
1875         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1876
1877         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1878         trans_pcie->use_ict = true;
1879         trans_pcie->ict_index = 0;
1880         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1881         _iwl_enable_interrupts(trans);
1882         spin_unlock(&trans_pcie->irq_lock);
1883 }
1884
1885 /* Device is going down disable ict interrupt usage */
1886 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1887 {
1888         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1889
1890         spin_lock(&trans_pcie->irq_lock);
1891         trans_pcie->use_ict = false;
1892         spin_unlock(&trans_pcie->irq_lock);
1893 }
1894
1895 irqreturn_t iwl_pcie_isr(int irq, void *data)
1896 {
1897         struct iwl_trans *trans = data;
1898
1899         if (!trans)
1900                 return IRQ_NONE;
1901
1902         /* Disable (but don't clear!) interrupts here to avoid
1903          * back-to-back ISRs and sporadic interrupts from our NIC.
1904          * If we have something to service, the tasklet will re-enable ints.
1905          * If we *don't* have something, we'll re-enable before leaving here.
1906          */
1907         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1908
1909         return IRQ_WAKE_THREAD;
1910 }
1911
1912 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1913 {
1914         return IRQ_WAKE_THREAD;
1915 }
1916
1917 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1918 {
1919         struct msix_entry *entry = dev_id;
1920         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1921         struct iwl_trans *trans = trans_pcie->trans;
1922         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1923         u32 inta_fh, inta_hw;
1924
1925         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1926
1927         spin_lock(&trans_pcie->irq_lock);
1928         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1929         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1930         /*
1931          * Clear causes registers to avoid being handling the same cause.
1932          */
1933         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1934         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1935         spin_unlock(&trans_pcie->irq_lock);
1936
1937         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
1938
1939         if (unlikely(!(inta_fh | inta_hw))) {
1940                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1941                 lock_map_release(&trans->sync_cmd_lockdep_map);
1942                 return IRQ_NONE;
1943         }
1944
1945         if (iwl_have_debug_level(IWL_DL_ISR))
1946                 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1947                               inta_fh,
1948                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1949
1950         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
1951             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
1952                 local_bh_disable();
1953                 iwl_pcie_rx_handle(trans, 0);
1954                 local_bh_enable();
1955         }
1956
1957         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
1958             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
1959                 local_bh_disable();
1960                 iwl_pcie_rx_handle(trans, 1);
1961                 local_bh_enable();
1962         }
1963
1964         /* This "Tx" DMA channel is used only for loading uCode */
1965         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1966                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1967                 isr_stats->tx++;
1968                 /*
1969                  * Wake up uCode load routine,
1970                  * now that load is complete
1971                  */
1972                 trans_pcie->ucode_write_complete = true;
1973                 wake_up(&trans_pcie->ucode_write_waitq);
1974         }
1975
1976         /* Error detected by uCode */
1977         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1978             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1979                 IWL_ERR(trans,
1980                         "Microcode SW error detected. Restarting 0x%X.\n",
1981                         inta_fh);
1982                 isr_stats->sw++;
1983                 iwl_pcie_irq_handle_error(trans);
1984         }
1985
1986         /* After checking FH register check HW register */
1987         if (iwl_have_debug_level(IWL_DL_ISR))
1988                 IWL_DEBUG_ISR(trans,
1989                               "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1990                               inta_hw,
1991                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1992
1993         /* Alive notification via Rx interrupt will do the real work */
1994         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1995                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1996                 isr_stats->alive++;
1997                 if (trans->cfg->gen2) {
1998                         /* We can restock, since firmware configured the RFH */
1999                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2000                 }
2001         }
2002
2003         /* uCode wakes up after power-down sleep */
2004         if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2005                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2006                 iwl_pcie_rxq_check_wrptr(trans);
2007                 iwl_pcie_txq_check_wrptrs(trans);
2008
2009                 isr_stats->wakeup++;
2010         }
2011
2012         /* Chip got too hot and stopped itself */
2013         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2014                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2015                 isr_stats->ctkill++;
2016         }
2017
2018         /* HW RF KILL switch toggled */
2019         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2020                 iwl_pcie_handle_rfkill_irq(trans);
2021
2022         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2023                 IWL_ERR(trans,
2024                         "Hardware error detected. Restarting.\n");
2025
2026                 isr_stats->hw++;
2027                 iwl_pcie_irq_handle_error(trans);
2028         }
2029
2030         iwl_pcie_clear_irq(trans, entry);
2031
2032         lock_map_release(&trans->sync_cmd_lockdep_map);
2033
2034         return IRQ_HANDLED;
2035 }