]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ipw2100.c
d429fd576a66e4da1b1b855283da21f1f6e14602
[karo-tx-linux.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.1.4"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         down(&priv->adapter_sem);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         up(&priv->adapter_sem);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         down(&priv->adapter_sem);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         up(&priv->adapter_sem);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* If the interrupt is enabled, turn it off... */
1702         spin_lock_irqsave(&priv->low_lock, flags);
1703         ipw2100_disable_interrupts(priv);
1704
1705         /* Reset any fatal_error conditions */
1706         ipw2100_reset_fatalerror(priv);
1707         spin_unlock_irqrestore(&priv->low_lock, flags);
1708
1709         if (priv->status & STATUS_POWERED ||
1710             (priv->status & STATUS_RESET_PENDING)) {
1711                 /* Power cycle the card ... */
1712                 if (ipw2100_power_cycle_adapter(priv)) {
1713                         printk(KERN_WARNING DRV_NAME
1714                                ": %s: Could not cycle adapter.\n",
1715                                priv->net_dev->name);
1716                         rc = 1;
1717                         goto exit;
1718                 }
1719         } else
1720                 priv->status |= STATUS_POWERED;
1721
1722         /* Load the firmware, start the clocks, etc. */
1723         if (ipw2100_start_adapter(priv)) {
1724                 printk(KERN_ERR DRV_NAME
1725                        ": %s: Failed to start the firmware.\n",
1726                        priv->net_dev->name);
1727                 rc = 1;
1728                 goto exit;
1729         }
1730
1731         ipw2100_initialize_ordinals(priv);
1732
1733         /* Determine capabilities of this particular HW configuration */
1734         if (ipw2100_get_hw_features(priv)) {
1735                 printk(KERN_ERR DRV_NAME
1736                        ": %s: Failed to determine HW features.\n",
1737                        priv->net_dev->name);
1738                 rc = 1;
1739                 goto exit;
1740         }
1741
1742         /* Initialize the geo */
1743         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1744                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1745                 return 0;
1746         }
1747         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1748
1749         lock = LOCK_NONE;
1750         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1751                 printk(KERN_ERR DRV_NAME
1752                        ": %s: Failed to clear ordinal lock.\n",
1753                        priv->net_dev->name);
1754                 rc = 1;
1755                 goto exit;
1756         }
1757
1758         priv->status &= ~STATUS_SCANNING;
1759
1760         if (rf_kill_active(priv)) {
1761                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1762                        priv->net_dev->name);
1763
1764                 if (priv->stop_rf_kill) {
1765                         priv->stop_rf_kill = 0;
1766                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1767                 }
1768
1769                 deferred = 1;
1770         }
1771
1772         /* Turn on the interrupt so that commands can be processed */
1773         ipw2100_enable_interrupts(priv);
1774
1775         /* Send all of the commands that must be sent prior to
1776          * HOST_COMPLETE */
1777         if (ipw2100_adapter_setup(priv)) {
1778                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1779                        priv->net_dev->name);
1780                 rc = 1;
1781                 goto exit;
1782         }
1783
1784         if (!deferred) {
1785                 /* Enable the adapter - sends HOST_COMPLETE */
1786                 if (ipw2100_enable_adapter(priv)) {
1787                         printk(KERN_ERR DRV_NAME ": "
1788                                "%s: failed in call to enable adapter.\n",
1789                                priv->net_dev->name);
1790                         ipw2100_hw_stop_adapter(priv);
1791                         rc = 1;
1792                         goto exit;
1793                 }
1794
1795                 /* Start a scan . . . */
1796                 ipw2100_set_scan_options(priv);
1797                 ipw2100_start_scan(priv);
1798         }
1799
1800       exit:
1801         return rc;
1802 }
1803
1804 /* Called by register_netdev() */
1805 static int ipw2100_net_init(struct net_device *dev)
1806 {
1807         struct ipw2100_priv *priv = ieee80211_priv(dev);
1808         return ipw2100_up(priv, 1);
1809 }
1810
1811 static void ipw2100_down(struct ipw2100_priv *priv)
1812 {
1813         unsigned long flags;
1814         union iwreq_data wrqu = {
1815                 .ap_addr = {
1816                             .sa_family = ARPHRD_ETHER}
1817         };
1818         int associated = priv->status & STATUS_ASSOCIATED;
1819
1820         /* Kill the RF switch timer */
1821         if (!priv->stop_rf_kill) {
1822                 priv->stop_rf_kill = 1;
1823                 cancel_delayed_work(&priv->rf_kill);
1824         }
1825
1826         /* Kill the firmare hang check timer */
1827         if (!priv->stop_hang_check) {
1828                 priv->stop_hang_check = 1;
1829                 cancel_delayed_work(&priv->hang_check);
1830         }
1831
1832         /* Kill any pending resets */
1833         if (priv->status & STATUS_RESET_PENDING)
1834                 cancel_delayed_work(&priv->reset_work);
1835
1836         /* Make sure the interrupt is on so that FW commands will be
1837          * processed correctly */
1838         spin_lock_irqsave(&priv->low_lock, flags);
1839         ipw2100_enable_interrupts(priv);
1840         spin_unlock_irqrestore(&priv->low_lock, flags);
1841
1842         if (ipw2100_hw_stop_adapter(priv))
1843                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1844                        priv->net_dev->name);
1845
1846         /* Do not disable the interrupt until _after_ we disable
1847          * the adaptor.  Otherwise the CARD_DISABLE command will never
1848          * be ack'd by the firmware */
1849         spin_lock_irqsave(&priv->low_lock, flags);
1850         ipw2100_disable_interrupts(priv);
1851         spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1854         if (priv->config & CFG_C3_DISABLED) {
1855                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1856                 acpi_set_cstate_limit(priv->cstate_limit);
1857                 priv->config &= ~CFG_C3_DISABLED;
1858         }
1859 #endif
1860
1861         /* We have to signal any supplicant if we are disassociating */
1862         if (associated)
1863                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866         netif_carrier_off(priv->net_dev);
1867         netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1871 {
1872         unsigned long flags;
1873         union iwreq_data wrqu = {
1874                 .ap_addr = {
1875                             .sa_family = ARPHRD_ETHER}
1876         };
1877         int associated = priv->status & STATUS_ASSOCIATED;
1878
1879         spin_lock_irqsave(&priv->low_lock, flags);
1880         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1881         priv->resets++;
1882         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1883         priv->status |= STATUS_SECURITY_UPDATED;
1884
1885         /* Force a power cycle even if interface hasn't been opened
1886          * yet */
1887         cancel_delayed_work(&priv->reset_work);
1888         priv->status |= STATUS_RESET_PENDING;
1889         spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891         down(&priv->action_sem);
1892         /* stop timed checks so that they don't interfere with reset */
1893         priv->stop_hang_check = 1;
1894         cancel_delayed_work(&priv->hang_check);
1895
1896         /* We have to signal any supplicant if we are disassociating */
1897         if (associated)
1898                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900         ipw2100_up(priv, 0);
1901         up(&priv->action_sem);
1902
1903 }
1904
1905 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1906 {
1907
1908 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1909         int ret, len, essid_len;
1910         char essid[IW_ESSID_MAX_SIZE];
1911         u32 txrate;
1912         u32 chan;
1913         char *txratename;
1914         u8 bssid[ETH_ALEN];
1915
1916         /*
1917          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1918          *      an actual MAC of the AP. Seems like FW sets this
1919          *      address too late. Read it later and expose through
1920          *      /proc or schedule a later task to query and update
1921          */
1922
1923         essid_len = IW_ESSID_MAX_SIZE;
1924         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1925                                   essid, &essid_len);
1926         if (ret) {
1927                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1928                                __LINE__);
1929                 return;
1930         }
1931
1932         len = sizeof(u32);
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1934         if (ret) {
1935                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1936                                __LINE__);
1937                 return;
1938         }
1939
1940         len = sizeof(u32);
1941         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1942         if (ret) {
1943                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944                                __LINE__);
1945                 return;
1946         }
1947         len = ETH_ALEN;
1948         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1949         if (ret) {
1950                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951                                __LINE__);
1952                 return;
1953         }
1954         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1955
1956         switch (txrate) {
1957         case TX_RATE_1_MBIT:
1958                 txratename = "1Mbps";
1959                 break;
1960         case TX_RATE_2_MBIT:
1961                 txratename = "2Mbsp";
1962                 break;
1963         case TX_RATE_5_5_MBIT:
1964                 txratename = "5.5Mbps";
1965                 break;
1966         case TX_RATE_11_MBIT:
1967                 txratename = "11Mbps";
1968                 break;
1969         default:
1970                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1971                 txratename = "unknown rate";
1972                 break;
1973         }
1974
1975         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1976                        MAC_FMT ")\n",
1977                        priv->net_dev->name, escape_essid(essid, essid_len),
1978                        txratename, chan, MAC_ARG(bssid));
1979
1980         /* now we copy read ssid into dev */
1981         if (!(priv->config & CFG_STATIC_ESSID)) {
1982                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1983                 memcpy(priv->essid, essid, priv->essid_len);
1984         }
1985         priv->channel = chan;
1986         memcpy(priv->bssid, bssid, ETH_ALEN);
1987
1988         priv->status |= STATUS_ASSOCIATING;
1989         priv->connect_start = get_seconds();
1990
1991         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1992 }
1993
1994 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1995                              int length, int batch_mode)
1996 {
1997         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1998         struct host_command cmd = {
1999                 .host_command = SSID,
2000                 .host_command_sequence = 0,
2001                 .host_command_length = ssid_len
2002         };
2003         int err;
2004
2005         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2006
2007         if (ssid_len)
2008                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2009
2010         if (!batch_mode) {
2011                 err = ipw2100_disable_adapter(priv);
2012                 if (err)
2013                         return err;
2014         }
2015
2016         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2017          * disable auto association -- so we cheat by setting a bogus SSID */
2018         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2019                 int i;
2020                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2021                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2022                         bogus[i] = 0x18 + i;
2023                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2024         }
2025
2026         /* NOTE:  We always send the SSID command even if the provided ESSID is
2027          * the same as what we currently think is set. */
2028
2029         err = ipw2100_hw_send_command(priv, &cmd);
2030         if (!err) {
2031                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2032                 memcpy(priv->essid, essid, ssid_len);
2033                 priv->essid_len = ssid_len;
2034         }
2035
2036         if (!batch_mode) {
2037                 if (ipw2100_enable_adapter(priv))
2038                         err = -EIO;
2039         }
2040
2041         return err;
2042 }
2043
2044 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2045 {
2046         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2047                   "disassociated: '%s' " MAC_FMT " \n",
2048                   escape_essid(priv->essid, priv->essid_len),
2049                   MAC_ARG(priv->bssid));
2050
2051         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2052
2053         if (priv->status & STATUS_STOPPING) {
2054                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2055                 return;
2056         }
2057
2058         memset(priv->bssid, 0, ETH_ALEN);
2059         memset(priv->ieee->bssid, 0, ETH_ALEN);
2060
2061         netif_carrier_off(priv->net_dev);
2062         netif_stop_queue(priv->net_dev);
2063
2064         if (!(priv->status & STATUS_RUNNING))
2065                 return;
2066
2067         if (priv->status & STATUS_SECURITY_UPDATED)
2068                 queue_work(priv->workqueue, &priv->security_work);
2069
2070         queue_work(priv->workqueue, &priv->wx_event_work);
2071 }
2072
2073 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2074 {
2075         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2076                        priv->net_dev->name);
2077
2078         /* RF_KILL is now enabled (else we wouldn't be here) */
2079         priv->status |= STATUS_RF_KILL_HW;
2080
2081 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2082         if (priv->config & CFG_C3_DISABLED) {
2083                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2084                 acpi_set_cstate_limit(priv->cstate_limit);
2085                 priv->config &= ~CFG_C3_DISABLED;
2086         }
2087 #endif
2088
2089         /* Make sure the RF Kill check timer is running */
2090         priv->stop_rf_kill = 0;
2091         cancel_delayed_work(&priv->rf_kill);
2092         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2093 }
2094
2095 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2096 {
2097         IPW_DEBUG_SCAN("scan complete\n");
2098         /* Age the scan results... */
2099         priv->ieee->scans++;
2100         priv->status &= ~STATUS_SCANNING;
2101 }
2102
2103 #ifdef CONFIG_IPW2100_DEBUG
2104 #define IPW2100_HANDLER(v, f) { v, f, # v }
2105 struct ipw2100_status_indicator {
2106         int status;
2107         void (*cb) (struct ipw2100_priv * priv, u32 status);
2108         char *name;
2109 };
2110 #else
2111 #define IPW2100_HANDLER(v, f) { v, f }
2112 struct ipw2100_status_indicator {
2113         int status;
2114         void (*cb) (struct ipw2100_priv * priv, u32 status);
2115 };
2116 #endif                          /* CONFIG_IPW2100_DEBUG */
2117
2118 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2119 {
2120         IPW_DEBUG_SCAN("Scanning...\n");
2121         priv->status |= STATUS_SCANNING;
2122 }
2123
2124 static const struct ipw2100_status_indicator status_handlers[] = {
2125         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2126         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2127         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2128         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2129         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2130         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2131         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2132         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2133         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2134         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2136         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2137         IPW2100_HANDLER(-1, NULL)
2138 };
2139
2140 static void isr_status_change(struct ipw2100_priv *priv, int status)
2141 {
2142         int i;
2143
2144         if (status == IPW_STATE_SCANNING &&
2145             priv->status & STATUS_ASSOCIATED &&
2146             !(priv->status & STATUS_SCANNING)) {
2147                 IPW_DEBUG_INFO("Scan detected while associated, with "
2148                                "no scan request.  Restarting firmware.\n");
2149
2150                 /* Wake up any sleeping jobs */
2151                 schedule_reset(priv);
2152         }
2153
2154         for (i = 0; status_handlers[i].status != -1; i++) {
2155                 if (status == status_handlers[i].status) {
2156                         IPW_DEBUG_NOTIF("Status change: %s\n",
2157                                         status_handlers[i].name);
2158                         if (status_handlers[i].cb)
2159                                 status_handlers[i].cb(priv, status);
2160                         priv->wstats.status = status;
2161                         return;
2162                 }
2163         }
2164
2165         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2166 }
2167
2168 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2169                                     struct ipw2100_cmd_header *cmd)
2170 {
2171 #ifdef CONFIG_IPW2100_DEBUG
2172         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2173                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2174                              command_types[cmd->host_command_reg],
2175                              cmd->host_command_reg);
2176         }
2177 #endif
2178         if (cmd->host_command_reg == HOST_COMPLETE)
2179                 priv->status |= STATUS_ENABLED;
2180
2181         if (cmd->host_command_reg == CARD_DISABLE)
2182                 priv->status &= ~STATUS_ENABLED;
2183
2184         priv->status &= ~STATUS_CMD_ACTIVE;
2185
2186         wake_up_interruptible(&priv->wait_command_queue);
2187 }
2188
2189 #ifdef CONFIG_IPW2100_DEBUG
2190 static const char *frame_types[] = {
2191         "COMMAND_STATUS_VAL",
2192         "STATUS_CHANGE_VAL",
2193         "P80211_DATA_VAL",
2194         "P8023_DATA_VAL",
2195         "HOST_NOTIFICATION_VAL"
2196 };
2197 #endif
2198
2199 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2200                                     struct ipw2100_rx_packet *packet)
2201 {
2202         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2203         if (!packet->skb)
2204                 return -ENOMEM;
2205
2206         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2207         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2208                                           sizeof(struct ipw2100_rx),
2209                                           PCI_DMA_FROMDEVICE);
2210         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2211          *       dma_addr */
2212
2213         return 0;
2214 }
2215
2216 #define SEARCH_ERROR   0xffffffff
2217 #define SEARCH_FAIL    0xfffffffe
2218 #define SEARCH_SUCCESS 0xfffffff0
2219 #define SEARCH_DISCARD 0
2220 #define SEARCH_SNAPSHOT 1
2221
2222 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2223 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2224 {
2225         int i;
2226         if (!priv->snapshot[0])
2227                 return;
2228         for (i = 0; i < 0x30; i++)
2229                 kfree(priv->snapshot[i]);
2230         priv->snapshot[0] = NULL;
2231 }
2232
2233 #ifdef CONFIG_IPW2100_DEBUG_C3
2234 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2235 {
2236         int i;
2237         if (priv->snapshot[0])
2238                 return 1;
2239         for (i = 0; i < 0x30; i++) {
2240                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2241                 if (!priv->snapshot[i]) {
2242                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2243                                        "buffer %d\n", priv->net_dev->name, i);
2244                         while (i > 0)
2245                                 kfree(priv->snapshot[--i]);
2246                         priv->snapshot[0] = NULL;
2247                         return 0;
2248                 }
2249         }
2250
2251         return 1;
2252 }
2253
2254 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2255                                     size_t len, int mode)
2256 {
2257         u32 i, j;
2258         u32 tmp;
2259         u8 *s, *d;
2260         u32 ret;
2261
2262         s = in_buf;
2263         if (mode == SEARCH_SNAPSHOT) {
2264                 if (!ipw2100_snapshot_alloc(priv))
2265                         mode = SEARCH_DISCARD;
2266         }
2267
2268         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2269                 read_nic_dword(priv->net_dev, i, &tmp);
2270                 if (mode == SEARCH_SNAPSHOT)
2271                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2272                 if (ret == SEARCH_FAIL) {
2273                         d = (u8 *) & tmp;
2274                         for (j = 0; j < 4; j++) {
2275                                 if (*s != *d) {
2276                                         s = in_buf;
2277                                         continue;
2278                                 }
2279
2280                                 s++;
2281                                 d++;
2282
2283                                 if ((s - in_buf) == len)
2284                                         ret = (i + j) - len + 1;
2285                         }
2286                 } else if (mode == SEARCH_DISCARD)
2287                         return ret;
2288         }
2289
2290         return ret;
2291 }
2292 #endif
2293
2294 /*
2295  *
2296  * 0) Disconnect the SKB from the firmware (just unmap)
2297  * 1) Pack the ETH header into the SKB
2298  * 2) Pass the SKB to the network stack
2299  *
2300  * When packet is provided by the firmware, it contains the following:
2301  *
2302  * .  ieee80211_hdr
2303  * .  ieee80211_snap_hdr
2304  *
2305  * The size of the constructed ethernet
2306  *
2307  */
2308 #ifdef CONFIG_IPW2100_RX_DEBUG
2309 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2310 #endif
2311
2312 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2313 {
2314 #ifdef CONFIG_IPW2100_DEBUG_C3
2315         struct ipw2100_status *status = &priv->status_queue.drv[i];
2316         u32 match, reg;
2317         int j;
2318 #endif
2319 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2320         int limit;
2321 #endif
2322
2323         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2324                        i * sizeof(struct ipw2100_status));
2325
2326 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2327         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2328         limit = acpi_get_cstate_limit();
2329         if (limit > 2) {
2330                 priv->cstate_limit = limit;
2331                 acpi_set_cstate_limit(2);
2332                 priv->config |= CFG_C3_DISABLED;
2333         }
2334 #endif
2335
2336 #ifdef CONFIG_IPW2100_DEBUG_C3
2337         /* Halt the fimrware so we can get a good image */
2338         write_register(priv->net_dev, IPW_REG_RESET_REG,
2339                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2340         j = 5;
2341         do {
2342                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2343                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2344
2345                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2346                         break;
2347         } while (j--);
2348
2349         match = ipw2100_match_buf(priv, (u8 *) status,
2350                                   sizeof(struct ipw2100_status),
2351                                   SEARCH_SNAPSHOT);
2352         if (match < SEARCH_SUCCESS)
2353                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2354                                "offset 0x%06X, length %d:\n",
2355                                priv->net_dev->name, match,
2356                                sizeof(struct ipw2100_status));
2357         else
2358                 IPW_DEBUG_INFO("%s: No DMA status match in "
2359                                "Firmware.\n", priv->net_dev->name);
2360
2361         printk_buf((u8 *) priv->status_queue.drv,
2362                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2363 #endif
2364
2365         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2366         priv->ieee->stats.rx_errors++;
2367         schedule_reset(priv);
2368 }
2369
2370 static void isr_rx(struct ipw2100_priv *priv, int i,
2371                           struct ieee80211_rx_stats *stats)
2372 {
2373         struct ipw2100_status *status = &priv->status_queue.drv[i];
2374         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2375
2376         IPW_DEBUG_RX("Handler...\n");
2377
2378         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2379                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2380                                "  Dropping.\n",
2381                                priv->net_dev->name,
2382                                status->frame_size, skb_tailroom(packet->skb));
2383                 priv->ieee->stats.rx_errors++;
2384                 return;
2385         }
2386
2387         if (unlikely(!netif_running(priv->net_dev))) {
2388                 priv->ieee->stats.rx_errors++;
2389                 priv->wstats.discard.misc++;
2390                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2391                 return;
2392         }
2393
2394         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2395                      !(priv->status & STATUS_ASSOCIATED))) {
2396                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2397                 priv->wstats.discard.misc++;
2398                 return;
2399         }
2400
2401         pci_unmap_single(priv->pci_dev,
2402                          packet->dma_addr,
2403                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2404
2405         skb_put(packet->skb, status->frame_size);
2406
2407 #ifdef CONFIG_IPW2100_RX_DEBUG
2408         /* Make a copy of the frame so we can dump it to the logs if
2409          * ieee80211_rx fails */
2410         memcpy(packet_data, packet->skb->data,
2411                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2412 #endif
2413
2414         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2415 #ifdef CONFIG_IPW2100_RX_DEBUG
2416                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2417                                priv->net_dev->name);
2418                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2419 #endif
2420                 priv->ieee->stats.rx_errors++;
2421
2422                 /* ieee80211_rx failed, so it didn't free the SKB */
2423                 dev_kfree_skb_any(packet->skb);
2424                 packet->skb = NULL;
2425         }
2426
2427         /* We need to allocate a new SKB and attach it to the RDB. */
2428         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2429                 printk(KERN_WARNING DRV_NAME ": "
2430                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2431                        "adapter.\n", priv->net_dev->name);
2432                 /* TODO: schedule adapter shutdown */
2433                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2434         }
2435
2436         /* Update the RDB entry */
2437         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2438 }
2439
2440 #ifdef CONFIG_IPW2100_MONITOR
2441
2442 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2443                    struct ieee80211_rx_stats *stats)
2444 {
2445         struct ipw2100_status *status = &priv->status_queue.drv[i];
2446         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2447
2448         IPW_DEBUG_RX("Handler...\n");
2449
2450         /* Magic struct that slots into the radiotap header -- no reason
2451          * to build this manually element by element, we can write it much
2452          * more efficiently than we can parse it. ORDER MATTERS HERE */
2453         struct ipw_rt_hdr {
2454                 struct ieee80211_radiotap_header rt_hdr;
2455                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2456         } *ipw_rt;
2457
2458         if (unlikely(status->frame_size > skb_tailroom(packet->skb) - sizeof(struct ipw_rt_hdr))) {
2459                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2460                                "  Dropping.\n",
2461                                priv->net_dev->name,
2462                                status->frame_size, skb_tailroom(packet->skb));
2463                 priv->ieee->stats.rx_errors++;
2464                 return;
2465         }
2466
2467         if (unlikely(!netif_running(priv->net_dev))) {
2468                 priv->ieee->stats.rx_errors++;
2469                 priv->wstats.discard.misc++;
2470                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2471                 return;
2472         }
2473
2474         if (unlikely(priv->config & CFG_CRC_CHECK &&
2475                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2476                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2477                 priv->ieee->stats.rx_errors++;
2478                 return;
2479         }
2480
2481         pci_unmap_single(priv->pci_dev,
2482                          packet->dma_addr,
2483                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2484         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2485                 packet->skb->data, status->frame_size);
2486
2487         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2488
2489         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2490         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2491         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
2492
2493         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2494
2495         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2496
2497         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2498
2499         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2500                 priv->ieee->stats.rx_errors++;
2501
2502                 /* ieee80211_rx failed, so it didn't free the SKB */
2503                 dev_kfree_skb_any(packet->skb);
2504                 packet->skb = NULL;
2505         }
2506
2507         /* We need to allocate a new SKB and attach it to the RDB. */
2508         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2509                 IPW_DEBUG_WARNING(
2510                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2511                         "adapter.\n", priv->net_dev->name);
2512                 /* TODO: schedule adapter shutdown */
2513                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2514         }
2515
2516         /* Update the RDB entry */
2517         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2518 }
2519
2520 #endif
2521
2522 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2523 {
2524         struct ipw2100_status *status = &priv->status_queue.drv[i];
2525         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2526         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2527
2528         switch (frame_type) {
2529         case COMMAND_STATUS_VAL:
2530                 return (status->frame_size != sizeof(u->rx_data.command));
2531         case STATUS_CHANGE_VAL:
2532                 return (status->frame_size != sizeof(u->rx_data.status));
2533         case HOST_NOTIFICATION_VAL:
2534                 return (status->frame_size < sizeof(u->rx_data.notification));
2535         case P80211_DATA_VAL:
2536         case P8023_DATA_VAL:
2537 #ifdef CONFIG_IPW2100_MONITOR
2538                 return 0;
2539 #else
2540                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2541                 case IEEE80211_FTYPE_MGMT:
2542                 case IEEE80211_FTYPE_CTL:
2543                         return 0;
2544                 case IEEE80211_FTYPE_DATA:
2545                         return (status->frame_size >
2546                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2547                 }
2548 #endif
2549         }
2550
2551         return 1;
2552 }
2553
2554 /*
2555  * ipw2100 interrupts are disabled at this point, and the ISR
2556  * is the only code that calls this method.  So, we do not need
2557  * to play with any locks.
2558  *
2559  * RX Queue works as follows:
2560  *
2561  * Read index - firmware places packet in entry identified by the
2562  *              Read index and advances Read index.  In this manner,
2563  *              Read index will always point to the next packet to
2564  *              be filled--but not yet valid.
2565  *
2566  * Write index - driver fills this entry with an unused RBD entry.
2567  *               This entry has not filled by the firmware yet.
2568  *
2569  * In between the W and R indexes are the RBDs that have been received
2570  * but not yet processed.
2571  *
2572  * The process of handling packets will start at WRITE + 1 and advance
2573  * until it reaches the READ index.
2574  *
2575  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2576  *
2577  */
2578 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2579 {
2580         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2581         struct ipw2100_status_queue *sq = &priv->status_queue;
2582         struct ipw2100_rx_packet *packet;
2583         u16 frame_type;
2584         u32 r, w, i, s;
2585         struct ipw2100_rx *u;
2586         struct ieee80211_rx_stats stats = {
2587                 .mac_time = jiffies,
2588         };
2589
2590         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2591         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2592
2593         if (r >= rxq->entries) {
2594                 IPW_DEBUG_RX("exit - bad read index\n");
2595                 return;
2596         }
2597
2598         i = (rxq->next + 1) % rxq->entries;
2599         s = i;
2600         while (i != r) {
2601                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2602                    r, rxq->next, i); */
2603
2604                 packet = &priv->rx_buffers[i];
2605
2606                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2607                  * the correct values */
2608                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2609                                             sq->nic +
2610                                             sizeof(struct ipw2100_status) * i,
2611                                             sizeof(struct ipw2100_status),
2612                                             PCI_DMA_FROMDEVICE);
2613
2614                 /* Sync the DMA for the RX buffer so CPU is sure to get
2615                  * the correct values */
2616                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2617                                             sizeof(struct ipw2100_rx),
2618                                             PCI_DMA_FROMDEVICE);
2619
2620                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2621                         ipw2100_corruption_detected(priv, i);
2622                         goto increment;
2623                 }
2624
2625                 u = packet->rxp;
2626                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2627                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2628                 stats.len = sq->drv[i].frame_size;
2629
2630                 stats.mask = 0;
2631                 if (stats.rssi != 0)
2632                         stats.mask |= IEEE80211_STATMASK_RSSI;
2633                 stats.freq = IEEE80211_24GHZ_BAND;
2634
2635                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2636                              priv->net_dev->name, frame_types[frame_type],
2637                              stats.len);
2638
2639                 switch (frame_type) {
2640                 case COMMAND_STATUS_VAL:
2641                         /* Reset Rx watchdog */
2642                         isr_rx_complete_command(priv, &u->rx_data.command);
2643                         break;
2644
2645                 case STATUS_CHANGE_VAL:
2646                         isr_status_change(priv, u->rx_data.status);
2647                         break;
2648
2649                 case P80211_DATA_VAL:
2650                 case P8023_DATA_VAL:
2651 #ifdef CONFIG_IPW2100_MONITOR
2652                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2653                                 isr_rx_monitor(priv, i, &stats);
2654                                 break;
2655                         }
2656 #endif
2657                         if (stats.len < sizeof(u->rx_data.header))
2658                                 break;
2659                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2660                         case IEEE80211_FTYPE_MGMT:
2661                                 ieee80211_rx_mgt(priv->ieee,
2662                                                  &u->rx_data.header, &stats);
2663                                 break;
2664
2665                         case IEEE80211_FTYPE_CTL:
2666                                 break;
2667
2668                         case IEEE80211_FTYPE_DATA:
2669                                 isr_rx(priv, i, &stats);
2670                                 break;
2671
2672                         }
2673                         break;
2674                 }
2675
2676               increment:
2677                 /* clear status field associated with this RBD */
2678                 rxq->drv[i].status.info.field = 0;
2679
2680                 i = (i + 1) % rxq->entries;
2681         }
2682
2683         if (i != s) {
2684                 /* backtrack one entry, wrapping to end if at 0 */
2685                 rxq->next = (i ? i : rxq->entries) - 1;
2686
2687                 write_register(priv->net_dev,
2688                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2689         }
2690 }
2691
2692 /*
2693  * __ipw2100_tx_process
2694  *
2695  * This routine will determine whether the next packet on
2696  * the fw_pend_list has been processed by the firmware yet.
2697  *
2698  * If not, then it does nothing and returns.
2699  *
2700  * If so, then it removes the item from the fw_pend_list, frees
2701  * any associated storage, and places the item back on the
2702  * free list of its source (either msg_free_list or tx_free_list)
2703  *
2704  * TX Queue works as follows:
2705  *
2706  * Read index - points to the next TBD that the firmware will
2707  *              process.  The firmware will read the data, and once
2708  *              done processing, it will advance the Read index.
2709  *
2710  * Write index - driver fills this entry with an constructed TBD
2711  *               entry.  The Write index is not advanced until the
2712  *               packet has been configured.
2713  *
2714  * In between the W and R indexes are the TBDs that have NOT been
2715  * processed.  Lagging behind the R index are packets that have
2716  * been processed but have not been freed by the driver.
2717  *
2718  * In order to free old storage, an internal index will be maintained
2719  * that points to the next packet to be freed.  When all used
2720  * packets have been freed, the oldest index will be the same as the
2721  * firmware's read index.
2722  *
2723  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2724  *
2725  * Because the TBD structure can not contain arbitrary data, the
2726  * driver must keep an internal queue of cached allocations such that
2727  * it can put that data back into the tx_free_list and msg_free_list
2728  * for use by future command and data packets.
2729  *
2730  */
2731 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2732 {
2733         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2734         struct ipw2100_bd *tbd;
2735         struct list_head *element;
2736         struct ipw2100_tx_packet *packet;
2737         int descriptors_used;
2738         int e, i;
2739         u32 r, w, frag_num = 0;
2740
2741         if (list_empty(&priv->fw_pend_list))
2742                 return 0;
2743
2744         element = priv->fw_pend_list.next;
2745
2746         packet = list_entry(element, struct ipw2100_tx_packet, list);
2747         tbd = &txq->drv[packet->index];
2748
2749         /* Determine how many TBD entries must be finished... */
2750         switch (packet->type) {
2751         case COMMAND:
2752                 /* COMMAND uses only one slot; don't advance */
2753                 descriptors_used = 1;
2754                 e = txq->oldest;
2755                 break;
2756
2757         case DATA:
2758                 /* DATA uses two slots; advance and loop position. */
2759                 descriptors_used = tbd->num_fragments;
2760                 frag_num = tbd->num_fragments - 1;
2761                 e = txq->oldest + frag_num;
2762                 e %= txq->entries;
2763                 break;
2764
2765         default:
2766                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2767                        priv->net_dev->name);
2768                 return 0;
2769         }
2770
2771         /* if the last TBD is not done by NIC yet, then packet is
2772          * not ready to be released.
2773          *
2774          */
2775         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2776                       &r);
2777         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2778                       &w);
2779         if (w != txq->next)
2780                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2781                        priv->net_dev->name);
2782
2783         /*
2784          * txq->next is the index of the last packet written txq->oldest is
2785          * the index of the r is the index of the next packet to be read by
2786          * firmware
2787          */
2788
2789         /*
2790          * Quick graphic to help you visualize the following
2791          * if / else statement
2792          *
2793          * ===>|                     s---->|===============
2794          *                               e>|
2795          * | a | b | c | d | e | f | g | h | i | j | k | l
2796          *       r---->|
2797          *               w
2798          *
2799          * w - updated by driver
2800          * r - updated by firmware
2801          * s - start of oldest BD entry (txq->oldest)
2802          * e - end of oldest BD entry
2803          *
2804          */
2805         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2806                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2807                 return 0;
2808         }
2809
2810         list_del(element);
2811         DEC_STAT(&priv->fw_pend_stat);
2812
2813 #ifdef CONFIG_IPW2100_DEBUG
2814         {
2815                 int i = txq->oldest;
2816                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2817                              &txq->drv[i],
2818                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2819                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2820
2821                 if (packet->type == DATA) {
2822                         i = (i + 1) % txq->entries;
2823
2824                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2825                                      &txq->drv[i],
2826                                      (u32) (txq->nic + i *
2827                                             sizeof(struct ipw2100_bd)),
2828                                      (u32) txq->drv[i].host_addr,
2829                                      txq->drv[i].buf_length);
2830                 }
2831         }
2832 #endif
2833
2834         switch (packet->type) {
2835         case DATA:
2836                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2837                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2838                                "Expecting DATA TBD but pulled "
2839                                "something else: ids %d=%d.\n",
2840                                priv->net_dev->name, txq->oldest, packet->index);
2841
2842                 /* DATA packet; we have to unmap and free the SKB */
2843                 for (i = 0; i < frag_num; i++) {
2844                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2845
2846                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2847                                      (packet->index + 1 + i) % txq->entries,
2848                                      tbd->host_addr, tbd->buf_length);
2849
2850                         pci_unmap_single(priv->pci_dev,
2851                                          tbd->host_addr,
2852                                          tbd->buf_length, PCI_DMA_TODEVICE);
2853                 }
2854
2855                 ieee80211_txb_free(packet->info.d_struct.txb);
2856                 packet->info.d_struct.txb = NULL;
2857
2858                 list_add_tail(element, &priv->tx_free_list);
2859                 INC_STAT(&priv->tx_free_stat);
2860
2861                 /* We have a free slot in the Tx queue, so wake up the
2862                  * transmit layer if it is stopped. */
2863                 if (priv->status & STATUS_ASSOCIATED)
2864                         netif_wake_queue(priv->net_dev);
2865
2866                 /* A packet was processed by the hardware, so update the
2867                  * watchdog */
2868                 priv->net_dev->trans_start = jiffies;
2869
2870                 break;
2871
2872         case COMMAND:
2873                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2874                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2875                                "Expecting COMMAND TBD but pulled "
2876                                "something else: ids %d=%d.\n",
2877                                priv->net_dev->name, txq->oldest, packet->index);
2878
2879 #ifdef CONFIG_IPW2100_DEBUG
2880                 if (packet->info.c_struct.cmd->host_command_reg <
2881                     sizeof(command_types) / sizeof(*command_types))
2882                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2883                                      command_types[packet->info.c_struct.cmd->
2884                                                    host_command_reg],
2885                                      packet->info.c_struct.cmd->
2886                                      host_command_reg,
2887                                      packet->info.c_struct.cmd->cmd_status_reg);
2888 #endif
2889
2890                 list_add_tail(element, &priv->msg_free_list);
2891                 INC_STAT(&priv->msg_free_stat);
2892                 break;
2893         }
2894
2895         /* advance oldest used TBD pointer to start of next entry */
2896         txq->oldest = (e + 1) % txq->entries;
2897         /* increase available TBDs number */
2898         txq->available += descriptors_used;
2899         SET_STAT(&priv->txq_stat, txq->available);
2900
2901         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2902                      jiffies - packet->jiffy_start);
2903
2904         return (!list_empty(&priv->fw_pend_list));
2905 }
2906
2907 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2908 {
2909         int i = 0;
2910
2911         while (__ipw2100_tx_process(priv) && i < 200)
2912                 i++;
2913
2914         if (i == 200) {
2915                 printk(KERN_WARNING DRV_NAME ": "
2916                        "%s: Driver is running slow (%d iters).\n",
2917                        priv->net_dev->name, i);
2918         }
2919 }
2920
2921 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2922 {
2923         struct list_head *element;
2924         struct ipw2100_tx_packet *packet;
2925         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2926         struct ipw2100_bd *tbd;
2927         int next = txq->next;
2928
2929         while (!list_empty(&priv->msg_pend_list)) {
2930                 /* if there isn't enough space in TBD queue, then
2931                  * don't stuff a new one in.
2932                  * NOTE: 3 are needed as a command will take one,
2933                  *       and there is a minimum of 2 that must be
2934                  *       maintained between the r and w indexes
2935                  */
2936                 if (txq->available <= 3) {
2937                         IPW_DEBUG_TX("no room in tx_queue\n");
2938                         break;
2939                 }
2940
2941                 element = priv->msg_pend_list.next;
2942                 list_del(element);
2943                 DEC_STAT(&priv->msg_pend_stat);
2944
2945                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2946
2947                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2948                              &txq->drv[txq->next],
2949                              (void *)(txq->nic + txq->next *
2950                                       sizeof(struct ipw2100_bd)));
2951
2952                 packet->index = txq->next;
2953
2954                 tbd = &txq->drv[txq->next];
2955
2956                 /* initialize TBD */
2957                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2958                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2959                 /* not marking number of fragments causes problems
2960                  * with f/w debug version */
2961                 tbd->num_fragments = 1;
2962                 tbd->status.info.field =
2963                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2964                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2965
2966                 /* update TBD queue counters */
2967                 txq->next++;
2968                 txq->next %= txq->entries;
2969                 txq->available--;
2970                 DEC_STAT(&priv->txq_stat);
2971
2972                 list_add_tail(element, &priv->fw_pend_list);
2973                 INC_STAT(&priv->fw_pend_stat);
2974         }
2975
2976         if (txq->next != next) {
2977                 /* kick off the DMA by notifying firmware the
2978                  * write index has moved; make sure TBD stores are sync'd */
2979                 wmb();
2980                 write_register(priv->net_dev,
2981                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2982                                txq->next);
2983         }
2984 }
2985
2986 /*
2987  * ipw2100_tx_send_data
2988  *
2989  */
2990 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2991 {
2992         struct list_head *element;
2993         struct ipw2100_tx_packet *packet;
2994         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2995         struct ipw2100_bd *tbd;
2996         int next = txq->next;
2997         int i = 0;
2998         struct ipw2100_data_header *ipw_hdr;
2999         struct ieee80211_hdr_3addr *hdr;
3000
3001         while (!list_empty(&priv->tx_pend_list)) {
3002                 /* if there isn't enough space in TBD queue, then
3003                  * don't stuff a new one in.
3004                  * NOTE: 4 are needed as a data will take two,
3005                  *       and there is a minimum of 2 that must be
3006                  *       maintained between the r and w indexes
3007                  */
3008                 element = priv->tx_pend_list.next;
3009                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3010
3011                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3012                              IPW_MAX_BDS)) {
3013                         /* TODO: Support merging buffers if more than
3014                          * IPW_MAX_BDS are used */
3015                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3016                                        "Increase fragmentation level.\n",
3017                                        priv->net_dev->name);
3018                 }
3019
3020                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3021                         IPW_DEBUG_TX("no room in tx_queue\n");
3022                         break;
3023                 }
3024
3025                 list_del(element);
3026                 DEC_STAT(&priv->tx_pend_stat);
3027
3028                 tbd = &txq->drv[txq->next];
3029
3030                 packet->index = txq->next;
3031
3032                 ipw_hdr = packet->info.d_struct.data;
3033                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3034                     fragments[0]->data;
3035
3036                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3037                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3038                            Addr3 = DA */
3039                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3040                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3041                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3042                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3043                            Addr3 = BSSID */
3044                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3045                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3046                 }
3047
3048                 ipw_hdr->host_command_reg = SEND;
3049                 ipw_hdr->host_command_reg1 = 0;
3050
3051                 /* For now we only support host based encryption */
3052                 ipw_hdr->needs_encryption = 0;
3053                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3054                 if (packet->info.d_struct.txb->nr_frags > 1)
3055                         ipw_hdr->fragment_size =
3056                             packet->info.d_struct.txb->frag_size -
3057                             IEEE80211_3ADDR_LEN;
3058                 else
3059                         ipw_hdr->fragment_size = 0;
3060
3061                 tbd->host_addr = packet->info.d_struct.data_phys;
3062                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3063                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3064                 tbd->status.info.field =
3065                     IPW_BD_STATUS_TX_FRAME_802_3 |
3066                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3067                 txq->next++;
3068                 txq->next %= txq->entries;
3069
3070                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3071                              packet->index, tbd->host_addr, tbd->buf_length);
3072 #ifdef CONFIG_IPW2100_DEBUG
3073                 if (packet->info.d_struct.txb->nr_frags > 1)
3074                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3075                                        packet->info.d_struct.txb->nr_frags);
3076 #endif
3077
3078                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3079                         tbd = &txq->drv[txq->next];
3080                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3081                                 tbd->status.info.field =
3082                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3083                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3084                         else
3085                                 tbd->status.info.field =
3086                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3087                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3088
3089                         tbd->buf_length = packet->info.d_struct.txb->
3090                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3091
3092                         tbd->host_addr = pci_map_single(priv->pci_dev,
3093                                                         packet->info.d_struct.
3094                                                         txb->fragments[i]->
3095                                                         data +
3096                                                         IEEE80211_3ADDR_LEN,
3097                                                         tbd->buf_length,
3098                                                         PCI_DMA_TODEVICE);
3099
3100                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3101                                      txq->next, tbd->host_addr,
3102                                      tbd->buf_length);
3103
3104                         pci_dma_sync_single_for_device(priv->pci_dev,
3105                                                        tbd->host_addr,
3106                                                        tbd->buf_length,
3107                                                        PCI_DMA_TODEVICE);
3108
3109                         txq->next++;
3110                         txq->next %= txq->entries;
3111                 }
3112
3113                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3114                 SET_STAT(&priv->txq_stat, txq->available);
3115
3116                 list_add_tail(element, &priv->fw_pend_list);
3117                 INC_STAT(&priv->fw_pend_stat);
3118         }
3119
3120         if (txq->next != next) {
3121                 /* kick off the DMA by notifying firmware the
3122                  * write index has moved; make sure TBD stores are sync'd */
3123                 write_register(priv->net_dev,
3124                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3125                                txq->next);
3126         }
3127         return;
3128 }
3129
3130 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3131 {
3132         struct net_device *dev = priv->net_dev;
3133         unsigned long flags;
3134         u32 inta, tmp;
3135
3136         spin_lock_irqsave(&priv->low_lock, flags);
3137         ipw2100_disable_interrupts(priv);
3138
3139         read_register(dev, IPW_REG_INTA, &inta);
3140
3141         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3142                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3143
3144         priv->in_isr++;
3145         priv->interrupts++;
3146
3147         /* We do not loop and keep polling for more interrupts as this
3148          * is frowned upon and doesn't play nicely with other potentially
3149          * chained IRQs */
3150         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3151                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3152
3153         if (inta & IPW2100_INTA_FATAL_ERROR) {
3154                 printk(KERN_WARNING DRV_NAME
3155                        ": Fatal interrupt. Scheduling firmware restart.\n");
3156                 priv->inta_other++;
3157                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3158
3159                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3160                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3161                                priv->net_dev->name, priv->fatal_error);
3162
3163                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3164                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3165                                priv->net_dev->name, tmp);
3166
3167                 /* Wake up any sleeping jobs */
3168                 schedule_reset(priv);
3169         }
3170
3171         if (inta & IPW2100_INTA_PARITY_ERROR) {
3172                 printk(KERN_ERR DRV_NAME
3173                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3174                 priv->inta_other++;
3175                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3176         }
3177
3178         if (inta & IPW2100_INTA_RX_TRANSFER) {
3179                 IPW_DEBUG_ISR("RX interrupt\n");
3180
3181                 priv->rx_interrupts++;
3182
3183                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3184
3185                 __ipw2100_rx_process(priv);
3186                 __ipw2100_tx_complete(priv);
3187         }
3188
3189         if (inta & IPW2100_INTA_TX_TRANSFER) {
3190                 IPW_DEBUG_ISR("TX interrupt\n");
3191
3192                 priv->tx_interrupts++;
3193
3194                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3195
3196                 __ipw2100_tx_complete(priv);
3197                 ipw2100_tx_send_commands(priv);
3198                 ipw2100_tx_send_data(priv);
3199         }
3200
3201         if (inta & IPW2100_INTA_TX_COMPLETE) {
3202                 IPW_DEBUG_ISR("TX complete\n");
3203                 priv->inta_other++;
3204                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3205
3206                 __ipw2100_tx_complete(priv);
3207         }
3208
3209         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3210                 /* ipw2100_handle_event(dev); */
3211                 priv->inta_other++;
3212                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3213         }
3214
3215         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3216                 IPW_DEBUG_ISR("FW init done interrupt\n");
3217                 priv->inta_other++;
3218
3219                 read_register(dev, IPW_REG_INTA, &tmp);
3220                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3221                            IPW2100_INTA_PARITY_ERROR)) {
3222                         write_register(dev, IPW_REG_INTA,
3223                                        IPW2100_INTA_FATAL_ERROR |
3224                                        IPW2100_INTA_PARITY_ERROR);
3225                 }
3226
3227                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3228         }
3229
3230         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3231                 IPW_DEBUG_ISR("Status change interrupt\n");
3232                 priv->inta_other++;
3233                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3234         }
3235
3236         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3237                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3238                 priv->inta_other++;
3239                 write_register(dev, IPW_REG_INTA,
3240                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3241         }
3242
3243         priv->in_isr--;
3244         ipw2100_enable_interrupts(priv);
3245
3246         spin_unlock_irqrestore(&priv->low_lock, flags);
3247
3248         IPW_DEBUG_ISR("exit\n");
3249 }
3250
3251 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3252 {
3253         struct ipw2100_priv *priv = data;
3254         u32 inta, inta_mask;
3255
3256         if (!data)
3257                 return IRQ_NONE;
3258
3259         spin_lock(&priv->low_lock);
3260
3261         /* We check to see if we should be ignoring interrupts before
3262          * we touch the hardware.  During ucode load if we try and handle
3263          * an interrupt we can cause keyboard problems as well as cause
3264          * the ucode to fail to initialize */
3265         if (!(priv->status & STATUS_INT_ENABLED)) {
3266                 /* Shared IRQ */
3267                 goto none;
3268         }
3269
3270         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3271         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3272
3273         if (inta == 0xFFFFFFFF) {
3274                 /* Hardware disappeared */
3275                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3276                 goto none;
3277         }
3278
3279         inta &= IPW_INTERRUPT_MASK;
3280
3281         if (!(inta & inta_mask)) {
3282                 /* Shared interrupt */
3283                 goto none;
3284         }
3285
3286         /* We disable the hardware interrupt here just to prevent unneeded
3287          * calls to be made.  We disable this again within the actual
3288          * work tasklet, so if another part of the code re-enables the
3289          * interrupt, that is fine */
3290         ipw2100_disable_interrupts(priv);
3291
3292         tasklet_schedule(&priv->irq_tasklet);
3293         spin_unlock(&priv->low_lock);
3294
3295         return IRQ_HANDLED;
3296       none:
3297         spin_unlock(&priv->low_lock);
3298         return IRQ_NONE;
3299 }
3300
3301 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3302                       int pri)
3303 {
3304         struct ipw2100_priv *priv = ieee80211_priv(dev);
3305         struct list_head *element;
3306         struct ipw2100_tx_packet *packet;
3307         unsigned long flags;
3308
3309         spin_lock_irqsave(&priv->low_lock, flags);
3310
3311         if (!(priv->status & STATUS_ASSOCIATED)) {
3312                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3313                 priv->ieee->stats.tx_carrier_errors++;
3314                 netif_stop_queue(dev);
3315                 goto fail_unlock;
3316         }
3317
3318         if (list_empty(&priv->tx_free_list))
3319                 goto fail_unlock;
3320
3321         element = priv->tx_free_list.next;
3322         packet = list_entry(element, struct ipw2100_tx_packet, list);
3323
3324         packet->info.d_struct.txb = txb;
3325
3326         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3327         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3328
3329         packet->jiffy_start = jiffies;
3330
3331         list_del(element);
3332         DEC_STAT(&priv->tx_free_stat);
3333
3334         list_add_tail(element, &priv->tx_pend_list);
3335         INC_STAT(&priv->tx_pend_stat);
3336
3337         ipw2100_tx_send_data(priv);
3338
3339         spin_unlock_irqrestore(&priv->low_lock, flags);
3340         return 0;
3341
3342       fail_unlock:
3343         netif_stop_queue(dev);
3344         spin_unlock_irqrestore(&priv->low_lock, flags);
3345         return 1;
3346 }
3347
3348 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3349 {
3350         int i, j, err = -EINVAL;
3351         void *v;
3352         dma_addr_t p;
3353
3354         priv->msg_buffers =
3355             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3356                                                 sizeof(struct
3357                                                        ipw2100_tx_packet),
3358                                                 GFP_KERNEL);
3359         if (!priv->msg_buffers) {
3360                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3361                        "buffers.\n", priv->net_dev->name);
3362                 return -ENOMEM;
3363         }
3364
3365         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3366                 v = pci_alloc_consistent(priv->pci_dev,
3367                                          sizeof(struct ipw2100_cmd_header), &p);
3368                 if (!v) {
3369                         printk(KERN_ERR DRV_NAME ": "
3370                                "%s: PCI alloc failed for msg "
3371                                "buffers.\n", priv->net_dev->name);
3372                         err = -ENOMEM;
3373                         break;
3374                 }
3375
3376                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3377
3378                 priv->msg_buffers[i].type = COMMAND;
3379                 priv->msg_buffers[i].info.c_struct.cmd =
3380                     (struct ipw2100_cmd_header *)v;
3381                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3382         }
3383
3384         if (i == IPW_COMMAND_POOL_SIZE)
3385                 return 0;
3386
3387         for (j = 0; j < i; j++) {
3388                 pci_free_consistent(priv->pci_dev,
3389                                     sizeof(struct ipw2100_cmd_header),
3390                                     priv->msg_buffers[j].info.c_struct.cmd,
3391                                     priv->msg_buffers[j].info.c_struct.
3392                                     cmd_phys);
3393         }
3394
3395         kfree(priv->msg_buffers);
3396         priv->msg_buffers = NULL;
3397
3398         return err;
3399 }
3400
3401 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3402 {
3403         int i;
3404
3405         INIT_LIST_HEAD(&priv->msg_free_list);
3406         INIT_LIST_HEAD(&priv->msg_pend_list);
3407
3408         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3409                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3410         SET_STAT(&priv->msg_free_stat, i);
3411
3412         return 0;
3413 }
3414
3415 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3416 {
3417         int i;
3418
3419         if (!priv->msg_buffers)
3420                 return;
3421
3422         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3423                 pci_free_consistent(priv->pci_dev,
3424                                     sizeof(struct ipw2100_cmd_header),
3425                                     priv->msg_buffers[i].info.c_struct.cmd,
3426                                     priv->msg_buffers[i].info.c_struct.
3427                                     cmd_phys);
3428         }
3429
3430         kfree(priv->msg_buffers);
3431         priv->msg_buffers = NULL;
3432 }
3433
3434 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3435                         char *buf)
3436 {
3437         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3438         char *out = buf;
3439         int i, j;
3440         u32 val;
3441
3442         for (i = 0; i < 16; i++) {
3443                 out += sprintf(out, "[%08X] ", i * 16);
3444                 for (j = 0; j < 16; j += 4) {
3445                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3446                         out += sprintf(out, "%08X ", val);
3447                 }
3448                 out += sprintf(out, "\n");
3449         }
3450
3451         return out - buf;
3452 }
3453
3454 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3455
3456 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3457                         char *buf)
3458 {
3459         struct ipw2100_priv *p = d->driver_data;
3460         return sprintf(buf, "0x%08x\n", (int)p->config);
3461 }
3462
3463 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3464
3465 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3466                            char *buf)
3467 {
3468         struct ipw2100_priv *p = d->driver_data;
3469         return sprintf(buf, "0x%08x\n", (int)p->status);
3470 }
3471
3472 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3473
3474 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3475                                char *buf)
3476 {
3477         struct ipw2100_priv *p = d->driver_data;
3478         return sprintf(buf, "0x%08x\n", (int)p->capability);
3479 }
3480
3481 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3482
3483 #define IPW2100_REG(x) { IPW_ ##x, #x }
3484 static const struct {
3485         u32 addr;
3486         const char *name;
3487 } hw_data[] = {
3488 IPW2100_REG(REG_GP_CNTRL),
3489             IPW2100_REG(REG_GPIO),
3490             IPW2100_REG(REG_INTA),
3491             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3492 #define IPW2100_NIC(x, s) { x, #x, s }
3493 static const struct {
3494         u32 addr;
3495         const char *name;
3496         size_t size;
3497 } nic_data[] = {
3498 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3499             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3500 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3501 static const struct {
3502         u8 index;
3503         const char *name;
3504         const char *desc;
3505 } ord_data[] = {
3506 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3507             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3508                                 "successful Host Tx's (MSDU)"),
3509             IPW2100_ORD(STAT_TX_DIR_DATA,
3510                                 "successful Directed Tx's (MSDU)"),
3511             IPW2100_ORD(STAT_TX_DIR_DATA1,
3512                                 "successful Directed Tx's (MSDU) @ 1MB"),
3513             IPW2100_ORD(STAT_TX_DIR_DATA2,
3514                                 "successful Directed Tx's (MSDU) @ 2MB"),
3515             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3516                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3517             IPW2100_ORD(STAT_TX_DIR_DATA11,
3518                                 "successful Directed Tx's (MSDU) @ 11MB"),
3519             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3520                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3521             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3522                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3523             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3524                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3525             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3526                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3527             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3528             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3529             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3530             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3531             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3532             IPW2100_ORD(STAT_TX_ASSN_RESP,
3533                                 "successful Association response Tx's"),
3534             IPW2100_ORD(STAT_TX_REASSN,
3535                                 "successful Reassociation Tx's"),
3536             IPW2100_ORD(STAT_TX_REASSN_RESP,
3537                                 "successful Reassociation response Tx's"),
3538             IPW2100_ORD(STAT_TX_PROBE,
3539                                 "probes successfully transmitted"),
3540             IPW2100_ORD(STAT_TX_PROBE_RESP,
3541                                 "probe responses successfully transmitted"),
3542             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3543             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3544             IPW2100_ORD(STAT_TX_DISASSN,
3545                                 "successful Disassociation TX"),
3546             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3547             IPW2100_ORD(STAT_TX_DEAUTH,
3548                                 "successful Deauthentication TX"),
3549             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3550                                 "Total successful Tx data bytes"),
3551             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3552             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3553             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3554             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3555             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3556             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3557             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3558                                 "times max tries in a hop failed"),
3559             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3560                                 "times disassociation failed"),
3561             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3562             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3563             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3564             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3565             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3566             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3567             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3568                                 "directed packets at 5.5MB"),
3569             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3570             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3571             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3572                                 "nondirected packets at 1MB"),
3573             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3574                                 "nondirected packets at 2MB"),
3575             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3576                                 "nondirected packets at 5.5MB"),
3577             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3578                                 "nondirected packets at 11MB"),
3579             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3580             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3581                                                                     "Rx CTS"),
3582             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3583             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3584             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3585             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3586             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3587             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3588             IPW2100_ORD(STAT_RX_REASSN_RESP,
3589                                 "Reassociation response Rx's"),
3590             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3591             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3592             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3593             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3594             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3595             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3596             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3597             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3598                                 "Total rx data bytes received"),
3599             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3600             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3601             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3602             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3603             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3604             IPW2100_ORD(STAT_RX_DUPLICATE1,
3605                                 "duplicate rx packets at 1MB"),
3606             IPW2100_ORD(STAT_RX_DUPLICATE2,
3607                                 "duplicate rx packets at 2MB"),
3608             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3609                                 "duplicate rx packets at 5.5MB"),
3610             IPW2100_ORD(STAT_RX_DUPLICATE11,
3611                                 "duplicate rx packets at 11MB"),
3612             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3613             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3614             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3615             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3616             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3617                                 "rx frames with invalid protocol"),
3618             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3619             IPW2100_ORD(STAT_RX_NO_BUFFER,
3620                                 "rx frames rejected due to no buffer"),
3621             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3622                                 "rx frames dropped due to missing fragment"),
3623             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3624                                 "rx frames dropped due to non-sequential fragment"),
3625             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3626                                 "rx frames dropped due to unmatched 1st frame"),
3627             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3628                                 "rx frames dropped due to uncompleted frame"),
3629             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3630                                 "ICV errors during decryption"),
3631             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3632             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3633             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3634                                 "poll response timeouts"),
3635             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3636                                 "timeouts waiting for last {broad,multi}cast pkt"),
3637             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3638             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3639             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3640             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3641             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3642                                 "current calculation of % missed beacons"),
3643             IPW2100_ORD(STAT_PERCENT_RETRIES,
3644                                 "current calculation of % missed tx retries"),
3645             IPW2100_ORD(ASSOCIATED_AP_PTR,
3646                                 "0 if not associated, else pointer to AP table entry"),
3647             IPW2100_ORD(AVAILABLE_AP_CNT,
3648                                 "AP's decsribed in the AP table"),
3649             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3650             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3651             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3652             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3653                                 "failures due to response fail"),
3654             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3655             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3656             IPW2100_ORD(STAT_ROAM_INHIBIT,
3657                                 "times roaming was inhibited due to activity"),
3658             IPW2100_ORD(RSSI_AT_ASSN,
3659                                 "RSSI of associated AP at time of association"),
3660             IPW2100_ORD(STAT_ASSN_CAUSE1,
3661                                 "reassociation: no probe response or TX on hop"),
3662             IPW2100_ORD(STAT_ASSN_CAUSE2,
3663                                 "reassociation: poor tx/rx quality"),
3664             IPW2100_ORD(STAT_ASSN_CAUSE3,
3665                                 "reassociation: tx/rx quality (excessive AP load"),
3666             IPW2100_ORD(STAT_ASSN_CAUSE4,
3667                                 "reassociation: AP RSSI level"),
3668             IPW2100_ORD(STAT_ASSN_CAUSE5,
3669                                 "reassociations due to load leveling"),
3670             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3671             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3672                                 "times authentication response failed"),
3673             IPW2100_ORD(STATION_TABLE_CNT,
3674                                 "entries in association table"),
3675             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3676             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3677             IPW2100_ORD(COUNTRY_CODE,
3678                                 "IEEE country code as recv'd from beacon"),
3679             IPW2100_ORD(COUNTRY_CHANNELS,
3680                                 "channels suported by country"),
3681             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3682             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3683             IPW2100_ORD(ANTENNA_DIVERSITY,
3684                                 "TRUE if antenna diversity is disabled"),
3685             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3686             IPW2100_ORD(OUR_FREQ,
3687                                 "current radio freq lower digits - channel ID"),
3688             IPW2100_ORD(RTC_TIME, "current RTC time"),
3689             IPW2100_ORD(PORT_TYPE, "operating mode"),
3690             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3691             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3692             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3693             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3694             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3695             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3696             IPW2100_ORD(CAPABILITIES,
3697                                 "Management frame capability field"),
3698             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3699             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3700             IPW2100_ORD(RTS_THRESHOLD,
3701                                 "Min packet length for RTS handshaking"),
3702             IPW2100_ORD(INT_MODE, "International mode"),
3703             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3704                                 "protocol frag threshold"),
3705             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3706                                 "EEPROM offset in SRAM"),
3707             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3708                                 "EEPROM size in SRAM"),
3709             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3710             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3711                                 "EEPROM IBSS 11b channel set"),
3712             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3713             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3714             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3715             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3716             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3717
3718 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3719                               char *buf)
3720 {
3721         int i;
3722         struct ipw2100_priv *priv = dev_get_drvdata(d);
3723         struct net_device *dev = priv->net_dev;
3724         char *out = buf;
3725         u32 val = 0;
3726
3727         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3728
3729         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3730                 read_register(dev, hw_data[i].addr, &val);
3731                 out += sprintf(out, "%30s [%08X] : %08X\n",
3732                                hw_data[i].name, hw_data[i].addr, val);
3733         }
3734
3735         return out - buf;
3736 }
3737
3738 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3739
3740 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3741                              char *buf)
3742 {
3743         struct ipw2100_priv *priv = dev_get_drvdata(d);
3744         struct net_device *dev = priv->net_dev;
3745         char *out = buf;
3746         int i;
3747
3748         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3749
3750         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3751                 u8 tmp8;
3752                 u16 tmp16;
3753                 u32 tmp32;
3754
3755                 switch (nic_data[i].size) {
3756                 case 1:
3757                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3758                         out += sprintf(out, "%30s [%08X] : %02X\n",
3759                                        nic_data[i].name, nic_data[i].addr,
3760                                        tmp8);
3761                         break;
3762                 case 2:
3763                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3764                         out += sprintf(out, "%30s [%08X] : %04X\n",
3765                                        nic_data[i].name, nic_data[i].addr,
3766                                        tmp16);
3767                         break;
3768                 case 4:
3769                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3770                         out += sprintf(out, "%30s [%08X] : %08X\n",
3771                                        nic_data[i].name, nic_data[i].addr,
3772                                        tmp32);
3773                         break;
3774                 }
3775         }
3776         return out - buf;
3777 }
3778
3779 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3780
3781 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3782                            char *buf)
3783 {
3784         struct ipw2100_priv *priv = dev_get_drvdata(d);
3785         struct net_device *dev = priv->net_dev;
3786         static unsigned long loop = 0;
3787         int len = 0;
3788         u32 buffer[4];
3789         int i;
3790         char line[81];
3791
3792         if (loop >= 0x30000)
3793                 loop = 0;
3794
3795         /* sysfs provides us PAGE_SIZE buffer */
3796         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3797
3798                 if (priv->snapshot[0])
3799                         for (i = 0; i < 4; i++)
3800                                 buffer[i] =
3801                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3802                 else
3803                         for (i = 0; i < 4; i++)
3804                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3805
3806                 if (priv->dump_raw)
3807                         len += sprintf(buf + len,
3808                                        "%c%c%c%c"
3809                                        "%c%c%c%c"
3810                                        "%c%c%c%c"
3811                                        "%c%c%c%c",
3812                                        ((u8 *) buffer)[0x0],
3813                                        ((u8 *) buffer)[0x1],
3814                                        ((u8 *) buffer)[0x2],
3815                                        ((u8 *) buffer)[0x3],
3816                                        ((u8 *) buffer)[0x4],
3817                                        ((u8 *) buffer)[0x5],
3818                                        ((u8 *) buffer)[0x6],
3819                                        ((u8 *) buffer)[0x7],
3820                                        ((u8 *) buffer)[0x8],
3821                                        ((u8 *) buffer)[0x9],
3822                                        ((u8 *) buffer)[0xa],
3823                                        ((u8 *) buffer)[0xb],
3824                                        ((u8 *) buffer)[0xc],
3825                                        ((u8 *) buffer)[0xd],
3826                                        ((u8 *) buffer)[0xe],
3827                                        ((u8 *) buffer)[0xf]);
3828                 else
3829                         len += sprintf(buf + len, "%s\n",
3830                                        snprint_line(line, sizeof(line),
3831                                                     (u8 *) buffer, 16, loop));
3832                 loop += 16;
3833         }
3834
3835         return len;
3836 }
3837
3838 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3839                             const char *buf, size_t count)
3840 {
3841         struct ipw2100_priv *priv = dev_get_drvdata(d);
3842         struct net_device *dev = priv->net_dev;
3843         const char *p = buf;
3844
3845         (void)dev;              /* kill unused-var warning for debug-only code */
3846
3847         if (count < 1)
3848                 return count;
3849
3850         if (p[0] == '1' ||
3851             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3852                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3853                                dev->name);
3854                 priv->dump_raw = 1;
3855
3856         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3857                                    tolower(p[1]) == 'f')) {
3858                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3859                                dev->name);
3860                 priv->dump_raw = 0;
3861
3862         } else if (tolower(p[0]) == 'r') {
3863                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3864                 ipw2100_snapshot_free(priv);
3865
3866         } else
3867                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3868                                "reset = clear memory snapshot\n", dev->name);
3869
3870         return count;
3871 }
3872
3873 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3874
3875 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3876                              char *buf)
3877 {
3878         struct ipw2100_priv *priv = dev_get_drvdata(d);
3879         u32 val = 0;
3880         int len = 0;
3881         u32 val_len;
3882         static int loop = 0;
3883
3884         if (priv->status & STATUS_RF_KILL_MASK)
3885                 return 0;
3886
3887         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3888                 loop = 0;
3889
3890         /* sysfs provides us PAGE_SIZE buffer */
3891         while (len < PAGE_SIZE - 128 &&
3892                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3893
3894                 val_len = sizeof(u32);
3895
3896                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3897                                         &val_len))
3898                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3899                                        ord_data[loop].index,
3900                                        ord_data[loop].desc);
3901                 else
3902                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3903                                        ord_data[loop].index, val,
3904                                        ord_data[loop].desc);
3905                 loop++;
3906         }
3907
3908         return len;
3909 }
3910
3911 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3912
3913 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3914                           char *buf)
3915 {
3916         struct ipw2100_priv *priv = dev_get_drvdata(d);
3917         char *out = buf;
3918
3919         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3920                        priv->interrupts, priv->tx_interrupts,
3921                        priv->rx_interrupts, priv->inta_other);
3922         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3923         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3924 #ifdef CONFIG_IPW2100_DEBUG
3925         out += sprintf(out, "packet mismatch image: %s\n",
3926                        priv->snapshot[0] ? "YES" : "NO");
3927 #endif
3928
3929         return out - buf;
3930 }
3931
3932 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3933
3934 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3935 {
3936         int err;
3937
3938         if (mode == priv->ieee->iw_mode)
3939                 return 0;
3940
3941         err = ipw2100_disable_adapter(priv);
3942         if (err) {
3943                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3944                        priv->net_dev->name, err);
3945                 return err;
3946         }
3947
3948         switch (mode) {
3949         case IW_MODE_INFRA:
3950                 priv->net_dev->type = ARPHRD_ETHER;
3951                 break;
3952         case IW_MODE_ADHOC:
3953                 priv->net_dev->type = ARPHRD_ETHER;
3954                 break;
3955 #ifdef CONFIG_IPW2100_MONITOR
3956         case IW_MODE_MONITOR:
3957                 priv->last_mode = priv->ieee->iw_mode;
3958                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3959                 break;
3960 #endif                          /* CONFIG_IPW2100_MONITOR */
3961         }
3962
3963         priv->ieee->iw_mode = mode;
3964
3965 #ifdef CONFIG_PM
3966         /* Indicate ipw2100_download_firmware download firmware
3967          * from disk instead of memory. */
3968         ipw2100_firmware.version = 0;
3969 #endif
3970
3971         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3972         priv->reset_backoff = 0;
3973         schedule_reset(priv);
3974
3975         return 0;
3976 }
3977
3978 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3979                               char *buf)
3980 {
3981         struct ipw2100_priv *priv = dev_get_drvdata(d);
3982         int len = 0;
3983
3984 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3985
3986         if (priv->status & STATUS_ASSOCIATED)
3987                 len += sprintf(buf + len, "connected: %lu\n",
3988                                get_seconds() - priv->connect_start);
3989         else
3990                 len += sprintf(buf + len, "not connected\n");
3991
3992         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3993         DUMP_VAR(status, "08lx");
3994         DUMP_VAR(config, "08lx");
3995         DUMP_VAR(capability, "08lx");
3996
3997         len +=
3998             sprintf(buf + len, "last_rtc: %lu\n",
3999                     (unsigned long)priv->last_rtc);
4000
4001         DUMP_VAR(fatal_error, "d");
4002         DUMP_VAR(stop_hang_check, "d");
4003         DUMP_VAR(stop_rf_kill, "d");
4004         DUMP_VAR(messages_sent, "d");
4005
4006         DUMP_VAR(tx_pend_stat.value, "d");
4007         DUMP_VAR(tx_pend_stat.hi, "d");
4008
4009         DUMP_VAR(tx_free_stat.value, "d");
4010         DUMP_VAR(tx_free_stat.lo, "d");
4011
4012         DUMP_VAR(msg_free_stat.value, "d");
4013         DUMP_VAR(msg_free_stat.lo, "d");
4014
4015         DUMP_VAR(msg_pend_stat.value, "d");
4016         DUMP_VAR(msg_pend_stat.hi, "d");
4017
4018         DUMP_VAR(fw_pend_stat.value, "d");
4019         DUMP_VAR(fw_pend_stat.hi, "d");
4020
4021         DUMP_VAR(txq_stat.value, "d");
4022         DUMP_VAR(txq_stat.lo, "d");
4023
4024         DUMP_VAR(ieee->scans, "d");
4025         DUMP_VAR(reset_backoff, "d");
4026
4027         return len;
4028 }
4029
4030 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4031
4032 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4033                             char *buf)
4034 {
4035         struct ipw2100_priv *priv = dev_get_drvdata(d);
4036         char essid[IW_ESSID_MAX_SIZE + 1];
4037         u8 bssid[ETH_ALEN];
4038         u32 chan = 0;
4039         char *out = buf;
4040         int length;
4041         int ret;
4042
4043         if (priv->status & STATUS_RF_KILL_MASK)
4044                 return 0;
4045
4046         memset(essid, 0, sizeof(essid));
4047         memset(bssid, 0, sizeof(bssid));
4048
4049         length = IW_ESSID_MAX_SIZE;
4050         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4051         if (ret)
4052                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4053                                __LINE__);
4054
4055         length = sizeof(bssid);
4056         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4057                                   bssid, &length);
4058         if (ret)
4059                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4060                                __LINE__);
4061
4062         length = sizeof(u32);
4063         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4064         if (ret)
4065                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4066                                __LINE__);
4067
4068         out += sprintf(out, "ESSID: %s\n", essid);
4069         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4070                        bssid[0], bssid[1], bssid[2],
4071                        bssid[3], bssid[4], bssid[5]);
4072         out += sprintf(out, "Channel: %d\n", chan);
4073
4074         return out - buf;
4075 }
4076
4077 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4078
4079 #ifdef CONFIG_IPW2100_DEBUG
4080 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4081 {
4082         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4083 }
4084
4085 static ssize_t store_debug_level(struct device_driver *d,
4086                                  const char *buf, size_t count)
4087 {
4088         char *p = (char *)buf;
4089         u32 val;
4090
4091         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4092                 p++;
4093                 if (p[0] == 'x' || p[0] == 'X')
4094                         p++;
4095                 val = simple_strtoul(p, &p, 16);
4096         } else
4097                 val = simple_strtoul(p, &p, 10);
4098         if (p == buf)
4099                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4100         else
4101                 ipw2100_debug_level = val;
4102
4103         return strnlen(buf, count);
4104 }
4105
4106 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4107                    store_debug_level);
4108 #endif                          /* CONFIG_IPW2100_DEBUG */
4109
4110 static ssize_t show_fatal_error(struct device *d,
4111                                 struct device_attribute *attr, char *buf)
4112 {
4113         struct ipw2100_priv *priv = dev_get_drvdata(d);
4114         char *out = buf;
4115         int i;
4116
4117         if (priv->fatal_error)
4118                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4119         else
4120                 out += sprintf(out, "0\n");
4121
4122         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4123                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4124                                         IPW2100_ERROR_QUEUE])
4125                         continue;
4126
4127                 out += sprintf(out, "%d. 0x%08X\n", i,
4128                                priv->fatal_errors[(priv->fatal_index - i) %
4129                                                   IPW2100_ERROR_QUEUE]);
4130         }
4131
4132         return out - buf;
4133 }
4134
4135 static ssize_t store_fatal_error(struct device *d,
4136                                  struct device_attribute *attr, const char *buf,
4137                                  size_t count)
4138 {
4139         struct ipw2100_priv *priv = dev_get_drvdata(d);
4140         schedule_reset(priv);
4141         return count;
4142 }
4143
4144 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4145                    store_fatal_error);
4146
4147 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4148                              char *buf)
4149 {
4150         struct ipw2100_priv *priv = dev_get_drvdata(d);
4151         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4152 }
4153
4154 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4155                               const char *buf, size_t count)
4156 {
4157         struct ipw2100_priv *priv = dev_get_drvdata(d);
4158         struct net_device *dev = priv->net_dev;
4159         char buffer[] = "00000000";
4160         unsigned long len =
4161             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4162         unsigned long val;
4163         char *p = buffer;
4164
4165         (void)dev;              /* kill unused-var warning for debug-only code */
4166
4167         IPW_DEBUG_INFO("enter\n");
4168
4169         strncpy(buffer, buf, len);
4170         buffer[len] = 0;
4171
4172         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4173                 p++;
4174                 if (p[0] == 'x' || p[0] == 'X')
4175                         p++;
4176                 val = simple_strtoul(p, &p, 16);
4177         } else
4178                 val = simple_strtoul(p, &p, 10);
4179         if (p == buffer) {
4180                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4181         } else {
4182                 priv->ieee->scan_age = val;
4183                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4184         }
4185
4186         IPW_DEBUG_INFO("exit\n");
4187         return len;
4188 }
4189
4190 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4191
4192 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4193                             char *buf)
4194 {
4195         /* 0 - RF kill not enabled
4196            1 - SW based RF kill active (sysfs)
4197            2 - HW based RF kill active
4198            3 - Both HW and SW baed RF kill active */
4199         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4200         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4201             (rf_kill_active(priv) ? 0x2 : 0x0);
4202         return sprintf(buf, "%i\n", val);
4203 }
4204
4205 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4206 {
4207         if ((disable_radio ? 1 : 0) ==
4208             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4209                 return 0;
4210
4211         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4212                           disable_radio ? "OFF" : "ON");
4213
4214         down(&priv->action_sem);
4215
4216         if (disable_radio) {
4217                 priv->status |= STATUS_RF_KILL_SW;
4218                 ipw2100_down(priv);
4219         } else {
4220                 priv->status &= ~STATUS_RF_KILL_SW;
4221                 if (rf_kill_active(priv)) {
4222                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4223                                           "disabled by HW switch\n");
4224                         /* Make sure the RF_KILL check timer is running */
4225                         priv->stop_rf_kill = 0;
4226                         cancel_delayed_work(&priv->rf_kill);
4227                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4228                 } else
4229                         schedule_reset(priv);
4230         }
4231
4232         up(&priv->action_sem);
4233         return 1;
4234 }
4235
4236 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4237                              const char *buf, size_t count)
4238 {
4239         struct ipw2100_priv *priv = dev_get_drvdata(d);
4240         ipw_radio_kill_sw(priv, buf[0] == '1');
4241         return count;
4242 }
4243
4244 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4245
4246 static struct attribute *ipw2100_sysfs_entries[] = {
4247         &dev_attr_hardware.attr,
4248         &dev_attr_registers.attr,
4249         &dev_attr_ordinals.attr,
4250         &dev_attr_pci.attr,
4251         &dev_attr_stats.attr,
4252         &dev_attr_internals.attr,
4253         &dev_attr_bssinfo.attr,
4254         &dev_attr_memory.attr,
4255         &dev_attr_scan_age.attr,
4256         &dev_attr_fatal_error.attr,
4257         &dev_attr_rf_kill.attr,
4258         &dev_attr_cfg.attr,
4259         &dev_attr_status.attr,
4260         &dev_attr_capability.attr,
4261         NULL,
4262 };
4263
4264 static struct attribute_group ipw2100_attribute_group = {
4265         .attrs = ipw2100_sysfs_entries,
4266 };
4267
4268 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4269 {
4270         struct ipw2100_status_queue *q = &priv->status_queue;
4271
4272         IPW_DEBUG_INFO("enter\n");
4273
4274         q->size = entries * sizeof(struct ipw2100_status);
4275         q->drv =
4276             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4277                                                           q->size, &q->nic);
4278         if (!q->drv) {
4279                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4280                 return -ENOMEM;
4281         }
4282
4283         memset(q->drv, 0, q->size);
4284
4285         IPW_DEBUG_INFO("exit\n");
4286
4287         return 0;
4288 }
4289
4290 static void status_queue_free(struct ipw2100_priv *priv)
4291 {
4292         IPW_DEBUG_INFO("enter\n");
4293
4294         if (priv->status_queue.drv) {
4295                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4296                                     priv->status_queue.drv,
4297                                     priv->status_queue.nic);
4298                 priv->status_queue.drv = NULL;
4299         }
4300
4301         IPW_DEBUG_INFO("exit\n");
4302 }
4303
4304 static int bd_queue_allocate(struct ipw2100_priv *priv,
4305                              struct ipw2100_bd_queue *q, int entries)
4306 {
4307         IPW_DEBUG_INFO("enter\n");
4308
4309         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4310
4311         q->entries = entries;
4312         q->size = entries * sizeof(struct ipw2100_bd);
4313         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4314         if (!q->drv) {
4315                 IPW_DEBUG_INFO
4316                     ("can't allocate shared memory for buffer descriptors\n");
4317                 return -ENOMEM;
4318         }
4319         memset(q->drv, 0, q->size);
4320
4321         IPW_DEBUG_INFO("exit\n");
4322
4323         return 0;
4324 }
4325
4326 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4327 {
4328         IPW_DEBUG_INFO("enter\n");
4329
4330         if (!q)
4331                 return;
4332
4333         if (q->drv) {
4334                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4335                 q->drv = NULL;
4336         }
4337
4338         IPW_DEBUG_INFO("exit\n");
4339 }
4340
4341 static void bd_queue_initialize(struct ipw2100_priv *priv,
4342                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4343                                 u32 r, u32 w)
4344 {
4345         IPW_DEBUG_INFO("enter\n");
4346
4347         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4348                        (u32) q->nic);
4349
4350         write_register(priv->net_dev, base, q->nic);
4351         write_register(priv->net_dev, size, q->entries);
4352         write_register(priv->net_dev, r, q->oldest);
4353         write_register(priv->net_dev, w, q->next);
4354
4355         IPW_DEBUG_INFO("exit\n");
4356 }
4357
4358 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4359 {
4360         if (priv->workqueue) {
4361                 priv->stop_rf_kill = 1;
4362                 priv->stop_hang_check = 1;
4363                 cancel_delayed_work(&priv->reset_work);
4364                 cancel_delayed_work(&priv->security_work);
4365                 cancel_delayed_work(&priv->wx_event_work);
4366                 cancel_delayed_work(&priv->hang_check);
4367                 cancel_delayed_work(&priv->rf_kill);
4368                 destroy_workqueue(priv->workqueue);
4369                 priv->workqueue = NULL;
4370         }
4371 }
4372
4373 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4374 {
4375         int i, j, err = -EINVAL;
4376         void *v;
4377         dma_addr_t p;
4378
4379         IPW_DEBUG_INFO("enter\n");
4380
4381         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4382         if (err) {
4383                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4384                                 priv->net_dev->name);
4385                 return err;
4386         }
4387
4388         priv->tx_buffers =
4389             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4390                                                 sizeof(struct
4391                                                        ipw2100_tx_packet),
4392                                                 GFP_ATOMIC);
4393         if (!priv->tx_buffers) {
4394                 printk(KERN_ERR DRV_NAME
4395                        ": %s: alloc failed form tx buffers.\n",
4396                        priv->net_dev->name);
4397                 bd_queue_free(priv, &priv->tx_queue);
4398                 return -ENOMEM;
4399         }
4400
4401         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4402                 v = pci_alloc_consistent(priv->pci_dev,
4403                                          sizeof(struct ipw2100_data_header),
4404                                          &p);
4405                 if (!v) {
4406                         printk(KERN_ERR DRV_NAME
4407                                ": %s: PCI alloc failed for tx " "buffers.\n",
4408                                priv->net_dev->name);
4409                         err = -ENOMEM;
4410                         break;
4411                 }
4412
4413                 priv->tx_buffers[i].type = DATA;
4414                 priv->tx_buffers[i].info.d_struct.data =
4415                     (struct ipw2100_data_header *)v;
4416                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4417                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4418         }
4419
4420         if (i == TX_PENDED_QUEUE_LENGTH)
4421                 return 0;
4422
4423         for (j = 0; j < i; j++) {
4424                 pci_free_consistent(priv->pci_dev,
4425                                     sizeof(struct ipw2100_data_header),
4426                                     priv->tx_buffers[j].info.d_struct.data,
4427                                     priv->tx_buffers[j].info.d_struct.
4428                                     data_phys);
4429         }
4430
4431         kfree(priv->tx_buffers);
4432         priv->tx_buffers = NULL;
4433
4434         return err;
4435 }
4436
4437 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4438 {
4439         int i;
4440
4441         IPW_DEBUG_INFO("enter\n");
4442
4443         /*
4444          * reinitialize packet info lists
4445          */
4446         INIT_LIST_HEAD(&priv->fw_pend_list);
4447         INIT_STAT(&priv->fw_pend_stat);
4448
4449         /*
4450          * reinitialize lists
4451          */
4452         INIT_LIST_HEAD(&priv->tx_pend_list);
4453         INIT_LIST_HEAD(&priv->tx_free_list);
4454         INIT_STAT(&priv->tx_pend_stat);
4455         INIT_STAT(&priv->tx_free_stat);
4456
4457         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4458                 /* We simply drop any SKBs that have been queued for
4459                  * transmit */
4460                 if (priv->tx_buffers[i].info.d_struct.txb) {
4461                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4462                                            txb);
4463                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4464                 }
4465
4466                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4467         }
4468
4469         SET_STAT(&priv->tx_free_stat, i);
4470
4471         priv->tx_queue.oldest = 0;
4472         priv->tx_queue.available = priv->tx_queue.entries;
4473         priv->tx_queue.next = 0;
4474         INIT_STAT(&priv->txq_stat);
4475         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4476
4477         bd_queue_initialize(priv, &priv->tx_queue,
4478                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4479                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4480                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4481                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4482
4483         IPW_DEBUG_INFO("exit\n");
4484
4485 }
4486
4487 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4488 {
4489         int i;
4490
4491         IPW_DEBUG_INFO("enter\n");
4492
4493         bd_queue_free(priv, &priv->tx_queue);
4494
4495         if (!priv->tx_buffers)
4496                 return;
4497
4498         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4499                 if (priv->tx_buffers[i].info.d_struct.txb) {
4500                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4501                                            txb);
4502                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4503                 }
4504                 if (priv->tx_buffers[i].info.d_struct.data)
4505                         pci_free_consistent(priv->pci_dev,
4506                                             sizeof(struct ipw2100_data_header),
4507                                             priv->tx_buffers[i].info.d_struct.
4508                                             data,
4509                                             priv->tx_buffers[i].info.d_struct.
4510                                             data_phys);
4511         }
4512
4513         kfree(priv->tx_buffers);
4514         priv->tx_buffers = NULL;
4515
4516         IPW_DEBUG_INFO("exit\n");
4517 }
4518
4519 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4520 {
4521         int i, j, err = -EINVAL;
4522
4523         IPW_DEBUG_INFO("enter\n");
4524
4525         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4526         if (err) {
4527                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4528                 return err;
4529         }
4530
4531         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4532         if (err) {
4533                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4534                 bd_queue_free(priv, &priv->rx_queue);
4535                 return err;
4536         }
4537
4538         /*
4539          * allocate packets
4540          */
4541         priv->rx_buffers = (struct ipw2100_rx_packet *)
4542             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4543                     GFP_KERNEL);
4544         if (!priv->rx_buffers) {
4545                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4546
4547                 bd_queue_free(priv, &priv->rx_queue);
4548
4549                 status_queue_free(priv);
4550
4551                 return -ENOMEM;
4552         }
4553
4554         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4555                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4556
4557                 err = ipw2100_alloc_skb(priv, packet);
4558                 if (unlikely(err)) {
4559                         err = -ENOMEM;
4560                         break;
4561                 }
4562
4563                 /* The BD holds the cache aligned address */
4564                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4565                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4566                 priv->status_queue.drv[i].status_fields = 0;
4567         }
4568
4569         if (i == RX_QUEUE_LENGTH)
4570                 return 0;
4571
4572         for (j = 0; j < i; j++) {
4573                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4574                                  sizeof(struct ipw2100_rx_packet),
4575                                  PCI_DMA_FROMDEVICE);
4576                 dev_kfree_skb(priv->rx_buffers[j].skb);
4577         }
4578
4579         kfree(priv->rx_buffers);
4580         priv->rx_buffers = NULL;
4581
4582         bd_queue_free(priv, &priv->rx_queue);
4583
4584         status_queue_free(priv);
4585
4586         return err;
4587 }
4588
4589 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4590 {
4591         IPW_DEBUG_INFO("enter\n");
4592
4593         priv->rx_queue.oldest = 0;
4594         priv->rx_queue.available = priv->rx_queue.entries - 1;
4595         priv->rx_queue.next = priv->rx_queue.entries - 1;
4596
4597         INIT_STAT(&priv->rxq_stat);
4598         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4599
4600         bd_queue_initialize(priv, &priv->rx_queue,
4601                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4602                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4603                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4604                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4605
4606         /* set up the status queue */
4607         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4608                        priv->status_queue.nic);
4609
4610         IPW_DEBUG_INFO("exit\n");
4611 }
4612
4613 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4614 {
4615         int i;
4616
4617         IPW_DEBUG_INFO("enter\n");
4618
4619         bd_queue_free(priv, &priv->rx_queue);
4620         status_queue_free(priv);
4621
4622         if (!priv->rx_buffers)
4623                 return;
4624
4625         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4626                 if (priv->rx_buffers[i].rxp) {
4627                         pci_unmap_single(priv->pci_dev,
4628                                          priv->rx_buffers[i].dma_addr,
4629                                          sizeof(struct ipw2100_rx),
4630                                          PCI_DMA_FROMDEVICE);
4631                         dev_kfree_skb(priv->rx_buffers[i].skb);
4632                 }
4633         }
4634
4635         kfree(priv->rx_buffers);
4636         priv->rx_buffers = NULL;
4637
4638         IPW_DEBUG_INFO("exit\n");
4639 }
4640
4641 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4642 {
4643         u32 length = ETH_ALEN;
4644         u8 mac[ETH_ALEN];
4645
4646         int err;
4647
4648         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4649         if (err) {
4650                 IPW_DEBUG_INFO("MAC address read failed\n");
4651                 return -EIO;
4652         }
4653         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4654                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4655
4656         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4657
4658         return 0;
4659 }
4660
4661 /********************************************************************
4662  *
4663  * Firmware Commands
4664  *
4665  ********************************************************************/
4666
4667 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4668 {
4669         struct host_command cmd = {
4670                 .host_command = ADAPTER_ADDRESS,
4671                 .host_command_sequence = 0,
4672                 .host_command_length = ETH_ALEN
4673         };
4674         int err;
4675
4676         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4677
4678         IPW_DEBUG_INFO("enter\n");
4679
4680         if (priv->config & CFG_CUSTOM_MAC) {
4681                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4682                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4683         } else
4684                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4685                        ETH_ALEN);
4686
4687         err = ipw2100_hw_send_command(priv, &cmd);
4688
4689         IPW_DEBUG_INFO("exit\n");
4690         return err;
4691 }
4692
4693 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4694                                  int batch_mode)
4695 {
4696         struct host_command cmd = {
4697                 .host_command = PORT_TYPE,
4698                 .host_command_sequence = 0,
4699                 .host_command_length = sizeof(u32)
4700         };
4701         int err;
4702
4703         switch (port_type) {
4704         case IW_MODE_INFRA:
4705                 cmd.host_command_parameters[0] = IPW_BSS;
4706                 break;
4707         case IW_MODE_ADHOC:
4708                 cmd.host_command_parameters[0] = IPW_IBSS;
4709                 break;
4710         }
4711
4712         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4713                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4714
4715         if (!batch_mode) {
4716                 err = ipw2100_disable_adapter(priv);
4717                 if (err) {
4718                         printk(KERN_ERR DRV_NAME
4719                                ": %s: Could not disable adapter %d\n",
4720                                priv->net_dev->name, err);
4721                         return err;
4722                 }
4723         }
4724
4725         /* send cmd to firmware */
4726         err = ipw2100_hw_send_command(priv, &cmd);
4727
4728         if (!batch_mode)
4729                 ipw2100_enable_adapter(priv);
4730
4731         return err;
4732 }
4733
4734 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4735                                int batch_mode)
4736 {
4737         struct host_command cmd = {
4738                 .host_command = CHANNEL,
4739                 .host_command_sequence = 0,
4740                 .host_command_length = sizeof(u32)
4741         };
4742         int err;
4743
4744         cmd.host_command_parameters[0] = channel;
4745
4746         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4747
4748         /* If BSS then we don't support channel selection */
4749         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4750                 return 0;
4751
4752         if ((channel != 0) &&
4753             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4754                 return -EINVAL;
4755
4756         if (!batch_mode) {
4757                 err = ipw2100_disable_adapter(priv);
4758                 if (err)
4759                         return err;
4760         }
4761
4762         err = ipw2100_hw_send_command(priv, &cmd);
4763         if (err) {
4764                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4765                 return err;
4766         }
4767
4768         if (channel)
4769                 priv->config |= CFG_STATIC_CHANNEL;
4770         else
4771                 priv->config &= ~CFG_STATIC_CHANNEL;
4772
4773         priv->channel = channel;
4774
4775         if (!batch_mode) {
4776                 err = ipw2100_enable_adapter(priv);
4777                 if (err)
4778                         return err;
4779         }
4780
4781         return 0;
4782 }
4783
4784 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4785 {
4786         struct host_command cmd = {
4787                 .host_command = SYSTEM_CONFIG,
4788                 .host_command_sequence = 0,
4789                 .host_command_length = 12,
4790         };
4791         u32 ibss_mask, len = sizeof(u32);
4792         int err;
4793
4794         /* Set system configuration */
4795
4796         if (!batch_mode) {
4797                 err = ipw2100_disable_adapter(priv);
4798                 if (err)
4799                         return err;
4800         }
4801
4802         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4803                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4804
4805         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4806             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4807
4808         if (!(priv->config & CFG_LONG_PREAMBLE))
4809                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4810
4811         err = ipw2100_get_ordinal(priv,
4812                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4813                                   &ibss_mask, &len);
4814         if (err)
4815                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4816
4817         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4818         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4819
4820         /* 11b only */
4821         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4822
4823         err = ipw2100_hw_send_command(priv, &cmd);
4824         if (err)
4825                 return err;
4826
4827 /* If IPv6 is configured in the kernel then we don't want to filter out all
4828  * of the multicast packets as IPv6 needs some. */
4829 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4830         cmd.host_command = ADD_MULTICAST;
4831         cmd.host_command_sequence = 0;
4832         cmd.host_command_length = 0;
4833
4834         ipw2100_hw_send_command(priv, &cmd);
4835 #endif
4836         if (!batch_mode) {
4837                 err = ipw2100_enable_adapter(priv);
4838                 if (err)
4839                         return err;
4840         }
4841
4842         return 0;
4843 }
4844
4845 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4846                                 int batch_mode)
4847 {
4848         struct host_command cmd = {
4849                 .host_command = BASIC_TX_RATES,
4850                 .host_command_sequence = 0,
4851                 .host_command_length = 4
4852         };
4853         int err;
4854
4855         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4856
4857         if (!batch_mode) {
4858                 err = ipw2100_disable_adapter(priv);
4859                 if (err)
4860                         return err;
4861         }
4862
4863         /* Set BASIC TX Rate first */
4864         ipw2100_hw_send_command(priv, &cmd);
4865
4866         /* Set TX Rate */
4867         cmd.host_command = TX_RATES;
4868         ipw2100_hw_send_command(priv, &cmd);
4869
4870         /* Set MSDU TX Rate */
4871         cmd.host_command = MSDU_TX_RATES;
4872         ipw2100_hw_send_command(priv, &cmd);
4873
4874         if (!batch_mode) {
4875                 err = ipw2100_enable_adapter(priv);
4876                 if (err)
4877                         return err;
4878         }
4879
4880         priv->tx_rates = rate;
4881
4882         return 0;
4883 }
4884
4885 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4886 {
4887         struct host_command cmd = {
4888                 .host_command = POWER_MODE,
4889                 .host_command_sequence = 0,
4890                 .host_command_length = 4
4891         };
4892         int err;
4893
4894         cmd.host_command_parameters[0] = power_level;
4895
4896         err = ipw2100_hw_send_command(priv, &cmd);
4897         if (err)
4898                 return err;
4899
4900         if (power_level == IPW_POWER_MODE_CAM)
4901                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4902         else
4903                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4904
4905 #ifdef CONFIG_IPW2100_TX_POWER
4906         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4907                 /* Set beacon interval */
4908                 cmd.host_command = TX_POWER_INDEX;
4909                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4910
4911                 err = ipw2100_hw_send_command(priv, &cmd);
4912                 if (err)
4913                         return err;
4914         }
4915 #endif
4916
4917         return 0;
4918 }
4919
4920 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4921 {
4922         struct host_command cmd = {
4923                 .host_command = RTS_THRESHOLD,
4924                 .host_command_sequence = 0,
4925                 .host_command_length = 4
4926         };
4927         int err;
4928
4929         if (threshold & RTS_DISABLED)
4930                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4931         else
4932                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4933
4934         err = ipw2100_hw_send_command(priv, &cmd);
4935         if (err)
4936                 return err;
4937
4938         priv->rts_threshold = threshold;
4939
4940         return 0;
4941 }
4942
4943 #if 0
4944 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4945                                         u32 threshold, int batch_mode)
4946 {
4947         struct host_command cmd = {
4948                 .host_command = FRAG_THRESHOLD,
4949                 .host_command_sequence = 0,
4950                 .host_command_length = 4,
4951                 .host_command_parameters[0] = 0,
4952         };
4953         int err;
4954
4955         if (!batch_mode) {
4956                 err = ipw2100_disable_adapter(priv);
4957                 if (err)
4958                         return err;
4959         }
4960
4961         if (threshold == 0)
4962                 threshold = DEFAULT_FRAG_THRESHOLD;
4963         else {
4964                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4965                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4966         }
4967
4968         cmd.host_command_parameters[0] = threshold;
4969
4970         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4971
4972         err = ipw2100_hw_send_command(priv, &cmd);
4973
4974         if (!batch_mode)
4975                 ipw2100_enable_adapter(priv);
4976
4977         if (!err)
4978                 priv->frag_threshold = threshold;
4979
4980         return err;
4981 }
4982 #endif
4983
4984 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4985 {
4986         struct host_command cmd = {
4987                 .host_command = SHORT_RETRY_LIMIT,
4988                 .host_command_sequence = 0,
4989                 .host_command_length = 4
4990         };
4991         int err;
4992
4993         cmd.host_command_parameters[0] = retry;
4994
4995         err = ipw2100_hw_send_command(priv, &cmd);
4996         if (err)
4997                 return err;
4998
4999         priv->short_retry_limit = retry;
5000
5001         return 0;
5002 }
5003
5004 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5005 {
5006         struct host_command cmd = {
5007                 .host_command = LONG_RETRY_LIMIT,
5008                 .host_command_sequence = 0,
5009                 .host_command_length = 4
5010         };
5011         int err;
5012
5013         cmd.host_command_parameters[0] = retry;
5014
5015         err = ipw2100_hw_send_command(priv, &cmd);
5016         if (err)
5017                 return err;
5018
5019         priv->long_retry_limit = retry;
5020
5021         return 0;
5022 }
5023
5024 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5025                                        int batch_mode)
5026 {
5027         struct host_command cmd = {
5028                 .host_command = MANDATORY_BSSID,
5029                 .host_command_sequence = 0,
5030                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5031         };
5032         int err;
5033
5034 #ifdef CONFIG_IPW2100_DEBUG
5035         if (bssid != NULL)
5036                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5037                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5038                              bssid[5]);
5039         else
5040                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5041 #endif
5042         /* if BSSID is empty then we disable mandatory bssid mode */
5043         if (bssid != NULL)
5044                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5045
5046         if (!batch_mode) {
5047                 err = ipw2100_disable_adapter(priv);
5048                 if (err)
5049                         return err;
5050         }
5051
5052         err = ipw2100_hw_send_command(priv, &cmd);
5053
5054         if (!batch_mode)
5055                 ipw2100_enable_adapter(priv);
5056
5057         return err;
5058 }
5059
5060 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5061 {
5062         struct host_command cmd = {
5063                 .host_command = DISASSOCIATION_BSSID,
5064                 .host_command_sequence = 0,
5065                 .host_command_length = ETH_ALEN
5066         };
5067         int err;
5068         int len;
5069
5070         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5071
5072         len = ETH_ALEN;
5073         /* The Firmware currently ignores the BSSID and just disassociates from
5074          * the currently associated AP -- but in the off chance that a future
5075          * firmware does use the BSSID provided here, we go ahead and try and
5076          * set it to the currently associated AP's BSSID */
5077         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5078
5079         err = ipw2100_hw_send_command(priv, &cmd);
5080
5081         return err;
5082 }
5083
5084 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5085                               struct ipw2100_wpa_assoc_frame *, int)
5086     __attribute__ ((unused));
5087
5088 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5089                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5090                               int batch_mode)
5091 {
5092         struct host_command cmd = {
5093                 .host_command = SET_WPA_IE,
5094                 .host_command_sequence = 0,
5095                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5096         };
5097         int err;
5098
5099         IPW_DEBUG_HC("SET_WPA_IE\n");
5100
5101         if (!batch_mode) {
5102                 err = ipw2100_disable_adapter(priv);
5103                 if (err)
5104                         return err;
5105         }
5106
5107         memcpy(cmd.host_command_parameters, wpa_frame,
5108                sizeof(struct ipw2100_wpa_assoc_frame));
5109
5110         err = ipw2100_hw_send_command(priv, &cmd);
5111
5112         if (!batch_mode) {
5113                 if (ipw2100_enable_adapter(priv))
5114                         err = -EIO;
5115         }
5116
5117         return err;
5118 }
5119
5120 struct security_info_params {
5121         u32 allowed_ciphers;
5122         u16 version;
5123         u8 auth_mode;
5124         u8 replay_counters_number;
5125         u8 unicast_using_group;
5126 } __attribute__ ((packed));
5127
5128 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5129                                             int auth_mode,
5130                                             int security_level,
5131                                             int unicast_using_group,
5132                                             int batch_mode)
5133 {
5134         struct host_command cmd = {
5135                 .host_command = SET_SECURITY_INFORMATION,
5136                 .host_command_sequence = 0,
5137                 .host_command_length = sizeof(struct security_info_params)
5138         };
5139         struct security_info_params *security =
5140             (struct security_info_params *)&cmd.host_command_parameters;
5141         int err;
5142         memset(security, 0, sizeof(*security));
5143
5144         /* If shared key AP authentication is turned on, then we need to
5145          * configure the firmware to try and use it.
5146          *
5147          * Actual data encryption/decryption is handled by the host. */
5148         security->auth_mode = auth_mode;
5149         security->unicast_using_group = unicast_using_group;
5150
5151         switch (security_level) {
5152         default:
5153         case SEC_LEVEL_0:
5154                 security->allowed_ciphers = IPW_NONE_CIPHER;
5155                 break;
5156         case SEC_LEVEL_1:
5157                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5158                     IPW_WEP104_CIPHER;
5159                 break;
5160         case SEC_LEVEL_2:
5161                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5162                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5163                 break;
5164         case SEC_LEVEL_2_CKIP:
5165                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5166                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5167                 break;
5168         case SEC_LEVEL_3:
5169                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5171                 break;
5172         }
5173
5174         IPW_DEBUG_HC
5175             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5176              security->auth_mode, security->allowed_ciphers, security_level);
5177
5178         security->replay_counters_number = 0;
5179
5180         if (!batch_mode) {
5181                 err = ipw2100_disable_adapter(priv);
5182                 if (err)
5183                         return err;
5184         }
5185
5186         err = ipw2100_hw_send_command(priv, &cmd);
5187
5188         if (!batch_mode)
5189                 ipw2100_enable_adapter(priv);
5190
5191         return err;
5192 }
5193
5194 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5195 {
5196         struct host_command cmd = {
5197                 .host_command = TX_POWER_INDEX,
5198                 .host_command_sequence = 0,
5199                 .host_command_length = 4
5200         };
5201         int err = 0;
5202         u32 tmp = tx_power;
5203
5204         if (tx_power != IPW_TX_POWER_DEFAULT)
5205                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5206                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5207
5208         cmd.host_command_parameters[0] = tmp;
5209
5210         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5211                 err = ipw2100_hw_send_command(priv, &cmd);
5212         if (!err)
5213                 priv->tx_power = tx_power;
5214
5215         return 0;
5216 }
5217
5218 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5219                                             u32 interval, int batch_mode)
5220 {
5221         struct host_command cmd = {
5222                 .host_command = BEACON_INTERVAL,
5223                 .host_command_sequence = 0,
5224                 .host_command_length = 4
5225         };
5226         int err;
5227
5228         cmd.host_command_parameters[0] = interval;
5229
5230         IPW_DEBUG_INFO("enter\n");
5231
5232         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5233                 if (!batch_mode) {
5234                         err = ipw2100_disable_adapter(priv);
5235                         if (err)
5236                                 return err;
5237                 }
5238
5239                 ipw2100_hw_send_command(priv, &cmd);
5240
5241                 if (!batch_mode) {
5242                         err = ipw2100_enable_adapter(priv);
5243                         if (err)
5244                                 return err;
5245                 }
5246         }
5247
5248         IPW_DEBUG_INFO("exit\n");
5249
5250         return 0;
5251 }
5252
5253 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5254 {
5255         ipw2100_tx_initialize(priv);
5256         ipw2100_rx_initialize(priv);
5257         ipw2100_msg_initialize(priv);
5258 }
5259
5260 void ipw2100_queues_free(struct ipw2100_priv *priv)
5261 {
5262         ipw2100_tx_free(priv);
5263         ipw2100_rx_free(priv);
5264         ipw2100_msg_free(priv);
5265 }
5266
5267 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5268 {
5269         if (ipw2100_tx_allocate(priv) ||
5270             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5271                 goto fail;
5272
5273         return 0;
5274
5275       fail:
5276         ipw2100_tx_free(priv);
5277         ipw2100_rx_free(priv);
5278         ipw2100_msg_free(priv);
5279         return -ENOMEM;
5280 }
5281
5282 #define IPW_PRIVACY_CAPABLE 0x0008
5283
5284 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5285                                  int batch_mode)
5286 {
5287         struct host_command cmd = {
5288                 .host_command = WEP_FLAGS,
5289                 .host_command_sequence = 0,
5290                 .host_command_length = 4
5291         };
5292         int err;
5293
5294         cmd.host_command_parameters[0] = flags;
5295
5296         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5297
5298         if (!batch_mode) {
5299                 err = ipw2100_disable_adapter(priv);
5300                 if (err) {
5301                         printk(KERN_ERR DRV_NAME
5302                                ": %s: Could not disable adapter %d\n",
5303                                priv->net_dev->name, err);
5304                         return err;
5305                 }
5306         }
5307
5308         /* send cmd to firmware */
5309         err = ipw2100_hw_send_command(priv, &cmd);
5310
5311         if (!batch_mode)
5312                 ipw2100_enable_adapter(priv);
5313
5314         return err;
5315 }
5316
5317 struct ipw2100_wep_key {
5318         u8 idx;
5319         u8 len;
5320         u8 key[13];
5321 };
5322
5323 /* Macros to ease up priting WEP keys */
5324 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5325 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5326 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5327 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5328
5329 /**
5330  * Set a the wep key
5331  *
5332  * @priv: struct to work on
5333  * @idx: index of the key we want to set
5334  * @key: ptr to the key data to set
5335  * @len: length of the buffer at @key
5336  * @batch_mode: FIXME perform the operation in batch mode, not
5337  *              disabling the device.
5338  *
5339  * @returns 0 if OK, < 0 errno code on error.
5340  *
5341  * Fill out a command structure with the new wep key, length an
5342  * index and send it down the wire.
5343  */
5344 static int ipw2100_set_key(struct ipw2100_priv *priv,
5345                            int idx, char *key, int len, int batch_mode)
5346 {
5347         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5348         struct host_command cmd = {
5349                 .host_command = WEP_KEY_INFO,
5350                 .host_command_sequence = 0,
5351                 .host_command_length = sizeof(struct ipw2100_wep_key),
5352         };
5353         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5354         int err;
5355
5356         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5357                      idx, keylen, len);
5358
5359         /* NOTE: We don't check cached values in case the firmware was reset
5360          * or some other problem is occuring.  If the user is setting the key,
5361          * then we push the change */
5362
5363         wep_key->idx = idx;
5364         wep_key->len = keylen;
5365
5366         if (keylen) {
5367                 memcpy(wep_key->key, key, len);
5368                 memset(wep_key->key + len, 0, keylen - len);
5369         }
5370
5371         /* Will be optimized out on debug not being configured in */
5372         if (keylen == 0)
5373                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5374                               priv->net_dev->name, wep_key->idx);
5375         else if (keylen == 5)
5376                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5377                               priv->net_dev->name, wep_key->idx, wep_key->len,
5378                               WEP_STR_64(wep_key->key));
5379         else
5380                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5381                               "\n",
5382                               priv->net_dev->name, wep_key->idx, wep_key->len,
5383                               WEP_STR_128(wep_key->key));
5384
5385         if (!batch_mode) {
5386                 err = ipw2100_disable_adapter(priv);
5387                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5388                 if (err) {
5389                         printk(KERN_ERR DRV_NAME
5390                                ": %s: Could not disable adapter %d\n",
5391                                priv->net_dev->name, err);
5392                         return err;
5393                 }
5394         }
5395
5396         /* send cmd to firmware */
5397         err = ipw2100_hw_send_command(priv, &cmd);
5398
5399         if (!batch_mode) {
5400                 int err2 = ipw2100_enable_adapter(priv);
5401                 if (err == 0)
5402                         err = err2;
5403         }
5404         return err;
5405 }
5406
5407 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5408                                  int idx, int batch_mode)
5409 {
5410         struct host_command cmd = {
5411                 .host_command = WEP_KEY_INDEX,
5412                 .host_command_sequence = 0,
5413                 .host_command_length = 4,
5414                 .host_command_parameters = {idx},
5415         };
5416         int err;
5417
5418         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5419
5420         if (idx < 0 || idx > 3)
5421                 return -EINVAL;
5422
5423         if (!batch_mode) {
5424                 err = ipw2100_disable_adapter(priv);
5425                 if (err) {
5426                         printk(KERN_ERR DRV_NAME
5427                                ": %s: Could not disable adapter %d\n",
5428                                priv->net_dev->name, err);
5429                         return err;
5430                 }
5431         }
5432
5433         /* send cmd to firmware */
5434         err = ipw2100_hw_send_command(priv, &cmd);
5435
5436         if (!batch_mode)
5437                 ipw2100_enable_adapter(priv);
5438
5439         return err;
5440 }
5441
5442 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5443 {
5444         int i, err, auth_mode, sec_level, use_group;
5445
5446         if (!(priv->status & STATUS_RUNNING))
5447                 return 0;
5448
5449         if (!batch_mode) {
5450                 err = ipw2100_disable_adapter(priv);
5451                 if (err)
5452                         return err;
5453         }
5454
5455         if (!priv->ieee->sec.enabled) {
5456                 err =
5457                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5458                                                      SEC_LEVEL_0, 0, 1);
5459         } else {
5460                 auth_mode = IPW_AUTH_OPEN;
5461                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5462                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5463                                 auth_mode = IPW_AUTH_SHARED;
5464                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5465                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5466                 }
5467
5468                 sec_level = SEC_LEVEL_0;
5469                 if (priv->ieee->sec.flags & SEC_LEVEL)
5470                         sec_level = priv->ieee->sec.level;
5471
5472                 use_group = 0;
5473                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5474                         use_group = priv->ieee->sec.unicast_uses_group;
5475
5476                 err =
5477                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5478                                                      use_group, 1);
5479         }
5480
5481         if (err)
5482                 goto exit;
5483
5484         if (priv->ieee->sec.enabled) {
5485                 for (i = 0; i < 4; i++) {
5486                         if (!(priv->ieee->sec.flags & (1 << i))) {
5487                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5488                                 priv->ieee->sec.key_sizes[i] = 0;
5489                         } else {
5490                                 err = ipw2100_set_key(priv, i,
5491                                                       priv->ieee->sec.keys[i],
5492                                                       priv->ieee->sec.
5493                                                       key_sizes[i], 1);
5494                                 if (err)
5495                                         goto exit;
5496                         }
5497                 }
5498
5499                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5500         }
5501
5502         /* Always enable privacy so the Host can filter WEP packets if
5503          * encrypted data is sent up */
5504         err =
5505             ipw2100_set_wep_flags(priv,
5506                                   priv->ieee->sec.
5507                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5508         if (err)
5509                 goto exit;
5510
5511         priv->status &= ~STATUS_SECURITY_UPDATED;
5512
5513       exit:
5514         if (!batch_mode)
5515                 ipw2100_enable_adapter(priv);
5516
5517         return err;
5518 }
5519
5520 static void ipw2100_security_work(struct ipw2100_priv *priv)
5521 {
5522         /* If we happen to have reconnected before we get a chance to
5523          * process this, then update the security settings--which causes
5524          * a disassociation to occur */
5525         if (!(priv->status & STATUS_ASSOCIATED) &&
5526             priv->status & STATUS_SECURITY_UPDATED)
5527                 ipw2100_configure_security(priv, 0);
5528 }
5529
5530 static void shim__set_security(struct net_device *dev,
5531                                struct ieee80211_security *sec)
5532 {
5533         struct ipw2100_priv *priv = ieee80211_priv(dev);
5534         int i, force_update = 0;
5535
5536         down(&priv->action_sem);
5537         if (!(priv->status & STATUS_INITIALIZED))
5538                 goto done;
5539
5540         for (i = 0; i < 4; i++) {
5541                 if (sec->flags & (1 << i)) {
5542                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5543                         if (sec->key_sizes[i] == 0)
5544                                 priv->ieee->sec.flags &= ~(1 << i);
5545                         else
5546                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5547                                        sec->key_sizes[i]);
5548                         if (sec->level == SEC_LEVEL_1) {
5549                                 priv->ieee->sec.flags |= (1 << i);
5550                                 priv->status |= STATUS_SECURITY_UPDATED;
5551                         } else
5552                                 priv->ieee->sec.flags &= ~(1 << i);
5553                 }
5554         }
5555
5556         if ((sec->flags & SEC_ACTIVE_KEY) &&
5557             priv->ieee->sec.active_key != sec->active_key) {
5558                 if (sec->active_key <= 3) {
5559                         priv->ieee->sec.active_key = sec->active_key;
5560                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5561                 } else
5562                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5563
5564                 priv->status |= STATUS_SECURITY_UPDATED;
5565         }
5566
5567         if ((sec->flags & SEC_AUTH_MODE) &&
5568             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5569                 priv->ieee->sec.auth_mode = sec->auth_mode;
5570                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5571                 priv->status |= STATUS_SECURITY_UPDATED;
5572         }
5573
5574         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5575                 priv->ieee->sec.flags |= SEC_ENABLED;
5576                 priv->ieee->sec.enabled = sec->enabled;
5577                 priv->status |= STATUS_SECURITY_UPDATED;
5578                 force_update = 1;
5579         }
5580
5581         if (sec->flags & SEC_ENCRYPT)
5582                 priv->ieee->sec.encrypt = sec->encrypt;
5583
5584         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5585                 priv->ieee->sec.level = sec->level;
5586                 priv->ieee->sec.flags |= SEC_LEVEL;
5587                 priv->status |= STATUS_SECURITY_UPDATED;
5588         }
5589
5590         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5591                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5592                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5593                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5594                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5595                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5596                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5597                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5598                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5599                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5600
5601 /* As a temporary work around to enable WPA until we figure out why
5602  * wpa_supplicant toggles the security capability of the driver, which
5603  * forces a disassocation with force_update...
5604  *
5605  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5606         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5607                 ipw2100_configure_security(priv, 0);
5608       done:
5609         up(&priv->action_sem);
5610 }
5611
5612 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5613 {
5614         int err;
5615         int batch_mode = 1;
5616         u8 *bssid;
5617
5618         IPW_DEBUG_INFO("enter\n");
5619
5620         err = ipw2100_disable_adapter(priv);
5621         if (err)
5622                 return err;
5623 #ifdef CONFIG_IPW2100_MONITOR
5624         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5625                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5626                 if (err)
5627                         return err;
5628
5629                 IPW_DEBUG_INFO("exit\n");
5630
5631                 return 0;
5632         }
5633 #endif                          /* CONFIG_IPW2100_MONITOR */
5634
5635         err = ipw2100_read_mac_address(priv);
5636         if (err)
5637                 return -EIO;
5638
5639         err = ipw2100_set_mac_address(priv, batch_mode);
5640         if (err)
5641                 return err;
5642
5643         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5644         if (err)
5645                 return err;
5646
5647         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5648                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5649                 if (err)
5650                         return err;
5651         }
5652
5653         err = ipw2100_system_config(priv, batch_mode);
5654         if (err)
5655                 return err;
5656
5657         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5658         if (err)
5659                 return err;
5660
5661         /* Default to power mode OFF */
5662         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5663         if (err)
5664                 return err;
5665
5666         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5667         if (err)
5668                 return err;
5669
5670         if (priv->config & CFG_STATIC_BSSID)
5671                 bssid = priv->bssid;
5672         else
5673                 bssid = NULL;
5674         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5675         if (err)
5676                 return err;
5677
5678         if (priv->config & CFG_STATIC_ESSID)
5679                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5680                                         batch_mode);
5681         else
5682                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5683         if (err)
5684                 return err;
5685
5686         err = ipw2100_configure_security(priv, batch_mode);
5687         if (err)
5688                 return err;
5689
5690         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5691                 err =
5692                     ipw2100_set_ibss_beacon_interval(priv,
5693                                                      priv->beacon_interval,
5694                                                      batch_mode);
5695                 if (err)
5696                         return err;
5697
5698                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5699                 if (err)
5700                         return err;
5701         }
5702
5703         /*
5704            err = ipw2100_set_fragmentation_threshold(
5705            priv, priv->frag_threshold, batch_mode);
5706            if (err)
5707            return err;
5708          */
5709
5710         IPW_DEBUG_INFO("exit\n");
5711
5712         return 0;
5713 }
5714
5715 /*************************************************************************
5716  *
5717  * EXTERNALLY CALLED METHODS
5718  *
5719  *************************************************************************/
5720
5721 /* This method is called by the network layer -- not to be confused with
5722  * ipw2100_set_mac_address() declared above called by this driver (and this
5723  * method as well) to talk to the firmware */
5724 static int ipw2100_set_address(struct net_device *dev, void *p)
5725 {
5726         struct ipw2100_priv *priv = ieee80211_priv(dev);
5727         struct sockaddr *addr = p;
5728         int err = 0;
5729
5730         if (!is_valid_ether_addr(addr->sa_data))
5731                 return -EADDRNOTAVAIL;
5732
5733         down(&priv->action_sem);
5734
5735         priv->config |= CFG_CUSTOM_MAC;
5736         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5737
5738         err = ipw2100_set_mac_address(priv, 0);
5739         if (err)
5740                 goto done;
5741
5742         priv->reset_backoff = 0;
5743         up(&priv->action_sem);
5744         ipw2100_reset_adapter(priv);
5745         return 0;
5746
5747       done:
5748         up(&priv->action_sem);
5749         return err;
5750 }
5751
5752 static int ipw2100_open(struct net_device *dev)
5753 {
5754         struct ipw2100_priv *priv = ieee80211_priv(dev);
5755         unsigned long flags;
5756         IPW_DEBUG_INFO("dev->open\n");
5757
5758         spin_lock_irqsave(&priv->low_lock, flags);
5759         if (priv->status & STATUS_ASSOCIATED) {
5760                 netif_carrier_on(dev);
5761                 netif_start_queue(dev);
5762         }
5763         spin_unlock_irqrestore(&priv->low_lock, flags);
5764
5765         return 0;
5766 }
5767
5768 static int ipw2100_close(struct net_device *dev)
5769 {
5770         struct ipw2100_priv *priv = ieee80211_priv(dev);
5771         unsigned long flags;
5772         struct list_head *element;
5773         struct ipw2100_tx_packet *packet;
5774
5775         IPW_DEBUG_INFO("enter\n");
5776
5777         spin_lock_irqsave(&priv->low_lock, flags);
5778
5779         if (priv->status & STATUS_ASSOCIATED)
5780                 netif_carrier_off(dev);
5781         netif_stop_queue(dev);
5782
5783         /* Flush the TX queue ... */
5784         while (!list_empty(&priv->tx_pend_list)) {
5785                 element = priv->tx_pend_list.next;
5786                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5787
5788                 list_del(element);
5789                 DEC_STAT(&priv->tx_pend_stat);
5790
5791                 ieee80211_txb_free(packet->info.d_struct.txb);
5792                 packet->info.d_struct.txb = NULL;
5793
5794                 list_add_tail(element, &priv->tx_free_list);
5795                 INC_STAT(&priv->tx_free_stat);
5796         }
5797         spin_unlock_irqrestore(&priv->low_lock, flags);
5798
5799         IPW_DEBUG_INFO("exit\n");
5800
5801         return 0;
5802 }
5803
5804 /*
5805  * TODO:  Fix this function... its just wrong
5806  */
5807 static void ipw2100_tx_timeout(struct net_device *dev)
5808 {
5809         struct ipw2100_priv *priv = ieee80211_priv(dev);
5810
5811         priv->ieee->stats.tx_errors++;
5812
5813 #ifdef CONFIG_IPW2100_MONITOR
5814         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5815                 return;
5816 #endif
5817
5818         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5819                        dev->name);
5820         schedule_reset(priv);
5821 }
5822
5823 /*
5824  * TODO: reimplement it so that it reads statistics
5825  *       from the adapter using ordinal tables
5826  *       instead of/in addition to collecting them
5827  *       in the driver
5828  */
5829 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5830 {
5831         struct ipw2100_priv *priv = ieee80211_priv(dev);
5832
5833         return &priv->ieee->stats;
5834 }
5835
5836 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5837 {
5838         /* This is called when wpa_supplicant loads and closes the driver
5839          * interface. */
5840         priv->ieee->wpa_enabled = value;
5841         return 0;
5842 }
5843
5844 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5845 {
5846
5847         struct ieee80211_device *ieee = priv->ieee;
5848         struct ieee80211_security sec = {
5849                 .flags = SEC_AUTH_MODE,
5850         };
5851         int ret = 0;
5852
5853         if (value & IW_AUTH_ALG_SHARED_KEY) {
5854                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5855                 ieee->open_wep = 0;
5856         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5857                 sec.auth_mode = WLAN_AUTH_OPEN;
5858                 ieee->open_wep = 1;
5859         } else if (value & IW_AUTH_ALG_LEAP) {
5860                 sec.auth_mode = WLAN_AUTH_LEAP;
5861                 ieee->open_wep = 1;
5862         } else
5863                 return -EINVAL;
5864
5865         if (ieee->set_security)
5866                 ieee->set_security(ieee->dev, &sec);
5867         else
5868                 ret = -EOPNOTSUPP;
5869
5870         return ret;
5871 }
5872
5873 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5874                                     char *wpa_ie, int wpa_ie_len)
5875 {
5876
5877         struct ipw2100_wpa_assoc_frame frame;
5878
5879         frame.fixed_ie_mask = 0;
5880
5881         /* copy WPA IE */
5882         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5883         frame.var_ie_len = wpa_ie_len;
5884
5885         /* make sure WPA is enabled */
5886         ipw2100_wpa_enable(priv, 1);
5887         ipw2100_set_wpa_ie(priv, &frame, 0);
5888 }
5889
5890 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5891                                     struct ethtool_drvinfo *info)
5892 {
5893         struct ipw2100_priv *priv = ieee80211_priv(dev);
5894         char fw_ver[64], ucode_ver[64];
5895
5896         strcpy(info->driver, DRV_NAME);
5897         strcpy(info->version, DRV_VERSION);
5898
5899         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5900         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5901
5902         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5903                  fw_ver, priv->eeprom_version, ucode_ver);
5904
5905         strcpy(info->bus_info, pci_name(priv->pci_dev));
5906 }
5907
5908 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5909 {
5910         struct ipw2100_priv *priv = ieee80211_priv(dev);
5911         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5912 }
5913
5914 static struct ethtool_ops ipw2100_ethtool_ops = {
5915         .get_link = ipw2100_ethtool_get_link,
5916         .get_drvinfo = ipw_ethtool_get_drvinfo,
5917 };
5918
5919 static void ipw2100_hang_check(void *adapter)
5920 {
5921         struct ipw2100_priv *priv = adapter;
5922         unsigned long flags;
5923         u32 rtc = 0xa5a5a5a5;
5924         u32 len = sizeof(rtc);
5925         int restart = 0;
5926
5927         spin_lock_irqsave(&priv->low_lock, flags);
5928
5929         if (priv->fatal_error != 0) {
5930                 /* If fatal_error is set then we need to restart */
5931                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932                                priv->net_dev->name);
5933
5934                 restart = 1;
5935         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936                    (rtc == priv->last_rtc)) {
5937                 /* Check if firmware is hung */
5938                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939                                priv->net_dev->name);
5940
5941                 restart = 1;
5942         }
5943
5944         if (restart) {
5945                 /* Kill timer */
5946                 priv->stop_hang_check = 1;
5947                 priv->hangs++;
5948
5949                 /* Restart the NIC */
5950                 schedule_reset(priv);
5951         }
5952
5953         priv->last_rtc = rtc;
5954
5955         if (!priv->stop_hang_check)
5956                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5957
5958         spin_unlock_irqrestore(&priv->low_lock, flags);
5959 }
5960
5961 static void ipw2100_rf_kill(void *adapter)
5962 {
5963         struct ipw2100_priv *priv = adapter;
5964         unsigned long flags;
5965
5966         spin_lock_irqsave(&priv->low_lock, flags);
5967
5968         if (rf_kill_active(priv)) {
5969                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5970                 if (!priv->stop_rf_kill)
5971                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5972                 goto exit_unlock;
5973         }
5974
5975         /* RF Kill is now disabled, so bring the device back up */
5976
5977         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5978                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5979                                   "device\n");
5980                 schedule_reset(priv);
5981         } else
5982                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5983                                   "enabled\n");
5984
5985       exit_unlock:
5986         spin_unlock_irqrestore(&priv->low_lock, flags);
5987 }
5988
5989 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5990
5991 /* Look into using netdev destructor to shutdown ieee80211? */
5992
5993 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5994                                                void __iomem * base_addr,
5995                                                unsigned long mem_start,
5996                                                unsigned long mem_len)
5997 {
5998         struct ipw2100_priv *priv;
5999         struct net_device *dev;
6000
6001         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6002         if (!dev)
6003                 return NULL;
6004         priv = ieee80211_priv(dev);
6005         priv->ieee = netdev_priv(dev);
6006         priv->pci_dev = pci_dev;
6007         priv->net_dev = dev;
6008
6009         priv->ieee->hard_start_xmit = ipw2100_tx;
6010         priv->ieee->set_security = shim__set_security;
6011
6012         priv->ieee->perfect_rssi = -20;
6013         priv->ieee->worst_rssi = -85;
6014
6015         dev->open = ipw2100_open;
6016         dev->stop = ipw2100_close;
6017         dev->init = ipw2100_net_init;
6018         dev->get_stats = ipw2100_stats;
6019         dev->ethtool_ops = &ipw2100_ethtool_ops;
6020         dev->tx_timeout = ipw2100_tx_timeout;
6021         dev->wireless_handlers = &ipw2100_wx_handler_def;
6022         priv->wireless_data.ieee80211 = priv->ieee;
6023         dev->wireless_data = &priv->wireless_data;
6024         dev->set_mac_address = ipw2100_set_address;
6025         dev->watchdog_timeo = 3 * HZ;
6026         dev->irq = 0;
6027
6028         dev->base_addr = (unsigned long)base_addr;
6029         dev->mem_start = mem_start;
6030         dev->mem_end = dev->mem_start + mem_len - 1;
6031
6032         /* NOTE: We don't use the wireless_handlers hook
6033          * in dev as the system will start throwing WX requests
6034          * to us before we're actually initialized and it just
6035          * ends up causing problems.  So, we just handle
6036          * the WX extensions through the ipw2100_ioctl interface */
6037
6038         /* memset() puts everything to 0, so we only have explicitely set
6039          * those values that need to be something else */
6040
6041         /* If power management is turned on, default to AUTO mode */
6042         priv->power_mode = IPW_POWER_AUTO;
6043
6044 #ifdef CONFIG_IPW2100_MONITOR
6045         priv->config |= CFG_CRC_CHECK;
6046 #endif
6047         priv->ieee->wpa_enabled = 0;
6048         priv->ieee->drop_unencrypted = 0;
6049         priv->ieee->privacy_invoked = 0;
6050         priv->ieee->ieee802_1x = 1;
6051
6052         /* Set module parameters */
6053         switch (mode) {
6054         case 1:
6055                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6056                 break;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058         case 2:
6059                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6060                 break;
6061 #endif
6062         default:
6063         case 0:
6064                 priv->ieee->iw_mode = IW_MODE_INFRA;
6065                 break;
6066         }
6067
6068         if (disable == 1)
6069                 priv->status |= STATUS_RF_KILL_SW;
6070
6071         if (channel != 0 &&
6072             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6073                 priv->config |= CFG_STATIC_CHANNEL;
6074                 priv->channel = channel;
6075         }
6076
6077         if (associate)
6078                 priv->config |= CFG_ASSOCIATE;
6079
6080         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6081         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6082         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6083         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6084         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6085         priv->tx_power = IPW_TX_POWER_DEFAULT;
6086         priv->tx_rates = DEFAULT_TX_RATES;
6087
6088         strcpy(priv->nick, "ipw2100");
6089
6090         spin_lock_init(&priv->low_lock);
6091         sema_init(&priv->action_sem, 1);
6092         sema_init(&priv->adapter_sem, 1);
6093
6094         init_waitqueue_head(&priv->wait_command_queue);
6095
6096         netif_carrier_off(dev);
6097
6098         INIT_LIST_HEAD(&priv->msg_free_list);
6099         INIT_LIST_HEAD(&priv->msg_pend_list);
6100         INIT_STAT(&priv->msg_free_stat);
6101         INIT_STAT(&priv->msg_pend_stat);
6102
6103         INIT_LIST_HEAD(&priv->tx_free_list);
6104         INIT_LIST_HEAD(&priv->tx_pend_list);
6105         INIT_STAT(&priv->tx_free_stat);
6106         INIT_STAT(&priv->tx_pend_stat);
6107
6108         INIT_LIST_HEAD(&priv->fw_pend_list);
6109         INIT_STAT(&priv->fw_pend_stat);
6110
6111         priv->workqueue = create_workqueue(DRV_NAME);
6112
6113         INIT_WORK(&priv->reset_work,
6114                   (void (*)(void *))ipw2100_reset_adapter, priv);
6115         INIT_WORK(&priv->security_work,
6116                   (void (*)(void *))ipw2100_security_work, priv);
6117         INIT_WORK(&priv->wx_event_work,
6118                   (void (*)(void *))ipw2100_wx_event_work, priv);
6119         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6120         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6121
6122         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123                      ipw2100_irq_tasklet, (unsigned long)priv);
6124
6125         /* NOTE:  We do not start the deferred work for status checks yet */
6126         priv->stop_rf_kill = 1;
6127         priv->stop_hang_check = 1;
6128
6129         return dev;
6130 }
6131
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133                                 const struct pci_device_id *ent)
6134 {
6135         unsigned long mem_start, mem_len, mem_flags;
6136         void __iomem *base_addr = NULL;
6137         struct net_device *dev = NULL;
6138         struct ipw2100_priv *priv = NULL;
6139         int err = 0;
6140         int registered = 0;
6141         u32 val;
6142
6143         IPW_DEBUG_INFO("enter\n");
6144
6145         mem_start = pci_resource_start(pci_dev, 0);
6146         mem_len = pci_resource_len(pci_dev, 0);
6147         mem_flags = pci_resource_flags(pci_dev, 0);
6148
6149         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6151                 err = -ENODEV;
6152                 goto fail;
6153         }
6154
6155         base_addr = ioremap_nocache(mem_start, mem_len);
6156         if (!base_addr) {
6157                 printk(KERN_WARNING DRV_NAME
6158                        "Error calling ioremap_nocache.\n");
6159                 err = -EIO;
6160                 goto fail;
6161         }
6162
6163         /* allocate and initialize our net_device */
6164         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6165         if (!dev) {
6166                 printk(KERN_WARNING DRV_NAME
6167                        "Error calling ipw2100_alloc_device.\n");
6168                 err = -ENOMEM;
6169                 goto fail;
6170         }
6171
6172         /* set up PCI mappings for device */
6173         err = pci_enable_device(pci_dev);
6174         if (err) {
6175                 printk(KERN_WARNING DRV_NAME
6176                        "Error calling pci_enable_device.\n");
6177                 return err;
6178         }
6179
6180         priv = ieee80211_priv(dev);
6181
6182         pci_set_master(pci_dev);
6183         pci_set_drvdata(pci_dev, priv);
6184
6185         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6186         if (err) {
6187                 printk(KERN_WARNING DRV_NAME
6188                        "Error calling pci_set_dma_mask.\n");
6189                 pci_disable_device(pci_dev);
6190                 return err;
6191         }
6192
6193         err = pci_request_regions(pci_dev, DRV_NAME);
6194         if (err) {
6195                 printk(KERN_WARNING DRV_NAME
6196                        "Error calling pci_request_regions.\n");
6197                 pci_disable_device(pci_dev);
6198                 return err;
6199         }
6200
6201         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202          * PCI Tx retries from interfering with C3 CPU state */
6203         pci_read_config_dword(pci_dev, 0x40, &val);
6204         if ((val & 0x0000ff00) != 0)
6205                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6206
6207         pci_set_power_state(pci_dev, PCI_D0);
6208
6209         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210                 printk(KERN_WARNING DRV_NAME
6211                        "Device not found via register read.\n");
6212                 err = -ENODEV;
6213                 goto fail;
6214         }
6215
6216         SET_NETDEV_DEV(dev, &pci_dev->dev);
6217
6218         /* Force interrupts to be shut off on the device */
6219         priv->status |= STATUS_INT_ENABLED;
6220         ipw2100_disable_interrupts(priv);
6221
6222         /* Allocate and initialize the Tx/Rx queues and lists */
6223         if (ipw2100_queues_allocate(priv)) {
6224                 printk(KERN_WARNING DRV_NAME
6225                        "Error calilng ipw2100_queues_allocate.\n");
6226                 err = -ENOMEM;
6227                 goto fail;
6228         }
6229         ipw2100_queues_initialize(priv);
6230
6231         err = request_irq(pci_dev->irq,
6232                           ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6233         if (err) {
6234                 printk(KERN_WARNING DRV_NAME
6235                        "Error calling request_irq: %d.\n", pci_dev->irq);
6236                 goto fail;
6237         }
6238         dev->irq = pci_dev->irq;
6239
6240         IPW_DEBUG_INFO("Attempting to register device...\n");
6241
6242         SET_MODULE_OWNER(dev);
6243
6244         printk(KERN_INFO DRV_NAME
6245                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6246
6247         /* Bring up the interface.  Pre 0.46, after we registered the
6248          * network device we would call ipw2100_up.  This introduced a race
6249          * condition with newer hotplug configurations (network was coming
6250          * up and making calls before the device was initialized).
6251          *
6252          * If we called ipw2100_up before we registered the device, then the
6253          * device name wasn't registered.  So, we instead use the net_dev->init
6254          * member to call a function that then just turns and calls ipw2100_up.
6255          * net_dev->init is called after name allocation but before the
6256          * notifier chain is called */
6257         down(&priv->action_sem);
6258         err = register_netdev(dev);
6259         if (err) {
6260                 printk(KERN_WARNING DRV_NAME
6261                        "Error calling register_netdev.\n");
6262                 goto fail_unlock;
6263         }
6264         registered = 1;
6265
6266         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6267
6268         /* perform this after register_netdev so that dev->name is set */
6269         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6270
6271         /* If the RF Kill switch is disabled, go ahead and complete the
6272          * startup sequence */
6273         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6274                 /* Enable the adapter - sends HOST_COMPLETE */
6275                 if (ipw2100_enable_adapter(priv)) {
6276                         printk(KERN_WARNING DRV_NAME
6277                                ": %s: failed in call to enable adapter.\n",
6278                                priv->net_dev->name);
6279                         ipw2100_hw_stop_adapter(priv);
6280                         err = -EIO;
6281                         goto fail_unlock;
6282                 }
6283
6284                 /* Start a scan . . . */
6285                 ipw2100_set_scan_options(priv);
6286                 ipw2100_start_scan(priv);
6287         }
6288
6289         IPW_DEBUG_INFO("exit\n");
6290
6291         priv->status |= STATUS_INITIALIZED;
6292
6293         up(&priv->action_sem);
6294
6295         return 0;
6296
6297       fail_unlock:
6298         up(&priv->action_sem);
6299
6300       fail:
6301         if (dev) {
6302                 if (registered)
6303                         unregister_netdev(dev);
6304
6305                 ipw2100_hw_stop_adapter(priv);
6306
6307                 ipw2100_disable_interrupts(priv);
6308
6309                 if (dev->irq)
6310                         free_irq(dev->irq, priv);
6311
6312                 ipw2100_kill_workqueue(priv);
6313
6314                 /* These are safe to call even if they weren't allocated */
6315                 ipw2100_queues_free(priv);
6316                 sysfs_remove_group(&pci_dev->dev.kobj,
6317                                    &ipw2100_attribute_group);
6318
6319                 free_ieee80211(dev);
6320                 pci_set_drvdata(pci_dev, NULL);
6321         }
6322
6323         if (base_addr)
6324                 iounmap(base_addr);
6325
6326         pci_release_regions(pci_dev);
6327         pci_disable_device(pci_dev);
6328
6329         return err;
6330 }
6331
6332 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6333 {
6334         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6335         struct net_device *dev;
6336
6337         if (priv) {
6338                 down(&priv->action_sem);
6339
6340                 priv->status &= ~STATUS_INITIALIZED;
6341
6342                 dev = priv->net_dev;
6343                 sysfs_remove_group(&pci_dev->dev.kobj,
6344                                    &ipw2100_attribute_group);
6345
6346 #ifdef CONFIG_PM
6347                 if (ipw2100_firmware.version)
6348                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6349 #endif
6350                 /* Take down the hardware */
6351                 ipw2100_down(priv);
6352
6353                 /* Release the semaphore so that the network subsystem can
6354                  * complete any needed calls into the driver... */
6355                 up(&priv->action_sem);
6356
6357                 /* Unregister the device first - this results in close()
6358                  * being called if the device is open.  If we free storage
6359                  * first, then close() will crash. */
6360                 unregister_netdev(dev);
6361
6362                 /* ipw2100_down will ensure that there is no more pending work
6363                  * in the workqueue's, so we can safely remove them now. */
6364                 ipw2100_kill_workqueue(priv);
6365
6366                 ipw2100_queues_free(priv);
6367
6368                 /* Free potential debugging firmware snapshot */
6369                 ipw2100_snapshot_free(priv);
6370
6371                 if (dev->irq)
6372                         free_irq(dev->irq, priv);
6373
6374                 if (dev->base_addr)
6375                         iounmap((void __iomem *)dev->base_addr);
6376
6377                 free_ieee80211(dev);
6378         }
6379
6380         pci_release_regions(pci_dev);
6381         pci_disable_device(pci_dev);
6382
6383         IPW_DEBUG_INFO("exit\n");
6384 }
6385
6386 #ifdef CONFIG_PM
6387 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6388 {
6389         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6390         struct net_device *dev = priv->net_dev;
6391
6392         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6393
6394         down(&priv->action_sem);
6395         if (priv->status & STATUS_INITIALIZED) {
6396                 /* Take down the device; powers it off, etc. */
6397                 ipw2100_down(priv);
6398         }
6399
6400         /* Remove the PRESENT state of the device */
6401         netif_device_detach(dev);
6402
6403         pci_save_state(pci_dev);
6404         pci_disable_device(pci_dev);
6405         pci_set_power_state(pci_dev, PCI_D3hot);
6406
6407         up(&priv->action_sem);
6408
6409         return 0;
6410 }
6411
6412 static int ipw2100_resume(struct pci_dev *pci_dev)
6413 {
6414         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6415         struct net_device *dev = priv->net_dev;
6416         u32 val;
6417
6418         if (IPW2100_PM_DISABLED)
6419                 return 0;
6420
6421         down(&priv->action_sem);
6422
6423         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6424
6425         pci_set_power_state(pci_dev, PCI_D0);
6426         pci_enable_device(pci_dev);
6427         pci_restore_state(pci_dev);
6428
6429         /*
6430          * Suspend/Resume resets the PCI configuration space, so we have to
6431          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6432          * from interfering with C3 CPU state. pci_restore_state won't help
6433          * here since it only restores the first 64 bytes pci config header.
6434          */
6435         pci_read_config_dword(pci_dev, 0x40, &val);
6436         if ((val & 0x0000ff00) != 0)
6437                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6438
6439         /* Set the device back into the PRESENT state; this will also wake
6440          * the queue of needed */
6441         netif_device_attach(dev);
6442
6443         /* Bring the device back up */
6444         if (!(priv->status & STATUS_RF_KILL_SW))
6445                 ipw2100_up(priv, 0);
6446
6447         up(&priv->action_sem);
6448
6449         return 0;
6450 }
6451 #endif
6452
6453 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6454
6455 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6456         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6457         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6458         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6459         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6460         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6461         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6462         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6463         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6464         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6465         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6466         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6467         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6468         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6469
6470         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6471         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6472         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6473         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6474         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6475
6476         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6477         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6478         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6479         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6480         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6481         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6482         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6483
6484         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6485
6486         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6487         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6488         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6489         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6490         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6491         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6492         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6493
6494         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6495         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6496         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6497         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6498         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6499         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6500
6501         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6502         {0,},
6503 };
6504
6505 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6506
6507 static struct pci_driver ipw2100_pci_driver = {
6508         .name = DRV_NAME,
6509         .id_table = ipw2100_pci_id_table,
6510         .probe = ipw2100_pci_init_one,
6511         .remove = __devexit_p(ipw2100_pci_remove_one),
6512 #ifdef CONFIG_PM
6513         .suspend = ipw2100_suspend,
6514         .resume = ipw2100_resume,
6515 #endif
6516 };
6517
6518 /**
6519  * Initialize the ipw2100 driver/module
6520  *
6521  * @returns 0 if ok, < 0 errno node con error.
6522  *
6523  * Note: we cannot init the /proc stuff until the PCI driver is there,
6524  * or we risk an unlikely race condition on someone accessing
6525  * uninitialized data in the PCI dev struct through /proc.
6526  */
6527 static int __init ipw2100_init(void)
6528 {
6529         int ret;
6530
6531         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6532         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6533
6534         ret = pci_module_init(&ipw2100_pci_driver);
6535
6536 #ifdef CONFIG_IPW2100_DEBUG
6537         ipw2100_debug_level = debug;
6538         driver_create_file(&ipw2100_pci_driver.driver,
6539                            &driver_attr_debug_level);
6540 #endif
6541
6542         return ret;
6543 }
6544
6545 /**
6546  * Cleanup ipw2100 driver registration
6547  */
6548 static void __exit ipw2100_exit(void)
6549 {
6550         /* FIXME: IPG: check that we have no instances of the devices open */
6551 #ifdef CONFIG_IPW2100_DEBUG
6552         driver_remove_file(&ipw2100_pci_driver.driver,
6553                            &driver_attr_debug_level);
6554 #endif
6555         pci_unregister_driver(&ipw2100_pci_driver);
6556 }
6557
6558 module_init(ipw2100_init);
6559 module_exit(ipw2100_exit);
6560
6561 #define WEXT_USECHANNELS 1
6562
6563 static const long ipw2100_frequencies[] = {
6564         2412, 2417, 2422, 2427,
6565         2432, 2437, 2442, 2447,
6566         2452, 2457, 2462, 2467,
6567         2472, 2484
6568 };
6569
6570 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6571                     sizeof(ipw2100_frequencies[0]))
6572
6573 static const long ipw2100_rates_11b[] = {
6574         1000000,
6575         2000000,
6576         5500000,
6577         11000000
6578 };
6579
6580 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6581
6582 static int ipw2100_wx_get_name(struct net_device *dev,
6583                                struct iw_request_info *info,
6584                                union iwreq_data *wrqu, char *extra)
6585 {
6586         /*
6587          * This can be called at any time.  No action lock required
6588          */
6589
6590         struct ipw2100_priv *priv = ieee80211_priv(dev);
6591         if (!(priv->status & STATUS_ASSOCIATED))
6592                 strcpy(wrqu->name, "unassociated");
6593         else
6594                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6595
6596         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6597         return 0;
6598 }
6599
6600 static int ipw2100_wx_set_freq(struct net_device *dev,
6601                                struct iw_request_info *info,
6602                                union iwreq_data *wrqu, char *extra)
6603 {
6604         struct ipw2100_priv *priv = ieee80211_priv(dev);
6605         struct iw_freq *fwrq = &wrqu->freq;
6606         int err = 0;
6607
6608         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6609                 return -EOPNOTSUPP;
6610
6611         down(&priv->action_sem);
6612         if (!(priv->status & STATUS_INITIALIZED)) {
6613                 err = -EIO;
6614                 goto done;
6615         }
6616
6617         /* if setting by freq convert to channel */
6618         if (fwrq->e == 1) {
6619                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6620                         int f = fwrq->m / 100000;
6621                         int c = 0;
6622
6623                         while ((c < REG_MAX_CHANNEL) &&
6624                                (f != ipw2100_frequencies[c]))
6625                                 c++;
6626
6627                         /* hack to fall through */
6628                         fwrq->e = 0;
6629                         fwrq->m = c + 1;
6630                 }
6631         }
6632
6633         if (fwrq->e > 0 || fwrq->m > 1000) {
6634                 err = -EOPNOTSUPP;
6635                 goto done;
6636         } else {                /* Set the channel */
6637                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6638                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6639         }
6640
6641       done:
6642         up(&priv->action_sem);
6643         return err;
6644 }
6645
6646 static int ipw2100_wx_get_freq(struct net_device *dev,
6647                                struct iw_request_info *info,
6648                                union iwreq_data *wrqu, char *extra)
6649 {
6650         /*
6651          * This can be called at any time.  No action lock required
6652          */
6653
6654         struct ipw2100_priv *priv = ieee80211_priv(dev);
6655
6656         wrqu->freq.e = 0;
6657
6658         /* If we are associated, trying to associate, or have a statically
6659          * configured CHANNEL then return that; otherwise return ANY */
6660         if (priv->config & CFG_STATIC_CHANNEL ||
6661             priv->status & STATUS_ASSOCIATED)
6662                 wrqu->freq.m = priv->channel;
6663         else
6664                 wrqu->freq.m = 0;
6665
6666         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6667         return 0;
6668
6669 }
6670
6671 static int ipw2100_wx_set_mode(struct net_device *dev,
6672                                struct iw_request_info *info,
6673                                union iwreq_data *wrqu, char *extra)
6674 {
6675         struct ipw2100_priv *priv = ieee80211_priv(dev);
6676         int err = 0;
6677
6678         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6679
6680         if (wrqu->mode == priv->ieee->iw_mode)
6681                 return 0;
6682
6683         down(&priv->action_sem);
6684         if (!(priv->status & STATUS_INITIALIZED)) {
6685                 err = -EIO;
6686                 goto done;
6687         }
6688
6689         switch (wrqu->mode) {
6690 #ifdef CONFIG_IPW2100_MONITOR
6691         case IW_MODE_MONITOR:
6692                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6693                 break;
6694 #endif                          /* CONFIG_IPW2100_MONITOR */
6695         case IW_MODE_ADHOC:
6696                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6697                 break;
6698         case IW_MODE_INFRA:
6699         case IW_MODE_AUTO:
6700         default:
6701                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6702                 break;
6703         }
6704
6705       done:
6706         up(&priv->action_sem);
6707         return err;
6708 }
6709
6710 static int ipw2100_wx_get_mode(struct net_device *dev,
6711                                struct iw_request_info *info,
6712                                union iwreq_data *wrqu, char *extra)
6713 {
6714         /*
6715          * This can be called at any time.  No action lock required
6716          */
6717
6718         struct ipw2100_priv *priv = ieee80211_priv(dev);
6719
6720         wrqu->mode = priv->ieee->iw_mode;
6721         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6722
6723         return 0;
6724 }
6725
6726 #define POWER_MODES 5
6727
6728 /* Values are in microsecond */
6729 static const s32 timeout_duration[POWER_MODES] = {
6730         350000,
6731         250000,
6732         75000,
6733         37000,
6734         25000,
6735 };
6736
6737 static const s32 period_duration[POWER_MODES] = {
6738         400000,
6739         700000,
6740         1000000,
6741         1000000,
6742         1000000
6743 };
6744
6745 static int ipw2100_wx_get_range(struct net_device *dev,
6746                                 struct iw_request_info *info,
6747                                 union iwreq_data *wrqu, char *extra)
6748 {
6749         /*
6750          * This can be called at any time.  No action lock required
6751          */
6752
6753         struct ipw2100_priv *priv = ieee80211_priv(dev);
6754         struct iw_range *range = (struct iw_range *)extra;
6755         u16 val;
6756         int i, level;
6757
6758         wrqu->data.length = sizeof(*range);
6759         memset(range, 0, sizeof(*range));
6760
6761         /* Let's try to keep this struct in the same order as in
6762          * linux/include/wireless.h
6763          */
6764
6765         /* TODO: See what values we can set, and remove the ones we can't
6766          * set, or fill them with some default data.
6767          */
6768
6769         /* ~5 Mb/s real (802.11b) */
6770         range->throughput = 5 * 1000 * 1000;
6771
6772 //      range->sensitivity;     /* signal level threshold range */
6773
6774         range->max_qual.qual = 100;
6775         /* TODO: Find real max RSSI and stick here */
6776         range->max_qual.level = 0;
6777         range->max_qual.noise = 0;
6778         range->max_qual.updated = 7;    /* Updated all three */
6779
6780         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6781         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6782         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6783         range->avg_qual.noise = 0;
6784         range->avg_qual.updated = 7;    /* Updated all three */
6785
6786         range->num_bitrates = RATE_COUNT;
6787
6788         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6789                 range->bitrate[i] = ipw2100_rates_11b[i];
6790         }
6791
6792         range->min_rts = MIN_RTS_THRESHOLD;
6793         range->max_rts = MAX_RTS_THRESHOLD;
6794         range->min_frag = MIN_FRAG_THRESHOLD;
6795         range->max_frag = MAX_FRAG_THRESHOLD;
6796
6797         range->min_pmp = period_duration[0];    /* Minimal PM period */
6798         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6799         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6800         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6801
6802         /* How to decode max/min PM period */
6803         range->pmp_flags = IW_POWER_PERIOD;
6804         /* How to decode max/min PM period */
6805         range->pmt_flags = IW_POWER_TIMEOUT;
6806         /* What PM options are supported */
6807         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6808
6809         range->encoding_size[0] = 5;
6810         range->encoding_size[1] = 13;   /* Different token sizes */
6811         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6812         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6813 //      range->encoding_login_index;            /* token index for login token */
6814
6815         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6816                 range->txpower_capa = IW_TXPOW_DBM;
6817                 range->num_txpower = IW_MAX_TXPOWER;
6818                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6819                      i < IW_MAX_TXPOWER;
6820                      i++, level -=
6821                      ((IPW_TX_POWER_MAX_DBM -
6822                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6823                         range->txpower[i] = level / 16;
6824         } else {
6825                 range->txpower_capa = 0;
6826                 range->num_txpower = 0;
6827         }
6828
6829         /* Set the Wireless Extension versions */
6830         range->we_version_compiled = WIRELESS_EXT;
6831         range->we_version_source = 18;
6832
6833 //      range->retry_capa;      /* What retry options are supported */
6834 //      range->retry_flags;     /* How to decode max/min retry limit */
6835 //      range->r_time_flags;    /* How to decode max/min retry life */
6836 //      range->min_retry;       /* Minimal number of retries */
6837 //      range->max_retry;       /* Maximal number of retries */
6838 //      range->min_r_time;      /* Minimal retry lifetime */
6839 //      range->max_r_time;      /* Maximal retry lifetime */
6840
6841         range->num_channels = FREQ_COUNT;
6842
6843         val = 0;
6844         for (i = 0; i < FREQ_COUNT; i++) {
6845                 // TODO: Include only legal frequencies for some countries
6846 //              if (local->channel_mask & (1 << i)) {
6847                 range->freq[val].i = i + 1;
6848                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6849                 range->freq[val].e = 1;
6850                 val++;
6851 //              }
6852                 if (val == IW_MAX_FREQUENCIES)
6853                         break;
6854         }
6855         range->num_frequency = val;
6856
6857         /* Event capability (kernel + driver) */
6858         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6859                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6860         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6861
6862         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6863                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6864
6865         IPW_DEBUG_WX("GET Range\n");
6866
6867         return 0;
6868 }
6869
6870 static int ipw2100_wx_set_wap(struct net_device *dev,
6871                               struct iw_request_info *info,
6872                               union iwreq_data *wrqu, char *extra)
6873 {
6874         struct ipw2100_priv *priv = ieee80211_priv(dev);
6875         int err = 0;
6876
6877         static const unsigned char any[] = {
6878                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6879         };
6880         static const unsigned char off[] = {
6881                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6882         };
6883
6884         // sanity checks
6885         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6886                 return -EINVAL;
6887
6888         down(&priv->action_sem);
6889         if (!(priv->status & STATUS_INITIALIZED)) {
6890                 err = -EIO;
6891                 goto done;
6892         }
6893
6894         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6895             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6896                 /* we disable mandatory BSSID association */
6897                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6898                 priv->config &= ~CFG_STATIC_BSSID;
6899                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6900                 goto done;
6901         }
6902
6903         priv->config |= CFG_STATIC_BSSID;
6904         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6905
6906         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6907
6908         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6909                      wrqu->ap_addr.sa_data[0] & 0xff,
6910                      wrqu->ap_addr.sa_data[1] & 0xff,
6911                      wrqu->ap_addr.sa_data[2] & 0xff,
6912                      wrqu->ap_addr.sa_data[3] & 0xff,
6913                      wrqu->ap_addr.sa_data[4] & 0xff,
6914                      wrqu->ap_addr.sa_data[5] & 0xff);
6915
6916       done:
6917         up(&priv->action_sem);
6918         return err;
6919 }
6920
6921 static int ipw2100_wx_get_wap(struct net_device *dev,
6922                               struct iw_request_info *info,
6923                               union iwreq_data *wrqu, char *extra)
6924 {
6925         /*
6926          * This can be called at any time.  No action lock required
6927          */
6928
6929         struct ipw2100_priv *priv = ieee80211_priv(dev);
6930
6931         /* If we are associated, trying to associate, or have a statically
6932          * configured BSSID then return that; otherwise return ANY */
6933         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6934                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6935                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6936         } else
6937                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6938
6939         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6940                      MAC_ARG(wrqu->ap_addr.sa_data));
6941         return 0;
6942 }
6943
6944 static int ipw2100_wx_set_essid(struct net_device *dev,
6945                                 struct iw_request_info *info,
6946                                 union iwreq_data *wrqu, char *extra)
6947 {
6948         struct ipw2100_priv *priv = ieee80211_priv(dev);
6949         char *essid = "";       /* ANY */
6950         int length = 0;
6951         int err = 0;
6952
6953         down(&priv->action_sem);
6954         if (!(priv->status & STATUS_INITIALIZED)) {
6955                 err = -EIO;
6956                 goto done;
6957         }
6958
6959         if (wrqu->essid.flags && wrqu->essid.length) {
6960                 length = wrqu->essid.length - 1;
6961                 essid = extra;
6962         }
6963
6964         if (length == 0) {
6965                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6966                 priv->config &= ~CFG_STATIC_ESSID;
6967                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6968                 goto done;
6969         }
6970
6971         length = min(length, IW_ESSID_MAX_SIZE);
6972
6973         priv->config |= CFG_STATIC_ESSID;
6974
6975         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6976                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6977                 err = 0;
6978                 goto done;
6979         }
6980
6981         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6982                      length);
6983
6984         priv->essid_len = length;
6985         memcpy(priv->essid, essid, priv->essid_len);
6986
6987         err = ipw2100_set_essid(priv, essid, length, 0);
6988
6989       done:
6990         up(&priv->action_sem);
6991         return err;
6992 }
6993
6994 static int ipw2100_wx_get_essid(struct net_device *dev,
6995                                 struct iw_request_info *info,
6996                                 union iwreq_data *wrqu, char *extra)
6997 {
6998         /*
6999          * This can be called at any time.  No action lock required
7000          */
7001
7002         struct ipw2100_priv *priv = ieee80211_priv(dev);
7003
7004         /* If we are associated, trying to associate, or have a statically
7005          * configured ESSID then return that; otherwise return ANY */
7006         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7007                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7008                              escape_essid(priv->essid, priv->essid_len));
7009                 memcpy(extra, priv->essid, priv->essid_len);
7010                 wrqu->essid.length = priv->essid_len;
7011                 wrqu->essid.flags = 1;  /* active */
7012         } else {
7013                 IPW_DEBUG_WX("Getting essid: ANY\n");
7014                 wrqu->essid.length = 0;
7015                 wrqu->essid.flags = 0;  /* active */
7016         }
7017
7018         return 0;
7019 }
7020
7021 static int ipw2100_wx_set_nick(struct net_device *dev,
7022                                struct iw_request_info *info,
7023                                union iwreq_data *wrqu, char *extra)
7024 {
7025         /*
7026          * This can be called at any time.  No action lock required
7027          */
7028
7029         struct ipw2100_priv *priv = ieee80211_priv(dev);
7030
7031         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7032                 return -E2BIG;
7033
7034         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7035         memset(priv->nick, 0, sizeof(priv->nick));
7036         memcpy(priv->nick, extra, wrqu->data.length);
7037
7038         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7039
7040         return 0;
7041 }
7042
7043 static int ipw2100_wx_get_nick(struct net_device *dev,
7044                                struct iw_request_info *info,
7045                                union iwreq_data *wrqu, char *extra)
7046 {
7047         /*
7048          * This can be called at any time.  No action lock required
7049          */
7050
7051         struct ipw2100_priv *priv = ieee80211_priv(dev);
7052
7053         wrqu->data.length = strlen(priv->nick) + 1;
7054         memcpy(extra, priv->nick, wrqu->data.length);
7055         wrqu->data.flags = 1;   /* active */
7056
7057         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7058
7059         return 0;
7060 }
7061
7062 static int ipw2100_wx_set_rate(struct net_device *dev,
7063                                struct iw_request_info *info,
7064                                union iwreq_data *wrqu, char *extra)
7065 {
7066         struct ipw2100_priv *priv = ieee80211_priv(dev);
7067         u32 target_rate = wrqu->bitrate.value;
7068         u32 rate;
7069         int err = 0;
7070
7071         down(&priv->action_sem);
7072         if (!(priv->status & STATUS_INITIALIZED)) {
7073                 err = -EIO;
7074                 goto done;
7075         }
7076
7077         rate = 0;
7078
7079         if (target_rate == 1000000 ||
7080             (!wrqu->bitrate.fixed && target_rate > 1000000))
7081                 rate |= TX_RATE_1_MBIT;
7082         if (target_rate == 2000000 ||
7083             (!wrqu->bitrate.fixed && target_rate > 2000000))
7084                 rate |= TX_RATE_2_MBIT;
7085         if (target_rate == 5500000 ||
7086             (!wrqu->bitrate.fixed && target_rate > 5500000))
7087                 rate |= TX_RATE_5_5_MBIT;
7088         if (target_rate == 11000000 ||
7089             (!wrqu->bitrate.fixed && target_rate > 11000000))
7090                 rate |= TX_RATE_11_MBIT;
7091         if (rate == 0)
7092                 rate = DEFAULT_TX_RATES;
7093
7094         err = ipw2100_set_tx_rates(priv, rate, 0);
7095
7096         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7097       done:
7098         up(&priv->action_sem);
7099         return err;
7100 }
7101
7102 static int ipw2100_wx_get_rate(struct net_device *dev,
7103                                struct iw_request_info *info,
7104                                union iwreq_data *wrqu, char *extra)
7105 {
7106         struct ipw2100_priv *priv = ieee80211_priv(dev);
7107         int val;
7108         int len = sizeof(val);
7109         int err = 0;
7110
7111         if (!(priv->status & STATUS_ENABLED) ||
7112             priv->status & STATUS_RF_KILL_MASK ||
7113             !(priv->status & STATUS_ASSOCIATED)) {
7114                 wrqu->bitrate.value = 0;
7115                 return 0;
7116         }
7117
7118         down(&priv->action_sem);
7119         if (!(priv->status & STATUS_INITIALIZED)) {
7120                 err = -EIO;
7121                 goto done;
7122         }
7123
7124         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7125         if (err) {
7126                 IPW_DEBUG_WX("failed querying ordinals.\n");
7127                 return err;
7128         }
7129
7130         switch (val & TX_RATE_MASK) {
7131         case TX_RATE_1_MBIT:
7132                 wrqu->bitrate.value = 1000000;
7133                 break;
7134         case TX_RATE_2_MBIT:
7135                 wrqu->bitrate.value = 2000000;
7136                 break;
7137         case TX_RATE_5_5_MBIT:
7138                 wrqu->bitrate.value = 5500000;
7139                 break;
7140         case TX_RATE_11_MBIT:
7141                 wrqu->bitrate.value = 11000000;
7142                 break;
7143         default:
7144                 wrqu->bitrate.value = 0;
7145         }
7146
7147         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7148
7149       done:
7150         up(&priv->action_sem);
7151         return err;
7152 }
7153
7154 static int ipw2100_wx_set_rts(struct net_device *dev,
7155                               struct iw_request_info *info,
7156                               union iwreq_data *wrqu, char *extra)
7157 {
7158         struct ipw2100_priv *priv = ieee80211_priv(dev);
7159         int value, err;
7160
7161         /* Auto RTS not yet supported */
7162         if (wrqu->rts.fixed == 0)
7163                 return -EINVAL;
7164
7165         down(&priv->action_sem);
7166         if (!(priv->status & STATUS_INITIALIZED)) {
7167                 err = -EIO;
7168                 goto done;
7169         }
7170
7171         if (wrqu->rts.disabled)
7172                 value = priv->rts_threshold | RTS_DISABLED;
7173         else {
7174                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7175                         err = -EINVAL;
7176                         goto done;
7177                 }
7178                 value = wrqu->rts.value;
7179         }
7180
7181         err = ipw2100_set_rts_threshold(priv, value);
7182
7183         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7184       done:
7185         up(&priv->action_sem);
7186         return err;
7187 }
7188
7189 static int ipw2100_wx_get_rts(struct net_device *dev,
7190                               struct iw_request_info *info,
7191                               union iwreq_data *wrqu, char *extra)
7192 {
7193         /*
7194          * This can be called at any time.  No action lock required
7195          */
7196
7197         struct ipw2100_priv *priv = ieee80211_priv(dev);
7198
7199         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7200         wrqu->rts.fixed = 1;    /* no auto select */
7201
7202         /* If RTS is set to the default value, then it is disabled */
7203         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7204
7205         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7206
7207         return 0;
7208 }
7209
7210 static int ipw2100_wx_set_txpow(struct net_device *dev,
7211                                 struct iw_request_info *info,
7212                                 union iwreq_data *wrqu, char *extra)
7213 {
7214         struct ipw2100_priv *priv = ieee80211_priv(dev);
7215         int err = 0, value;
7216         
7217         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7218                 return -EINPROGRESS;
7219
7220         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7221                 return 0;
7222
7223         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7224                 return -EINVAL;
7225
7226         if (wrqu->txpower.fixed == 0)
7227                 value = IPW_TX_POWER_DEFAULT;
7228         else {
7229                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7230                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7231                         return -EINVAL;
7232
7233                 value = wrqu->txpower.value;
7234         }
7235
7236         down(&priv->action_sem);
7237         if (!(priv->status & STATUS_INITIALIZED)) {
7238                 err = -EIO;
7239                 goto done;
7240         }
7241
7242         err = ipw2100_set_tx_power(priv, value);
7243
7244         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7245
7246       done:
7247         up(&priv->action_sem);
7248         return err;
7249 }
7250
7251 static int ipw2100_wx_get_txpow(struct net_device *dev,
7252                                 struct iw_request_info *info,
7253                                 union iwreq_data *wrqu, char *extra)
7254 {
7255         /*
7256          * This can be called at any time.  No action lock required
7257          */
7258
7259         struct ipw2100_priv *priv = ieee80211_priv(dev);
7260
7261         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7262
7263         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7264                 wrqu->txpower.fixed = 0;
7265                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7266         } else {
7267                 wrqu->txpower.fixed = 1;
7268                 wrqu->txpower.value = priv->tx_power;
7269         }
7270
7271         wrqu->txpower.flags = IW_TXPOW_DBM;
7272
7273         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7274
7275         return 0;
7276 }
7277
7278 static int ipw2100_wx_set_frag(struct net_device *dev,
7279                                struct iw_request_info *info,
7280                                union iwreq_data *wrqu, char *extra)
7281 {
7282         /*
7283          * This can be called at any time.  No action lock required
7284          */
7285
7286         struct ipw2100_priv *priv = ieee80211_priv(dev);
7287
7288         if (!wrqu->frag.fixed)
7289                 return -EINVAL;
7290
7291         if (wrqu->frag.disabled) {
7292                 priv->frag_threshold |= FRAG_DISABLED;
7293                 priv->ieee->fts = DEFAULT_FTS;
7294         } else {
7295                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7296                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7297                         return -EINVAL;
7298
7299                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7300                 priv->frag_threshold = priv->ieee->fts;
7301         }
7302
7303         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7304
7305         return 0;
7306 }
7307
7308 static int ipw2100_wx_get_frag(struct net_device *dev,
7309                                struct iw_request_info *info,
7310                                union iwreq_data *wrqu, char *extra)
7311 {
7312         /*
7313          * This can be called at any time.  No action lock required
7314          */
7315
7316         struct ipw2100_priv *priv = ieee80211_priv(dev);
7317         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7318         wrqu->frag.fixed = 0;   /* no auto select */
7319         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7320
7321         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7322
7323         return 0;
7324 }
7325
7326 static int ipw2100_wx_set_retry(struct net_device *dev,
7327                                 struct iw_request_info *info,
7328                                 union iwreq_data *wrqu, char *extra)
7329 {
7330         struct ipw2100_priv *priv = ieee80211_priv(dev);
7331         int err = 0;
7332
7333         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7334                 return -EINVAL;
7335
7336         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7337                 return 0;
7338
7339         down(&priv->action_sem);
7340         if (!(priv->status & STATUS_INITIALIZED)) {
7341                 err = -EIO;
7342                 goto done;
7343         }
7344
7345         if (wrqu->retry.flags & IW_RETRY_MIN) {
7346                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7347                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7348                              wrqu->retry.value);
7349                 goto done;
7350         }
7351
7352         if (wrqu->retry.flags & IW_RETRY_MAX) {
7353                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7354                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7355                              wrqu->retry.value);
7356                 goto done;
7357         }
7358
7359         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7360         if (!err)
7361                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7362
7363         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7364
7365       done:
7366         up(&priv->action_sem);
7367         return err;
7368 }
7369
7370 static int ipw2100_wx_get_retry(struct net_device *dev,
7371                                 struct iw_request_info *info,
7372                                 union iwreq_data *wrqu, char *extra)
7373 {
7374         /*
7375          * This can be called at any time.  No action lock required
7376          */
7377
7378         struct ipw2100_priv *priv = ieee80211_priv(dev);
7379
7380         wrqu->retry.disabled = 0;       /* can't be disabled */
7381
7382         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7383                 return -EINVAL;
7384
7385         if (wrqu->retry.flags & IW_RETRY_MAX) {
7386                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7387                 wrqu->retry.value = priv->long_retry_limit;
7388         } else {
7389                 wrqu->retry.flags =
7390                     (priv->short_retry_limit !=
7391                      priv->long_retry_limit) ?
7392                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7393
7394                 wrqu->retry.value = priv->short_retry_limit;
7395         }
7396
7397         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7398
7399         return 0;
7400 }
7401
7402 static int ipw2100_wx_set_scan(struct net_device *dev,
7403                                struct iw_request_info *info,
7404                                union iwreq_data *wrqu, char *extra)
7405 {
7406         struct ipw2100_priv *priv = ieee80211_priv(dev);
7407         int err = 0;
7408
7409         down(&priv->action_sem);
7410         if (!(priv->status & STATUS_INITIALIZED)) {
7411                 err = -EIO;
7412                 goto done;
7413         }
7414
7415         IPW_DEBUG_WX("Initiating scan...\n");
7416         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7417                 IPW_DEBUG_WX("Start scan failed.\n");
7418
7419                 /* TODO: Mark a scan as pending so when hardware initialized
7420                  *       a scan starts */
7421         }
7422
7423       done:
7424         up(&priv->action_sem);
7425         return err;
7426 }
7427
7428 static int ipw2100_wx_get_scan(struct net_device *dev,
7429                                struct iw_request_info *info,
7430                                union iwreq_data *wrqu, char *extra)
7431 {
7432         /*
7433          * This can be called at any time.  No action lock required
7434          */
7435
7436         struct ipw2100_priv *priv = ieee80211_priv(dev);
7437         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7438 }
7439
7440 /*
7441  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7442  */
7443 static int ipw2100_wx_set_encode(struct net_device *dev,
7444                                  struct iw_request_info *info,
7445                                  union iwreq_data *wrqu, char *key)
7446 {
7447         /*
7448          * No check of STATUS_INITIALIZED required
7449          */
7450
7451         struct ipw2100_priv *priv = ieee80211_priv(dev);
7452         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7453 }
7454
7455 static int ipw2100_wx_get_encode(struct net_device *dev,
7456                                  struct iw_request_info *info,
7457                                  union iwreq_data *wrqu, char *key)
7458 {
7459         /*
7460          * This can be called at any time.  No action lock required
7461          */
7462
7463         struct ipw2100_priv *priv = ieee80211_priv(dev);
7464         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7465 }
7466
7467 static int ipw2100_wx_set_power(struct net_device *dev,
7468                                 struct iw_request_info *info,
7469                                 union iwreq_data *wrqu, char *extra)
7470 {
7471         struct ipw2100_priv *priv = ieee80211_priv(dev);
7472         int err = 0;
7473
7474         down(&priv->action_sem);
7475         if (!(priv->status & STATUS_INITIALIZED)) {
7476                 err = -EIO;
7477                 goto done;
7478         }
7479
7480         if (wrqu->power.disabled) {
7481                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7482                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7483                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7484                 goto done;
7485         }
7486
7487         switch (wrqu->power.flags & IW_POWER_MODE) {
7488         case IW_POWER_ON:       /* If not specified */
7489         case IW_POWER_MODE:     /* If set all mask */
7490         case IW_POWER_ALL_R:    /* If explicitely state all */
7491                 break;
7492         default:                /* Otherwise we don't support it */
7493                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7494                              wrqu->power.flags);
7495                 err = -EOPNOTSUPP;
7496                 goto done;
7497         }
7498
7499         /* If the user hasn't specified a power management mode yet, default
7500          * to BATTERY */
7501         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7502         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7503
7504         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7505
7506       done:
7507         up(&priv->action_sem);
7508         return err;
7509
7510 }
7511
7512 static int ipw2100_wx_get_power(struct net_device *dev,
7513                                 struct iw_request_info *info,
7514                                 union iwreq_data *wrqu, char *extra)
7515 {
7516         /*
7517          * This can be called at any time.  No action lock required
7518          */
7519
7520         struct ipw2100_priv *priv = ieee80211_priv(dev);
7521
7522         if (!(priv->power_mode & IPW_POWER_ENABLED))
7523                 wrqu->power.disabled = 1;
7524         else {
7525                 wrqu->power.disabled = 0;
7526                 wrqu->power.flags = 0;
7527         }
7528
7529         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7530
7531         return 0;
7532 }
7533
7534 /*
7535  * WE-18 WPA support
7536  */
7537
7538 /* SIOCSIWGENIE */
7539 static int ipw2100_wx_set_genie(struct net_device *dev,
7540                                 struct iw_request_info *info,
7541                                 union iwreq_data *wrqu, char *extra)
7542 {
7543
7544         struct ipw2100_priv *priv = ieee80211_priv(dev);
7545         struct ieee80211_device *ieee = priv->ieee;
7546         u8 *buf;
7547
7548         if (!ieee->wpa_enabled)
7549                 return -EOPNOTSUPP;
7550
7551         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7552             (wrqu->data.length && extra == NULL))
7553                 return -EINVAL;
7554
7555         if (wrqu->data.length) {
7556                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7557                 if (buf == NULL)
7558                         return -ENOMEM;
7559
7560                 memcpy(buf, extra, wrqu->data.length);
7561                 kfree(ieee->wpa_ie);
7562                 ieee->wpa_ie = buf;
7563                 ieee->wpa_ie_len = wrqu->data.length;
7564         } else {
7565                 kfree(ieee->wpa_ie);
7566                 ieee->wpa_ie = NULL;
7567                 ieee->wpa_ie_len = 0;
7568         }
7569
7570         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7571
7572         return 0;
7573 }
7574
7575 /* SIOCGIWGENIE */
7576 static int ipw2100_wx_get_genie(struct net_device *dev,
7577                                 struct iw_request_info *info,
7578                                 union iwreq_data *wrqu, char *extra)
7579 {
7580         struct ipw2100_priv *priv = ieee80211_priv(dev);
7581         struct ieee80211_device *ieee = priv->ieee;
7582
7583         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7584                 wrqu->data.length = 0;
7585                 return 0;
7586         }
7587
7588         if (wrqu->data.length < ieee->wpa_ie_len)
7589                 return -E2BIG;
7590
7591         wrqu->data.length = ieee->wpa_ie_len;
7592         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7593
7594         return 0;
7595 }
7596
7597 /* SIOCSIWAUTH */
7598 static int ipw2100_wx_set_auth(struct net_device *dev,
7599                                struct iw_request_info *info,
7600                                union iwreq_data *wrqu, char *extra)
7601 {
7602         struct ipw2100_priv *priv = ieee80211_priv(dev);
7603         struct ieee80211_device *ieee = priv->ieee;
7604         struct iw_param *param = &wrqu->param;
7605         struct ieee80211_crypt_data *crypt;
7606         unsigned long flags;
7607         int ret = 0;
7608
7609         switch (param->flags & IW_AUTH_INDEX) {
7610         case IW_AUTH_WPA_VERSION:
7611         case IW_AUTH_CIPHER_PAIRWISE:
7612         case IW_AUTH_CIPHER_GROUP:
7613         case IW_AUTH_KEY_MGMT:
7614                 /*
7615                  * ipw2200 does not use these parameters
7616                  */
7617                 break;
7618
7619         case IW_AUTH_TKIP_COUNTERMEASURES:
7620                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7621                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7622                         break;
7623
7624                 flags = crypt->ops->get_flags(crypt->priv);
7625
7626                 if (param->value)
7627                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7628                 else
7629                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7630
7631                 crypt->ops->set_flags(flags, crypt->priv);
7632
7633                 break;
7634
7635         case IW_AUTH_DROP_UNENCRYPTED:{
7636                         /* HACK:
7637                          *
7638                          * wpa_supplicant calls set_wpa_enabled when the driver
7639                          * is loaded and unloaded, regardless of if WPA is being
7640                          * used.  No other calls are made which can be used to
7641                          * determine if encryption will be used or not prior to
7642                          * association being expected.  If encryption is not being
7643                          * used, drop_unencrypted is set to false, else true -- we
7644                          * can use this to determine if the CAP_PRIVACY_ON bit should
7645                          * be set.
7646                          */
7647                         struct ieee80211_security sec = {
7648                                 .flags = SEC_ENABLED,
7649                                 .enabled = param->value,
7650                         };
7651                         priv->ieee->drop_unencrypted = param->value;
7652                         /* We only change SEC_LEVEL for open mode. Others
7653                          * are set by ipw_wpa_set_encryption.
7654                          */
7655                         if (!param->value) {
7656                                 sec.flags |= SEC_LEVEL;
7657                                 sec.level = SEC_LEVEL_0;
7658                         } else {
7659                                 sec.flags |= SEC_LEVEL;
7660                                 sec.level = SEC_LEVEL_1;
7661                         }
7662                         if (priv->ieee->set_security)
7663                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7664                         break;
7665                 }
7666
7667         case IW_AUTH_80211_AUTH_ALG:
7668                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7669                 break;
7670
7671         case IW_AUTH_WPA_ENABLED:
7672                 ret = ipw2100_wpa_enable(priv, param->value);
7673                 break;
7674
7675         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7676                 ieee->ieee802_1x = param->value;
7677                 break;
7678
7679                 //case IW_AUTH_ROAMING_CONTROL:
7680         case IW_AUTH_PRIVACY_INVOKED:
7681                 ieee->privacy_invoked = param->value;
7682                 break;
7683
7684         default:
7685                 return -EOPNOTSUPP;
7686         }
7687         return ret;
7688 }
7689
7690 /* SIOCGIWAUTH */
7691 static int ipw2100_wx_get_auth(struct net_device *dev,
7692                                struct iw_request_info *info,
7693                                union iwreq_data *wrqu, char *extra)
7694 {
7695         struct ipw2100_priv *priv = ieee80211_priv(dev);
7696         struct ieee80211_device *ieee = priv->ieee;
7697         struct ieee80211_crypt_data *crypt;
7698         struct iw_param *param = &wrqu->param;
7699         int ret = 0;
7700
7701         switch (param->flags & IW_AUTH_INDEX) {
7702         case IW_AUTH_WPA_VERSION:
7703         case IW_AUTH_CIPHER_PAIRWISE:
7704         case IW_AUTH_CIPHER_GROUP:
7705         case IW_AUTH_KEY_MGMT:
7706                 /*
7707                  * wpa_supplicant will control these internally
7708                  */
7709                 ret = -EOPNOTSUPP;
7710                 break;
7711
7712         case IW_AUTH_TKIP_COUNTERMEASURES:
7713                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7714                 if (!crypt || !crypt->ops->get_flags) {
7715                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7716                                           "crypt not set!\n");
7717                         break;
7718                 }
7719
7720                 param->value = (crypt->ops->get_flags(crypt->priv) &
7721                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7722
7723                 break;
7724
7725         case IW_AUTH_DROP_UNENCRYPTED:
7726                 param->value = ieee->drop_unencrypted;
7727                 break;
7728
7729         case IW_AUTH_80211_AUTH_ALG:
7730                 param->value = priv->ieee->sec.auth_mode;
7731                 break;
7732
7733         case IW_AUTH_WPA_ENABLED:
7734                 param->value = ieee->wpa_enabled;
7735                 break;
7736
7737         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7738                 param->value = ieee->ieee802_1x;
7739                 break;
7740
7741         case IW_AUTH_ROAMING_CONTROL:
7742         case IW_AUTH_PRIVACY_INVOKED:
7743                 param->value = ieee->privacy_invoked;
7744                 break;
7745
7746         default:
7747                 return -EOPNOTSUPP;
7748         }
7749         return 0;
7750 }
7751
7752 /* SIOCSIWENCODEEXT */
7753 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7754                                     struct iw_request_info *info,
7755                                     union iwreq_data *wrqu, char *extra)
7756 {
7757         struct ipw2100_priv *priv = ieee80211_priv(dev);
7758         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7759 }
7760
7761 /* SIOCGIWENCODEEXT */
7762 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7763                                     struct iw_request_info *info,
7764                                     union iwreq_data *wrqu, char *extra)
7765 {
7766         struct ipw2100_priv *priv = ieee80211_priv(dev);
7767         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7768 }
7769
7770 /* SIOCSIWMLME */
7771 static int ipw2100_wx_set_mlme(struct net_device *dev,
7772                                struct iw_request_info *info,
7773                                union iwreq_data *wrqu, char *extra)
7774 {
7775         struct ipw2100_priv *priv = ieee80211_priv(dev);
7776         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7777         u16 reason;
7778
7779         reason = cpu_to_le16(mlme->reason_code);
7780
7781         switch (mlme->cmd) {
7782         case IW_MLME_DEAUTH:
7783                 // silently ignore
7784                 break;
7785
7786         case IW_MLME_DISASSOC:
7787                 ipw2100_disassociate_bssid(priv);
7788                 break;
7789
7790         default:
7791                 return -EOPNOTSUPP;
7792         }
7793         return 0;
7794 }
7795
7796 /*
7797  *
7798  * IWPRIV handlers
7799  *
7800  */
7801 #ifdef CONFIG_IPW2100_MONITOR
7802 static int ipw2100_wx_set_promisc(struct net_device *dev,
7803                                   struct iw_request_info *info,
7804                                   union iwreq_data *wrqu, char *extra)
7805 {
7806         struct ipw2100_priv *priv = ieee80211_priv(dev);
7807         int *parms = (int *)extra;
7808         int enable = (parms[0] > 0);
7809         int err = 0;
7810
7811         down(&priv->action_sem);
7812         if (!(priv->status & STATUS_INITIALIZED)) {
7813                 err = -EIO;
7814                 goto done;
7815         }
7816
7817         if (enable) {
7818                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7819                         err = ipw2100_set_channel(priv, parms[1], 0);
7820                         goto done;
7821                 }
7822                 priv->channel = parms[1];
7823                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7824         } else {
7825                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7826                         err = ipw2100_switch_mode(priv, priv->last_mode);
7827         }
7828       done:
7829         up(&priv->action_sem);
7830         return err;
7831 }
7832
7833 static int ipw2100_wx_reset(struct net_device *dev,
7834                             struct iw_request_info *info,
7835                             union iwreq_data *wrqu, char *extra)
7836 {
7837         struct ipw2100_priv *priv = ieee80211_priv(dev);
7838         if (priv->status & STATUS_INITIALIZED)
7839                 schedule_reset(priv);
7840         return 0;
7841 }
7842
7843 #endif
7844
7845 static int ipw2100_wx_set_powermode(struct net_device *dev,
7846                                     struct iw_request_info *info,
7847                                     union iwreq_data *wrqu, char *extra)
7848 {
7849         struct ipw2100_priv *priv = ieee80211_priv(dev);
7850         int err = 0, mode = *(int *)extra;
7851
7852         down(&priv->action_sem);
7853         if (!(priv->status & STATUS_INITIALIZED)) {
7854                 err = -EIO;
7855                 goto done;
7856         }
7857
7858         if ((mode < 1) || (mode > POWER_MODES))
7859                 mode = IPW_POWER_AUTO;
7860
7861         if (priv->power_mode != mode)
7862                 err = ipw2100_set_power_mode(priv, mode);
7863       done:
7864         up(&priv->action_sem);
7865         return err;
7866 }
7867
7868 #define MAX_POWER_STRING 80
7869 static int ipw2100_wx_get_powermode(struct net_device *dev,
7870                                     struct iw_request_info *info,
7871                                     union iwreq_data *wrqu, char *extra)
7872 {
7873         /*
7874          * This can be called at any time.  No action lock required
7875          */
7876
7877         struct ipw2100_priv *priv = ieee80211_priv(dev);
7878         int level = IPW_POWER_LEVEL(priv->power_mode);
7879         s32 timeout, period;
7880
7881         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7882                 snprintf(extra, MAX_POWER_STRING,
7883                          "Power save level: %d (Off)", level);
7884         } else {
7885                 switch (level) {
7886                 case IPW_POWER_MODE_CAM:
7887                         snprintf(extra, MAX_POWER_STRING,
7888                                  "Power save level: %d (None)", level);
7889                         break;
7890                 case IPW_POWER_AUTO:
7891                         snprintf(extra, MAX_POWER_STRING,
7892                                  "Power save level: %d (Auto)", 0);
7893                         break;
7894                 default:
7895                         timeout = timeout_duration[level - 1] / 1000;
7896                         period = period_duration[level - 1] / 1000;
7897                         snprintf(extra, MAX_POWER_STRING,
7898                                  "Power save level: %d "
7899                                  "(Timeout %dms, Period %dms)",
7900                                  level, timeout, period);
7901                 }
7902         }
7903
7904         wrqu->data.length = strlen(extra) + 1;
7905
7906         return 0;
7907 }
7908
7909 static int ipw2100_wx_set_preamble(struct net_device *dev,
7910                                    struct iw_request_info *info,
7911                                    union iwreq_data *wrqu, char *extra)
7912 {
7913         struct ipw2100_priv *priv = ieee80211_priv(dev);
7914         int err, mode = *(int *)extra;
7915
7916         down(&priv->action_sem);
7917         if (!(priv->status & STATUS_INITIALIZED)) {
7918                 err = -EIO;
7919                 goto done;
7920         }
7921
7922         if (mode == 1)
7923                 priv->config |= CFG_LONG_PREAMBLE;
7924         else if (mode == 0)
7925                 priv->config &= ~CFG_LONG_PREAMBLE;
7926         else {
7927                 err = -EINVAL;
7928                 goto done;
7929         }
7930
7931         err = ipw2100_system_config(priv, 0);
7932
7933       done:
7934         up(&priv->action_sem);
7935         return err;
7936 }
7937
7938 static int ipw2100_wx_get_preamble(struct net_device *dev,
7939                                    struct iw_request_info *info,
7940                                    union iwreq_data *wrqu, char *extra)
7941 {
7942         /*
7943          * This can be called at any time.  No action lock required
7944          */
7945
7946         struct ipw2100_priv *priv = ieee80211_priv(dev);
7947
7948         if (priv->config & CFG_LONG_PREAMBLE)
7949                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7950         else
7951                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7952
7953         return 0;
7954 }
7955
7956 #ifdef CONFIG_IPW2100_MONITOR
7957 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7958                                     struct iw_request_info *info,
7959                                     union iwreq_data *wrqu, char *extra)
7960 {
7961         struct ipw2100_priv *priv = ieee80211_priv(dev);
7962         int err, mode = *(int *)extra;
7963
7964         down(&priv->action_sem);
7965         if (!(priv->status & STATUS_INITIALIZED)) {
7966                 err = -EIO;
7967                 goto done;
7968         }
7969
7970         if (mode == 1)
7971                 priv->config |= CFG_CRC_CHECK;
7972         else if (mode == 0)
7973                 priv->config &= ~CFG_CRC_CHECK;
7974         else {
7975                 err = -EINVAL;
7976                 goto done;
7977         }
7978         err = 0;
7979
7980       done:
7981         up(&priv->action_sem);
7982         return err;
7983 }
7984
7985 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7986                                     struct iw_request_info *info,
7987                                     union iwreq_data *wrqu, char *extra)
7988 {
7989         /*
7990          * This can be called at any time.  No action lock required
7991          */
7992
7993         struct ipw2100_priv *priv = ieee80211_priv(dev);
7994
7995         if (priv->config & CFG_CRC_CHECK)
7996                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7997         else
7998                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7999
8000         return 0;
8001 }
8002 #endif                          /* CONFIG_IPW2100_MONITOR */
8003
8004 static iw_handler ipw2100_wx_handlers[] = {
8005         NULL,                   /* SIOCSIWCOMMIT */
8006         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8007         NULL,                   /* SIOCSIWNWID */
8008         NULL,                   /* SIOCGIWNWID */
8009         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8010         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8011         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8012         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8013         NULL,                   /* SIOCSIWSENS */
8014         NULL,                   /* SIOCGIWSENS */
8015         NULL,                   /* SIOCSIWRANGE */
8016         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8017         NULL,                   /* SIOCSIWPRIV */
8018         NULL,                   /* SIOCGIWPRIV */
8019         NULL,                   /* SIOCSIWSTATS */
8020         NULL,                   /* SIOCGIWSTATS */
8021         NULL,                   /* SIOCSIWSPY */
8022         NULL,                   /* SIOCGIWSPY */
8023         NULL,                   /* SIOCGIWTHRSPY */
8024         NULL,                   /* SIOCWIWTHRSPY */
8025         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8026         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8027         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8028         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8029         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8030         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8031         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8032         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8033         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8034         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8035         NULL,                   /* -- hole -- */
8036         NULL,                   /* -- hole -- */
8037         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8038         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8039         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8040         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8041         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8042         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8043         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8044         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8045         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8046         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8047         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8048         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8049         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8050         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8051         NULL,                   /* -- hole -- */
8052         NULL,                   /* -- hole -- */
8053         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8054         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8055         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8056         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8057         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8058         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8059         NULL,                   /* SIOCSIWPMKSA */
8060 };
8061
8062 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8063 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8064 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8065 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8066 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8067 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8068 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8069 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8070
8071 static const struct iw_priv_args ipw2100_private_args[] = {
8072
8073 #ifdef CONFIG_IPW2100_MONITOR
8074         {
8075          IPW2100_PRIV_SET_MONITOR,
8076          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8077         {
8078          IPW2100_PRIV_RESET,
8079          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8080 #endif                          /* CONFIG_IPW2100_MONITOR */
8081
8082         {
8083          IPW2100_PRIV_SET_POWER,
8084          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8085         {
8086          IPW2100_PRIV_GET_POWER,
8087          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8088          "get_power"},
8089         {
8090          IPW2100_PRIV_SET_LONGPREAMBLE,
8091          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8092         {
8093          IPW2100_PRIV_GET_LONGPREAMBLE,
8094          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8095 #ifdef CONFIG_IPW2100_MONITOR
8096         {
8097          IPW2100_PRIV_SET_CRC_CHECK,
8098          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8099         {
8100          IPW2100_PRIV_GET_CRC_CHECK,
8101          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8102 #endif                          /* CONFIG_IPW2100_MONITOR */
8103 };
8104
8105 static iw_handler ipw2100_private_handler[] = {
8106 #ifdef CONFIG_IPW2100_MONITOR
8107         ipw2100_wx_set_promisc,
8108         ipw2100_wx_reset,
8109 #else                           /* CONFIG_IPW2100_MONITOR */
8110         NULL,
8111         NULL,
8112 #endif                          /* CONFIG_IPW2100_MONITOR */
8113         ipw2100_wx_set_powermode,
8114         ipw2100_wx_get_powermode,
8115         ipw2100_wx_set_preamble,
8116         ipw2100_wx_get_preamble,
8117 #ifdef CONFIG_IPW2100_MONITOR
8118         ipw2100_wx_set_crc_check,
8119         ipw2100_wx_get_crc_check,
8120 #else                           /* CONFIG_IPW2100_MONITOR */
8121         NULL,
8122         NULL,
8123 #endif                          /* CONFIG_IPW2100_MONITOR */
8124 };
8125
8126 /*
8127  * Get wireless statistics.
8128  * Called by /proc/net/wireless
8129  * Also called by SIOCGIWSTATS
8130  */
8131 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8132 {
8133         enum {
8134                 POOR = 30,
8135                 FAIR = 60,
8136                 GOOD = 80,
8137                 VERY_GOOD = 90,
8138                 EXCELLENT = 95,
8139                 PERFECT = 100
8140         };
8141         int rssi_qual;
8142         int tx_qual;
8143         int beacon_qual;
8144
8145         struct ipw2100_priv *priv = ieee80211_priv(dev);
8146         struct iw_statistics *wstats;
8147         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8148         u32 ord_len = sizeof(u32);
8149
8150         if (!priv)
8151                 return (struct iw_statistics *)NULL;
8152
8153         wstats = &priv->wstats;
8154
8155         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8156          * ipw2100_wx_wireless_stats seems to be called before fw is
8157          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8158          * and associated; if not associcated, the values are all meaningless
8159          * anyway, so set them all to NULL and INVALID */
8160         if (!(priv->status & STATUS_ASSOCIATED)) {
8161                 wstats->miss.beacon = 0;
8162                 wstats->discard.retries = 0;
8163                 wstats->qual.qual = 0;
8164                 wstats->qual.level = 0;
8165                 wstats->qual.noise = 0;
8166                 wstats->qual.updated = 7;
8167                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8168                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8169                 return wstats;
8170         }
8171
8172         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8173                                 &missed_beacons, &ord_len))
8174                 goto fail_get_ordinal;
8175
8176         /* If we don't have a connection the quality and level is 0 */
8177         if (!(priv->status & STATUS_ASSOCIATED)) {
8178                 wstats->qual.qual = 0;
8179                 wstats->qual.level = 0;
8180         } else {
8181                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8182                                         &rssi, &ord_len))
8183                         goto fail_get_ordinal;
8184                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8185                 if (rssi < 10)
8186                         rssi_qual = rssi * POOR / 10;
8187                 else if (rssi < 15)
8188                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8189                 else if (rssi < 20)
8190                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8191                 else if (rssi < 30)
8192                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8193                             10 + GOOD;
8194                 else
8195                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8196                             10 + VERY_GOOD;
8197
8198                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8199                                         &tx_retries, &ord_len))
8200                         goto fail_get_ordinal;
8201
8202                 if (tx_retries > 75)
8203                         tx_qual = (90 - tx_retries) * POOR / 15;
8204                 else if (tx_retries > 70)
8205                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8206                 else if (tx_retries > 65)
8207                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8208                 else if (tx_retries > 50)
8209                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8210                             15 + GOOD;
8211                 else
8212                         tx_qual = (50 - tx_retries) *
8213                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8214
8215                 if (missed_beacons > 50)
8216                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8217                 else if (missed_beacons > 40)
8218                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8219                             10 + POOR;
8220                 else if (missed_beacons > 32)
8221                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8222                             18 + FAIR;
8223                 else if (missed_beacons > 20)
8224                         beacon_qual = (32 - missed_beacons) *
8225                             (VERY_GOOD - GOOD) / 20 + GOOD;
8226                 else
8227                         beacon_qual = (20 - missed_beacons) *
8228                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8229
8230                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8231
8232 #ifdef CONFIG_IPW2100_DEBUG
8233                 if (beacon_qual == quality)
8234                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8235                 else if (tx_qual == quality)
8236                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8237                 else if (quality != 100)
8238                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8239                 else
8240                         IPW_DEBUG_WX("Quality not clamped.\n");
8241 #endif
8242
8243                 wstats->qual.qual = quality;
8244                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8245         }
8246
8247         wstats->qual.noise = 0;
8248         wstats->qual.updated = 7;
8249         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8250
8251         /* FIXME: this is percent and not a # */
8252         wstats->miss.beacon = missed_beacons;
8253
8254         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8255                                 &tx_failures, &ord_len))
8256                 goto fail_get_ordinal;
8257         wstats->discard.retries = tx_failures;
8258
8259         return wstats;
8260
8261       fail_get_ordinal:
8262         IPW_DEBUG_WX("failed querying ordinals.\n");
8263
8264         return (struct iw_statistics *)NULL;
8265 }
8266
8267 static struct iw_handler_def ipw2100_wx_handler_def = {
8268         .standard = ipw2100_wx_handlers,
8269         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8270         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8271         .num_private_args = sizeof(ipw2100_private_args) /
8272             sizeof(struct iw_priv_args),
8273         .private = (iw_handler *) ipw2100_private_handler,
8274         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8275         .get_wireless_stats = ipw2100_wx_wireless_stats,
8276 };
8277
8278 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8279 {
8280         union iwreq_data wrqu;
8281         int len = ETH_ALEN;
8282
8283         if (priv->status & STATUS_STOPPING)
8284                 return;
8285
8286         down(&priv->action_sem);
8287
8288         IPW_DEBUG_WX("enter\n");
8289
8290         up(&priv->action_sem);
8291
8292         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8293
8294         /* Fetch BSSID from the hardware */
8295         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8296             priv->status & STATUS_RF_KILL_MASK ||
8297             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8298                                 &priv->bssid, &len)) {
8299                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8300         } else {
8301                 /* We now have the BSSID, so can finish setting to the full
8302                  * associated state */
8303                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8304                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8305                 priv->status &= ~STATUS_ASSOCIATING;
8306                 priv->status |= STATUS_ASSOCIATED;
8307                 netif_carrier_on(priv->net_dev);
8308                 netif_wake_queue(priv->net_dev);
8309         }
8310
8311         if (!(priv->status & STATUS_ASSOCIATED)) {
8312                 IPW_DEBUG_WX("Configuring ESSID\n");
8313                 down(&priv->action_sem);
8314                 /* This is a disassociation event, so kick the firmware to
8315                  * look for another AP */
8316                 if (priv->config & CFG_STATIC_ESSID)
8317                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8318                                           0);
8319                 else
8320                         ipw2100_set_essid(priv, NULL, 0, 0);
8321                 up(&priv->action_sem);
8322         }
8323
8324         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8325 }
8326
8327 #define IPW2100_FW_MAJOR_VERSION 1
8328 #define IPW2100_FW_MINOR_VERSION 3
8329
8330 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8331 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8332
8333 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8334                              IPW2100_FW_MAJOR_VERSION)
8335
8336 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8337 "." __stringify(IPW2100_FW_MINOR_VERSION)
8338
8339 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8340
8341 /*
8342
8343 BINARY FIRMWARE HEADER FORMAT
8344
8345 offset      length   desc
8346 0           2        version
8347 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8348 4           4        fw_len
8349 8           4        uc_len
8350 C           fw_len   firmware data
8351 12 + fw_len uc_len   microcode data
8352
8353 */
8354
8355 struct ipw2100_fw_header {
8356         short version;
8357         short mode;
8358         unsigned int fw_size;
8359         unsigned int uc_size;
8360 } __attribute__ ((packed));
8361
8362 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8363 {
8364         struct ipw2100_fw_header *h =
8365             (struct ipw2100_fw_header *)fw->fw_entry->data;
8366
8367         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8368                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8369                        "(detected version id of %u). "
8370                        "See Documentation/networking/README.ipw2100\n",
8371                        h->version);
8372                 return 1;
8373         }
8374
8375         fw->version = h->version;
8376         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8377         fw->fw.size = h->fw_size;
8378         fw->uc.data = fw->fw.data + h->fw_size;
8379         fw->uc.size = h->uc_size;
8380
8381         return 0;
8382 }
8383
8384 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8385                                 struct ipw2100_fw *fw)
8386 {
8387         char *fw_name;
8388         int rc;
8389
8390         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8391                        priv->net_dev->name);
8392
8393         switch (priv->ieee->iw_mode) {
8394         case IW_MODE_ADHOC:
8395                 fw_name = IPW2100_FW_NAME("-i");
8396                 break;
8397 #ifdef CONFIG_IPW2100_MONITOR
8398         case IW_MODE_MONITOR:
8399                 fw_name = IPW2100_FW_NAME("-p");
8400                 break;
8401 #endif
8402         case IW_MODE_INFRA:
8403         default:
8404                 fw_name = IPW2100_FW_NAME("");
8405                 break;
8406         }
8407
8408         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8409
8410         if (rc < 0) {
8411                 printk(KERN_ERR DRV_NAME ": "
8412                        "%s: Firmware '%s' not available or load failed.\n",
8413                        priv->net_dev->name, fw_name);
8414                 return rc;
8415         }
8416         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8417                        fw->fw_entry->size);
8418
8419         ipw2100_mod_firmware_load(fw);
8420
8421         return 0;
8422 }
8423
8424 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8425                                      struct ipw2100_fw *fw)
8426 {
8427         fw->version = 0;
8428         if (fw->fw_entry)
8429                 release_firmware(fw->fw_entry);
8430         fw->fw_entry = NULL;
8431 }
8432
8433 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8434                                  size_t max)
8435 {
8436         char ver[MAX_FW_VERSION_LEN];
8437         u32 len = MAX_FW_VERSION_LEN;
8438         u32 tmp;
8439         int i;
8440         /* firmware version is an ascii string (max len of 14) */
8441         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8442                 return -EIO;
8443         tmp = max;
8444         if (len >= max)
8445                 len = max - 1;
8446         for (i = 0; i < len; i++)
8447                 buf[i] = ver[i];
8448         buf[i] = '\0';
8449         return tmp;
8450 }
8451
8452 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8453                                     size_t max)
8454 {
8455         u32 ver;
8456         u32 len = sizeof(ver);
8457         /* microcode version is a 32 bit integer */
8458         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8459                 return -EIO;
8460         return snprintf(buf, max, "%08X", ver);
8461 }
8462
8463 /*
8464  * On exit, the firmware will have been freed from the fw list
8465  */
8466 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8467 {
8468         /* firmware is constructed of N contiguous entries, each entry is
8469          * structured as:
8470          *
8471          * offset    sie         desc
8472          * 0         4           address to write to
8473          * 4         2           length of data run
8474          * 6         length      data
8475          */
8476         unsigned int addr;
8477         unsigned short len;
8478
8479         const unsigned char *firmware_data = fw->fw.data;
8480         unsigned int firmware_data_left = fw->fw.size;
8481
8482         while (firmware_data_left > 0) {
8483                 addr = *(u32 *) (firmware_data);
8484                 firmware_data += 4;
8485                 firmware_data_left -= 4;
8486
8487                 len = *(u16 *) (firmware_data);
8488                 firmware_data += 2;
8489                 firmware_data_left -= 2;
8490
8491                 if (len > 32) {
8492                         printk(KERN_ERR DRV_NAME ": "
8493                                "Invalid firmware run-length of %d bytes\n",
8494                                len);
8495                         return -EINVAL;
8496                 }
8497
8498                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8499                 firmware_data += len;
8500                 firmware_data_left -= len;
8501         }
8502
8503         return 0;
8504 }
8505
8506 struct symbol_alive_response {
8507         u8 cmd_id;
8508         u8 seq_num;
8509         u8 ucode_rev;
8510         u8 eeprom_valid;
8511         u16 valid_flags;
8512         u8 IEEE_addr[6];
8513         u16 flags;
8514         u16 pcb_rev;
8515         u16 clock_settle_time;  // 1us LSB
8516         u16 powerup_settle_time;        // 1us LSB
8517         u16 hop_settle_time;    // 1us LSB
8518         u8 date[3];             // month, day, year
8519         u8 time[2];             // hours, minutes
8520         u8 ucode_valid;
8521 };
8522
8523 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8524                                   struct ipw2100_fw *fw)
8525 {
8526         struct net_device *dev = priv->net_dev;
8527         const unsigned char *microcode_data = fw->uc.data;
8528         unsigned int microcode_data_left = fw->uc.size;
8529         void __iomem *reg = (void __iomem *)dev->base_addr;
8530
8531         struct symbol_alive_response response;
8532         int i, j;
8533         u8 data;
8534
8535         /* Symbol control */
8536         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8537         readl(reg);
8538         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8539         readl(reg);
8540
8541         /* HW config */
8542         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8543         readl(reg);
8544         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8545         readl(reg);
8546
8547         /* EN_CS_ACCESS bit to reset control store pointer */
8548         write_nic_byte(dev, 0x210000, 0x40);
8549         readl(reg);
8550         write_nic_byte(dev, 0x210000, 0x0);
8551         readl(reg);
8552         write_nic_byte(dev, 0x210000, 0x40);
8553         readl(reg);
8554
8555         /* copy microcode from buffer into Symbol */
8556
8557         while (microcode_data_left > 0) {
8558                 write_nic_byte(dev, 0x210010, *microcode_data++);
8559                 write_nic_byte(dev, 0x210010, *microcode_data++);
8560                 microcode_data_left -= 2;
8561         }
8562
8563         /* EN_CS_ACCESS bit to reset the control store pointer */
8564         write_nic_byte(dev, 0x210000, 0x0);
8565         readl(reg);
8566
8567         /* Enable System (Reg 0)
8568          * first enable causes garbage in RX FIFO */
8569         write_nic_byte(dev, 0x210000, 0x0);
8570         readl(reg);
8571         write_nic_byte(dev, 0x210000, 0x80);
8572         readl(reg);
8573
8574         /* Reset External Baseband Reg */
8575         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8576         readl(reg);
8577         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8578         readl(reg);
8579
8580         /* HW Config (Reg 5) */
8581         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8582         readl(reg);
8583         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8584         readl(reg);
8585
8586         /* Enable System (Reg 0)
8587          * second enable should be OK */
8588         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8589         readl(reg);
8590         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8591
8592         /* check Symbol is enabled - upped this from 5 as it wasn't always
8593          * catching the update */
8594         for (i = 0; i < 10; i++) {
8595                 udelay(10);
8596
8597                 /* check Dino is enabled bit */
8598                 read_nic_byte(dev, 0x210000, &data);
8599                 if (data & 0x1)
8600                         break;
8601         }
8602
8603         if (i == 10) {
8604                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8605                        dev->name);
8606                 return -EIO;
8607         }
8608
8609         /* Get Symbol alive response */
8610         for (i = 0; i < 30; i++) {
8611                 /* Read alive response structure */
8612                 for (j = 0;
8613                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8614                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8615
8616                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8617                         break;
8618                 udelay(10);
8619         }
8620
8621         if (i == 30) {
8622                 printk(KERN_ERR DRV_NAME
8623                        ": %s: No response from Symbol - hw not alive\n",
8624                        dev->name);
8625                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8626                 return -EIO;
8627         }
8628
8629         return 0;
8630 }