]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ipw2200.c
[PATCH] drivers/net/wireless/ipw2200.c: make ipw_qos_current_mode() static
[karo-tx-linux.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36 #define IPW2200_VERSION "git-1.0.10"
37 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
39 #define DRV_VERSION     IPW2200_VERSION
40
41 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
42
43 MODULE_DESCRIPTION(DRV_DESCRIPTION);
44 MODULE_VERSION(DRV_VERSION);
45 MODULE_AUTHOR(DRV_COPYRIGHT);
46 MODULE_LICENSE("GPL");
47
48 static int cmdlog = 0;
49 static int debug = 0;
50 static int channel = 0;
51 static int mode = 0;
52
53 static u32 ipw_debug_level;
54 static int associate = 1;
55 static int auto_create = 1;
56 static int led = 0;
57 static int disable = 0;
58 static int bt_coexist = 0;
59 static int hwcrypto = 0;
60 static int roaming = 1;
61 static const char ipw_modes[] = {
62         'a', 'b', 'g', '?'
63 };
64
65 #ifdef CONFIG_IPW_QOS
66 static int qos_enable = 0;
67 static int qos_burst_enable = 0;
68 static int qos_no_ack_mask = 0;
69 static int burst_duration_CCK = 0;
70 static int burst_duration_OFDM = 0;
71
72 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
73         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
74          QOS_TX3_CW_MIN_OFDM},
75         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
76          QOS_TX3_CW_MAX_OFDM},
77         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
78         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
79         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
80          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
81 };
82
83 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
84         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
85          QOS_TX3_CW_MIN_CCK},
86         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
87          QOS_TX3_CW_MAX_CCK},
88         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
89         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
90         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
91          QOS_TX3_TXOP_LIMIT_CCK}
92 };
93
94 static struct ieee80211_qos_parameters def_parameters_OFDM = {
95         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
96          DEF_TX3_CW_MIN_OFDM},
97         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
98          DEF_TX3_CW_MAX_OFDM},
99         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
100         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
101         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
102          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
103 };
104
105 static struct ieee80211_qos_parameters def_parameters_CCK = {
106         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
107          DEF_TX3_CW_MIN_CCK},
108         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
109          DEF_TX3_CW_MAX_CCK},
110         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
111         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
112         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
113          DEF_TX3_TXOP_LIMIT_CCK}
114 };
115
116 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
117
118 static int from_priority_to_tx_queue[] = {
119         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
120         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
121 };
122
123 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
124
125 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
126                                        *qos_param);
127 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
128                                      *qos_param);
129 #endif                          /* CONFIG_IPW_QOS */
130
131 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
132 static void ipw_remove_current_network(struct ipw_priv *priv);
133 static void ipw_rx(struct ipw_priv *priv);
134 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
135                                 struct clx2_tx_queue *txq, int qindex);
136 static int ipw_queue_reset(struct ipw_priv *priv);
137
138 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
139                              int len, int sync);
140
141 static void ipw_tx_queue_free(struct ipw_priv *);
142
143 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
144 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
145 static void ipw_rx_queue_replenish(void *);
146 static int ipw_up(struct ipw_priv *);
147 static void ipw_bg_up(void *);
148 static void ipw_down(struct ipw_priv *);
149 static void ipw_bg_down(void *);
150 static int ipw_config(struct ipw_priv *);
151 static int init_supported_rates(struct ipw_priv *priv,
152                                 struct ipw_supported_rates *prates);
153 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
154 static void ipw_send_wep_keys(struct ipw_priv *, int);
155
156 static int snprint_line(char *buf, size_t count,
157                         const u8 * data, u32 len, u32 ofs)
158 {
159         int out, i, j, l;
160         char c;
161
162         out = snprintf(buf, count, "%08X", ofs);
163
164         for (l = 0, i = 0; i < 2; i++) {
165                 out += snprintf(buf + out, count - out, " ");
166                 for (j = 0; j < 8 && l < len; j++, l++)
167                         out += snprintf(buf + out, count - out, "%02X ",
168                                         data[(i * 8 + j)]);
169                 for (; j < 8; j++)
170                         out += snprintf(buf + out, count - out, "   ");
171         }
172
173         out += snprintf(buf + out, count - out, " ");
174         for (l = 0, i = 0; i < 2; i++) {
175                 out += snprintf(buf + out, count - out, " ");
176                 for (j = 0; j < 8 && l < len; j++, l++) {
177                         c = data[(i * 8 + j)];
178                         if (!isascii(c) || !isprint(c))
179                                 c = '.';
180
181                         out += snprintf(buf + out, count - out, "%c", c);
182                 }
183
184                 for (; j < 8; j++)
185                         out += snprintf(buf + out, count - out, " ");
186         }
187
188         return out;
189 }
190
191 static void printk_buf(int level, const u8 * data, u32 len)
192 {
193         char line[81];
194         u32 ofs = 0;
195         if (!(ipw_debug_level & level))
196                 return;
197
198         while (len) {
199                 snprint_line(line, sizeof(line), &data[ofs],
200                              min(len, 16U), ofs);
201                 printk(KERN_DEBUG "%s\n", line);
202                 ofs += 16;
203                 len -= min(len, 16U);
204         }
205 }
206
207 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
208 {
209         size_t out = size;
210         u32 ofs = 0;
211         int total = 0;
212
213         while (size && len) {
214                 out = snprint_line(output, size, &data[ofs],
215                                    min_t(size_t, len, 16U), ofs);
216
217                 ofs += 16;
218                 output += out;
219                 size -= out;
220                 len -= min_t(size_t, len, 16U);
221                 total += out;
222         }
223         return total;
224 }
225
226 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
227 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
228 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
229
230 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
231 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
232 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
233
234 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
235 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
236 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
237 {
238         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
239                      __LINE__, (u32) (b), (u32) (c));
240         _ipw_write_reg8(a, b, c);
241 }
242
243 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
244 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
245 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
246 {
247         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
248                      __LINE__, (u32) (b), (u32) (c));
249         _ipw_write_reg16(a, b, c);
250 }
251
252 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
253 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
254 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
255 {
256         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
257                      __LINE__, (u32) (b), (u32) (c));
258         _ipw_write_reg32(a, b, c);
259 }
260
261 /* 8-bit direct write (low 4K) */
262 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
263
264 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
265 #define ipw_write8(ipw, ofs, val) \
266  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
267  _ipw_write8(ipw, ofs, val)
268
269 /* 16-bit direct write (low 4K) */
270 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
271
272 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
273 #define ipw_write16(ipw, ofs, val) \
274  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
275  _ipw_write16(ipw, ofs, val)
276
277 /* 32-bit direct write (low 4K) */
278 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
279
280 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
281 #define ipw_write32(ipw, ofs, val) \
282  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
283  _ipw_write32(ipw, ofs, val)
284
285 /* 8-bit direct read (low 4K) */
286 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
287
288 /* 8-bit direct read (low 4K), with debug wrapper */
289 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
290 {
291         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
292         return _ipw_read8(ipw, ofs);
293 }
294
295 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
296 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
297
298 /* 16-bit direct read (low 4K) */
299 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
300
301 /* 16-bit direct read (low 4K), with debug wrapper */
302 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
303 {
304         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
305         return _ipw_read16(ipw, ofs);
306 }
307
308 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
309 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
310
311 /* 32-bit direct read (low 4K) */
312 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
313
314 /* 32-bit direct read (low 4K), with debug wrapper */
315 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
316 {
317         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
318         return _ipw_read32(ipw, ofs);
319 }
320
321 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
322 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
323
324 /* multi-byte read (above 4K), with debug wrapper */
325 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
326 static inline void __ipw_read_indirect(const char *f, int l,
327                                        struct ipw_priv *a, u32 b, u8 * c, int d)
328 {
329         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
330                      d);
331         _ipw_read_indirect(a, b, c, d);
332 }
333
334 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
335 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
336
337 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
338 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
339                                 int num);
340 #define ipw_write_indirect(a, b, c, d) \
341         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
342         _ipw_write_indirect(a, b, c, d)
343
344 /* 32-bit indirect write (above 4K) */
345 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
346 {
347         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
348         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
349         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
350 }
351
352 /* 8-bit indirect write (above 4K) */
353 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
354 {
355         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
356         u32 dif_len = reg - aligned_addr;
357
358         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
359         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
360         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
361 }
362
363 /* 16-bit indirect write (above 4K) */
364 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
365 {
366         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
367         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
368
369         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
370         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
371         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
372 }
373
374 /* 8-bit indirect read (above 4K) */
375 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
376 {
377         u32 word;
378         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
379         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
380         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
381         return (word >> ((reg & 0x3) * 8)) & 0xff;
382 }
383
384 /* 32-bit indirect read (above 4K) */
385 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
386 {
387         u32 value;
388
389         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
390
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
393         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
394         return value;
395 }
396
397 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
398 /*    for area above 1st 4K of SRAM/reg space */
399 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
400                                int num)
401 {
402         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
403         u32 dif_len = addr - aligned_addr;
404         u32 i;
405
406         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
407
408         if (num <= 0) {
409                 return;
410         }
411
412         /* Read the first dword (or portion) byte by byte */
413         if (unlikely(dif_len)) {
414                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
415                 /* Start reading at aligned_addr + dif_len */
416                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
417                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
418                 aligned_addr += 4;
419         }
420
421         /* Read all of the middle dwords as dwords, with auto-increment */
422         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
423         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
424                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
425
426         /* Read the last dword (or portion) byte by byte */
427         if (unlikely(num)) {
428                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
429                 for (i = 0; num > 0; i++, num--)
430                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
431         }
432 }
433
434 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
435 /*    for area above 1st 4K of SRAM/reg space */
436 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
437                                 int num)
438 {
439         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
440         u32 dif_len = addr - aligned_addr;
441         u32 i;
442
443         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
444
445         if (num <= 0) {
446                 return;
447         }
448
449         /* Write the first dword (or portion) byte by byte */
450         if (unlikely(dif_len)) {
451                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
452                 /* Start writing at aligned_addr + dif_len */
453                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
454                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
455                 aligned_addr += 4;
456         }
457
458         /* Write all of the middle dwords as dwords, with auto-increment */
459         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
460         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
461                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
462
463         /* Write the last dword (or portion) byte by byte */
464         if (unlikely(num)) {
465                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
466                 for (i = 0; num > 0; i++, num--, buf++)
467                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
468         }
469 }
470
471 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
472 /*    for 1st 4K of SRAM/regs space */
473 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
474                              int num)
475 {
476         memcpy_toio((priv->hw_base + addr), buf, num);
477 }
478
479 /* Set bit(s) in low 4K of SRAM/regs */
480 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
481 {
482         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
483 }
484
485 /* Clear bit(s) in low 4K of SRAM/regs */
486 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
487 {
488         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
489 }
490
491 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
492 {
493         if (priv->status & STATUS_INT_ENABLED)
494                 return;
495         priv->status |= STATUS_INT_ENABLED;
496         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
497 }
498
499 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
500 {
501         if (!(priv->status & STATUS_INT_ENABLED))
502                 return;
503         priv->status &= ~STATUS_INT_ENABLED;
504         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
505 }
506
507 #ifdef CONFIG_IPW2200_DEBUG
508 static char *ipw_error_desc(u32 val)
509 {
510         switch (val) {
511         case IPW_FW_ERROR_OK:
512                 return "ERROR_OK";
513         case IPW_FW_ERROR_FAIL:
514                 return "ERROR_FAIL";
515         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
516                 return "MEMORY_UNDERFLOW";
517         case IPW_FW_ERROR_MEMORY_OVERFLOW:
518                 return "MEMORY_OVERFLOW";
519         case IPW_FW_ERROR_BAD_PARAM:
520                 return "BAD_PARAM";
521         case IPW_FW_ERROR_BAD_CHECKSUM:
522                 return "BAD_CHECKSUM";
523         case IPW_FW_ERROR_NMI_INTERRUPT:
524                 return "NMI_INTERRUPT";
525         case IPW_FW_ERROR_BAD_DATABASE:
526                 return "BAD_DATABASE";
527         case IPW_FW_ERROR_ALLOC_FAIL:
528                 return "ALLOC_FAIL";
529         case IPW_FW_ERROR_DMA_UNDERRUN:
530                 return "DMA_UNDERRUN";
531         case IPW_FW_ERROR_DMA_STATUS:
532                 return "DMA_STATUS";
533         case IPW_FW_ERROR_DINO_ERROR:
534                 return "DINO_ERROR";
535         case IPW_FW_ERROR_EEPROM_ERROR:
536                 return "EEPROM_ERROR";
537         case IPW_FW_ERROR_SYSASSERT:
538                 return "SYSASSERT";
539         case IPW_FW_ERROR_FATAL_ERROR:
540                 return "FATAL_ERROR";
541         default:
542                 return "UNKNOWN_ERROR";
543         }
544 }
545
546 static void ipw_dump_error_log(struct ipw_priv *priv,
547                                struct ipw_fw_error *error)
548 {
549         u32 i;
550
551         if (!error) {
552                 IPW_ERROR("Error allocating and capturing error log.  "
553                           "Nothing to dump.\n");
554                 return;
555         }
556
557         IPW_ERROR("Start IPW Error Log Dump:\n");
558         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
559                   error->status, error->config);
560
561         for (i = 0; i < error->elem_len; i++)
562                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
563                           ipw_error_desc(error->elem[i].desc),
564                           error->elem[i].time,
565                           error->elem[i].blink1,
566                           error->elem[i].blink2,
567                           error->elem[i].link1,
568                           error->elem[i].link2, error->elem[i].data);
569         for (i = 0; i < error->log_len; i++)
570                 IPW_ERROR("%i\t0x%08x\t%i\n",
571                           error->log[i].time,
572                           error->log[i].data, error->log[i].event);
573 }
574 #endif
575
576 static inline int ipw_is_init(struct ipw_priv *priv)
577 {
578         return (priv->status & STATUS_INIT) ? 1 : 0;
579 }
580
581 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
582 {
583         u32 addr, field_info, field_len, field_count, total_len;
584
585         IPW_DEBUG_ORD("ordinal = %i\n", ord);
586
587         if (!priv || !val || !len) {
588                 IPW_DEBUG_ORD("Invalid argument\n");
589                 return -EINVAL;
590         }
591
592         /* verify device ordinal tables have been initialized */
593         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
594                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
595                 return -EINVAL;
596         }
597
598         switch (IPW_ORD_TABLE_ID_MASK & ord) {
599         case IPW_ORD_TABLE_0_MASK:
600                 /*
601                  * TABLE 0: Direct access to a table of 32 bit values
602                  *
603                  * This is a very simple table with the data directly
604                  * read from the table
605                  */
606
607                 /* remove the table id from the ordinal */
608                 ord &= IPW_ORD_TABLE_VALUE_MASK;
609
610                 /* boundary check */
611                 if (ord > priv->table0_len) {
612                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
613                                       "max (%i)\n", ord, priv->table0_len);
614                         return -EINVAL;
615                 }
616
617                 /* verify we have enough room to store the value */
618                 if (*len < sizeof(u32)) {
619                         IPW_DEBUG_ORD("ordinal buffer length too small, "
620                                       "need %zd\n", sizeof(u32));
621                         return -EINVAL;
622                 }
623
624                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
625                               ord, priv->table0_addr + (ord << 2));
626
627                 *len = sizeof(u32);
628                 ord <<= 2;
629                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
630                 break;
631
632         case IPW_ORD_TABLE_1_MASK:
633                 /*
634                  * TABLE 1: Indirect access to a table of 32 bit values
635                  *
636                  * This is a fairly large table of u32 values each
637                  * representing starting addr for the data (which is
638                  * also a u32)
639                  */
640
641                 /* remove the table id from the ordinal */
642                 ord &= IPW_ORD_TABLE_VALUE_MASK;
643
644                 /* boundary check */
645                 if (ord > priv->table1_len) {
646                         IPW_DEBUG_ORD("ordinal value too long\n");
647                         return -EINVAL;
648                 }
649
650                 /* verify we have enough room to store the value */
651                 if (*len < sizeof(u32)) {
652                         IPW_DEBUG_ORD("ordinal buffer length too small, "
653                                       "need %zd\n", sizeof(u32));
654                         return -EINVAL;
655                 }
656
657                 *((u32 *) val) =
658                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
659                 *len = sizeof(u32);
660                 break;
661
662         case IPW_ORD_TABLE_2_MASK:
663                 /*
664                  * TABLE 2: Indirect access to a table of variable sized values
665                  *
666                  * This table consist of six values, each containing
667                  *     - dword containing the starting offset of the data
668                  *     - dword containing the lengh in the first 16bits
669                  *       and the count in the second 16bits
670                  */
671
672                 /* remove the table id from the ordinal */
673                 ord &= IPW_ORD_TABLE_VALUE_MASK;
674
675                 /* boundary check */
676                 if (ord > priv->table2_len) {
677                         IPW_DEBUG_ORD("ordinal value too long\n");
678                         return -EINVAL;
679                 }
680
681                 /* get the address of statistic */
682                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
683
684                 /* get the second DW of statistics ;
685                  * two 16-bit words - first is length, second is count */
686                 field_info =
687                     ipw_read_reg32(priv,
688                                    priv->table2_addr + (ord << 3) +
689                                    sizeof(u32));
690
691                 /* get each entry length */
692                 field_len = *((u16 *) & field_info);
693
694                 /* get number of entries */
695                 field_count = *(((u16 *) & field_info) + 1);
696
697                 /* abort if not enought memory */
698                 total_len = field_len * field_count;
699                 if (total_len > *len) {
700                         *len = total_len;
701                         return -EINVAL;
702                 }
703
704                 *len = total_len;
705                 if (!total_len)
706                         return 0;
707
708                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
709                               "field_info = 0x%08x\n",
710                               addr, total_len, field_info);
711                 ipw_read_indirect(priv, addr, val, total_len);
712                 break;
713
714         default:
715                 IPW_DEBUG_ORD("Invalid ordinal!\n");
716                 return -EINVAL;
717
718         }
719
720         return 0;
721 }
722
723 static void ipw_init_ordinals(struct ipw_priv *priv)
724 {
725         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
726         priv->table0_len = ipw_read32(priv, priv->table0_addr);
727
728         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
729                       priv->table0_addr, priv->table0_len);
730
731         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
732         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
733
734         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
735                       priv->table1_addr, priv->table1_len);
736
737         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
738         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
739         priv->table2_len &= 0x0000ffff; /* use first two bytes */
740
741         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
742                       priv->table2_addr, priv->table2_len);
743
744 }
745
746 static u32 ipw_register_toggle(u32 reg)
747 {
748         reg &= ~IPW_START_STANDBY;
749         if (reg & IPW_GATE_ODMA)
750                 reg &= ~IPW_GATE_ODMA;
751         if (reg & IPW_GATE_IDMA)
752                 reg &= ~IPW_GATE_IDMA;
753         if (reg & IPW_GATE_ADMA)
754                 reg &= ~IPW_GATE_ADMA;
755         return reg;
756 }
757
758 /*
759  * LED behavior:
760  * - On radio ON, turn on any LEDs that require to be on during start
761  * - On initialization, start unassociated blink
762  * - On association, disable unassociated blink
763  * - On disassociation, start unassociated blink
764  * - On radio OFF, turn off any LEDs started during radio on
765  *
766  */
767 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
768 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
769 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
770
771 static void ipw_led_link_on(struct ipw_priv *priv)
772 {
773         unsigned long flags;
774         u32 led;
775
776         /* If configured to not use LEDs, or nic_type is 1,
777          * then we don't toggle a LINK led */
778         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
779                 return;
780
781         spin_lock_irqsave(&priv->lock, flags);
782
783         if (!(priv->status & STATUS_RF_KILL_MASK) &&
784             !(priv->status & STATUS_LED_LINK_ON)) {
785                 IPW_DEBUG_LED("Link LED On\n");
786                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
787                 led |= priv->led_association_on;
788
789                 led = ipw_register_toggle(led);
790
791                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
792                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
793
794                 priv->status |= STATUS_LED_LINK_ON;
795
796                 /* If we aren't associated, schedule turning the LED off */
797                 if (!(priv->status & STATUS_ASSOCIATED))
798                         queue_delayed_work(priv->workqueue,
799                                            &priv->led_link_off,
800                                            LD_TIME_LINK_ON);
801         }
802
803         spin_unlock_irqrestore(&priv->lock, flags);
804 }
805
806 static void ipw_bg_led_link_on(void *data)
807 {
808         struct ipw_priv *priv = data;
809         mutex_lock(&priv->mutex);
810         ipw_led_link_on(data);
811         mutex_unlock(&priv->mutex);
812 }
813
814 static void ipw_led_link_off(struct ipw_priv *priv)
815 {
816         unsigned long flags;
817         u32 led;
818
819         /* If configured not to use LEDs, or nic type is 1,
820          * then we don't goggle the LINK led. */
821         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
822                 return;
823
824         spin_lock_irqsave(&priv->lock, flags);
825
826         if (priv->status & STATUS_LED_LINK_ON) {
827                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
828                 led &= priv->led_association_off;
829                 led = ipw_register_toggle(led);
830
831                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
832                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
833
834                 IPW_DEBUG_LED("Link LED Off\n");
835
836                 priv->status &= ~STATUS_LED_LINK_ON;
837
838                 /* If we aren't associated and the radio is on, schedule
839                  * turning the LED on (blink while unassociated) */
840                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
841                     !(priv->status & STATUS_ASSOCIATED))
842                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
843                                            LD_TIME_LINK_OFF);
844
845         }
846
847         spin_unlock_irqrestore(&priv->lock, flags);
848 }
849
850 static void ipw_bg_led_link_off(void *data)
851 {
852         struct ipw_priv *priv = data;
853         mutex_lock(&priv->mutex);
854         ipw_led_link_off(data);
855         mutex_unlock(&priv->mutex);
856 }
857
858 static void __ipw_led_activity_on(struct ipw_priv *priv)
859 {
860         u32 led;
861
862         if (priv->config & CFG_NO_LED)
863                 return;
864
865         if (priv->status & STATUS_RF_KILL_MASK)
866                 return;
867
868         if (!(priv->status & STATUS_LED_ACT_ON)) {
869                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
870                 led |= priv->led_activity_on;
871
872                 led = ipw_register_toggle(led);
873
874                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
875                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
876
877                 IPW_DEBUG_LED("Activity LED On\n");
878
879                 priv->status |= STATUS_LED_ACT_ON;
880
881                 cancel_delayed_work(&priv->led_act_off);
882                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
883                                    LD_TIME_ACT_ON);
884         } else {
885                 /* Reschedule LED off for full time period */
886                 cancel_delayed_work(&priv->led_act_off);
887                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
888                                    LD_TIME_ACT_ON);
889         }
890 }
891
892 #if 0
893 void ipw_led_activity_on(struct ipw_priv *priv)
894 {
895         unsigned long flags;
896         spin_lock_irqsave(&priv->lock, flags);
897         __ipw_led_activity_on(priv);
898         spin_unlock_irqrestore(&priv->lock, flags);
899 }
900 #endif  /*  0  */
901
902 static void ipw_led_activity_off(struct ipw_priv *priv)
903 {
904         unsigned long flags;
905         u32 led;
906
907         if (priv->config & CFG_NO_LED)
908                 return;
909
910         spin_lock_irqsave(&priv->lock, flags);
911
912         if (priv->status & STATUS_LED_ACT_ON) {
913                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
914                 led &= priv->led_activity_off;
915
916                 led = ipw_register_toggle(led);
917
918                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
919                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
920
921                 IPW_DEBUG_LED("Activity LED Off\n");
922
923                 priv->status &= ~STATUS_LED_ACT_ON;
924         }
925
926         spin_unlock_irqrestore(&priv->lock, flags);
927 }
928
929 static void ipw_bg_led_activity_off(void *data)
930 {
931         struct ipw_priv *priv = data;
932         mutex_lock(&priv->mutex);
933         ipw_led_activity_off(data);
934         mutex_unlock(&priv->mutex);
935 }
936
937 static void ipw_led_band_on(struct ipw_priv *priv)
938 {
939         unsigned long flags;
940         u32 led;
941
942         /* Only nic type 1 supports mode LEDs */
943         if (priv->config & CFG_NO_LED ||
944             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
945                 return;
946
947         spin_lock_irqsave(&priv->lock, flags);
948
949         led = ipw_read_reg32(priv, IPW_EVENT_REG);
950         if (priv->assoc_network->mode == IEEE_A) {
951                 led |= priv->led_ofdm_on;
952                 led &= priv->led_association_off;
953                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
954         } else if (priv->assoc_network->mode == IEEE_G) {
955                 led |= priv->led_ofdm_on;
956                 led |= priv->led_association_on;
957                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
958         } else {
959                 led &= priv->led_ofdm_off;
960                 led |= priv->led_association_on;
961                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
962         }
963
964         led = ipw_register_toggle(led);
965
966         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
967         ipw_write_reg32(priv, IPW_EVENT_REG, led);
968
969         spin_unlock_irqrestore(&priv->lock, flags);
970 }
971
972 static void ipw_led_band_off(struct ipw_priv *priv)
973 {
974         unsigned long flags;
975         u32 led;
976
977         /* Only nic type 1 supports mode LEDs */
978         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
979                 return;
980
981         spin_lock_irqsave(&priv->lock, flags);
982
983         led = ipw_read_reg32(priv, IPW_EVENT_REG);
984         led &= priv->led_ofdm_off;
985         led &= priv->led_association_off;
986
987         led = ipw_register_toggle(led);
988
989         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
990         ipw_write_reg32(priv, IPW_EVENT_REG, led);
991
992         spin_unlock_irqrestore(&priv->lock, flags);
993 }
994
995 static void ipw_led_radio_on(struct ipw_priv *priv)
996 {
997         ipw_led_link_on(priv);
998 }
999
1000 static void ipw_led_radio_off(struct ipw_priv *priv)
1001 {
1002         ipw_led_activity_off(priv);
1003         ipw_led_link_off(priv);
1004 }
1005
1006 static void ipw_led_link_up(struct ipw_priv *priv)
1007 {
1008         /* Set the Link Led on for all nic types */
1009         ipw_led_link_on(priv);
1010 }
1011
1012 static void ipw_led_link_down(struct ipw_priv *priv)
1013 {
1014         ipw_led_activity_off(priv);
1015         ipw_led_link_off(priv);
1016
1017         if (priv->status & STATUS_RF_KILL_MASK)
1018                 ipw_led_radio_off(priv);
1019 }
1020
1021 static void ipw_led_init(struct ipw_priv *priv)
1022 {
1023         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1024
1025         /* Set the default PINs for the link and activity leds */
1026         priv->led_activity_on = IPW_ACTIVITY_LED;
1027         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1028
1029         priv->led_association_on = IPW_ASSOCIATED_LED;
1030         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1031
1032         /* Set the default PINs for the OFDM leds */
1033         priv->led_ofdm_on = IPW_OFDM_LED;
1034         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1035
1036         switch (priv->nic_type) {
1037         case EEPROM_NIC_TYPE_1:
1038                 /* In this NIC type, the LEDs are reversed.... */
1039                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1040                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1041                 priv->led_association_on = IPW_ACTIVITY_LED;
1042                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1043
1044                 if (!(priv->config & CFG_NO_LED))
1045                         ipw_led_band_on(priv);
1046
1047                 /* And we don't blink link LEDs for this nic, so
1048                  * just return here */
1049                 return;
1050
1051         case EEPROM_NIC_TYPE_3:
1052         case EEPROM_NIC_TYPE_2:
1053         case EEPROM_NIC_TYPE_4:
1054         case EEPROM_NIC_TYPE_0:
1055                 break;
1056
1057         default:
1058                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1059                                priv->nic_type);
1060                 priv->nic_type = EEPROM_NIC_TYPE_0;
1061                 break;
1062         }
1063
1064         if (!(priv->config & CFG_NO_LED)) {
1065                 if (priv->status & STATUS_ASSOCIATED)
1066                         ipw_led_link_on(priv);
1067                 else
1068                         ipw_led_link_off(priv);
1069         }
1070 }
1071
1072 static void ipw_led_shutdown(struct ipw_priv *priv)
1073 {
1074         ipw_led_activity_off(priv);
1075         ipw_led_link_off(priv);
1076         ipw_led_band_off(priv);
1077         cancel_delayed_work(&priv->led_link_on);
1078         cancel_delayed_work(&priv->led_link_off);
1079         cancel_delayed_work(&priv->led_act_off);
1080 }
1081
1082 /*
1083  * The following adds a new attribute to the sysfs representation
1084  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1085  * used for controling the debug level.
1086  *
1087  * See the level definitions in ipw for details.
1088  */
1089 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1090 {
1091         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1092 }
1093
1094 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1095                                  size_t count)
1096 {
1097         char *p = (char *)buf;
1098         u32 val;
1099
1100         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1101                 p++;
1102                 if (p[0] == 'x' || p[0] == 'X')
1103                         p++;
1104                 val = simple_strtoul(p, &p, 16);
1105         } else
1106                 val = simple_strtoul(p, &p, 10);
1107         if (p == buf)
1108                 printk(KERN_INFO DRV_NAME
1109                        ": %s is not in hex or decimal form.\n", buf);
1110         else
1111                 ipw_debug_level = val;
1112
1113         return strnlen(buf, count);
1114 }
1115
1116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1117                    show_debug_level, store_debug_level);
1118
1119 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1120 {
1121         /* length = 1st dword in log */
1122         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1123 }
1124
1125 static void ipw_capture_event_log(struct ipw_priv *priv,
1126                                   u32 log_len, struct ipw_event *log)
1127 {
1128         u32 base;
1129
1130         if (log_len) {
1131                 base = ipw_read32(priv, IPW_EVENT_LOG);
1132                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1133                                   (u8 *) log, sizeof(*log) * log_len);
1134         }
1135 }
1136
1137 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1138 {
1139         struct ipw_fw_error *error;
1140         u32 log_len = ipw_get_event_log_len(priv);
1141         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1142         u32 elem_len = ipw_read_reg32(priv, base);
1143
1144         error = kmalloc(sizeof(*error) +
1145                         sizeof(*error->elem) * elem_len +
1146                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1147         if (!error) {
1148                 IPW_ERROR("Memory allocation for firmware error log "
1149                           "failed.\n");
1150                 return NULL;
1151         }
1152         error->jiffies = jiffies;
1153         error->status = priv->status;
1154         error->config = priv->config;
1155         error->elem_len = elem_len;
1156         error->log_len = log_len;
1157         error->elem = (struct ipw_error_elem *)error->payload;
1158         error->log = (struct ipw_event *)(error->elem + elem_len);
1159
1160         ipw_capture_event_log(priv, log_len, error->log);
1161
1162         if (elem_len)
1163                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1164                                   sizeof(*error->elem) * elem_len);
1165
1166         return error;
1167 }
1168
1169 static void ipw_free_error_log(struct ipw_fw_error *error)
1170 {
1171         if (error)
1172                 kfree(error);
1173 }
1174
1175 static ssize_t show_event_log(struct device *d,
1176                               struct device_attribute *attr, char *buf)
1177 {
1178         struct ipw_priv *priv = dev_get_drvdata(d);
1179         u32 log_len = ipw_get_event_log_len(priv);
1180         struct ipw_event log[log_len];
1181         u32 len = 0, i;
1182
1183         ipw_capture_event_log(priv, log_len, log);
1184
1185         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1186         for (i = 0; i < log_len; i++)
1187                 len += snprintf(buf + len, PAGE_SIZE - len,
1188                                 "\n%08X%08X%08X",
1189                                 log[i].time, log[i].event, log[i].data);
1190         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1191         return len;
1192 }
1193
1194 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1195
1196 static ssize_t show_error(struct device *d,
1197                           struct device_attribute *attr, char *buf)
1198 {
1199         struct ipw_priv *priv = dev_get_drvdata(d);
1200         u32 len = 0, i;
1201         if (!priv->error)
1202                 return 0;
1203         len += snprintf(buf + len, PAGE_SIZE - len,
1204                         "%08lX%08X%08X%08X",
1205                         priv->error->jiffies,
1206                         priv->error->status,
1207                         priv->error->config, priv->error->elem_len);
1208         for (i = 0; i < priv->error->elem_len; i++)
1209                 len += snprintf(buf + len, PAGE_SIZE - len,
1210                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1211                                 priv->error->elem[i].time,
1212                                 priv->error->elem[i].desc,
1213                                 priv->error->elem[i].blink1,
1214                                 priv->error->elem[i].blink2,
1215                                 priv->error->elem[i].link1,
1216                                 priv->error->elem[i].link2,
1217                                 priv->error->elem[i].data);
1218
1219         len += snprintf(buf + len, PAGE_SIZE - len,
1220                         "\n%08X", priv->error->log_len);
1221         for (i = 0; i < priv->error->log_len; i++)
1222                 len += snprintf(buf + len, PAGE_SIZE - len,
1223                                 "\n%08X%08X%08X",
1224                                 priv->error->log[i].time,
1225                                 priv->error->log[i].event,
1226                                 priv->error->log[i].data);
1227         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1228         return len;
1229 }
1230
1231 static ssize_t clear_error(struct device *d,
1232                            struct device_attribute *attr,
1233                            const char *buf, size_t count)
1234 {
1235         struct ipw_priv *priv = dev_get_drvdata(d);
1236         if (priv->error) {
1237                 ipw_free_error_log(priv->error);
1238                 priv->error = NULL;
1239         }
1240         return count;
1241 }
1242
1243 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1244
1245 static ssize_t show_cmd_log(struct device *d,
1246                             struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 len = 0, i;
1250         if (!priv->cmdlog)
1251                 return 0;
1252         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1253              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1254              i = (i + 1) % priv->cmdlog_len) {
1255                 len +=
1256                     snprintf(buf + len, PAGE_SIZE - len,
1257                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1258                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1259                              priv->cmdlog[i].cmd.len);
1260                 len +=
1261                     snprintk_buf(buf + len, PAGE_SIZE - len,
1262                                  (u8 *) priv->cmdlog[i].cmd.param,
1263                                  priv->cmdlog[i].cmd.len);
1264                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1265         }
1266         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1267         return len;
1268 }
1269
1270 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1271
1272 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1273                              char *buf)
1274 {
1275         struct ipw_priv *priv = dev_get_drvdata(d);
1276         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1277 }
1278
1279 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1280                               const char *buf, size_t count)
1281 {
1282         struct ipw_priv *priv = dev_get_drvdata(d);
1283 #ifdef CONFIG_IPW2200_DEBUG
1284         struct net_device *dev = priv->net_dev;
1285 #endif
1286         char buffer[] = "00000000";
1287         unsigned long len =
1288             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1289         unsigned long val;
1290         char *p = buffer;
1291
1292         IPW_DEBUG_INFO("enter\n");
1293
1294         strncpy(buffer, buf, len);
1295         buffer[len] = 0;
1296
1297         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1298                 p++;
1299                 if (p[0] == 'x' || p[0] == 'X')
1300                         p++;
1301                 val = simple_strtoul(p, &p, 16);
1302         } else
1303                 val = simple_strtoul(p, &p, 10);
1304         if (p == buffer) {
1305                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1306         } else {
1307                 priv->ieee->scan_age = val;
1308                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1309         }
1310
1311         IPW_DEBUG_INFO("exit\n");
1312         return len;
1313 }
1314
1315 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1316
1317 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1318                         char *buf)
1319 {
1320         struct ipw_priv *priv = dev_get_drvdata(d);
1321         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1322 }
1323
1324 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1325                          const char *buf, size_t count)
1326 {
1327         struct ipw_priv *priv = dev_get_drvdata(d);
1328
1329         IPW_DEBUG_INFO("enter\n");
1330
1331         if (count == 0)
1332                 return 0;
1333
1334         if (*buf == 0) {
1335                 IPW_DEBUG_LED("Disabling LED control.\n");
1336                 priv->config |= CFG_NO_LED;
1337                 ipw_led_shutdown(priv);
1338         } else {
1339                 IPW_DEBUG_LED("Enabling LED control.\n");
1340                 priv->config &= ~CFG_NO_LED;
1341                 ipw_led_init(priv);
1342         }
1343
1344         IPW_DEBUG_INFO("exit\n");
1345         return count;
1346 }
1347
1348 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1349
1350 static ssize_t show_status(struct device *d,
1351                            struct device_attribute *attr, char *buf)
1352 {
1353         struct ipw_priv *p = d->driver_data;
1354         return sprintf(buf, "0x%08x\n", (int)p->status);
1355 }
1356
1357 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1358
1359 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1360                         char *buf)
1361 {
1362         struct ipw_priv *p = d->driver_data;
1363         return sprintf(buf, "0x%08x\n", (int)p->config);
1364 }
1365
1366 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1367
1368 static ssize_t show_nic_type(struct device *d,
1369                              struct device_attribute *attr, char *buf)
1370 {
1371         struct ipw_priv *priv = d->driver_data;
1372         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1373 }
1374
1375 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1376
1377 static ssize_t show_ucode_version(struct device *d,
1378                                   struct device_attribute *attr, char *buf)
1379 {
1380         u32 len = sizeof(u32), tmp = 0;
1381         struct ipw_priv *p = d->driver_data;
1382
1383         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1384                 return 0;
1385
1386         return sprintf(buf, "0x%08x\n", tmp);
1387 }
1388
1389 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1390
1391 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1392                         char *buf)
1393 {
1394         u32 len = sizeof(u32), tmp = 0;
1395         struct ipw_priv *p = d->driver_data;
1396
1397         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1398                 return 0;
1399
1400         return sprintf(buf, "0x%08x\n", tmp);
1401 }
1402
1403 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1404
1405 /*
1406  * Add a device attribute to view/control the delay between eeprom
1407  * operations.
1408  */
1409 static ssize_t show_eeprom_delay(struct device *d,
1410                                  struct device_attribute *attr, char *buf)
1411 {
1412         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1413         return sprintf(buf, "%i\n", n);
1414 }
1415 static ssize_t store_eeprom_delay(struct device *d,
1416                                   struct device_attribute *attr,
1417                                   const char *buf, size_t count)
1418 {
1419         struct ipw_priv *p = d->driver_data;
1420         sscanf(buf, "%i", &p->eeprom_delay);
1421         return strnlen(buf, count);
1422 }
1423
1424 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1425                    show_eeprom_delay, store_eeprom_delay);
1426
1427 static ssize_t show_command_event_reg(struct device *d,
1428                                       struct device_attribute *attr, char *buf)
1429 {
1430         u32 reg = 0;
1431         struct ipw_priv *p = d->driver_data;
1432
1433         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1434         return sprintf(buf, "0x%08x\n", reg);
1435 }
1436 static ssize_t store_command_event_reg(struct device *d,
1437                                        struct device_attribute *attr,
1438                                        const char *buf, size_t count)
1439 {
1440         u32 reg;
1441         struct ipw_priv *p = d->driver_data;
1442
1443         sscanf(buf, "%x", &reg);
1444         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1445         return strnlen(buf, count);
1446 }
1447
1448 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1449                    show_command_event_reg, store_command_event_reg);
1450
1451 static ssize_t show_mem_gpio_reg(struct device *d,
1452                                  struct device_attribute *attr, char *buf)
1453 {
1454         u32 reg = 0;
1455         struct ipw_priv *p = d->driver_data;
1456
1457         reg = ipw_read_reg32(p, 0x301100);
1458         return sprintf(buf, "0x%08x\n", reg);
1459 }
1460 static ssize_t store_mem_gpio_reg(struct device *d,
1461                                   struct device_attribute *attr,
1462                                   const char *buf, size_t count)
1463 {
1464         u32 reg;
1465         struct ipw_priv *p = d->driver_data;
1466
1467         sscanf(buf, "%x", &reg);
1468         ipw_write_reg32(p, 0x301100, reg);
1469         return strnlen(buf, count);
1470 }
1471
1472 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1473                    show_mem_gpio_reg, store_mem_gpio_reg);
1474
1475 static ssize_t show_indirect_dword(struct device *d,
1476                                    struct device_attribute *attr, char *buf)
1477 {
1478         u32 reg = 0;
1479         struct ipw_priv *priv = d->driver_data;
1480
1481         if (priv->status & STATUS_INDIRECT_DWORD)
1482                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1483         else
1484                 reg = 0;
1485
1486         return sprintf(buf, "0x%08x\n", reg);
1487 }
1488 static ssize_t store_indirect_dword(struct device *d,
1489                                     struct device_attribute *attr,
1490                                     const char *buf, size_t count)
1491 {
1492         struct ipw_priv *priv = d->driver_data;
1493
1494         sscanf(buf, "%x", &priv->indirect_dword);
1495         priv->status |= STATUS_INDIRECT_DWORD;
1496         return strnlen(buf, count);
1497 }
1498
1499 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1500                    show_indirect_dword, store_indirect_dword);
1501
1502 static ssize_t show_indirect_byte(struct device *d,
1503                                   struct device_attribute *attr, char *buf)
1504 {
1505         u8 reg = 0;
1506         struct ipw_priv *priv = d->driver_data;
1507
1508         if (priv->status & STATUS_INDIRECT_BYTE)
1509                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1510         else
1511                 reg = 0;
1512
1513         return sprintf(buf, "0x%02x\n", reg);
1514 }
1515 static ssize_t store_indirect_byte(struct device *d,
1516                                    struct device_attribute *attr,
1517                                    const char *buf, size_t count)
1518 {
1519         struct ipw_priv *priv = d->driver_data;
1520
1521         sscanf(buf, "%x", &priv->indirect_byte);
1522         priv->status |= STATUS_INDIRECT_BYTE;
1523         return strnlen(buf, count);
1524 }
1525
1526 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1527                    show_indirect_byte, store_indirect_byte);
1528
1529 static ssize_t show_direct_dword(struct device *d,
1530                                  struct device_attribute *attr, char *buf)
1531 {
1532         u32 reg = 0;
1533         struct ipw_priv *priv = d->driver_data;
1534
1535         if (priv->status & STATUS_DIRECT_DWORD)
1536                 reg = ipw_read32(priv, priv->direct_dword);
1537         else
1538                 reg = 0;
1539
1540         return sprintf(buf, "0x%08x\n", reg);
1541 }
1542 static ssize_t store_direct_dword(struct device *d,
1543                                   struct device_attribute *attr,
1544                                   const char *buf, size_t count)
1545 {
1546         struct ipw_priv *priv = d->driver_data;
1547
1548         sscanf(buf, "%x", &priv->direct_dword);
1549         priv->status |= STATUS_DIRECT_DWORD;
1550         return strnlen(buf, count);
1551 }
1552
1553 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1554                    show_direct_dword, store_direct_dword);
1555
1556 static int rf_kill_active(struct ipw_priv *priv)
1557 {
1558         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1559                 priv->status |= STATUS_RF_KILL_HW;
1560         else
1561                 priv->status &= ~STATUS_RF_KILL_HW;
1562
1563         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1564 }
1565
1566 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1567                             char *buf)
1568 {
1569         /* 0 - RF kill not enabled
1570            1 - SW based RF kill active (sysfs)
1571            2 - HW based RF kill active
1572            3 - Both HW and SW baed RF kill active */
1573         struct ipw_priv *priv = d->driver_data;
1574         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1575             (rf_kill_active(priv) ? 0x2 : 0x0);
1576         return sprintf(buf, "%i\n", val);
1577 }
1578
1579 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1580 {
1581         if ((disable_radio ? 1 : 0) ==
1582             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1583                 return 0;
1584
1585         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1586                           disable_radio ? "OFF" : "ON");
1587
1588         if (disable_radio) {
1589                 priv->status |= STATUS_RF_KILL_SW;
1590
1591                 if (priv->workqueue)
1592                         cancel_delayed_work(&priv->request_scan);
1593                 queue_work(priv->workqueue, &priv->down);
1594         } else {
1595                 priv->status &= ~STATUS_RF_KILL_SW;
1596                 if (rf_kill_active(priv)) {
1597                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1598                                           "disabled by HW switch\n");
1599                         /* Make sure the RF_KILL check timer is running */
1600                         cancel_delayed_work(&priv->rf_kill);
1601                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1602                                            2 * HZ);
1603                 } else
1604                         queue_work(priv->workqueue, &priv->up);
1605         }
1606
1607         return 1;
1608 }
1609
1610 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1611                              const char *buf, size_t count)
1612 {
1613         struct ipw_priv *priv = d->driver_data;
1614
1615         ipw_radio_kill_sw(priv, buf[0] == '1');
1616
1617         return count;
1618 }
1619
1620 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1621
1622 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1623                                char *buf)
1624 {
1625         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1626         int pos = 0, len = 0;
1627         if (priv->config & CFG_SPEED_SCAN) {
1628                 while (priv->speed_scan[pos] != 0)
1629                         len += sprintf(&buf[len], "%d ",
1630                                        priv->speed_scan[pos++]);
1631                 return len + sprintf(&buf[len], "\n");
1632         }
1633
1634         return sprintf(buf, "0\n");
1635 }
1636
1637 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1638                                 const char *buf, size_t count)
1639 {
1640         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1641         int channel, pos = 0;
1642         const char *p = buf;
1643
1644         /* list of space separated channels to scan, optionally ending with 0 */
1645         while ((channel = simple_strtol(p, NULL, 0))) {
1646                 if (pos == MAX_SPEED_SCAN - 1) {
1647                         priv->speed_scan[pos] = 0;
1648                         break;
1649                 }
1650
1651                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1652                         priv->speed_scan[pos++] = channel;
1653                 else
1654                         IPW_WARNING("Skipping invalid channel request: %d\n",
1655                                     channel);
1656                 p = strchr(p, ' ');
1657                 if (!p)
1658                         break;
1659                 while (*p == ' ' || *p == '\t')
1660                         p++;
1661         }
1662
1663         if (pos == 0)
1664                 priv->config &= ~CFG_SPEED_SCAN;
1665         else {
1666                 priv->speed_scan_pos = 0;
1667                 priv->config |= CFG_SPEED_SCAN;
1668         }
1669
1670         return count;
1671 }
1672
1673 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1674                    store_speed_scan);
1675
1676 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1677                               char *buf)
1678 {
1679         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1680         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1681 }
1682
1683 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1684                                const char *buf, size_t count)
1685 {
1686         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1687         if (buf[0] == '1')
1688                 priv->config |= CFG_NET_STATS;
1689         else
1690                 priv->config &= ~CFG_NET_STATS;
1691
1692         return count;
1693 }
1694
1695 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1696                    show_net_stats, store_net_stats);
1697
1698 static void notify_wx_assoc_event(struct ipw_priv *priv)
1699 {
1700         union iwreq_data wrqu;
1701         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1702         if (priv->status & STATUS_ASSOCIATED)
1703                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1704         else
1705                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1706         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1707 }
1708
1709 static void ipw_irq_tasklet(struct ipw_priv *priv)
1710 {
1711         u32 inta, inta_mask, handled = 0;
1712         unsigned long flags;
1713         int rc = 0;
1714
1715         spin_lock_irqsave(&priv->lock, flags);
1716
1717         inta = ipw_read32(priv, IPW_INTA_RW);
1718         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1719         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1720
1721         /* Add any cached INTA values that need to be handled */
1722         inta |= priv->isr_inta;
1723
1724         /* handle all the justifications for the interrupt */
1725         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1726                 ipw_rx(priv);
1727                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1728         }
1729
1730         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1731                 IPW_DEBUG_HC("Command completed.\n");
1732                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1733                 priv->status &= ~STATUS_HCMD_ACTIVE;
1734                 wake_up_interruptible(&priv->wait_command_queue);
1735                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1736         }
1737
1738         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1739                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1740                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1741                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1742         }
1743
1744         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1745                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1746                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1747                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1748         }
1749
1750         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1751                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1752                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1753                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1754         }
1755
1756         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1757                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1758                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1759                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1760         }
1761
1762         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1763                 IPW_WARNING("STATUS_CHANGE\n");
1764                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1765         }
1766
1767         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1768                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1769                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1770         }
1771
1772         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1773                 IPW_WARNING("HOST_CMD_DONE\n");
1774                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1775         }
1776
1777         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1778                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1779                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1780         }
1781
1782         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1783                 IPW_WARNING("PHY_OFF_DONE\n");
1784                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1785         }
1786
1787         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1788                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1789                 priv->status |= STATUS_RF_KILL_HW;
1790                 wake_up_interruptible(&priv->wait_command_queue);
1791                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1792                 cancel_delayed_work(&priv->request_scan);
1793                 schedule_work(&priv->link_down);
1794                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1795                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1796         }
1797
1798         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1799                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1800                 if (priv->error) {
1801                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1802 #ifdef CONFIG_IPW2200_DEBUG
1803                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1804                                 struct ipw_fw_error *error =
1805                                     ipw_alloc_error_log(priv);
1806                                 ipw_dump_error_log(priv, error);
1807                                 if (error)
1808                                         ipw_free_error_log(error);
1809                         }
1810 #endif
1811                 } else {
1812                         priv->error = ipw_alloc_error_log(priv);
1813                         if (priv->error)
1814                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1815                         else
1816                                 IPW_ERROR("Error allocating sysfs 'error' "
1817                                           "log.\n");
1818 #ifdef CONFIG_IPW2200_DEBUG
1819                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1820                                 ipw_dump_error_log(priv, priv->error);
1821 #endif
1822                 }
1823
1824                 /* XXX: If hardware encryption is for WPA/WPA2,
1825                  * we have to notify the supplicant. */
1826                 if (priv->ieee->sec.encrypt) {
1827                         priv->status &= ~STATUS_ASSOCIATED;
1828                         notify_wx_assoc_event(priv);
1829                 }
1830
1831                 /* Keep the restart process from trying to send host
1832                  * commands by clearing the INIT status bit */
1833                 priv->status &= ~STATUS_INIT;
1834
1835                 /* Cancel currently queued command. */
1836                 priv->status &= ~STATUS_HCMD_ACTIVE;
1837                 wake_up_interruptible(&priv->wait_command_queue);
1838
1839                 queue_work(priv->workqueue, &priv->adapter_restart);
1840                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1841         }
1842
1843         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1844                 IPW_ERROR("Parity error\n");
1845                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1846         }
1847
1848         if (handled != inta) {
1849                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1850         }
1851
1852         /* enable all interrupts */
1853         ipw_enable_interrupts(priv);
1854
1855         spin_unlock_irqrestore(&priv->lock, flags);
1856 }
1857
1858 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1859 static char *get_cmd_string(u8 cmd)
1860 {
1861         switch (cmd) {
1862                 IPW_CMD(HOST_COMPLETE);
1863                 IPW_CMD(POWER_DOWN);
1864                 IPW_CMD(SYSTEM_CONFIG);
1865                 IPW_CMD(MULTICAST_ADDRESS);
1866                 IPW_CMD(SSID);
1867                 IPW_CMD(ADAPTER_ADDRESS);
1868                 IPW_CMD(PORT_TYPE);
1869                 IPW_CMD(RTS_THRESHOLD);
1870                 IPW_CMD(FRAG_THRESHOLD);
1871                 IPW_CMD(POWER_MODE);
1872                 IPW_CMD(WEP_KEY);
1873                 IPW_CMD(TGI_TX_KEY);
1874                 IPW_CMD(SCAN_REQUEST);
1875                 IPW_CMD(SCAN_REQUEST_EXT);
1876                 IPW_CMD(ASSOCIATE);
1877                 IPW_CMD(SUPPORTED_RATES);
1878                 IPW_CMD(SCAN_ABORT);
1879                 IPW_CMD(TX_FLUSH);
1880                 IPW_CMD(QOS_PARAMETERS);
1881                 IPW_CMD(DINO_CONFIG);
1882                 IPW_CMD(RSN_CAPABILITIES);
1883                 IPW_CMD(RX_KEY);
1884                 IPW_CMD(CARD_DISABLE);
1885                 IPW_CMD(SEED_NUMBER);
1886                 IPW_CMD(TX_POWER);
1887                 IPW_CMD(COUNTRY_INFO);
1888                 IPW_CMD(AIRONET_INFO);
1889                 IPW_CMD(AP_TX_POWER);
1890                 IPW_CMD(CCKM_INFO);
1891                 IPW_CMD(CCX_VER_INFO);
1892                 IPW_CMD(SET_CALIBRATION);
1893                 IPW_CMD(SENSITIVITY_CALIB);
1894                 IPW_CMD(RETRY_LIMIT);
1895                 IPW_CMD(IPW_PRE_POWER_DOWN);
1896                 IPW_CMD(VAP_BEACON_TEMPLATE);
1897                 IPW_CMD(VAP_DTIM_PERIOD);
1898                 IPW_CMD(EXT_SUPPORTED_RATES);
1899                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1900                 IPW_CMD(VAP_QUIET_INTERVALS);
1901                 IPW_CMD(VAP_CHANNEL_SWITCH);
1902                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1903                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1904                 IPW_CMD(VAP_CF_PARAM_SET);
1905                 IPW_CMD(VAP_SET_BEACONING_STATE);
1906                 IPW_CMD(MEASUREMENT);
1907                 IPW_CMD(POWER_CAPABILITY);
1908                 IPW_CMD(SUPPORTED_CHANNELS);
1909                 IPW_CMD(TPC_REPORT);
1910                 IPW_CMD(WME_INFO);
1911                 IPW_CMD(PRODUCTION_COMMAND);
1912         default:
1913                 return "UNKNOWN";
1914         }
1915 }
1916
1917 #define HOST_COMPLETE_TIMEOUT HZ
1918
1919 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1920 {
1921         int rc = 0;
1922         unsigned long flags;
1923
1924         spin_lock_irqsave(&priv->lock, flags);
1925         if (priv->status & STATUS_HCMD_ACTIVE) {
1926                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1927                           get_cmd_string(cmd->cmd));
1928                 spin_unlock_irqrestore(&priv->lock, flags);
1929                 return -EAGAIN;
1930         }
1931
1932         priv->status |= STATUS_HCMD_ACTIVE;
1933
1934         if (priv->cmdlog) {
1935                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1936                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1937                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1938                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1939                        cmd->len);
1940                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1941         }
1942
1943         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1944                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1945                      priv->status);
1946
1947 #ifndef DEBUG_CMD_WEP_KEY
1948         if (cmd->cmd == IPW_CMD_WEP_KEY)
1949                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
1950         else
1951 #endif
1952                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1953
1954         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
1955         if (rc) {
1956                 priv->status &= ~STATUS_HCMD_ACTIVE;
1957                 IPW_ERROR("Failed to send %s: Reason %d\n",
1958                           get_cmd_string(cmd->cmd), rc);
1959                 spin_unlock_irqrestore(&priv->lock, flags);
1960                 goto exit;
1961         }
1962         spin_unlock_irqrestore(&priv->lock, flags);
1963
1964         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1965                                               !(priv->
1966                                                 status & STATUS_HCMD_ACTIVE),
1967                                               HOST_COMPLETE_TIMEOUT);
1968         if (rc == 0) {
1969                 spin_lock_irqsave(&priv->lock, flags);
1970                 if (priv->status & STATUS_HCMD_ACTIVE) {
1971                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1972                                   get_cmd_string(cmd->cmd));
1973                         priv->status &= ~STATUS_HCMD_ACTIVE;
1974                         spin_unlock_irqrestore(&priv->lock, flags);
1975                         rc = -EIO;
1976                         goto exit;
1977                 }
1978                 spin_unlock_irqrestore(&priv->lock, flags);
1979         } else
1980                 rc = 0;
1981
1982         if (priv->status & STATUS_RF_KILL_HW) {
1983                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1984                           get_cmd_string(cmd->cmd));
1985                 rc = -EIO;
1986                 goto exit;
1987         }
1988
1989       exit:
1990         if (priv->cmdlog) {
1991                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1992                 priv->cmdlog_pos %= priv->cmdlog_len;
1993         }
1994         return rc;
1995 }
1996
1997 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
1998 {
1999         struct host_cmd cmd = {
2000                 .cmd = command,
2001         };
2002
2003         return __ipw_send_cmd(priv, &cmd);
2004 }
2005
2006 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2007                             void *data)
2008 {
2009         struct host_cmd cmd = {
2010                 .cmd = command,
2011                 .len = len,
2012                 .param = data,
2013         };
2014
2015         return __ipw_send_cmd(priv, &cmd);
2016 }
2017
2018 static int ipw_send_host_complete(struct ipw_priv *priv)
2019 {
2020         if (!priv) {
2021                 IPW_ERROR("Invalid args\n");
2022                 return -1;
2023         }
2024
2025         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2026 }
2027
2028 static int ipw_send_system_config(struct ipw_priv *priv,
2029                                   struct ipw_sys_config *config)
2030 {
2031         if (!priv || !config) {
2032                 IPW_ERROR("Invalid args\n");
2033                 return -1;
2034         }
2035
2036         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, sizeof(*config),
2037                                 config);
2038 }
2039
2040 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2041 {
2042         if (!priv || !ssid) {
2043                 IPW_ERROR("Invalid args\n");
2044                 return -1;
2045         }
2046
2047         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2048                                 ssid);
2049 }
2050
2051 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2052 {
2053         if (!priv || !mac) {
2054                 IPW_ERROR("Invalid args\n");
2055                 return -1;
2056         }
2057
2058         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2059                        priv->net_dev->name, MAC_ARG(mac));
2060
2061         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2062 }
2063
2064 /*
2065  * NOTE: This must be executed from our workqueue as it results in udelay
2066  * being called which may corrupt the keyboard if executed on default
2067  * workqueue
2068  */
2069 static void ipw_adapter_restart(void *adapter)
2070 {
2071         struct ipw_priv *priv = adapter;
2072
2073         if (priv->status & STATUS_RF_KILL_MASK)
2074                 return;
2075
2076         ipw_down(priv);
2077
2078         if (priv->assoc_network &&
2079             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2080                 ipw_remove_current_network(priv);
2081
2082         if (ipw_up(priv)) {
2083                 IPW_ERROR("Failed to up device\n");
2084                 return;
2085         }
2086 }
2087
2088 static void ipw_bg_adapter_restart(void *data)
2089 {
2090         struct ipw_priv *priv = data;
2091         mutex_lock(&priv->mutex);
2092         ipw_adapter_restart(data);
2093         mutex_unlock(&priv->mutex);
2094 }
2095
2096 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2097
2098 static void ipw_scan_check(void *data)
2099 {
2100         struct ipw_priv *priv = data;
2101         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2102                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2103                                "adapter after (%dms).\n",
2104                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2105                 queue_work(priv->workqueue, &priv->adapter_restart);
2106         }
2107 }
2108
2109 static void ipw_bg_scan_check(void *data)
2110 {
2111         struct ipw_priv *priv = data;
2112         mutex_lock(&priv->mutex);
2113         ipw_scan_check(data);
2114         mutex_unlock(&priv->mutex);
2115 }
2116
2117 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2118                                      struct ipw_scan_request_ext *request)
2119 {
2120         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2121                                 sizeof(*request), request);
2122 }
2123
2124 static int ipw_send_scan_abort(struct ipw_priv *priv)
2125 {
2126         if (!priv) {
2127                 IPW_ERROR("Invalid args\n");
2128                 return -1;
2129         }
2130
2131         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2132 }
2133
2134 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2135 {
2136         struct ipw_sensitivity_calib calib = {
2137                 .beacon_rssi_raw = sens,
2138         };
2139
2140         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2141                                 &calib);
2142 }
2143
2144 static int ipw_send_associate(struct ipw_priv *priv,
2145                               struct ipw_associate *associate)
2146 {
2147         struct ipw_associate tmp_associate;
2148
2149         if (!priv || !associate) {
2150                 IPW_ERROR("Invalid args\n");
2151                 return -1;
2152         }
2153
2154         memcpy(&tmp_associate, associate, sizeof(*associate));
2155         tmp_associate.policy_support =
2156             cpu_to_le16(tmp_associate.policy_support);
2157         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2158         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2159         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2160         tmp_associate.listen_interval =
2161             cpu_to_le16(tmp_associate.listen_interval);
2162         tmp_associate.beacon_interval =
2163             cpu_to_le16(tmp_associate.beacon_interval);
2164         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2165
2166         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2167                                 &tmp_associate);
2168 }
2169
2170 static int ipw_send_supported_rates(struct ipw_priv *priv,
2171                                     struct ipw_supported_rates *rates)
2172 {
2173         if (!priv || !rates) {
2174                 IPW_ERROR("Invalid args\n");
2175                 return -1;
2176         }
2177
2178         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2179                                 rates);
2180 }
2181
2182 static int ipw_set_random_seed(struct ipw_priv *priv)
2183 {
2184         u32 val;
2185
2186         if (!priv) {
2187                 IPW_ERROR("Invalid args\n");
2188                 return -1;
2189         }
2190
2191         get_random_bytes(&val, sizeof(val));
2192
2193         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2194 }
2195
2196 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2197 {
2198         if (!priv) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2204                                 &phy_off);
2205 }
2206
2207 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2208 {
2209         if (!priv || !power) {
2210                 IPW_ERROR("Invalid args\n");
2211                 return -1;
2212         }
2213
2214         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2215 }
2216
2217 static int ipw_set_tx_power(struct ipw_priv *priv)
2218 {
2219         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2220         struct ipw_tx_power tx_power;
2221         s8 max_power;
2222         int i;
2223
2224         memset(&tx_power, 0, sizeof(tx_power));
2225
2226         /* configure device for 'G' band */
2227         tx_power.ieee_mode = IPW_G_MODE;
2228         tx_power.num_channels = geo->bg_channels;
2229         for (i = 0; i < geo->bg_channels; i++) {
2230                 max_power = geo->bg[i].max_power;
2231                 tx_power.channels_tx_power[i].channel_number =
2232                     geo->bg[i].channel;
2233                 tx_power.channels_tx_power[i].tx_power = max_power ?
2234                     min(max_power, priv->tx_power) : priv->tx_power;
2235         }
2236         if (ipw_send_tx_power(priv, &tx_power))
2237                 return -EIO;
2238
2239         /* configure device to also handle 'B' band */
2240         tx_power.ieee_mode = IPW_B_MODE;
2241         if (ipw_send_tx_power(priv, &tx_power))
2242                 return -EIO;
2243
2244         /* configure device to also handle 'A' band */
2245         if (priv->ieee->abg_true) {
2246                 tx_power.ieee_mode = IPW_A_MODE;
2247                 tx_power.num_channels = geo->a_channels;
2248                 for (i = 0; i < tx_power.num_channels; i++) {
2249                         max_power = geo->a[i].max_power;
2250                         tx_power.channels_tx_power[i].channel_number =
2251                             geo->a[i].channel;
2252                         tx_power.channels_tx_power[i].tx_power = max_power ?
2253                             min(max_power, priv->tx_power) : priv->tx_power;
2254                 }
2255                 if (ipw_send_tx_power(priv, &tx_power))
2256                         return -EIO;
2257         }
2258         return 0;
2259 }
2260
2261 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2262 {
2263         struct ipw_rts_threshold rts_threshold = {
2264                 .rts_threshold = rts,
2265         };
2266
2267         if (!priv) {
2268                 IPW_ERROR("Invalid args\n");
2269                 return -1;
2270         }
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2273                                 sizeof(rts_threshold), &rts_threshold);
2274 }
2275
2276 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2277 {
2278         struct ipw_frag_threshold frag_threshold = {
2279                 .frag_threshold = frag,
2280         };
2281
2282         if (!priv) {
2283                 IPW_ERROR("Invalid args\n");
2284                 return -1;
2285         }
2286
2287         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2288                                 sizeof(frag_threshold), &frag_threshold);
2289 }
2290
2291 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2292 {
2293         u32 param;
2294
2295         if (!priv) {
2296                 IPW_ERROR("Invalid args\n");
2297                 return -1;
2298         }
2299
2300         /* If on battery, set to 3, if AC set to CAM, else user
2301          * level */
2302         switch (mode) {
2303         case IPW_POWER_BATTERY:
2304                 param = IPW_POWER_INDEX_3;
2305                 break;
2306         case IPW_POWER_AC:
2307                 param = IPW_POWER_MODE_CAM;
2308                 break;
2309         default:
2310                 param = mode;
2311                 break;
2312         }
2313
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2315                                 &param);
2316 }
2317
2318 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2319 {
2320         struct ipw_retry_limit retry_limit = {
2321                 .short_retry_limit = slimit,
2322                 .long_retry_limit = llimit
2323         };
2324
2325         if (!priv) {
2326                 IPW_ERROR("Invalid args\n");
2327                 return -1;
2328         }
2329
2330         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2331                                 &retry_limit);
2332 }
2333
2334 /*
2335  * The IPW device contains a Microwire compatible EEPROM that stores
2336  * various data like the MAC address.  Usually the firmware has exclusive
2337  * access to the eeprom, but during device initialization (before the
2338  * device driver has sent the HostComplete command to the firmware) the
2339  * device driver has read access to the EEPROM by way of indirect addressing
2340  * through a couple of memory mapped registers.
2341  *
2342  * The following is a simplified implementation for pulling data out of the
2343  * the eeprom, along with some helper functions to find information in
2344  * the per device private data's copy of the eeprom.
2345  *
2346  * NOTE: To better understand how these functions work (i.e what is a chip
2347  *       select and why do have to keep driving the eeprom clock?), read
2348  *       just about any data sheet for a Microwire compatible EEPROM.
2349  */
2350
2351 /* write a 32 bit value into the indirect accessor register */
2352 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2353 {
2354         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2355
2356         /* the eeprom requires some time to complete the operation */
2357         udelay(p->eeprom_delay);
2358
2359         return;
2360 }
2361
2362 /* perform a chip select operation */
2363 static void eeprom_cs(struct ipw_priv *priv)
2364 {
2365         eeprom_write_reg(priv, 0);
2366         eeprom_write_reg(priv, EEPROM_BIT_CS);
2367         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2368         eeprom_write_reg(priv, EEPROM_BIT_CS);
2369 }
2370
2371 /* perform a chip select operation */
2372 static void eeprom_disable_cs(struct ipw_priv *priv)
2373 {
2374         eeprom_write_reg(priv, EEPROM_BIT_CS);
2375         eeprom_write_reg(priv, 0);
2376         eeprom_write_reg(priv, EEPROM_BIT_SK);
2377 }
2378
2379 /* push a single bit down to the eeprom */
2380 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2381 {
2382         int d = (bit ? EEPROM_BIT_DI : 0);
2383         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2384         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2385 }
2386
2387 /* push an opcode followed by an address down to the eeprom */
2388 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2389 {
2390         int i;
2391
2392         eeprom_cs(priv);
2393         eeprom_write_bit(priv, 1);
2394         eeprom_write_bit(priv, op & 2);
2395         eeprom_write_bit(priv, op & 1);
2396         for (i = 7; i >= 0; i--) {
2397                 eeprom_write_bit(priv, addr & (1 << i));
2398         }
2399 }
2400
2401 /* pull 16 bits off the eeprom, one bit at a time */
2402 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2403 {
2404         int i;
2405         u16 r = 0;
2406
2407         /* Send READ Opcode */
2408         eeprom_op(priv, EEPROM_CMD_READ, addr);
2409
2410         /* Send dummy bit */
2411         eeprom_write_reg(priv, EEPROM_BIT_CS);
2412
2413         /* Read the byte off the eeprom one bit at a time */
2414         for (i = 0; i < 16; i++) {
2415                 u32 data = 0;
2416                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2417                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2418                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2419                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2420         }
2421
2422         /* Send another dummy bit */
2423         eeprom_write_reg(priv, 0);
2424         eeprom_disable_cs(priv);
2425
2426         return r;
2427 }
2428
2429 /* helper function for pulling the mac address out of the private */
2430 /* data's copy of the eeprom data                                 */
2431 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2432 {
2433         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2434 }
2435
2436 /*
2437  * Either the device driver (i.e. the host) or the firmware can
2438  * load eeprom data into the designated region in SRAM.  If neither
2439  * happens then the FW will shutdown with a fatal error.
2440  *
2441  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2442  * bit needs region of shared SRAM needs to be non-zero.
2443  */
2444 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2445 {
2446         int i;
2447         u16 *eeprom = (u16 *) priv->eeprom;
2448
2449         IPW_DEBUG_TRACE(">>\n");
2450
2451         /* read entire contents of eeprom into private buffer */
2452         for (i = 0; i < 128; i++)
2453                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2454
2455         /*
2456            If the data looks correct, then copy it to our private
2457            copy.  Otherwise let the firmware know to perform the operation
2458            on its own.
2459          */
2460         if (priv->eeprom[EEPROM_VERSION] != 0) {
2461                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2462
2463                 /* write the eeprom data to sram */
2464                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2465                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2466
2467                 /* Do not load eeprom data on fatal error or suspend */
2468                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2469         } else {
2470                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2471
2472                 /* Load eeprom data on fatal error or suspend */
2473                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2474         }
2475
2476         IPW_DEBUG_TRACE("<<\n");
2477 }
2478
2479 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2480 {
2481         count >>= 2;
2482         if (!count)
2483                 return;
2484         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2485         while (count--)
2486                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2487 }
2488
2489 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2490 {
2491         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2492                         CB_NUMBER_OF_ELEMENTS_SMALL *
2493                         sizeof(struct command_block));
2494 }
2495
2496 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2497 {                               /* start dma engine but no transfers yet */
2498
2499         IPW_DEBUG_FW(">> : \n");
2500
2501         /* Start the dma */
2502         ipw_fw_dma_reset_command_blocks(priv);
2503
2504         /* Write CB base address */
2505         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2506
2507         IPW_DEBUG_FW("<< : \n");
2508         return 0;
2509 }
2510
2511 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2512 {
2513         u32 control = 0;
2514
2515         IPW_DEBUG_FW(">> :\n");
2516
2517         //set the Stop and Abort bit
2518         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2519         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2520         priv->sram_desc.last_cb_index = 0;
2521
2522         IPW_DEBUG_FW("<< \n");
2523 }
2524
2525 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2526                                           struct command_block *cb)
2527 {
2528         u32 address =
2529             IPW_SHARED_SRAM_DMA_CONTROL +
2530             (sizeof(struct command_block) * index);
2531         IPW_DEBUG_FW(">> :\n");
2532
2533         ipw_write_indirect(priv, address, (u8 *) cb,
2534                            (int)sizeof(struct command_block));
2535
2536         IPW_DEBUG_FW("<< :\n");
2537         return 0;
2538
2539 }
2540
2541 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2542 {
2543         u32 control = 0;
2544         u32 index = 0;
2545
2546         IPW_DEBUG_FW(">> :\n");
2547
2548         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2549                 ipw_fw_dma_write_command_block(priv, index,
2550                                                &priv->sram_desc.cb_list[index]);
2551
2552         /* Enable the DMA in the CSR register */
2553         ipw_clear_bit(priv, IPW_RESET_REG,
2554                       IPW_RESET_REG_MASTER_DISABLED |
2555                       IPW_RESET_REG_STOP_MASTER);
2556
2557         /* Set the Start bit. */
2558         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2559         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2560
2561         IPW_DEBUG_FW("<< :\n");
2562         return 0;
2563 }
2564
2565 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2566 {
2567         u32 address;
2568         u32 register_value = 0;
2569         u32 cb_fields_address = 0;
2570
2571         IPW_DEBUG_FW(">> :\n");
2572         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2573         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2574
2575         /* Read the DMA Controlor register */
2576         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2577         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2578
2579         /* Print the CB values */
2580         cb_fields_address = address;
2581         register_value = ipw_read_reg32(priv, cb_fields_address);
2582         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2583
2584         cb_fields_address += sizeof(u32);
2585         register_value = ipw_read_reg32(priv, cb_fields_address);
2586         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2587
2588         cb_fields_address += sizeof(u32);
2589         register_value = ipw_read_reg32(priv, cb_fields_address);
2590         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2591                           register_value);
2592
2593         cb_fields_address += sizeof(u32);
2594         register_value = ipw_read_reg32(priv, cb_fields_address);
2595         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2596
2597         IPW_DEBUG_FW(">> :\n");
2598 }
2599
2600 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2601 {
2602         u32 current_cb_address = 0;
2603         u32 current_cb_index = 0;
2604
2605         IPW_DEBUG_FW("<< :\n");
2606         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2607
2608         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2609             sizeof(struct command_block);
2610
2611         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2612                           current_cb_index, current_cb_address);
2613
2614         IPW_DEBUG_FW(">> :\n");
2615         return current_cb_index;
2616
2617 }
2618
2619 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2620                                         u32 src_address,
2621                                         u32 dest_address,
2622                                         u32 length,
2623                                         int interrupt_enabled, int is_last)
2624 {
2625
2626         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2627             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2628             CB_DEST_SIZE_LONG;
2629         struct command_block *cb;
2630         u32 last_cb_element = 0;
2631
2632         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2633                           src_address, dest_address, length);
2634
2635         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2636                 return -1;
2637
2638         last_cb_element = priv->sram_desc.last_cb_index;
2639         cb = &priv->sram_desc.cb_list[last_cb_element];
2640         priv->sram_desc.last_cb_index++;
2641
2642         /* Calculate the new CB control word */
2643         if (interrupt_enabled)
2644                 control |= CB_INT_ENABLED;
2645
2646         if (is_last)
2647                 control |= CB_LAST_VALID;
2648
2649         control |= length;
2650
2651         /* Calculate the CB Element's checksum value */
2652         cb->status = control ^ src_address ^ dest_address;
2653
2654         /* Copy the Source and Destination addresses */
2655         cb->dest_addr = dest_address;
2656         cb->source_addr = src_address;
2657
2658         /* Copy the Control Word last */
2659         cb->control = control;
2660
2661         return 0;
2662 }
2663
2664 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2665                                  u32 src_phys, u32 dest_address, u32 length)
2666 {
2667         u32 bytes_left = length;
2668         u32 src_offset = 0;
2669         u32 dest_offset = 0;
2670         int status = 0;
2671         IPW_DEBUG_FW(">> \n");
2672         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2673                           src_phys, dest_address, length);
2674         while (bytes_left > CB_MAX_LENGTH) {
2675                 status = ipw_fw_dma_add_command_block(priv,
2676                                                       src_phys + src_offset,
2677                                                       dest_address +
2678                                                       dest_offset,
2679                                                       CB_MAX_LENGTH, 0, 0);
2680                 if (status) {
2681                         IPW_DEBUG_FW_INFO(": Failed\n");
2682                         return -1;
2683                 } else
2684                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2685
2686                 src_offset += CB_MAX_LENGTH;
2687                 dest_offset += CB_MAX_LENGTH;
2688                 bytes_left -= CB_MAX_LENGTH;
2689         }
2690
2691         /* add the buffer tail */
2692         if (bytes_left > 0) {
2693                 status =
2694                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2695                                                  dest_address + dest_offset,
2696                                                  bytes_left, 0, 0);
2697                 if (status) {
2698                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2699                         return -1;
2700                 } else
2701                         IPW_DEBUG_FW_INFO
2702                             (": Adding new cb - the buffer tail\n");
2703         }
2704
2705         IPW_DEBUG_FW("<< \n");
2706         return 0;
2707 }
2708
2709 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2710 {
2711         u32 current_index = 0, previous_index;
2712         u32 watchdog = 0;
2713
2714         IPW_DEBUG_FW(">> : \n");
2715
2716         current_index = ipw_fw_dma_command_block_index(priv);
2717         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2718                           (int)priv->sram_desc.last_cb_index);
2719
2720         while (current_index < priv->sram_desc.last_cb_index) {
2721                 udelay(50);
2722                 previous_index = current_index;
2723                 current_index = ipw_fw_dma_command_block_index(priv);
2724
2725                 if (previous_index < current_index) {
2726                         watchdog = 0;
2727                         continue;
2728                 }
2729                 if (++watchdog > 400) {
2730                         IPW_DEBUG_FW_INFO("Timeout\n");
2731                         ipw_fw_dma_dump_command_block(priv);
2732                         ipw_fw_dma_abort(priv);
2733                         return -1;
2734                 }
2735         }
2736
2737         ipw_fw_dma_abort(priv);
2738
2739         /*Disable the DMA in the CSR register */
2740         ipw_set_bit(priv, IPW_RESET_REG,
2741                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2742
2743         IPW_DEBUG_FW("<< dmaWaitSync \n");
2744         return 0;
2745 }
2746
2747 static void ipw_remove_current_network(struct ipw_priv *priv)
2748 {
2749         struct list_head *element, *safe;
2750         struct ieee80211_network *network = NULL;
2751         unsigned long flags;
2752
2753         spin_lock_irqsave(&priv->ieee->lock, flags);
2754         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2755                 network = list_entry(element, struct ieee80211_network, list);
2756                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2757                         list_del(element);
2758                         list_add_tail(&network->list,
2759                                       &priv->ieee->network_free_list);
2760                 }
2761         }
2762         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2763 }
2764
2765 /**
2766  * Check that card is still alive.
2767  * Reads debug register from domain0.
2768  * If card is present, pre-defined value should
2769  * be found there.
2770  *
2771  * @param priv
2772  * @return 1 if card is present, 0 otherwise
2773  */
2774 static inline int ipw_alive(struct ipw_priv *priv)
2775 {
2776         return ipw_read32(priv, 0x90) == 0xd55555d5;
2777 }
2778
2779 /* timeout in msec, attempted in 10-msec quanta */
2780 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2781                                int timeout)
2782 {
2783         int i = 0;
2784
2785         do {
2786                 if ((ipw_read32(priv, addr) & mask) == mask)
2787                         return i;
2788                 mdelay(10);
2789                 i += 10;
2790         } while (i < timeout);
2791
2792         return -ETIME;
2793 }
2794
2795 /* These functions load the firmware and micro code for the operation of
2796  * the ipw hardware.  It assumes the buffer has all the bits for the
2797  * image and the caller is handling the memory allocation and clean up.
2798  */
2799
2800 static int ipw_stop_master(struct ipw_priv *priv)
2801 {
2802         int rc;
2803
2804         IPW_DEBUG_TRACE(">> \n");
2805         /* stop master. typical delay - 0 */
2806         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2807
2808         /* timeout is in msec, polled in 10-msec quanta */
2809         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2810                           IPW_RESET_REG_MASTER_DISABLED, 100);
2811         if (rc < 0) {
2812                 IPW_ERROR("wait for stop master failed after 100ms\n");
2813                 return -1;
2814         }
2815
2816         IPW_DEBUG_INFO("stop master %dms\n", rc);
2817
2818         return rc;
2819 }
2820
2821 static void ipw_arc_release(struct ipw_priv *priv)
2822 {
2823         IPW_DEBUG_TRACE(">> \n");
2824         mdelay(5);
2825
2826         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2827
2828         /* no one knows timing, for safety add some delay */
2829         mdelay(5);
2830 }
2831
2832 struct fw_header {
2833         u32 version;
2834         u32 mode;
2835 };
2836
2837 struct fw_chunk {
2838         u32 address;
2839         u32 length;
2840 };
2841
2842 #define IPW_FW_MAJOR_VERSION 2
2843 #define IPW_FW_MINOR_VERSION 4
2844
2845 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2846 #define IPW_FW_MAJOR(x) (x & 0xff)
2847
2848 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2849
2850 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2851 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2852
2853 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2854 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2855 #else
2856 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2857 #endif
2858
2859 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2860 {
2861         int rc = 0, i, addr;
2862         u8 cr = 0;
2863         u16 *image;
2864
2865         image = (u16 *) data;
2866
2867         IPW_DEBUG_TRACE(">> \n");
2868
2869         rc = ipw_stop_master(priv);
2870
2871         if (rc < 0)
2872                 return rc;
2873
2874 //      spin_lock_irqsave(&priv->lock, flags);
2875
2876         for (addr = IPW_SHARED_LOWER_BOUND;
2877              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2878                 ipw_write32(priv, addr, 0);
2879         }
2880
2881         /* no ucode (yet) */
2882         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2883         /* destroy DMA queues */
2884         /* reset sequence */
2885
2886         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2887         ipw_arc_release(priv);
2888         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2889         mdelay(1);
2890
2891         /* reset PHY */
2892         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2893         mdelay(1);
2894
2895         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2896         mdelay(1);
2897
2898         /* enable ucode store */
2899         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
2900         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
2901         mdelay(1);
2902
2903         /* write ucode */
2904         /**
2905          * @bug
2906          * Do NOT set indirect address register once and then
2907          * store data to indirect data register in the loop.
2908          * It seems very reasonable, but in this case DINO do not
2909          * accept ucode. It is essential to set address each time.
2910          */
2911         /* load new ipw uCode */
2912         for (i = 0; i < len / 2; i++)
2913                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2914                                 cpu_to_le16(image[i]));
2915
2916         /* enable DINO */
2917         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2918         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2919
2920         /* this is where the igx / win driver deveates from the VAP driver. */
2921
2922         /* wait for alive response */
2923         for (i = 0; i < 100; i++) {
2924                 /* poll for incoming data */
2925                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2926                 if (cr & DINO_RXFIFO_DATA)
2927                         break;
2928                 mdelay(1);
2929         }
2930
2931         if (cr & DINO_RXFIFO_DATA) {
2932                 /* alive_command_responce size is NOT multiple of 4 */
2933                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2934
2935                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2936                         response_buffer[i] =
2937                             le32_to_cpu(ipw_read_reg32(priv,
2938                                                        IPW_BASEBAND_RX_FIFO_READ));
2939                 memcpy(&priv->dino_alive, response_buffer,
2940                        sizeof(priv->dino_alive));
2941                 if (priv->dino_alive.alive_command == 1
2942                     && priv->dino_alive.ucode_valid == 1) {
2943                         rc = 0;
2944                         IPW_DEBUG_INFO
2945                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2946                              "of %02d/%02d/%02d %02d:%02d\n",
2947                              priv->dino_alive.software_revision,
2948                              priv->dino_alive.software_revision,
2949                              priv->dino_alive.device_identifier,
2950                              priv->dino_alive.device_identifier,
2951                              priv->dino_alive.time_stamp[0],
2952                              priv->dino_alive.time_stamp[1],
2953                              priv->dino_alive.time_stamp[2],
2954                              priv->dino_alive.time_stamp[3],
2955                              priv->dino_alive.time_stamp[4]);
2956                 } else {
2957                         IPW_DEBUG_INFO("Microcode is not alive\n");
2958                         rc = -EINVAL;
2959                 }
2960         } else {
2961                 IPW_DEBUG_INFO("No alive response from DINO\n");
2962                 rc = -ETIME;
2963         }
2964
2965         /* disable DINO, otherwise for some reason
2966            firmware have problem getting alive resp. */
2967         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2968
2969 //      spin_unlock_irqrestore(&priv->lock, flags);
2970
2971         return rc;
2972 }
2973
2974 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2975 {
2976         int rc = -1;
2977         int offset = 0;
2978         struct fw_chunk *chunk;
2979         dma_addr_t shared_phys;
2980         u8 *shared_virt;
2981
2982         IPW_DEBUG_TRACE("<< : \n");
2983         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2984
2985         if (!shared_virt)
2986                 return -ENOMEM;
2987
2988         memmove(shared_virt, data, len);
2989
2990         /* Start the Dma */
2991         rc = ipw_fw_dma_enable(priv);
2992
2993         if (priv->sram_desc.last_cb_index > 0) {
2994                 /* the DMA is already ready this would be a bug. */
2995                 BUG();
2996                 goto out;
2997         }
2998
2999         do {
3000                 chunk = (struct fw_chunk *)(data + offset);
3001                 offset += sizeof(struct fw_chunk);
3002                 /* build DMA packet and queue up for sending */
3003                 /* dma to chunk->address, the chunk->length bytes from data +
3004                  * offeset*/
3005                 /* Dma loading */
3006                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3007                                            le32_to_cpu(chunk->address),
3008                                            le32_to_cpu(chunk->length));
3009                 if (rc) {
3010                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3011                         goto out;
3012                 }
3013
3014                 offset += le32_to_cpu(chunk->length);
3015         } while (offset < len);
3016
3017         /* Run the DMA and wait for the answer */
3018         rc = ipw_fw_dma_kick(priv);
3019         if (rc) {
3020                 IPW_ERROR("dmaKick Failed\n");
3021                 goto out;
3022         }
3023
3024         rc = ipw_fw_dma_wait(priv);
3025         if (rc) {
3026                 IPW_ERROR("dmaWaitSync Failed\n");
3027                 goto out;
3028         }
3029       out:
3030         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3031         return rc;
3032 }
3033
3034 /* stop nic */
3035 static int ipw_stop_nic(struct ipw_priv *priv)
3036 {
3037         int rc = 0;
3038
3039         /* stop */
3040         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3041
3042         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3043                           IPW_RESET_REG_MASTER_DISABLED, 500);
3044         if (rc < 0) {
3045                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3046                 return rc;
3047         }
3048
3049         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3050
3051         return rc;
3052 }
3053
3054 static void ipw_start_nic(struct ipw_priv *priv)
3055 {
3056         IPW_DEBUG_TRACE(">>\n");
3057
3058         /* prvHwStartNic  release ARC */
3059         ipw_clear_bit(priv, IPW_RESET_REG,
3060                       IPW_RESET_REG_MASTER_DISABLED |
3061                       IPW_RESET_REG_STOP_MASTER |
3062                       CBD_RESET_REG_PRINCETON_RESET);
3063
3064         /* enable power management */
3065         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3066                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3067
3068         IPW_DEBUG_TRACE("<<\n");
3069 }
3070
3071 static int ipw_init_nic(struct ipw_priv *priv)
3072 {
3073         int rc;
3074
3075         IPW_DEBUG_TRACE(">>\n");
3076         /* reset */
3077         /*prvHwInitNic */
3078         /* set "initialization complete" bit to move adapter to D0 state */
3079         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3080
3081         /* low-level PLL activation */
3082         ipw_write32(priv, IPW_READ_INT_REGISTER,
3083                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3084
3085         /* wait for clock stabilization */
3086         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3087                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3088         if (rc < 0)
3089                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3090
3091         /* assert SW reset */
3092         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3093
3094         udelay(10);
3095
3096         /* set "initialization complete" bit to move adapter to D0 state */
3097         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3098
3099         IPW_DEBUG_TRACE(">>\n");
3100         return 0;
3101 }
3102
3103 /* Call this function from process context, it will sleep in request_firmware.
3104  * Probe is an ok place to call this from.
3105  */
3106 static int ipw_reset_nic(struct ipw_priv *priv)
3107 {
3108         int rc = 0;
3109         unsigned long flags;
3110
3111         IPW_DEBUG_TRACE(">>\n");
3112
3113         rc = ipw_init_nic(priv);
3114
3115         spin_lock_irqsave(&priv->lock, flags);
3116         /* Clear the 'host command active' bit... */
3117         priv->status &= ~STATUS_HCMD_ACTIVE;
3118         wake_up_interruptible(&priv->wait_command_queue);
3119         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3120         wake_up_interruptible(&priv->wait_state);
3121         spin_unlock_irqrestore(&priv->lock, flags);
3122
3123         IPW_DEBUG_TRACE("<<\n");
3124         return rc;
3125 }
3126
3127 static int ipw_get_fw(struct ipw_priv *priv,
3128                       const struct firmware **fw, const char *name)
3129 {
3130         struct fw_header *header;
3131         int rc;
3132
3133         /* ask firmware_class module to get the boot firmware off disk */
3134         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3135         if (rc < 0) {
3136                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3137                 return rc;
3138         }
3139
3140         header = (struct fw_header *)(*fw)->data;
3141         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3142                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3143                           name,
3144                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3145                           IPW_FW_MAJOR_VERSION);
3146                 return -EINVAL;
3147         }
3148
3149         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3150                        name,
3151                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3152                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3153                        (*fw)->size - sizeof(struct fw_header));
3154         return 0;
3155 }
3156
3157 #define IPW_RX_BUF_SIZE (3000)
3158
3159 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3160                                       struct ipw_rx_queue *rxq)
3161 {
3162         unsigned long flags;
3163         int i;
3164
3165         spin_lock_irqsave(&rxq->lock, flags);
3166
3167         INIT_LIST_HEAD(&rxq->rx_free);
3168         INIT_LIST_HEAD(&rxq->rx_used);
3169
3170         /* Fill the rx_used queue with _all_ of the Rx buffers */
3171         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3172                 /* In the reset function, these buffers may have been allocated
3173                  * to an SKB, so we need to unmap and free potential storage */
3174                 if (rxq->pool[i].skb != NULL) {
3175                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3176                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3177                         dev_kfree_skb(rxq->pool[i].skb);
3178                         rxq->pool[i].skb = NULL;
3179                 }
3180                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3181         }
3182
3183         /* Set us so that we have processed and used all buffers, but have
3184          * not restocked the Rx queue with fresh buffers */
3185         rxq->read = rxq->write = 0;
3186         rxq->processed = RX_QUEUE_SIZE - 1;
3187         rxq->free_count = 0;
3188         spin_unlock_irqrestore(&rxq->lock, flags);
3189 }
3190
3191 #ifdef CONFIG_PM
3192 static int fw_loaded = 0;
3193 static const struct firmware *bootfw = NULL;
3194 static const struct firmware *firmware = NULL;
3195 static const struct firmware *ucode = NULL;
3196
3197 static void free_firmware(void)
3198 {
3199         if (fw_loaded) {
3200                 release_firmware(bootfw);
3201                 release_firmware(ucode);
3202                 release_firmware(firmware);
3203                 bootfw = ucode = firmware = NULL;
3204                 fw_loaded = 0;
3205         }
3206 }
3207 #else
3208 #define free_firmware() do {} while (0)
3209 #endif
3210
3211 static int ipw_load(struct ipw_priv *priv)
3212 {
3213 #ifndef CONFIG_PM
3214         const struct firmware *bootfw = NULL;
3215         const struct firmware *firmware = NULL;
3216         const struct firmware *ucode = NULL;
3217 #endif
3218         char *ucode_name;
3219         char *fw_name;
3220         int rc = 0, retries = 3;
3221
3222         switch (priv->ieee->iw_mode) {
3223         case IW_MODE_ADHOC:
3224                 ucode_name = IPW_FW_NAME("ibss_ucode");
3225                 fw_name = IPW_FW_NAME("ibss");
3226                 break;
3227 #ifdef CONFIG_IPW2200_MONITOR
3228         case IW_MODE_MONITOR:
3229                 ucode_name = IPW_FW_NAME("sniffer_ucode");
3230                 fw_name = IPW_FW_NAME("sniffer");
3231                 break;
3232 #endif
3233         case IW_MODE_INFRA:
3234                 ucode_name = IPW_FW_NAME("bss_ucode");
3235                 fw_name = IPW_FW_NAME("bss");
3236                 break;
3237         default:
3238                 rc = -EINVAL;
3239         }
3240
3241         if (rc < 0)
3242                 goto error;
3243
3244         if (!priv->rxq)
3245                 priv->rxq = ipw_rx_queue_alloc(priv);
3246         else
3247                 ipw_rx_queue_reset(priv, priv->rxq);
3248         if (!priv->rxq) {
3249                 IPW_ERROR("Unable to initialize Rx queue\n");
3250                 goto error;
3251         }
3252
3253       retry:
3254         /* Ensure interrupts are disabled */
3255         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3256         priv->status &= ~STATUS_INT_ENABLED;
3257
3258         /* ack pending interrupts */
3259         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3260
3261         ipw_stop_nic(priv);
3262
3263         rc = ipw_reset_nic(priv);
3264         if (rc < 0) {
3265                 IPW_ERROR("Unable to reset NIC\n");
3266                 goto error;
3267         }
3268
3269         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3270                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3271
3272 #ifdef CONFIG_PM
3273         if (!fw_loaded) {
3274 #endif
3275                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3276                 if (rc < 0)
3277                         goto error;
3278 #ifdef CONFIG_PM
3279         }
3280 #endif
3281         /* DMA the initial boot firmware into the device */
3282         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3283                                bootfw->size - sizeof(struct fw_header));
3284         if (rc < 0) {
3285                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3286                 goto error;
3287         }
3288
3289         /* kick start the device */
3290         ipw_start_nic(priv);
3291
3292         /* wait for the device to finish its initial startup sequence */
3293         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3294                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3295         if (rc < 0) {
3296                 IPW_ERROR("device failed to boot initial fw image\n");
3297                 goto error;
3298         }
3299         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3300
3301         /* ack fw init done interrupt */
3302         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3303
3304 #ifdef CONFIG_PM
3305         if (!fw_loaded) {
3306 #endif
3307                 rc = ipw_get_fw(priv, &ucode, ucode_name);
3308                 if (rc < 0)
3309                         goto error;
3310 #ifdef CONFIG_PM
3311         }
3312 #endif
3313
3314         /* DMA the ucode into the device */
3315         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3316                             ucode->size - sizeof(struct fw_header));
3317         if (rc < 0) {
3318                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3319                 goto error;
3320         }
3321
3322         /* stop nic */
3323         ipw_stop_nic(priv);
3324
3325 #ifdef CONFIG_PM
3326         if (!fw_loaded) {
3327 #endif
3328                 rc = ipw_get_fw(priv, &firmware, fw_name);
3329                 if (rc < 0)
3330                         goto error;
3331 #ifdef CONFIG_PM
3332         }
3333 #endif
3334
3335         /* DMA bss firmware into the device */
3336         rc = ipw_load_firmware(priv, firmware->data +
3337                                sizeof(struct fw_header),
3338                                firmware->size - sizeof(struct fw_header));
3339         if (rc < 0) {
3340                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3341                 goto error;
3342         }
3343 #ifdef CONFIG_PM
3344         fw_loaded = 1;
3345 #endif
3346
3347         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3348
3349         rc = ipw_queue_reset(priv);
3350         if (rc < 0) {
3351                 IPW_ERROR("Unable to initialize queues\n");
3352                 goto error;
3353         }
3354
3355         /* Ensure interrupts are disabled */
3356         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3357         /* ack pending interrupts */
3358         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3359
3360         /* kick start the device */
3361         ipw_start_nic(priv);
3362
3363         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3364                 if (retries > 0) {
3365                         IPW_WARNING("Parity error.  Retrying init.\n");
3366                         retries--;
3367                         goto retry;
3368                 }
3369
3370                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3371                 rc = -EIO;
3372                 goto error;
3373         }
3374
3375         /* wait for the device */
3376         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3377                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3378         if (rc < 0) {
3379                 IPW_ERROR("device failed to start within 500ms\n");
3380                 goto error;
3381         }
3382         IPW_DEBUG_INFO("device response after %dms\n", rc);
3383
3384         /* ack fw init done interrupt */
3385         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3386
3387         /* read eeprom data and initialize the eeprom region of sram */
3388         priv->eeprom_delay = 1;
3389         ipw_eeprom_init_sram(priv);
3390
3391         /* enable interrupts */
3392         ipw_enable_interrupts(priv);
3393
3394         /* Ensure our queue has valid packets */
3395         ipw_rx_queue_replenish(priv);
3396
3397         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3398
3399         /* ack pending interrupts */
3400         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3401
3402 #ifndef CONFIG_PM
3403         release_firmware(bootfw);
3404         release_firmware(ucode);
3405         release_firmware(firmware);
3406 #endif
3407         return 0;
3408
3409       error:
3410         if (priv->rxq) {
3411                 ipw_rx_queue_free(priv, priv->rxq);
3412                 priv->rxq = NULL;
3413         }
3414         ipw_tx_queue_free(priv);
3415         if (bootfw)
3416                 release_firmware(bootfw);
3417         if (ucode)
3418                 release_firmware(ucode);
3419         if (firmware)
3420                 release_firmware(firmware);
3421 #ifdef CONFIG_PM
3422         fw_loaded = 0;
3423         bootfw = ucode = firmware = NULL;
3424 #endif
3425
3426         return rc;
3427 }
3428
3429 /**
3430  * DMA services
3431  *
3432  * Theory of operation
3433  *
3434  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3435  * 2 empty entries always kept in the buffer to protect from overflow.
3436  *
3437  * For Tx queue, there are low mark and high mark limits. If, after queuing
3438  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3439  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3440  * Tx queue resumed.
3441  *
3442  * The IPW operates with six queues, one receive queue in the device's
3443  * sram, one transmit queue for sending commands to the device firmware,
3444  * and four transmit queues for data.
3445  *
3446  * The four transmit queues allow for performing quality of service (qos)
3447  * transmissions as per the 802.11 protocol.  Currently Linux does not
3448  * provide a mechanism to the user for utilizing prioritized queues, so
3449  * we only utilize the first data transmit queue (queue1).
3450  */
3451
3452 /**
3453  * Driver allocates buffers of this size for Rx
3454  */
3455
3456 static inline int ipw_queue_space(const struct clx2_queue *q)
3457 {
3458         int s = q->last_used - q->first_empty;
3459         if (s <= 0)
3460                 s += q->n_bd;
3461         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3462         if (s < 0)
3463                 s = 0;
3464         return s;
3465 }
3466
3467 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3468 {
3469         return (++index == n_bd) ? 0 : index;
3470 }
3471
3472 /**
3473  * Initialize common DMA queue structure
3474  *
3475  * @param q                queue to init
3476  * @param count            Number of BD's to allocate. Should be power of 2
3477  * @param read_register    Address for 'read' register
3478  *                         (not offset within BAR, full address)
3479  * @param write_register   Address for 'write' register
3480  *                         (not offset within BAR, full address)
3481  * @param base_register    Address for 'base' register
3482  *                         (not offset within BAR, full address)
3483  * @param size             Address for 'size' register
3484  *                         (not offset within BAR, full address)
3485  */
3486 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3487                            int count, u32 read, u32 write, u32 base, u32 size)
3488 {
3489         q->n_bd = count;
3490
3491         q->low_mark = q->n_bd / 4;
3492         if (q->low_mark < 4)
3493                 q->low_mark = 4;
3494
3495         q->high_mark = q->n_bd / 8;
3496         if (q->high_mark < 2)
3497                 q->high_mark = 2;
3498
3499         q->first_empty = q->last_used = 0;
3500         q->reg_r = read;
3501         q->reg_w = write;
3502
3503         ipw_write32(priv, base, q->dma_addr);
3504         ipw_write32(priv, size, count);
3505         ipw_write32(priv, read, 0);
3506         ipw_write32(priv, write, 0);
3507
3508         _ipw_read32(priv, 0x90);
3509 }
3510
3511 static int ipw_queue_tx_init(struct ipw_priv *priv,
3512                              struct clx2_tx_queue *q,
3513                              int count, u32 read, u32 write, u32 base, u32 size)
3514 {
3515         struct pci_dev *dev = priv->pci_dev;
3516
3517         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3518         if (!q->txb) {
3519                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3520                 return -ENOMEM;
3521         }
3522
3523         q->bd =
3524             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3525         if (!q->bd) {
3526                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3527                           sizeof(q->bd[0]) * count);
3528                 kfree(q->txb);
3529                 q->txb = NULL;
3530                 return -ENOMEM;
3531         }
3532
3533         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3534         return 0;
3535 }
3536
3537 /**
3538  * Free one TFD, those at index [txq->q.last_used].
3539  * Do NOT advance any indexes
3540  *
3541  * @param dev
3542  * @param txq
3543  */
3544 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3545                                   struct clx2_tx_queue *txq)
3546 {
3547         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3548         struct pci_dev *dev = priv->pci_dev;
3549         int i;
3550
3551         /* classify bd */
3552         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3553                 /* nothing to cleanup after for host commands */
3554                 return;
3555
3556         /* sanity check */
3557         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3558                 IPW_ERROR("Too many chunks: %i\n",
3559                           le32_to_cpu(bd->u.data.num_chunks));
3560                 /** @todo issue fatal error, it is quite serious situation */
3561                 return;
3562         }
3563
3564         /* unmap chunks if any */
3565         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3566                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3567                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3568                                  PCI_DMA_TODEVICE);
3569                 if (txq->txb[txq->q.last_used]) {
3570                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3571                         txq->txb[txq->q.last_used] = NULL;
3572                 }
3573         }
3574 }
3575
3576 /**
3577  * Deallocate DMA queue.
3578  *
3579  * Empty queue by removing and destroying all BD's.
3580  * Free all buffers.
3581  *
3582  * @param dev
3583  * @param q
3584  */
3585 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3586 {
3587         struct clx2_queue *q = &txq->q;
3588         struct pci_dev *dev = priv->pci_dev;
3589
3590         if (q->n_bd == 0)
3591                 return;
3592
3593         /* first, empty all BD's */
3594         for (; q->first_empty != q->last_used;
3595              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3596                 ipw_queue_tx_free_tfd(priv, txq);
3597         }
3598
3599         /* free buffers belonging to queue itself */
3600         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3601                             q->dma_addr);
3602         kfree(txq->txb);
3603
3604         /* 0 fill whole structure */
3605         memset(txq, 0, sizeof(*txq));
3606 }
3607
3608 /**
3609  * Destroy all DMA queues and structures
3610  *
3611  * @param priv
3612  */
3613 static void ipw_tx_queue_free(struct ipw_priv *priv)
3614 {
3615         /* Tx CMD queue */
3616         ipw_queue_tx_free(priv, &priv->txq_cmd);
3617
3618         /* Tx queues */
3619         ipw_queue_tx_free(priv, &priv->txq[0]);
3620         ipw_queue_tx_free(priv, &priv->txq[1]);
3621         ipw_queue_tx_free(priv, &priv->txq[2]);
3622         ipw_queue_tx_free(priv, &priv->txq[3]);
3623 }
3624
3625 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3626 {
3627         /* First 3 bytes are manufacturer */
3628         bssid[0] = priv->mac_addr[0];
3629         bssid[1] = priv->mac_addr[1];
3630         bssid[2] = priv->mac_addr[2];
3631
3632         /* Last bytes are random */
3633         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3634
3635         bssid[0] &= 0xfe;       /* clear multicast bit */
3636         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3637 }
3638
3639 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3640 {
3641         struct ipw_station_entry entry;
3642         int i;
3643
3644         for (i = 0; i < priv->num_stations; i++) {
3645                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3646                         /* Another node is active in network */
3647                         priv->missed_adhoc_beacons = 0;
3648                         if (!(priv->config & CFG_STATIC_CHANNEL))
3649                                 /* when other nodes drop out, we drop out */
3650                                 priv->config &= ~CFG_ADHOC_PERSIST;
3651
3652                         return i;
3653                 }
3654         }
3655
3656         if (i == MAX_STATIONS)
3657                 return IPW_INVALID_STATION;
3658
3659         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3660
3661         entry.reserved = 0;
3662         entry.support_mode = 0;
3663         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3664         memcpy(priv->stations[i], bssid, ETH_ALEN);
3665         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3666                          &entry, sizeof(entry));
3667         priv->num_stations++;
3668
3669         return i;
3670 }
3671
3672 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3673 {
3674         int i;
3675
3676         for (i = 0; i < priv->num_stations; i++)
3677                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3678                         return i;
3679
3680         return IPW_INVALID_STATION;
3681 }
3682
3683 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3684 {
3685         int err;
3686
3687         if (priv->status & STATUS_ASSOCIATING) {
3688                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3689                 queue_work(priv->workqueue, &priv->disassociate);
3690                 return;
3691         }
3692
3693         if (!(priv->status & STATUS_ASSOCIATED)) {
3694                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3695                 return;
3696         }
3697
3698         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3699                         "on channel %d.\n",
3700                         MAC_ARG(priv->assoc_request.bssid),
3701                         priv->assoc_request.channel);
3702
3703         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3704         priv->status |= STATUS_DISASSOCIATING;
3705
3706         if (quiet)
3707                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3708         else
3709                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3710
3711         err = ipw_send_associate(priv, &priv->assoc_request);
3712         if (err) {
3713                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3714                              "failed.\n");
3715                 return;
3716         }
3717
3718 }
3719
3720 static int ipw_disassociate(void *data)
3721 {
3722         struct ipw_priv *priv = data;
3723         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3724                 return 0;
3725         ipw_send_disassociate(data, 0);
3726         return 1;
3727 }
3728
3729 static void ipw_bg_disassociate(void *data)
3730 {
3731         struct ipw_priv *priv = data;
3732         mutex_lock(&priv->mutex);
3733         ipw_disassociate(data);
3734         mutex_unlock(&priv->mutex);
3735 }
3736
3737 static void ipw_system_config(void *data)
3738 {
3739         struct ipw_priv *priv = data;
3740         ipw_send_system_config(priv, &priv->sys_config);
3741 }
3742
3743 struct ipw_status_code {
3744         u16 status;
3745         const char *reason;
3746 };
3747
3748 static const struct ipw_status_code ipw_status_codes[] = {
3749         {0x00, "Successful"},
3750         {0x01, "Unspecified failure"},
3751         {0x0A, "Cannot support all requested capabilities in the "
3752          "Capability information field"},
3753         {0x0B, "Reassociation denied due to inability to confirm that "
3754          "association exists"},
3755         {0x0C, "Association denied due to reason outside the scope of this "
3756          "standard"},
3757         {0x0D,
3758          "Responding station does not support the specified authentication "
3759          "algorithm"},
3760         {0x0E,
3761          "Received an Authentication frame with authentication sequence "
3762          "transaction sequence number out of expected sequence"},
3763         {0x0F, "Authentication rejected because of challenge failure"},
3764         {0x10, "Authentication rejected due to timeout waiting for next "
3765          "frame in sequence"},
3766         {0x11, "Association denied because AP is unable to handle additional "
3767          "associated stations"},
3768         {0x12,
3769          "Association denied due to requesting station not supporting all "
3770          "of the datarates in the BSSBasicServiceSet Parameter"},
3771         {0x13,
3772          "Association denied due to requesting station not supporting "
3773          "short preamble operation"},
3774         {0x14,
3775          "Association denied due to requesting station not supporting "
3776          "PBCC encoding"},
3777         {0x15,
3778          "Association denied due to requesting station not supporting "
3779          "channel agility"},
3780         {0x19,
3781          "Association denied due to requesting station not supporting "
3782          "short slot operation"},
3783         {0x1A,
3784          "Association denied due to requesting station not supporting "
3785          "DSSS-OFDM operation"},
3786         {0x28, "Invalid Information Element"},
3787         {0x29, "Group Cipher is not valid"},
3788         {0x2A, "Pairwise Cipher is not valid"},
3789         {0x2B, "AKMP is not valid"},
3790         {0x2C, "Unsupported RSN IE version"},
3791         {0x2D, "Invalid RSN IE Capabilities"},
3792         {0x2E, "Cipher suite is rejected per security policy"},
3793 };
3794
3795 #ifdef CONFIG_IPW2200_DEBUG
3796 static const char *ipw_get_status_code(u16 status)
3797 {
3798         int i;
3799         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3800                 if (ipw_status_codes[i].status == (status & 0xff))
3801                         return ipw_status_codes[i].reason;
3802         return "Unknown status value.";
3803 }
3804 #endif
3805
3806 static void inline average_init(struct average *avg)
3807 {
3808         memset(avg, 0, sizeof(*avg));
3809 }
3810
3811 static void average_add(struct average *avg, s16 val)
3812 {
3813         avg->sum -= avg->entries[avg->pos];
3814         avg->sum += val;
3815         avg->entries[avg->pos++] = val;
3816         if (unlikely(avg->pos == AVG_ENTRIES)) {
3817                 avg->init = 1;
3818                 avg->pos = 0;
3819         }
3820 }
3821
3822 static s16 average_value(struct average *avg)
3823 {
3824         if (!unlikely(avg->init)) {
3825                 if (avg->pos)
3826                         return avg->sum / avg->pos;
3827                 return 0;
3828         }
3829
3830         return avg->sum / AVG_ENTRIES;
3831 }
3832
3833 static void ipw_reset_stats(struct ipw_priv *priv)
3834 {
3835         u32 len = sizeof(u32);
3836
3837         priv->quality = 0;
3838
3839         average_init(&priv->average_missed_beacons);
3840         average_init(&priv->average_rssi);
3841         average_init(&priv->average_noise);
3842
3843         priv->last_rate = 0;
3844         priv->last_missed_beacons = 0;
3845         priv->last_rx_packets = 0;
3846         priv->last_tx_packets = 0;
3847         priv->last_tx_failures = 0;
3848
3849         /* Firmware managed, reset only when NIC is restarted, so we have to
3850          * normalize on the current value */
3851         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3852                         &priv->last_rx_err, &len);
3853         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3854                         &priv->last_tx_failures, &len);
3855
3856         /* Driver managed, reset with each association */
3857         priv->missed_adhoc_beacons = 0;
3858         priv->missed_beacons = 0;
3859         priv->tx_packets = 0;
3860         priv->rx_packets = 0;
3861
3862 }
3863
3864 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3865 {
3866         u32 i = 0x80000000;
3867         u32 mask = priv->rates_mask;
3868         /* If currently associated in B mode, restrict the maximum
3869          * rate match to B rates */
3870         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3871                 mask &= IEEE80211_CCK_RATES_MASK;
3872
3873         /* TODO: Verify that the rate is supported by the current rates
3874          * list. */
3875
3876         while (i && !(mask & i))
3877                 i >>= 1;
3878         switch (i) {
3879         case IEEE80211_CCK_RATE_1MB_MASK:
3880                 return 1000000;
3881         case IEEE80211_CCK_RATE_2MB_MASK:
3882                 return 2000000;
3883         case IEEE80211_CCK_RATE_5MB_MASK:
3884                 return 5500000;
3885         case IEEE80211_OFDM_RATE_6MB_MASK:
3886                 return 6000000;
3887         case IEEE80211_OFDM_RATE_9MB_MASK:
3888                 return 9000000;
3889         case IEEE80211_CCK_RATE_11MB_MASK:
3890                 return 11000000;
3891         case IEEE80211_OFDM_RATE_12MB_MASK:
3892                 return 12000000;
3893         case IEEE80211_OFDM_RATE_18MB_MASK:
3894                 return 18000000;
3895         case IEEE80211_OFDM_RATE_24MB_MASK:
3896                 return 24000000;
3897         case IEEE80211_OFDM_RATE_36MB_MASK:
3898                 return 36000000;
3899         case IEEE80211_OFDM_RATE_48MB_MASK:
3900                 return 48000000;
3901         case IEEE80211_OFDM_RATE_54MB_MASK:
3902                 return 54000000;
3903         }
3904
3905         if (priv->ieee->mode == IEEE_B)
3906                 return 11000000;
3907         else
3908                 return 54000000;
3909 }
3910
3911 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3912 {
3913         u32 rate, len = sizeof(rate);
3914         int err;
3915
3916         if (!(priv->status & STATUS_ASSOCIATED))
3917                 return 0;
3918
3919         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3920                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3921                                       &len);
3922                 if (err) {
3923                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3924                         return 0;
3925                 }
3926         } else
3927                 return ipw_get_max_rate(priv);
3928
3929         switch (rate) {
3930         case IPW_TX_RATE_1MB:
3931                 return 1000000;
3932         case IPW_TX_RATE_2MB:
3933                 return 2000000;
3934         case IPW_TX_RATE_5MB:
3935                 return 5500000;
3936         case IPW_TX_RATE_6MB:
3937                 return 6000000;
3938         case IPW_TX_RATE_9MB:
3939                 return 9000000;
3940         case IPW_TX_RATE_11MB:
3941                 return 11000000;
3942         case IPW_TX_RATE_12MB:
3943                 return 12000000;
3944         case IPW_TX_RATE_18MB:
3945                 return 18000000;
3946         case IPW_TX_RATE_24MB:
3947                 return 24000000;
3948         case IPW_TX_RATE_36MB:
3949                 return 36000000;
3950         case IPW_TX_RATE_48MB:
3951                 return 48000000;
3952         case IPW_TX_RATE_54MB:
3953                 return 54000000;
3954         }
3955
3956         return 0;
3957 }
3958
3959 #define IPW_STATS_INTERVAL (2 * HZ)
3960 static void ipw_gather_stats(struct ipw_priv *priv)
3961 {
3962         u32 rx_err, rx_err_delta, rx_packets_delta;
3963         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3964         u32 missed_beacons_percent, missed_beacons_delta;
3965         u32 quality = 0;
3966         u32 len = sizeof(u32);
3967         s16 rssi;
3968         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3969             rate_quality;
3970         u32 max_rate;
3971
3972         if (!(priv->status & STATUS_ASSOCIATED)) {
3973                 priv->quality = 0;
3974                 return;
3975         }
3976
3977         /* Update the statistics */
3978         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3979                         &priv->missed_beacons, &len);
3980         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3981         priv->last_missed_beacons = priv->missed_beacons;
3982         if (priv->assoc_request.beacon_interval) {
3983                 missed_beacons_percent = missed_beacons_delta *
3984                     (HZ * priv->assoc_request.beacon_interval) /
3985                     (IPW_STATS_INTERVAL * 10);
3986         } else {
3987                 missed_beacons_percent = 0;
3988         }
3989         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3990
3991         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3992         rx_err_delta = rx_err - priv->last_rx_err;
3993         priv->last_rx_err = rx_err;
3994
3995         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3996         tx_failures_delta = tx_failures - priv->last_tx_failures;
3997         priv->last_tx_failures = tx_failures;
3998
3999         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4000         priv->last_rx_packets = priv->rx_packets;
4001
4002         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4003         priv->last_tx_packets = priv->tx_packets;
4004
4005         /* Calculate quality based on the following:
4006          *
4007          * Missed beacon: 100% = 0, 0% = 70% missed
4008          * Rate: 60% = 1Mbs, 100% = Max
4009          * Rx and Tx errors represent a straight % of total Rx/Tx
4010          * RSSI: 100% = > -50,  0% = < -80
4011          * Rx errors: 100% = 0, 0% = 50% missed
4012          *
4013          * The lowest computed quality is used.
4014          *
4015          */
4016 #define BEACON_THRESHOLD 5
4017         beacon_quality = 100 - missed_beacons_percent;
4018         if (beacon_quality < BEACON_THRESHOLD)
4019                 beacon_quality = 0;
4020         else
4021                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4022                     (100 - BEACON_THRESHOLD);
4023         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4024                         beacon_quality, missed_beacons_percent);
4025
4026         priv->last_rate = ipw_get_current_rate(priv);
4027         max_rate = ipw_get_max_rate(priv);
4028         rate_quality = priv->last_rate * 40 / max_rate + 60;
4029         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4030                         rate_quality, priv->last_rate / 1000000);
4031
4032         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4033                 rx_quality = 100 - (rx_err_delta * 100) /
4034                     (rx_packets_delta + rx_err_delta);
4035         else
4036                 rx_quality = 100;
4037         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4038                         rx_quality, rx_err_delta, rx_packets_delta);
4039
4040         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4041                 tx_quality = 100 - (tx_failures_delta * 100) /
4042                     (tx_packets_delta + tx_failures_delta);
4043         else
4044                 tx_quality = 100;
4045         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4046                         tx_quality, tx_failures_delta, tx_packets_delta);
4047
4048         rssi = average_value(&priv->average_rssi);
4049         signal_quality =
4050             (100 *
4051              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4052              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4053              (priv->ieee->perfect_rssi - rssi) *
4054              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4055               62 * (priv->ieee->perfect_rssi - rssi))) /
4056             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4057              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4058         if (signal_quality > 100)
4059                 signal_quality = 100;
4060         else if (signal_quality < 1)
4061                 signal_quality = 0;
4062
4063         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4064                         signal_quality, rssi);
4065
4066         quality = min(beacon_quality,
4067                       min(rate_quality,
4068                           min(tx_quality, min(rx_quality, signal_quality))));
4069         if (quality == beacon_quality)
4070                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4071                                 quality);
4072         if (quality == rate_quality)
4073                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4074                                 quality);
4075         if (quality == tx_quality)
4076                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4077                                 quality);
4078         if (quality == rx_quality)
4079                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4080                                 quality);
4081         if (quality == signal_quality)
4082                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4083                                 quality);
4084
4085         priv->quality = quality;
4086
4087         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4088                            IPW_STATS_INTERVAL);
4089 }
4090
4091 static void ipw_bg_gather_stats(void *data)
4092 {
4093         struct ipw_priv *priv = data;
4094         mutex_lock(&priv->mutex);
4095         ipw_gather_stats(data);
4096         mutex_unlock(&priv->mutex);
4097 }
4098
4099 /* Missed beacon behavior:
4100  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4101  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4102  * Above disassociate threshold, give up and stop scanning.
4103  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4104 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4105                                             int missed_count)
4106 {
4107         priv->notif_missed_beacons = missed_count;
4108
4109         if (missed_count > priv->disassociate_threshold &&
4110             priv->status & STATUS_ASSOCIATED) {
4111                 /* If associated and we've hit the missed
4112                  * beacon threshold, disassociate, turn
4113                  * off roaming, and abort any active scans */
4114                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4115                           IPW_DL_STATE | IPW_DL_ASSOC,
4116                           "Missed beacon: %d - disassociate\n", missed_count);
4117                 priv->status &= ~STATUS_ROAMING;
4118                 if (priv->status & STATUS_SCANNING) {
4119                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4120                                   IPW_DL_STATE,
4121                                   "Aborting scan with missed beacon.\n");
4122                         queue_work(priv->workqueue, &priv->abort_scan);
4123                 }
4124
4125                 queue_work(priv->workqueue, &priv->disassociate);
4126                 return;
4127         }
4128
4129         if (priv->status & STATUS_ROAMING) {
4130                 /* If we are currently roaming, then just
4131                  * print a debug statement... */
4132                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4133                           "Missed beacon: %d - roam in progress\n",
4134                           missed_count);
4135                 return;
4136         }
4137
4138         if (roaming &&
4139             (missed_count > priv->roaming_threshold &&
4140              missed_count <= priv->disassociate_threshold)) {
4141                 /* If we are not already roaming, set the ROAM
4142                  * bit in the status and kick off a scan.
4143                  * This can happen several times before we reach
4144                  * disassociate_threshold. */
4145                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4146                           "Missed beacon: %d - initiate "
4147                           "roaming\n", missed_count);
4148                 if (!(priv->status & STATUS_ROAMING)) {
4149                         priv->status |= STATUS_ROAMING;
4150                         if (!(priv->status & STATUS_SCANNING))
4151                                 queue_work(priv->workqueue,
4152                                            &priv->request_scan);
4153                 }
4154                 return;
4155         }
4156
4157         if (priv->status & STATUS_SCANNING) {
4158                 /* Stop scan to keep fw from getting
4159                  * stuck (only if we aren't roaming --
4160                  * otherwise we'll never scan more than 2 or 3
4161                  * channels..) */
4162                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4163                           "Aborting scan with missed beacon.\n");
4164                 queue_work(priv->workqueue, &priv->abort_scan);
4165         }
4166
4167         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4168 }
4169
4170 /**
4171  * Handle host notification packet.
4172  * Called from interrupt routine
4173  */
4174 static void ipw_rx_notification(struct ipw_priv *priv,
4175                                        struct ipw_rx_notification *notif)
4176 {
4177         notif->size = le16_to_cpu(notif->size);
4178
4179         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4180
4181         switch (notif->subtype) {
4182         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4183                         struct notif_association *assoc = &notif->u.assoc;
4184
4185                         switch (assoc->state) {
4186                         case CMAS_ASSOCIATED:{
4187                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4188                                                   IPW_DL_ASSOC,
4189                                                   "associated: '%s' " MAC_FMT
4190                                                   " \n",
4191                                                   escape_essid(priv->essid,
4192                                                                priv->essid_len),
4193                                                   MAC_ARG(priv->bssid));
4194
4195                                         switch (priv->ieee->iw_mode) {
4196                                         case IW_MODE_INFRA:
4197                                                 memcpy(priv->ieee->bssid,
4198                                                        priv->bssid, ETH_ALEN);
4199                                                 break;
4200
4201                                         case IW_MODE_ADHOC:
4202                                                 memcpy(priv->ieee->bssid,
4203                                                        priv->bssid, ETH_ALEN);
4204
4205                                                 /* clear out the station table */
4206                                                 priv->num_stations = 0;
4207
4208                                                 IPW_DEBUG_ASSOC
4209                                                     ("queueing adhoc check\n");
4210                                                 queue_delayed_work(priv->
4211                                                                    workqueue,
4212                                                                    &priv->
4213                                                                    adhoc_check,
4214                                                                    priv->
4215                                                                    assoc_request.
4216                                                                    beacon_interval);
4217                                                 break;
4218                                         }
4219
4220                                         priv->status &= ~STATUS_ASSOCIATING;
4221                                         priv->status |= STATUS_ASSOCIATED;
4222                                         queue_work(priv->workqueue,
4223                                                    &priv->system_config);
4224
4225 #ifdef CONFIG_IPW_QOS
4226 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4227                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4228                                         if ((priv->status & STATUS_AUTH) &&
4229                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4230                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4231                                                 if ((sizeof
4232                                                      (struct
4233                                                       ieee80211_assoc_response)
4234                                                      <= notif->size)
4235                                                     && (notif->size <= 2314)) {
4236                                                         struct
4237                                                         ieee80211_rx_stats
4238                                                             stats = {
4239                                                                 .len =
4240                                                                     notif->
4241                                                                     size - 1,
4242                                                         };
4243
4244                                                         IPW_DEBUG_QOS
4245                                                             ("QoS Associate "
4246                                                              "size %d\n",
4247                                                              notif->size);
4248                                                         ieee80211_rx_mgt(priv->
4249                                                                          ieee,
4250                                                                          (struct
4251                                                                           ieee80211_hdr_4addr
4252                                                                           *)
4253                                                                          &notif->u.raw, &stats);
4254                                                 }
4255                                         }
4256 #endif
4257
4258                                         schedule_work(&priv->link_up);
4259
4260                                         break;
4261                                 }
4262
4263                         case CMAS_AUTHENTICATED:{
4264                                         if (priv->
4265                                             status & (STATUS_ASSOCIATED |
4266                                                       STATUS_AUTH)) {
4267 #ifdef CONFIG_IPW2200_DEBUG
4268                                                 struct notif_authenticate *auth
4269                                                     = &notif->u.auth;
4270                                                 IPW_DEBUG(IPW_DL_NOTIF |
4271                                                           IPW_DL_STATE |
4272                                                           IPW_DL_ASSOC,
4273                                                           "deauthenticated: '%s' "
4274                                                           MAC_FMT
4275                                                           ": (0x%04X) - %s \n",
4276                                                           escape_essid(priv->
4277                                                                        essid,
4278                                                                        priv->
4279                                                                        essid_len),
4280                                                           MAC_ARG(priv->bssid),
4281                                                           ntohs(auth->status),
4282                                                           ipw_get_status_code
4283                                                           (ntohs
4284                                                            (auth->status)));
4285 #endif
4286
4287                                                 priv->status &=
4288                                                     ~(STATUS_ASSOCIATING |
4289                                                       STATUS_AUTH |
4290                                                       STATUS_ASSOCIATED);
4291
4292                                                 schedule_work(&priv->link_down);
4293                                                 break;
4294                                         }
4295
4296                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4297                                                   IPW_DL_ASSOC,
4298                                                   "authenticated: '%s' " MAC_FMT
4299                                                   "\n",
4300                                                   escape_essid(priv->essid,
4301                                                                priv->essid_len),
4302                                                   MAC_ARG(priv->bssid));
4303                                         break;
4304                                 }
4305
4306                         case CMAS_INIT:{
4307                                         if (priv->status & STATUS_AUTH) {
4308                                                 struct
4309                                                     ieee80211_assoc_response
4310                                                 *resp;
4311                                                 resp =
4312                                                     (struct
4313                                                      ieee80211_assoc_response
4314                                                      *)&notif->u.raw;
4315                                                 IPW_DEBUG(IPW_DL_NOTIF |
4316                                                           IPW_DL_STATE |
4317                                                           IPW_DL_ASSOC,
4318                                                           "association failed (0x%04X): %s\n",
4319                                                           ntohs(resp->status),
4320                                                           ipw_get_status_code
4321                                                           (ntohs
4322                                                            (resp->status)));
4323                                         }
4324
4325                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4326                                                   IPW_DL_ASSOC,
4327                                                   "disassociated: '%s' " MAC_FMT
4328                                                   " \n",
4329                                                   escape_essid(priv->essid,
4330                                                                priv->essid_len),
4331                                                   MAC_ARG(priv->bssid));
4332
4333                                         priv->status &=
4334                                             ~(STATUS_DISASSOCIATING |
4335                                               STATUS_ASSOCIATING |
4336                                               STATUS_ASSOCIATED | STATUS_AUTH);
4337                                         if (priv->assoc_network
4338                                             && (priv->assoc_network->
4339                                                 capability &
4340                                                 WLAN_CAPABILITY_IBSS))
4341                                                 ipw_remove_current_network
4342                                                     (priv);
4343
4344                                         schedule_work(&priv->link_down);
4345
4346                                         break;
4347                                 }
4348
4349                         case CMAS_RX_ASSOC_RESP:
4350                                 break;
4351
4352                         default:
4353                                 IPW_ERROR("assoc: unknown (%d)\n",
4354                                           assoc->state);
4355                                 break;
4356                         }
4357
4358                         break;
4359                 }
4360
4361         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4362                         struct notif_authenticate *auth = &notif->u.auth;
4363                         switch (auth->state) {
4364                         case CMAS_AUTHENTICATED:
4365                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4366                                           "authenticated: '%s' " MAC_FMT " \n",
4367                                           escape_essid(priv->essid,
4368                                                        priv->essid_len),
4369                                           MAC_ARG(priv->bssid));
4370                                 priv->status |= STATUS_AUTH;
4371                                 break;
4372
4373                         case CMAS_INIT:
4374                                 if (priv->status & STATUS_AUTH) {
4375                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4376                                                   IPW_DL_ASSOC,
4377                                                   "authentication failed (0x%04X): %s\n",
4378                                                   ntohs(auth->status),
4379                                                   ipw_get_status_code(ntohs
4380                                                                       (auth->
4381                                                                        status)));
4382                                 }
4383                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4384                                           IPW_DL_ASSOC,
4385                                           "deauthenticated: '%s' " MAC_FMT "\n",
4386                                           escape_essid(priv->essid,
4387                                                        priv->essid_len),
4388                                           MAC_ARG(priv->bssid));
4389
4390                                 priv->status &= ~(STATUS_ASSOCIATING |
4391                                                   STATUS_AUTH |
4392                                                   STATUS_ASSOCIATED);
4393
4394                                 schedule_work(&priv->link_down);
4395                                 break;
4396
4397                         case CMAS_TX_AUTH_SEQ_1:
4398                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4399                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4400                                 break;
4401                         case CMAS_RX_AUTH_SEQ_2:
4402                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4403                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4404                                 break;
4405                         case CMAS_AUTH_SEQ_1_PASS:
4406                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4407                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4408                                 break;
4409                         case CMAS_AUTH_SEQ_1_FAIL:
4410                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4411                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4412                                 break;
4413                         case CMAS_TX_AUTH_SEQ_3:
4414                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4415                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4416                                 break;
4417                         case CMAS_RX_AUTH_SEQ_4:
4418                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4419                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4420                                 break;
4421                         case CMAS_AUTH_SEQ_2_PASS:
4422                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4423                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4424                                 break;
4425                         case CMAS_AUTH_SEQ_2_FAIL:
4426                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4427                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4428                                 break;
4429                         case CMAS_TX_ASSOC:
4430                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4431                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4432                                 break;
4433                         case CMAS_RX_ASSOC_RESP:
4434                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4435                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4436
4437                                 break;
4438                         case CMAS_ASSOCIATED:
4439                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4440                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4441                                 break;
4442                         default:
4443                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4444                                                 auth->state);
4445                                 break;
4446                         }
4447                         break;
4448                 }
4449
4450         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4451                         struct notif_channel_result *x =
4452                             &notif->u.channel_result;
4453
4454                         if (notif->size == sizeof(*x)) {
4455                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4456                                                x->channel_num);
4457                         } else {
4458                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4459                                                "(should be %zd)\n",
4460                                                notif->size, sizeof(*x));
4461                         }
4462                         break;
4463                 }
4464
4465         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4466                         struct notif_scan_complete *x = &notif->u.scan_complete;
4467                         if (notif->size == sizeof(*x)) {
4468                                 IPW_DEBUG_SCAN
4469                                     ("Scan completed: type %d, %d channels, "
4470                                      "%d status\n", x->scan_type,
4471                                      x->num_channels, x->status);
4472                         } else {
4473                                 IPW_ERROR("Scan completed of wrong size %d "
4474                                           "(should be %zd)\n",
4475                                           notif->size, sizeof(*x));
4476                         }
4477
4478                         priv->status &=
4479                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4480
4481                         wake_up_interruptible(&priv->wait_state);
4482                         cancel_delayed_work(&priv->scan_check);
4483
4484                         if (priv->status & STATUS_EXIT_PENDING)
4485                                 break;
4486
4487                         priv->ieee->scans++;
4488
4489 #ifdef CONFIG_IPW2200_MONITOR
4490                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4491                                 priv->status |= STATUS_SCAN_FORCED;
4492                                 queue_work(priv->workqueue,
4493                                            &priv->request_scan);
4494                                 break;
4495                         }
4496                         priv->status &= ~STATUS_SCAN_FORCED;
4497 #endif                          /* CONFIG_IPW2200_MONITOR */
4498
4499                         if (!(priv->status & (STATUS_ASSOCIATED |
4500                                               STATUS_ASSOCIATING |
4501                                               STATUS_ROAMING |
4502                                               STATUS_DISASSOCIATING)))
4503                                 queue_work(priv->workqueue, &priv->associate);
4504                         else if (priv->status & STATUS_ROAMING) {
4505                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4506                                         /* If a scan completed and we are in roam mode, then
4507                                          * the scan that completed was the one requested as a
4508                                          * result of entering roam... so, schedule the
4509                                          * roam work */
4510                                         queue_work(priv->workqueue,
4511                                                    &priv->roam);
4512                                 else
4513                                         /* Don't schedule if we aborted the scan */
4514                                         priv->status &= ~STATUS_ROAMING;
4515                         } else if (priv->status & STATUS_SCAN_PENDING)
4516                                 queue_work(priv->workqueue,
4517                                            &priv->request_scan);
4518                         else if (priv->config & CFG_BACKGROUND_SCAN
4519                                  && priv->status & STATUS_ASSOCIATED)
4520                                 queue_delayed_work(priv->workqueue,
4521                                                    &priv->request_scan, HZ);
4522                         break;
4523                 }
4524
4525         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4526                         struct notif_frag_length *x = &notif->u.frag_len;
4527
4528                         if (notif->size == sizeof(*x))
4529                                 IPW_ERROR("Frag length: %d\n",
4530                                           le16_to_cpu(x->frag_length));
4531                         else
4532                                 IPW_ERROR("Frag length of wrong size %d "
4533                                           "(should be %zd)\n",
4534                                           notif->size, sizeof(*x));
4535                         break;
4536                 }
4537
4538         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4539                         struct notif_link_deterioration *x =
4540                             &notif->u.link_deterioration;
4541
4542                         if (notif->size == sizeof(*x)) {
4543                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4544                                           "link deterioration: '%s' " MAC_FMT
4545                                           " \n", escape_essid(priv->essid,
4546                                                               priv->essid_len),
4547                                           MAC_ARG(priv->bssid));
4548                                 memcpy(&priv->last_link_deterioration, x,
4549                                        sizeof(*x));
4550                         } else {
4551                                 IPW_ERROR("Link Deterioration of wrong size %d "
4552                                           "(should be %zd)\n",
4553                                           notif->size, sizeof(*x));
4554                         }
4555                         break;
4556                 }
4557
4558         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4559                         IPW_ERROR("Dino config\n");
4560                         if (priv->hcmd
4561                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4562                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4563
4564                         break;
4565                 }
4566
4567         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4568                         struct notif_beacon_state *x = &notif->u.beacon_state;
4569                         if (notif->size != sizeof(*x)) {
4570                                 IPW_ERROR
4571                                     ("Beacon state of wrong size %d (should "
4572                                      "be %zd)\n", notif->size, sizeof(*x));
4573                                 break;
4574                         }
4575
4576                         if (le32_to_cpu(x->state) ==
4577                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4578                                 ipw_handle_missed_beacon(priv,
4579                                                          le32_to_cpu(x->
4580                                                                      number));
4581
4582                         break;
4583                 }
4584
4585         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4586                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4587                         if (notif->size == sizeof(*x)) {
4588                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4589                                           "0x%02x station %d\n",
4590                                           x->key_state, x->security_type,
4591                                           x->station_index);
4592                                 break;
4593                         }
4594
4595                         IPW_ERROR
4596                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4597                              notif->size, sizeof(*x));
4598                         break;
4599                 }
4600
4601         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4602                         struct notif_calibration *x = &notif->u.calibration;
4603
4604                         if (notif->size == sizeof(*x)) {
4605                                 memcpy(&priv->calib, x, sizeof(*x));
4606                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4607                                 break;
4608                         }
4609
4610                         IPW_ERROR
4611                             ("Calibration of wrong size %d (should be %zd)\n",
4612                              notif->size, sizeof(*x));
4613                         break;
4614                 }
4615
4616         case HOST_NOTIFICATION_NOISE_STATS:{
4617                         if (notif->size == sizeof(u32)) {
4618                                 priv->last_noise =
4619                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4620                                           0xff);
4621                                 average_add(&priv->average_noise,
4622                                             priv->last_noise);
4623                                 break;
4624                         }
4625
4626                         IPW_ERROR
4627                             ("Noise stat is wrong size %d (should be %zd)\n",
4628                              notif->size, sizeof(u32));
4629                         break;
4630                 }
4631
4632         default:
4633                 IPW_DEBUG_NOTIF("Unknown notification: "
4634                                 "subtype=%d,flags=0x%2x,size=%d\n",
4635                                 notif->subtype, notif->flags, notif->size);
4636         }
4637 }
4638
4639 /**
4640  * Destroys all DMA structures and initialise them again
4641  *
4642  * @param priv
4643  * @return error code
4644  */
4645 static int ipw_queue_reset(struct ipw_priv *priv)
4646 {
4647         int rc = 0;
4648         /** @todo customize queue sizes */
4649         int nTx = 64, nTxCmd = 8;
4650         ipw_tx_queue_free(priv);
4651         /* Tx CMD queue */
4652         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4653                                IPW_TX_CMD_QUEUE_READ_INDEX,
4654                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4655                                IPW_TX_CMD_QUEUE_BD_BASE,
4656                                IPW_TX_CMD_QUEUE_BD_SIZE);
4657         if (rc) {
4658                 IPW_ERROR("Tx Cmd queue init failed\n");
4659                 goto error;
4660         }
4661         /* Tx queue(s) */
4662         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4663                                IPW_TX_QUEUE_0_READ_INDEX,
4664                                IPW_TX_QUEUE_0_WRITE_INDEX,
4665                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4666         if (rc) {
4667                 IPW_ERROR("Tx 0 queue init failed\n");
4668                 goto error;
4669         }
4670         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4671                                IPW_TX_QUEUE_1_READ_INDEX,
4672                                IPW_TX_QUEUE_1_WRITE_INDEX,
4673                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4674         if (rc) {
4675                 IPW_ERROR("Tx 1 queue init failed\n");
4676                 goto error;
4677         }
4678         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4679                                IPW_TX_QUEUE_2_READ_INDEX,
4680                                IPW_TX_QUEUE_2_WRITE_INDEX,
4681                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4682         if (rc) {
4683                 IPW_ERROR("Tx 2 queue init failed\n");
4684                 goto error;
4685         }
4686         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4687                                IPW_TX_QUEUE_3_READ_INDEX,
4688                                IPW_TX_QUEUE_3_WRITE_INDEX,
4689                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4690         if (rc) {
4691                 IPW_ERROR("Tx 3 queue init failed\n");
4692                 goto error;
4693         }
4694         /* statistics */
4695         priv->rx_bufs_min = 0;
4696         priv->rx_pend_max = 0;
4697         return rc;
4698
4699       error:
4700         ipw_tx_queue_free(priv);
4701         return rc;
4702 }
4703
4704 /**
4705  * Reclaim Tx queue entries no more used by NIC.
4706  *
4707  * When FW adwances 'R' index, all entries between old and
4708  * new 'R' index need to be reclaimed. As result, some free space
4709  * forms. If there is enough free space (> low mark), wake Tx queue.
4710  *
4711  * @note Need to protect against garbage in 'R' index
4712  * @param priv
4713  * @param txq
4714  * @param qindex
4715  * @return Number of used entries remains in the queue
4716  */
4717 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4718                                 struct clx2_tx_queue *txq, int qindex)
4719 {
4720         u32 hw_tail;
4721         int used;
4722         struct clx2_queue *q = &txq->q;
4723
4724         hw_tail = ipw_read32(priv, q->reg_r);
4725         if (hw_tail >= q->n_bd) {
4726                 IPW_ERROR
4727                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4728                      hw_tail, q->n_bd);
4729                 goto done;
4730         }
4731         for (; q->last_used != hw_tail;
4732              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4733                 ipw_queue_tx_free_tfd(priv, txq);
4734                 priv->tx_packets++;
4735         }
4736       done:
4737         if ((ipw_queue_space(q) > q->low_mark) &&
4738             (qindex >= 0) &&
4739             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4740                 netif_wake_queue(priv->net_dev);
4741         used = q->first_empty - q->last_used;
4742         if (used < 0)
4743                 used += q->n_bd;
4744
4745         return used;
4746 }
4747
4748 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4749                              int len, int sync)
4750 {
4751         struct clx2_tx_queue *txq = &priv->txq_cmd;
4752         struct clx2_queue *q = &txq->q;
4753         struct tfd_frame *tfd;
4754
4755         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4756                 IPW_ERROR("No space for Tx\n");
4757                 return -EBUSY;
4758         }
4759
4760         tfd = &txq->bd[q->first_empty];
4761         txq->txb[q->first_empty] = NULL;
4762
4763         memset(tfd, 0, sizeof(*tfd));
4764         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4765         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4766         priv->hcmd_seq++;
4767         tfd->u.cmd.index = hcmd;
4768         tfd->u.cmd.length = len;
4769         memcpy(tfd->u.cmd.payload, buf, len);
4770         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4771         ipw_write32(priv, q->reg_w, q->first_empty);
4772         _ipw_read32(priv, 0x90);
4773
4774         return 0;
4775 }
4776
4777 /*
4778  * Rx theory of operation
4779  *
4780  * The host allocates 32 DMA target addresses and passes the host address
4781  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4782  * 0 to 31
4783  *
4784  * Rx Queue Indexes
4785  * The host/firmware share two index registers for managing the Rx buffers.
4786  *
4787  * The READ index maps to the first position that the firmware may be writing
4788  * to -- the driver can read up to (but not including) this position and get
4789  * good data.
4790  * The READ index is managed by the firmware once the card is enabled.
4791  *
4792  * The WRITE index maps to the last position the driver has read from -- the
4793  * position preceding WRITE is the last slot the firmware can place a packet.
4794  *
4795  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4796  * WRITE = READ.
4797  *
4798  * During initialization the host sets up the READ queue position to the first
4799  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4800  *
4801  * When the firmware places a packet in a buffer it will advance the READ index
4802  * and fire the RX interrupt.  The driver can then query the READ index and
4803  * process as many packets as possible, moving the WRITE index forward as it
4804  * resets the Rx queue buffers with new memory.
4805  *
4806  * The management in the driver is as follows:
4807  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4808  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4809  *   to replensish the ipw->rxq->rx_free.
4810  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4811  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4812  *   'processed' and 'read' driver indexes as well)
4813  * + A received packet is processed and handed to the kernel network stack,
4814  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4815  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4816  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4817  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4818  *   were enough free buffers and RX_STALLED is set it is cleared.
4819  *
4820  *
4821  * Driver sequence:
4822  *
4823  * ipw_rx_queue_alloc()       Allocates rx_free
4824  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4825  *                            ipw_rx_queue_restock
4826  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4827  *                            queue, updates firmware pointers, and updates
4828  *                            the WRITE index.  If insufficient rx_free buffers
4829  *                            are available, schedules ipw_rx_queue_replenish
4830  *
4831  * -- enable interrupts --
4832  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4833  *                            READ INDEX, detaching the SKB from the pool.
4834  *                            Moves the packet buffer from queue to rx_used.
4835  *                            Calls ipw_rx_queue_restock to refill any empty
4836  *                            slots.
4837  * ...
4838  *
4839  */
4840
4841 /*
4842  * If there are slots in the RX queue that  need to be restocked,
4843  * and we have free pre-allocated buffers, fill the ranks as much
4844  * as we can pulling from rx_free.
4845  *
4846  * This moves the 'write' index forward to catch up with 'processed', and
4847  * also updates the memory address in the firmware to reference the new
4848  * target buffer.
4849  */
4850 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4851 {
4852         struct ipw_rx_queue *rxq = priv->rxq;
4853         struct list_head *element;
4854         struct ipw_rx_mem_buffer *rxb;
4855         unsigned long flags;
4856         int write;
4857
4858         spin_lock_irqsave(&rxq->lock, flags);
4859         write = rxq->write;
4860         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4861                 element = rxq->rx_free.next;
4862                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4863                 list_del(element);
4864
4865                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4866                             rxb->dma_addr);
4867                 rxq->queue[rxq->write] = rxb;
4868                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4869                 rxq->free_count--;
4870         }
4871         spin_unlock_irqrestore(&rxq->lock, flags);
4872
4873         /* If the pre-allocated buffer pool is dropping low, schedule to
4874          * refill it */
4875         if (rxq->free_count <= RX_LOW_WATERMARK)
4876                 queue_work(priv->workqueue, &priv->rx_replenish);
4877
4878         /* If we've added more space for the firmware to place data, tell it */
4879         if (write != rxq->write)
4880                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4881 }
4882
4883 /*
4884  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4885  * Also restock the Rx queue via ipw_rx_queue_restock.
4886  *
4887  * This is called as a scheduled work item (except for during intialization)
4888  */
4889 static void ipw_rx_queue_replenish(void *data)
4890 {
4891         struct ipw_priv *priv = data;
4892         struct ipw_rx_queue *rxq = priv->rxq;
4893         struct list_head *element;
4894         struct ipw_rx_mem_buffer *rxb;
4895         unsigned long flags;
4896
4897         spin_lock_irqsave(&rxq->lock, flags);
4898         while (!list_empty(&rxq->rx_used)) {
4899                 element = rxq->rx_used.next;
4900                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4901                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4902                 if (!rxb->skb) {
4903                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4904                                priv->net_dev->name);
4905                         /* We don't reschedule replenish work here -- we will
4906                          * call the restock method and if it still needs
4907                          * more buffers it will schedule replenish */
4908                         break;
4909                 }
4910                 list_del(element);
4911
4912                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4913                 rxb->dma_addr =
4914                     pci_map_single(priv->pci_dev, rxb->skb->data,
4915                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4916
4917                 list_add_tail(&rxb->list, &rxq->rx_free);
4918                 rxq->free_count++;
4919         }
4920         spin_unlock_irqrestore(&rxq->lock, flags);
4921
4922         ipw_rx_queue_restock(priv);
4923 }
4924
4925 static void ipw_bg_rx_queue_replenish(void *data)
4926 {
4927         struct ipw_priv *priv = data;
4928         mutex_lock(&priv->mutex);
4929         ipw_rx_queue_replenish(data);
4930         mutex_unlock(&priv->mutex);
4931 }
4932
4933 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4934  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
4935  * This free routine walks the list of POOL entries and if SKB is set to
4936  * non NULL it is unmapped and freed
4937  */
4938 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4939 {
4940         int i;
4941
4942         if (!rxq)
4943                 return;
4944
4945         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4946                 if (rxq->pool[i].skb != NULL) {
4947                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4948                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4949                         dev_kfree_skb(rxq->pool[i].skb);
4950                 }
4951         }
4952
4953         kfree(rxq);
4954 }
4955
4956 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4957 {
4958         struct ipw_rx_queue *rxq;
4959         int i;
4960
4961         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
4962         if (unlikely(!rxq)) {
4963                 IPW_ERROR("memory allocation failed\n");
4964                 return NULL;
4965         }
4966         spin_lock_init(&rxq->lock);
4967         INIT_LIST_HEAD(&rxq->rx_free);
4968         INIT_LIST_HEAD(&rxq->rx_used);
4969
4970         /* Fill the rx_used queue with _all_ of the Rx buffers */
4971         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4972                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4973
4974         /* Set us so that we have processed and used all buffers, but have
4975          * not restocked the Rx queue with fresh buffers */
4976         rxq->read = rxq->write = 0;
4977         rxq->processed = RX_QUEUE_SIZE - 1;
4978         rxq->free_count = 0;
4979
4980         return rxq;
4981 }
4982
4983 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4984 {
4985         rate &= ~IEEE80211_BASIC_RATE_MASK;
4986         if (ieee_mode == IEEE_A) {
4987                 switch (rate) {
4988                 case IEEE80211_OFDM_RATE_6MB:
4989                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4990                             1 : 0;
4991                 case IEEE80211_OFDM_RATE_9MB:
4992                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4993                             1 : 0;
4994                 case IEEE80211_OFDM_RATE_12MB:
4995                         return priv->
4996                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4997                 case IEEE80211_OFDM_RATE_18MB:
4998                         return priv->
4999                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5000                 case IEEE80211_OFDM_RATE_24MB:
5001                         return priv->
5002                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5003                 case IEEE80211_OFDM_RATE_36MB:
5004                         return priv->
5005                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5006                 case IEEE80211_OFDM_RATE_48MB:
5007                         return priv->
5008                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5009                 case IEEE80211_OFDM_RATE_54MB:
5010                         return priv->
5011                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5012                 default:
5013                         return 0;
5014                 }
5015         }
5016
5017         /* B and G mixed */
5018         switch (rate) {
5019         case IEEE80211_CCK_RATE_1MB:
5020                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5021         case IEEE80211_CCK_RATE_2MB:
5022                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5023         case IEEE80211_CCK_RATE_5MB:
5024                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5025         case IEEE80211_CCK_RATE_11MB:
5026                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5027         }
5028
5029         /* If we are limited to B modulations, bail at this point */
5030         if (ieee_mode == IEEE_B)
5031                 return 0;
5032
5033         /* G */
5034         switch (rate) {
5035         case IEEE80211_OFDM_RATE_6MB:
5036                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5037         case IEEE80211_OFDM_RATE_9MB:
5038                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5039         case IEEE80211_OFDM_RATE_12MB:
5040                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5041         case IEEE80211_OFDM_RATE_18MB:
5042                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5043         case IEEE80211_OFDM_RATE_24MB:
5044                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5045         case IEEE80211_OFDM_RATE_36MB:
5046                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5047         case IEEE80211_OFDM_RATE_48MB:
5048                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5049         case IEEE80211_OFDM_RATE_54MB:
5050                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5051         }
5052
5053         return 0;
5054 }
5055
5056 static int ipw_compatible_rates(struct ipw_priv *priv,
5057                                 const struct ieee80211_network *network,
5058                                 struct ipw_supported_rates *rates)
5059 {
5060         int num_rates, i;
5061
5062         memset(rates, 0, sizeof(*rates));
5063         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5064         rates->num_rates = 0;
5065         for (i = 0; i < num_rates; i++) {
5066                 if (!ipw_is_rate_in_mask(priv, network->mode,
5067                                          network->rates[i])) {
5068
5069                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5070                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5071                                                "rate %02X\n",
5072                                                network->rates[i]);
5073                                 rates->supported_rates[rates->num_rates++] =
5074                                     network->rates[i];
5075                                 continue;
5076                         }
5077
5078                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5079                                        network->rates[i], priv->rates_mask);
5080                         continue;
5081                 }
5082
5083                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5084         }
5085
5086         num_rates = min(network->rates_ex_len,
5087                         (u8) (IPW_MAX_RATES - num_rates));
5088         for (i = 0; i < num_rates; i++) {
5089                 if (!ipw_is_rate_in_mask(priv, network->mode,
5090                                          network->rates_ex[i])) {
5091                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5092                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5093                                                "rate %02X\n",
5094                                                network->rates_ex[i]);
5095                                 rates->supported_rates[rates->num_rates++] =
5096                                     network->rates[i];
5097                                 continue;
5098                         }
5099
5100                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5101                                        network->rates_ex[i], priv->rates_mask);
5102                         continue;
5103                 }
5104
5105                 rates->supported_rates[rates->num_rates++] =
5106                     network->rates_ex[i];
5107         }
5108
5109         return 1;
5110 }
5111
5112 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5113                                   const struct ipw_supported_rates *src)
5114 {
5115         u8 i;
5116         for (i = 0; i < src->num_rates; i++)
5117                 dest->supported_rates[i] = src->supported_rates[i];
5118         dest->num_rates = src->num_rates;
5119 }
5120
5121 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5122  * mask should ever be used -- right now all callers to add the scan rates are
5123  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5124 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5125                                    u8 modulation, u32 rate_mask)
5126 {
5127         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5128             IEEE80211_BASIC_RATE_MASK : 0;
5129
5130         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5131                 rates->supported_rates[rates->num_rates++] =
5132                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5133
5134         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5135                 rates->supported_rates[rates->num_rates++] =
5136                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5137
5138         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5139                 rates->supported_rates[rates->num_rates++] = basic_mask |
5140                     IEEE80211_CCK_RATE_5MB;
5141
5142         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5143                 rates->supported_rates[rates->num_rates++] = basic_mask |
5144                     IEEE80211_CCK_RATE_11MB;
5145 }
5146
5147 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5148                                     u8 modulation, u32 rate_mask)
5149 {
5150         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5151             IEEE80211_BASIC_RATE_MASK : 0;
5152
5153         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5154                 rates->supported_rates[rates->num_rates++] = basic_mask |
5155                     IEEE80211_OFDM_RATE_6MB;
5156
5157         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5158                 rates->supported_rates[rates->num_rates++] =
5159                     IEEE80211_OFDM_RATE_9MB;
5160
5161         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5162                 rates->supported_rates[rates->num_rates++] = basic_mask |
5163                     IEEE80211_OFDM_RATE_12MB;
5164
5165         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5166                 rates->supported_rates[rates->num_rates++] =
5167                     IEEE80211_OFDM_RATE_18MB;
5168
5169         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5170                 rates->supported_rates[rates->num_rates++] = basic_mask |
5171                     IEEE80211_OFDM_RATE_24MB;
5172
5173         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5174                 rates->supported_rates[rates->num_rates++] =
5175                     IEEE80211_OFDM_RATE_36MB;
5176
5177         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5178                 rates->supported_rates[rates->num_rates++] =
5179                     IEEE80211_OFDM_RATE_48MB;
5180
5181         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5182                 rates->supported_rates[rates->num_rates++] =
5183                     IEEE80211_OFDM_RATE_54MB;
5184 }
5185
5186 struct ipw_network_match {
5187         struct ieee80211_network *network;
5188         struct ipw_supported_rates rates;
5189 };
5190
5191 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5192                                   struct ipw_network_match *match,
5193                                   struct ieee80211_network *network,
5194                                   int roaming)
5195 {
5196         struct ipw_supported_rates rates;
5197
5198         /* Verify that this network's capability is compatible with the
5199          * current mode (AdHoc or Infrastructure) */
5200         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5201              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5202                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5203                                 "capability mismatch.\n",
5204                                 escape_essid(network->ssid, network->ssid_len),
5205                                 MAC_ARG(network->bssid));
5206                 return 0;
5207         }
5208
5209         /* If we do not have an ESSID for this AP, we can not associate with
5210          * it */
5211         if (network->flags & NETWORK_EMPTY_ESSID) {
5212                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5213                                 "because of hidden ESSID.\n",
5214                                 escape_essid(network->ssid, network->ssid_len),
5215                                 MAC_ARG(network->bssid));
5216                 return 0;
5217         }
5218
5219         if (unlikely(roaming)) {
5220                 /* If we are roaming, then ensure check if this is a valid
5221                  * network to try and roam to */
5222                 if ((network->ssid_len != match->network->ssid_len) ||
5223                     memcmp(network->ssid, match->network->ssid,
5224                            network->ssid_len)) {
5225                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5226                                         "because of non-network ESSID.\n",
5227                                         escape_essid(network->ssid,
5228                                                      network->ssid_len),
5229                                         MAC_ARG(network->bssid));
5230                         return 0;
5231                 }
5232         } else {
5233                 /* If an ESSID has been configured then compare the broadcast
5234                  * ESSID to ours */
5235                 if ((priv->config & CFG_STATIC_ESSID) &&
5236                     ((network->ssid_len != priv->essid_len) ||
5237                      memcmp(network->ssid, priv->essid,
5238                             min(network->ssid_len, priv->essid_len)))) {
5239                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5240
5241                         strncpy(escaped,
5242                                 escape_essid(network->ssid, network->ssid_len),
5243                                 sizeof(escaped));
5244                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5245                                         "because of ESSID mismatch: '%s'.\n",
5246                                         escaped, MAC_ARG(network->bssid),
5247                                         escape_essid(priv->essid,
5248                                                      priv->essid_len));
5249                         return 0;
5250                 }
5251         }
5252
5253         /* If the old network rate is better than this one, don't bother
5254          * testing everything else. */
5255
5256         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5257                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5258                                 "current network.\n",
5259                                 escape_essid(match->network->ssid,
5260                                              match->network->ssid_len));
5261                 return 0;
5262         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5263                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5264                                 "current network.\n",
5265                                 escape_essid(match->network->ssid,
5266                                              match->network->ssid_len));
5267                 return 0;
5268         }
5269
5270         /* Now go through and see if the requested network is valid... */
5271         if (priv->ieee->scan_age != 0 &&
5272             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5273                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5274                                 "because of age: %ums.\n",
5275                                 escape_essid(network->ssid, network->ssid_len),
5276                                 MAC_ARG(network->bssid),
5277                                 jiffies_to_msecs(jiffies -
5278                                                  network->last_scanned));
5279                 return 0;
5280         }
5281
5282         if ((priv->config & CFG_STATIC_CHANNEL) &&
5283             (network->channel != priv->channel)) {
5284                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5285                                 "because of channel mismatch: %d != %d.\n",
5286                                 escape_essid(network->ssid, network->ssid_len),
5287                                 MAC_ARG(network->bssid),
5288                                 network->channel, priv->channel);
5289                 return 0;
5290         }
5291
5292         /* Verify privacy compatability */
5293         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5294             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5295                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5296                                 "because of privacy mismatch: %s != %s.\n",
5297                                 escape_essid(network->ssid, network->ssid_len),
5298                                 MAC_ARG(network->bssid),
5299                                 priv->
5300                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5301                                 network->
5302                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5303                                 "off");
5304                 return 0;
5305         }
5306
5307         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5308                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5309                                 "because of the same BSSID match: " MAC_FMT
5310                                 ".\n", escape_essid(network->ssid,
5311                                                     network->ssid_len),
5312                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5313                 return 0;
5314         }
5315
5316         /* Filter out any incompatible freq / mode combinations */
5317         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5318                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5319                                 "because of invalid frequency/mode "
5320                                 "combination.\n",
5321                                 escape_essid(network->ssid, network->ssid_len),
5322                                 MAC_ARG(network->bssid));
5323                 return 0;
5324         }
5325
5326         /* Ensure that the rates supported by the driver are compatible with
5327          * this AP, including verification of basic rates (mandatory) */
5328         if (!ipw_compatible_rates(priv, network, &rates)) {
5329                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5330                                 "because configured rate mask excludes "
5331                                 "AP mandatory rate.\n",
5332                                 escape_essid(network->ssid, network->ssid_len),
5333                                 MAC_ARG(network->bssid));
5334                 return 0;
5335         }
5336
5337         if (rates.num_rates == 0) {
5338                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5339                                 "because of no compatible rates.\n",
5340                                 escape_essid(network->ssid, network->ssid_len),
5341                                 MAC_ARG(network->bssid));
5342                 return 0;
5343         }
5344
5345         /* TODO: Perform any further minimal comparititive tests.  We do not
5346          * want to put too much policy logic here; intelligent scan selection
5347          * should occur within a generic IEEE 802.11 user space tool.  */
5348
5349         /* Set up 'new' AP to this network */
5350         ipw_copy_rates(&match->rates, &rates);
5351         match->network = network;
5352         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5353                         escape_essid(network->ssid, network->ssid_len),
5354                         MAC_ARG(network->bssid));
5355
5356         return 1;
5357 }
5358
5359 static void ipw_merge_adhoc_network(void *data)
5360 {
5361         struct ipw_priv *priv = data;
5362         struct ieee80211_network *network = NULL;
5363         struct ipw_network_match match = {
5364                 .network = priv->assoc_network
5365         };
5366
5367         if ((priv->status & STATUS_ASSOCIATED) &&
5368             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5369                 /* First pass through ROAM process -- look for a better
5370                  * network */
5371                 unsigned long flags;
5372
5373                 spin_lock_irqsave(&priv->ieee->lock, flags);
5374                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5375                         if (network != priv->assoc_network)
5376                                 ipw_find_adhoc_network(priv, &match, network,
5377                                                        1);
5378                 }
5379                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5380
5381                 if (match.network == priv->assoc_network) {
5382                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5383                                         "merge to.\n");
5384                         return;
5385                 }
5386
5387                 mutex_lock(&priv->mutex);
5388                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5389                         IPW_DEBUG_MERGE("remove network %s\n",
5390                                         escape_essid(priv->essid,
5391                                                      priv->essid_len));
5392                         ipw_remove_current_network(priv);
5393                 }
5394
5395                 ipw_disassociate(priv);
5396                 priv->assoc_network = match.network;
5397                 mutex_unlock(&priv->mutex);
5398                 return;
5399         }
5400 }
5401
5402 static int ipw_best_network(struct ipw_priv *priv,
5403                             struct ipw_network_match *match,
5404                             struct ieee80211_network *network, int roaming)
5405 {
5406         struct ipw_supported_rates rates;
5407
5408         /* Verify that this network's capability is compatible with the
5409          * current mode (AdHoc or Infrastructure) */
5410         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5411              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5412             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5413              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5414                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5415                                 "capability mismatch.\n",
5416                                 escape_essid(network->ssid, network->ssid_len),
5417                                 MAC_ARG(network->bssid));
5418                 return 0;
5419         }
5420
5421         /* If we do not have an ESSID for this AP, we can not associate with
5422          * it */
5423         if (network->flags & NETWORK_EMPTY_ESSID) {
5424                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5425                                 "because of hidden ESSID.\n",
5426                                 escape_essid(network->ssid, network->ssid_len),
5427                                 MAC_ARG(network->bssid));
5428                 return 0;
5429         }
5430
5431         if (unlikely(roaming)) {
5432                 /* If we are roaming, then ensure check if this is a valid
5433                  * network to try and roam to */
5434                 if ((network->ssid_len != match->network->ssid_len) ||
5435                     memcmp(network->ssid, match->network->ssid,
5436                            network->ssid_len)) {
5437                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5438                                         "because of non-network ESSID.\n",
5439                                         escape_essid(network->ssid,
5440                                                      network->ssid_len),
5441                                         MAC_ARG(network->bssid));
5442                         return 0;
5443                 }
5444         } else {
5445                 /* If an ESSID has been configured then compare the broadcast
5446                  * ESSID to ours */
5447                 if ((priv->config & CFG_STATIC_ESSID) &&
5448                     ((network->ssid_len != priv->essid_len) ||
5449                      memcmp(network->ssid, priv->essid,
5450                             min(network->ssid_len, priv->essid_len)))) {
5451                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5452                         strncpy(escaped,
5453                                 escape_essid(network->ssid, network->ssid_len),
5454                                 sizeof(escaped));
5455                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5456                                         "because of ESSID mismatch: '%s'.\n",
5457                                         escaped, MAC_ARG(network->bssid),
5458                                         escape_essid(priv->essid,
5459                                                      priv->essid_len));
5460                         return 0;
5461                 }
5462         }
5463
5464         /* If the old network rate is better than this one, don't bother
5465          * testing everything else. */
5466         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5467                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5468                 strncpy(escaped,
5469                         escape_essid(network->ssid, network->ssid_len),
5470                         sizeof(escaped));
5471                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5472                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5473                                 escaped, MAC_ARG(network->bssid),
5474                                 escape_essid(match->network->ssid,
5475                                              match->network->ssid_len),
5476                                 MAC_ARG(match->network->bssid));
5477                 return 0;
5478         }
5479
5480         /* If this network has already had an association attempt within the
5481          * last 3 seconds, do not try and associate again... */
5482         if (network->last_associate &&
5483             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5484                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5485                                 "because of storming (%ums since last "
5486                                 "assoc attempt).\n",
5487                                 escape_essid(network->ssid, network->ssid_len),
5488                                 MAC_ARG(network->bssid),
5489                                 jiffies_to_msecs(jiffies -
5490                                                  network->last_associate));
5491                 return 0;
5492         }
5493
5494         /* Now go through and see if the requested network is valid... */
5495         if (priv->ieee->scan_age != 0 &&
5496             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5497                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5498                                 "because of age: %ums.\n",
5499                                 escape_essid(network->ssid, network->ssid_len),
5500                                 MAC_ARG(network->bssid),
5501                                 jiffies_to_msecs(jiffies -
5502                                                  network->last_scanned));
5503                 return 0;
5504         }
5505
5506         if ((priv->config & CFG_STATIC_CHANNEL) &&
5507             (network->channel != priv->channel)) {
5508                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5509                                 "because of channel mismatch: %d != %d.\n",
5510                                 escape_essid(network->ssid, network->ssid_len),
5511                                 MAC_ARG(network->bssid),
5512                                 network->channel, priv->channel);
5513                 return 0;
5514         }
5515
5516         /* Verify privacy compatability */
5517         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5518             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5519                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5520                                 "because of privacy mismatch: %s != %s.\n",
5521                                 escape_essid(network->ssid, network->ssid_len),
5522                                 MAC_ARG(network->bssid),
5523                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5524                                 "off",
5525                                 network->capability &
5526                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5527                 return 0;
5528         }
5529
5530         if (priv->ieee->wpa_enabled &&
5531             network->wpa_ie_len == 0 && network->rsn_ie_len == 0) {
5532                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5533                                 "because of WPA capability mismatch.\n",
5534                                 escape_essid(network->ssid, network->ssid_len),
5535                                 MAC_ARG(network->bssid));
5536                 return 0;
5537         }
5538
5539         if ((priv->config & CFG_STATIC_BSSID) &&
5540             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5541                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5542                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5543                                 escape_essid(network->ssid, network->ssid_len),
5544                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5545                 return 0;
5546         }
5547
5548         /* Filter out any incompatible freq / mode combinations */
5549         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5550                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5551                                 "because of invalid frequency/mode "
5552                                 "combination.\n",
5553                                 escape_essid(network->ssid, network->ssid_len),
5554                                 MAC_ARG(network->bssid));
5555                 return 0;
5556         }
5557
5558         /* Filter out invalid channel in current GEO */
5559         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5560                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5561                                 "because of invalid channel in current GEO\n",
5562                                 escape_essid(network->ssid, network->ssid_len),
5563                                 MAC_ARG(network->bssid));
5564                 return 0;
5565         }
5566
5567         /* Ensure that the rates supported by the driver are compatible with
5568          * this AP, including verification of basic rates (mandatory) */
5569         if (!ipw_compatible_rates(priv, network, &rates)) {
5570                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5571                                 "because configured rate mask excludes "
5572                                 "AP mandatory rate.\n",
5573                                 escape_essid(network->ssid, network->ssid_len),
5574                                 MAC_ARG(network->bssid));
5575                 return 0;
5576         }
5577
5578         if (rates.num_rates == 0) {
5579                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5580                                 "because of no compatible rates.\n",
5581                                 escape_essid(network->ssid, network->ssid_len),
5582                                 MAC_ARG(network->bssid));
5583                 return 0;
5584         }
5585
5586         /* TODO: Perform any further minimal comparititive tests.  We do not
5587          * want to put too much policy logic here; intelligent scan selection
5588          * should occur within a generic IEEE 802.11 user space tool.  */
5589
5590         /* Set up 'new' AP to this network */
5591         ipw_copy_rates(&match->rates, &rates);
5592         match->network = network;
5593
5594         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5595                         escape_essid(network->ssid, network->ssid_len),
5596                         MAC_ARG(network->bssid));
5597
5598         return 1;
5599 }
5600
5601 static void ipw_adhoc_create(struct ipw_priv *priv,
5602                              struct ieee80211_network *network)
5603 {
5604         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5605         int i;
5606
5607         /*
5608          * For the purposes of scanning, we can set our wireless mode
5609          * to trigger scans across combinations of bands, but when it
5610          * comes to creating a new ad-hoc network, we have tell the FW
5611          * exactly which band to use.
5612          *
5613          * We also have the possibility of an invalid channel for the
5614          * chossen band.  Attempting to create a new ad-hoc network
5615          * with an invalid channel for wireless mode will trigger a
5616          * FW fatal error.
5617          *
5618          */
5619         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5620         case IEEE80211_52GHZ_BAND:
5621                 network->mode = IEEE_A;
5622                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5623                 if (i == -1)
5624                         BUG();
5625                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5626                         IPW_WARNING("Overriding invalid channel\n");
5627                         priv->channel = geo->a[0].channel;
5628                 }
5629                 break;
5630
5631         case IEEE80211_24GHZ_BAND:
5632                 if (priv->ieee->mode & IEEE_G)
5633                         network->mode = IEEE_G;
5634                 else
5635                         network->mode = IEEE_B;
5636                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5637                 if (i == -1)
5638                         BUG();
5639                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5640                         IPW_WARNING("Overriding invalid channel\n");
5641                         priv->channel = geo->bg[0].channel;
5642                 }
5643                 break;
5644
5645         default:
5646                 IPW_WARNING("Overriding invalid channel\n");
5647                 if (priv->ieee->mode & IEEE_A) {
5648                         network->mode = IEEE_A;
5649                         priv->channel = geo->a[0].channel;
5650                 } else if (priv->ieee->mode & IEEE_G) {
5651                         network->mode = IEEE_G;
5652                         priv->channel = geo->bg[0].channel;
5653                 } else {
5654                         network->mode = IEEE_B;
5655                         priv->channel = geo->bg[0].channel;
5656                 }
5657                 break;
5658         }
5659
5660         network->channel = priv->channel;
5661         priv->config |= CFG_ADHOC_PERSIST;
5662         ipw_create_bssid(priv, network->bssid);
5663         network->ssid_len = priv->essid_len;
5664         memcpy(network->ssid, priv->essid, priv->essid_len);
5665         memset(&network->stats, 0, sizeof(network->stats));
5666         network->capability = WLAN_CAPABILITY_IBSS;
5667         if (!(priv->config & CFG_PREAMBLE_LONG))
5668                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5669         if (priv->capability & CAP_PRIVACY_ON)
5670                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5671         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5672         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5673         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5674         memcpy(network->rates_ex,
5675                &priv->rates.supported_rates[network->rates_len],
5676                network->rates_ex_len);
5677         network->last_scanned = 0;
5678         network->flags = 0;
5679         network->last_associate = 0;
5680         network->time_stamp[0] = 0;
5681         network->time_stamp[1] = 0;
5682         network->beacon_interval = 100; /* Default */
5683         network->listen_interval = 10;  /* Default */
5684         network->atim_window = 0;       /* Default */
5685         network->wpa_ie_len = 0;
5686         network->rsn_ie_len = 0;
5687 }
5688
5689 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5690 {
5691         struct ipw_tgi_tx_key key;
5692
5693         if (!(priv->ieee->sec.flags & (1 << index)))
5694                 return;
5695
5696         key.key_id = index;
5697         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5698         key.security_type = type;
5699         key.station_index = 0;  /* always 0 for BSS */
5700         key.flags = 0;
5701         /* 0 for new key; previous value of counter (after fatal error) */
5702         key.tx_counter[0] = 0;
5703         key.tx_counter[1] = 0;
5704
5705         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5706 }
5707
5708 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5709 {
5710         struct ipw_wep_key key;
5711         int i;
5712
5713         key.cmd_id = DINO_CMD_WEP_KEY;
5714         key.seq_num = 0;
5715
5716         /* Note: AES keys cannot be set for multiple times.
5717          * Only set it at the first time. */
5718         for (i = 0; i < 4; i++) {
5719                 key.key_index = i | type;
5720                 if (!(priv->ieee->sec.flags & (1 << i))) {
5721                         key.key_size = 0;
5722                         continue;
5723                 }
5724
5725                 key.key_size = priv->ieee->sec.key_sizes[i];
5726                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5727
5728                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5729         }
5730 }
5731
5732 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5733 {
5734         if (priv->ieee->host_encrypt)
5735                 return;
5736
5737         switch (level) {
5738         case SEC_LEVEL_3:
5739                 priv->sys_config.disable_unicast_decryption = 0;
5740                 priv->ieee->host_decrypt = 0;
5741                 break;
5742         case SEC_LEVEL_2:
5743                 priv->sys_config.disable_unicast_decryption = 1;
5744                 priv->ieee->host_decrypt = 1;
5745                 break;
5746         case SEC_LEVEL_1:
5747                 priv->sys_config.disable_unicast_decryption = 0;
5748                 priv->ieee->host_decrypt = 0;
5749                 break;
5750         case SEC_LEVEL_0:
5751                 priv->sys_config.disable_unicast_decryption = 1;
5752                 break;
5753         default:
5754                 break;
5755         }
5756 }
5757
5758 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5759 {
5760         if (priv->ieee->host_encrypt)
5761                 return;
5762
5763         switch (level) {
5764         case SEC_LEVEL_3:
5765                 priv->sys_config.disable_multicast_decryption = 0;
5766                 break;
5767         case SEC_LEVEL_2:
5768                 priv->sys_config.disable_multicast_decryption = 1;
5769                 break;
5770         case SEC_LEVEL_1:
5771                 priv->sys_config.disable_multicast_decryption = 0;
5772                 break;
5773         case SEC_LEVEL_0:
5774                 priv->sys_config.disable_multicast_decryption = 1;
5775                 break;
5776         default:
5777                 break;
5778         }
5779 }
5780
5781 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5782 {
5783         switch (priv->ieee->sec.level) {
5784         case SEC_LEVEL_3:
5785                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5786                         ipw_send_tgi_tx_key(priv,
5787                                             DCT_FLAG_EXT_SECURITY_CCM,
5788                                             priv->ieee->sec.active_key);
5789
5790                 if (!priv->ieee->host_mc_decrypt)
5791                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5792                 break;
5793         case SEC_LEVEL_2:
5794                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5795                         ipw_send_tgi_tx_key(priv,
5796                                             DCT_FLAG_EXT_SECURITY_TKIP,
5797                                             priv->ieee->sec.active_key);
5798                 break;
5799         case SEC_LEVEL_1:
5800                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5801                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5802                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5803                 break;
5804         case SEC_LEVEL_0:
5805         default:
5806                 break;
5807         }
5808 }
5809
5810 static void ipw_adhoc_check(void *data)
5811 {
5812         struct ipw_priv *priv = data;
5813
5814         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5815             !(priv->config & CFG_ADHOC_PERSIST)) {
5816                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5817                           IPW_DL_STATE | IPW_DL_ASSOC,
5818                           "Missed beacon: %d - disassociate\n",
5819                           priv->missed_adhoc_beacons);
5820                 ipw_remove_current_network(priv);
5821                 ipw_disassociate(priv);
5822                 return;
5823         }
5824
5825         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5826                            priv->assoc_request.beacon_interval);
5827 }
5828
5829 static void ipw_bg_adhoc_check(void *data)
5830 {
5831         struct ipw_priv *priv = data;
5832         mutex_lock(&priv->mutex);
5833         ipw_adhoc_check(data);
5834         mutex_unlock(&priv->mutex);
5835 }
5836
5837 #ifdef CONFIG_IPW2200_DEBUG
5838 static void ipw_debug_config(struct ipw_priv *priv)
5839 {
5840         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5841                        "[CFG 0x%08X]\n", priv->config);
5842         if (priv->config & CFG_STATIC_CHANNEL)
5843                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5844         else
5845                 IPW_DEBUG_INFO("Channel unlocked.\n");
5846         if (priv->config & CFG_STATIC_ESSID)
5847                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5848                                escape_essid(priv->essid, priv->essid_len));
5849         else
5850                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5851         if (priv->config & CFG_STATIC_BSSID)
5852                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5853                                MAC_ARG(priv->bssid));
5854         else
5855                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5856         if (priv->capability & CAP_PRIVACY_ON)
5857                 IPW_DEBUG_INFO("PRIVACY on\n");
5858         else
5859                 IPW_DEBUG_INFO("PRIVACY off\n");
5860         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5861 }
5862 #else
5863 #define ipw_debug_config(x) do {} while (0)
5864 #endif
5865
5866 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5867 {
5868         /* TODO: Verify that this works... */
5869         struct ipw_fixed_rate fr = {
5870                 .tx_rates = priv->rates_mask
5871         };
5872         u32 reg;
5873         u16 mask = 0;
5874
5875         /* Identify 'current FW band' and match it with the fixed
5876          * Tx rates */
5877
5878         switch (priv->ieee->freq_band) {
5879         case IEEE80211_52GHZ_BAND:      /* A only */
5880                 /* IEEE_A */
5881                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5882                         /* Invalid fixed rate mask */
5883                         IPW_DEBUG_WX
5884                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5885                         fr.tx_rates = 0;
5886                         break;
5887                 }
5888
5889                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5890                 break;
5891
5892         default:                /* 2.4Ghz or Mixed */
5893                 /* IEEE_B */
5894                 if (mode == IEEE_B) {
5895                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5896                                 /* Invalid fixed rate mask */
5897                                 IPW_DEBUG_WX
5898                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5899                                 fr.tx_rates = 0;
5900                         }
5901                         break;
5902                 }
5903
5904                 /* IEEE_G */
5905                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5906                                     IEEE80211_OFDM_RATES_MASK)) {
5907                         /* Invalid fixed rate mask */
5908                         IPW_DEBUG_WX
5909                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5910                         fr.tx_rates = 0;
5911                         break;
5912                 }
5913
5914                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5915                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5916                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5917                 }
5918
5919                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5920                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5921                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5922                 }
5923
5924                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5925                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5926                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5927                 }
5928
5929                 fr.tx_rates |= mask;
5930                 break;
5931         }
5932
5933         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5934         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5935 }
5936
5937 static void ipw_abort_scan(struct ipw_priv *priv)
5938 {
5939         int err;
5940
5941         if (priv->status & STATUS_SCAN_ABORTING) {
5942                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5943                 return;
5944         }
5945         priv->status |= STATUS_SCAN_ABORTING;
5946
5947         err = ipw_send_scan_abort(priv);
5948         if (err)
5949                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5950 }
5951
5952 static void ipw_add_scan_channels(struct ipw_priv *priv,
5953                                   struct ipw_scan_request_ext *scan,
5954                                   int scan_type)
5955 {
5956         int channel_index = 0;
5957         const struct ieee80211_geo *geo;
5958         int i;
5959
5960         geo = ieee80211_get_geo(priv->ieee);
5961
5962         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5963                 int start = channel_index;
5964                 for (i = 0; i < geo->a_channels; i++) {
5965                         if ((priv->status & STATUS_ASSOCIATED) &&
5966                             geo->a[i].channel == priv->channel)
5967                                 continue;
5968                         channel_index++;
5969                         scan->channels_list[channel_index] = geo->a[i].channel;
5970                         ipw_set_scan_type(scan, channel_index,
5971                                           geo->a[i].
5972                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5973                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5974                                           scan_type);
5975                 }
5976
5977                 if (start != channel_index) {
5978                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5979                             (channel_index - start);
5980                         channel_index++;
5981                 }
5982         }
5983
5984         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5985                 int start = channel_index;
5986                 if (priv->config & CFG_SPEED_SCAN) {
5987                         int index;
5988                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5989                                 /* nop out the list */
5990                                 [0] = 0
5991                         };
5992
5993                         u8 channel;
5994                         while (channel_index < IPW_SCAN_CHANNELS) {
5995                                 channel =
5996                                     priv->speed_scan[priv->speed_scan_pos];
5997                                 if (channel == 0) {
5998                                         priv->speed_scan_pos = 0;
5999                                         channel = priv->speed_scan[0];
6000                                 }
6001                                 if ((priv->status & STATUS_ASSOCIATED) &&
6002                                     channel == priv->channel) {
6003                                         priv->speed_scan_pos++;
6004                                         continue;
6005                                 }
6006
6007                                 /* If this channel has already been
6008                                  * added in scan, break from loop
6009                                  * and this will be the first channel
6010                                  * in the next scan.
6011                                  */
6012                                 if (channels[channel - 1] != 0)
6013                                         break;
6014
6015                                 channels[channel - 1] = 1;
6016                                 priv->speed_scan_pos++;
6017                                 channel_index++;
6018                                 scan->channels_list[channel_index] = channel;
6019                                 index =
6020                                     ieee80211_channel_to_index(priv->ieee, channel);
6021                                 ipw_set_scan_type(scan, channel_index,
6022                                                   geo->bg[index].
6023                                                   flags &
6024                                                   IEEE80211_CH_PASSIVE_ONLY ?
6025                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6026                                                   : scan_type);
6027                         }
6028                 } else {
6029                         for (i = 0; i < geo->bg_channels; i++) {
6030                                 if ((priv->status & STATUS_ASSOCIATED) &&
6031                                     geo->bg[i].channel == priv->channel)
6032                                         continue;
6033                                 channel_index++;
6034                                 scan->channels_list[channel_index] =
6035                                     geo->bg[i].channel;
6036                                 ipw_set_scan_type(scan, channel_index,
6037                                                   geo->bg[i].
6038                                                   flags &
6039                                                   IEEE80211_CH_PASSIVE_ONLY ?
6040                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6041                                                   : scan_type);
6042                         }
6043                 }
6044
6045                 if (start != channel_index) {
6046                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6047                             (channel_index - start);
6048                 }
6049         }
6050 }
6051
6052 static int ipw_request_scan(struct ipw_priv *priv)
6053 {
6054         struct ipw_scan_request_ext scan;
6055         int err = 0, scan_type;
6056
6057         if (!(priv->status & STATUS_INIT) ||
6058             (priv->status & STATUS_EXIT_PENDING))
6059                 return 0;
6060
6061         mutex_lock(&priv->mutex);
6062
6063         if (priv->status & STATUS_SCANNING) {
6064                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6065                 priv->status |= STATUS_SCAN_PENDING;
6066                 goto done;
6067         }
6068
6069         if (!(priv->status & STATUS_SCAN_FORCED) &&
6070             priv->status & STATUS_SCAN_ABORTING) {
6071                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6072                 priv->status |= STATUS_SCAN_PENDING;
6073                 goto done;
6074         }
6075
6076         if (priv->status & STATUS_RF_KILL_MASK) {
6077                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6078                 priv->status |= STATUS_SCAN_PENDING;
6079                 goto done;
6080         }
6081
6082         memset(&scan, 0, sizeof(scan));
6083
6084         if (priv->config & CFG_SPEED_SCAN)
6085                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6086                     cpu_to_le16(30);
6087         else
6088                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6089                     cpu_to_le16(20);
6090
6091         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6092             cpu_to_le16(20);
6093         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6094
6095         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6096
6097 #ifdef CONFIG_IPW2200_MONITOR
6098         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6099                 u8 channel;
6100                 u8 band = 0;
6101
6102                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6103                 case IEEE80211_52GHZ_BAND:
6104                         band = (u8) (IPW_A_MODE << 6) | 1;
6105                         channel = priv->channel;
6106                         break;
6107
6108                 case IEEE80211_24GHZ_BAND:
6109                         band = (u8) (IPW_B_MODE << 6) | 1;
6110                         channel = priv->channel;
6111                         break;
6112
6113                 default:
6114                         band = (u8) (IPW_B_MODE << 6) | 1;
6115                         channel = 9;
6116                         break;
6117                 }
6118
6119                 scan.channels_list[0] = band;
6120                 scan.channels_list[1] = channel;
6121                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6122
6123                 /* NOTE:  The card will sit on this channel for this time
6124                  * period.  Scan aborts are timing sensitive and frequently
6125                  * result in firmware restarts.  As such, it is best to
6126                  * set a small dwell_time here and just keep re-issuing
6127                  * scans.  Otherwise fast channel hopping will not actually
6128                  * hop channels.
6129                  *
6130                  * TODO: Move SPEED SCAN support to all modes and bands */
6131                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6132                     cpu_to_le16(2000);
6133         } else {
6134 #endif                          /* CONFIG_IPW2200_MONITOR */
6135                 /* If we are roaming, then make this a directed scan for the
6136                  * current network.  Otherwise, ensure that every other scan
6137                  * is a fast channel hop scan */
6138                 if ((priv->status & STATUS_ROAMING)
6139                     || (!(priv->status & STATUS_ASSOCIATED)
6140                         && (priv->config & CFG_STATIC_ESSID)
6141                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6142                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6143                         if (err) {
6144                                 IPW_DEBUG_HC("Attempt to send SSID command "
6145                                              "failed.\n");
6146                                 goto done;
6147                         }
6148
6149                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6150                 } else
6151                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6152
6153                 ipw_add_scan_channels(priv, &scan, scan_type);
6154 #ifdef CONFIG_IPW2200_MONITOR
6155         }
6156 #endif
6157
6158         err = ipw_send_scan_request_ext(priv, &scan);
6159         if (err) {
6160                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6161                 goto done;
6162         }
6163
6164         priv->status |= STATUS_SCANNING;
6165         priv->status &= ~STATUS_SCAN_PENDING;
6166         queue_delayed_work(priv->workqueue, &priv->scan_check,
6167                            IPW_SCAN_CHECK_WATCHDOG);
6168       done:
6169         mutex_unlock(&priv->mutex);
6170         return err;
6171 }
6172
6173 static void ipw_bg_abort_scan(void *data)
6174 {
6175         struct ipw_priv *priv = data;
6176         mutex_lock(&priv->mutex);
6177         ipw_abort_scan(data);
6178         mutex_unlock(&priv->mutex);
6179 }
6180
6181 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6182 {
6183         /* This is called when wpa_supplicant loads and closes the driver
6184          * interface. */
6185         priv->ieee->wpa_enabled = value;
6186         return 0;
6187 }
6188
6189 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6190 {
6191         struct ieee80211_device *ieee = priv->ieee;
6192         struct ieee80211_security sec = {
6193                 .flags = SEC_AUTH_MODE,
6194         };
6195         int ret = 0;
6196
6197         if (value & IW_AUTH_ALG_SHARED_KEY) {
6198                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6199                 ieee->open_wep = 0;
6200         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6201                 sec.auth_mode = WLAN_AUTH_OPEN;
6202                 ieee->open_wep = 1;
6203         } else if (value & IW_AUTH_ALG_LEAP) {
6204                 sec.auth_mode = WLAN_AUTH_LEAP;
6205                 ieee->open_wep = 1;
6206         } else
6207                 return -EINVAL;
6208
6209         if (ieee->set_security)
6210                 ieee->set_security(ieee->dev, &sec);
6211         else
6212                 ret = -EOPNOTSUPP;
6213
6214         return ret;
6215 }
6216
6217 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6218                                 int wpa_ie_len)
6219 {
6220         /* make sure WPA is enabled */
6221         ipw_wpa_enable(priv, 1);
6222
6223         ipw_disassociate(priv);
6224 }
6225
6226 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6227                             char *capabilities, int length)
6228 {
6229         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6230
6231         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6232                                 capabilities);
6233 }
6234
6235 /*
6236  * WE-18 support
6237  */
6238
6239 /* SIOCSIWGENIE */
6240 static int ipw_wx_set_genie(struct net_device *dev,
6241                             struct iw_request_info *info,
6242                             union iwreq_data *wrqu, char *extra)
6243 {
6244         struct ipw_priv *priv = ieee80211_priv(dev);
6245         struct ieee80211_device *ieee = priv->ieee;
6246         u8 *buf;
6247         int err = 0;
6248
6249         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6250             (wrqu->data.length && extra == NULL))
6251                 return -EINVAL;
6252
6253         //mutex_lock(&priv->mutex);
6254
6255         //if (!ieee->wpa_enabled) {
6256         //      err = -EOPNOTSUPP;
6257         //      goto out;
6258         //}
6259
6260         if (wrqu->data.length) {
6261                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6262                 if (buf == NULL) {
6263                         err = -ENOMEM;
6264                         goto out;
6265                 }
6266
6267                 memcpy(buf, extra, wrqu->data.length);
6268                 kfree(ieee->wpa_ie);
6269                 ieee->wpa_ie = buf;
6270                 ieee->wpa_ie_len = wrqu->data.length;
6271         } else {
6272                 kfree(ieee->wpa_ie);
6273                 ieee->wpa_ie = NULL;
6274                 ieee->wpa_ie_len = 0;
6275         }
6276
6277         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6278       out:
6279         //mutex_unlock(&priv->mutex);
6280         return err;
6281 }
6282
6283 /* SIOCGIWGENIE */
6284 static int ipw_wx_get_genie(struct net_device *dev,
6285                             struct iw_request_info *info,
6286                             union iwreq_data *wrqu, char *extra)
6287 {
6288         struct ipw_priv *priv = ieee80211_priv(dev);
6289         struct ieee80211_device *ieee = priv->ieee;
6290         int err = 0;
6291
6292         //mutex_lock(&priv->mutex);
6293
6294         //if (!ieee->wpa_enabled) {
6295         //      err = -EOPNOTSUPP;
6296         //      goto out;
6297         //}
6298
6299         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6300                 wrqu->data.length = 0;
6301                 goto out;
6302         }
6303
6304         if (wrqu->data.length < ieee->wpa_ie_len) {
6305                 err = -E2BIG;
6306                 goto out;
6307         }
6308
6309         wrqu->data.length = ieee->wpa_ie_len;
6310         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6311
6312       out:
6313         //mutex_unlock(&priv->mutex);
6314         return err;
6315 }
6316
6317 static int wext_cipher2level(int cipher)
6318 {
6319         switch (cipher) {
6320         case IW_AUTH_CIPHER_NONE:
6321                 return SEC_LEVEL_0;
6322         case IW_AUTH_CIPHER_WEP40:
6323         case IW_AUTH_CIPHER_WEP104:
6324                 return SEC_LEVEL_1;
6325         case IW_AUTH_CIPHER_TKIP:
6326                 return SEC_LEVEL_2;
6327         case IW_AUTH_CIPHER_CCMP:
6328                 return SEC_LEVEL_3;
6329         default:
6330                 return -1;
6331         }
6332 }
6333
6334 /* SIOCSIWAUTH */
6335 static int ipw_wx_set_auth(struct net_device *dev,
6336                            struct iw_request_info *info,
6337                            union iwreq_data *wrqu, char *extra)
6338 {
6339         struct ipw_priv *priv = ieee80211_priv(dev);
6340         struct ieee80211_device *ieee = priv->ieee;
6341         struct iw_param *param = &wrqu->param;
6342         struct ieee80211_crypt_data *crypt;
6343         unsigned long flags;
6344         int ret = 0;
6345
6346         switch (param->flags & IW_AUTH_INDEX) {
6347         case IW_AUTH_WPA_VERSION:
6348                 break;
6349         case IW_AUTH_CIPHER_PAIRWISE:
6350                 ipw_set_hw_decrypt_unicast(priv,
6351                                            wext_cipher2level(param->value));
6352                 break;
6353         case IW_AUTH_CIPHER_GROUP:
6354                 ipw_set_hw_decrypt_multicast(priv,
6355                                              wext_cipher2level(param->value));
6356                 break;
6357         case IW_AUTH_KEY_MGMT:
6358                 /*
6359                  * ipw2200 does not use these parameters
6360                  */
6361                 break;
6362
6363         case IW_AUTH_TKIP_COUNTERMEASURES:
6364                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6365                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6366                         break;
6367
6368                 flags = crypt->ops->get_flags(crypt->priv);
6369
6370                 if (param->value)
6371                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6372                 else
6373                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6374
6375                 crypt->ops->set_flags(flags, crypt->priv);
6376
6377                 break;
6378
6379         case IW_AUTH_DROP_UNENCRYPTED:{
6380                         /* HACK:
6381                          *
6382                          * wpa_supplicant calls set_wpa_enabled when the driver
6383                          * is loaded and unloaded, regardless of if WPA is being
6384                          * used.  No other calls are made which can be used to
6385                          * determine if encryption will be used or not prior to
6386                          * association being expected.  If encryption is not being
6387                          * used, drop_unencrypted is set to false, else true -- we
6388                          * can use this to determine if the CAP_PRIVACY_ON bit should
6389                          * be set.
6390                          */
6391                         struct ieee80211_security sec = {
6392                                 .flags = SEC_ENABLED,
6393                                 .enabled = param->value,
6394                         };
6395                         priv->ieee->drop_unencrypted = param->value;
6396                         /* We only change SEC_LEVEL for open mode. Others
6397                          * are set by ipw_wpa_set_encryption.
6398                          */
6399                         if (!param->value) {
6400                                 sec.flags |= SEC_LEVEL;
6401                                 sec.level = SEC_LEVEL_0;
6402                         } else {
6403                                 sec.flags |= SEC_LEVEL;
6404                                 sec.level = SEC_LEVEL_1;
6405                         }
6406                         if (priv->ieee->set_security)
6407                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6408                         break;
6409                 }
6410
6411         case IW_AUTH_80211_AUTH_ALG:
6412                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6413                 break;
6414
6415         case IW_AUTH_WPA_ENABLED:
6416                 ret = ipw_wpa_enable(priv, param->value);
6417                 break;
6418
6419         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6420                 ieee->ieee802_1x = param->value;
6421                 break;
6422
6423                 //case IW_AUTH_ROAMING_CONTROL:
6424         case IW_AUTH_PRIVACY_INVOKED:
6425                 ieee->privacy_invoked = param->value;
6426                 break;
6427
6428         default:
6429                 return -EOPNOTSUPP;
6430         }
6431         return ret;
6432 }
6433
6434 /* SIOCGIWAUTH */
6435 static int ipw_wx_get_auth(struct net_device *dev,
6436                            struct iw_request_info *info,
6437                            union iwreq_data *wrqu, char *extra)
6438 {
6439         struct ipw_priv *priv = ieee80211_priv(dev);
6440         struct ieee80211_device *ieee = priv->ieee;
6441         struct ieee80211_crypt_data *crypt;
6442         struct iw_param *param = &wrqu->param;
6443         int ret = 0;
6444
6445         switch (param->flags & IW_AUTH_INDEX) {
6446         case IW_AUTH_WPA_VERSION:
6447         case IW_AUTH_CIPHER_PAIRWISE:
6448         case IW_AUTH_CIPHER_GROUP:
6449         case IW_AUTH_KEY_MGMT:
6450                 /*
6451                  * wpa_supplicant will control these internally
6452                  */
6453                 ret = -EOPNOTSUPP;
6454                 break;
6455
6456         case IW_AUTH_TKIP_COUNTERMEASURES:
6457                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6458                 if (!crypt || !crypt->ops->get_flags)
6459                         break;
6460
6461                 param->value = (crypt->ops->get_flags(crypt->priv) &
6462                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6463
6464                 break;
6465
6466         case IW_AUTH_DROP_UNENCRYPTED:
6467                 param->value = ieee->drop_unencrypted;
6468                 break;
6469
6470         case IW_AUTH_80211_AUTH_ALG:
6471                 param->value = ieee->sec.auth_mode;
6472                 break;
6473
6474         case IW_AUTH_WPA_ENABLED:
6475                 param->value = ieee->wpa_enabled;
6476                 break;
6477
6478         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6479                 param->value = ieee->ieee802_1x;
6480                 break;
6481
6482         case IW_AUTH_ROAMING_CONTROL:
6483         case IW_AUTH_PRIVACY_INVOKED:
6484                 param->value = ieee->privacy_invoked;
6485                 break;
6486
6487         default:
6488                 return -EOPNOTSUPP;
6489         }
6490         return 0;
6491 }
6492
6493 /* SIOCSIWENCODEEXT */
6494 static int ipw_wx_set_encodeext(struct net_device *dev,
6495                                 struct iw_request_info *info,
6496                                 union iwreq_data *wrqu, char *extra)
6497 {
6498         struct ipw_priv *priv = ieee80211_priv(dev);
6499         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6500
6501         if (hwcrypto) {
6502                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6503                         /* IPW HW can't build TKIP MIC,
6504                            host decryption still needed */
6505                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6506                                 priv->ieee->host_mc_decrypt = 1;
6507                         else {
6508                                 priv->ieee->host_encrypt = 0;
6509                                 priv->ieee->host_encrypt_msdu = 1;
6510                                 priv->ieee->host_decrypt = 1;
6511                         }
6512                 } else {
6513                         priv->ieee->host_encrypt = 0;
6514                         priv->ieee->host_encrypt_msdu = 0;
6515                         priv->ieee->host_decrypt = 0;
6516                         priv->ieee->host_mc_decrypt = 0;
6517                 }
6518         }
6519
6520         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6521 }
6522
6523 /* SIOCGIWENCODEEXT */
6524 static int ipw_wx_get_encodeext(struct net_device *dev,
6525                                 struct iw_request_info *info,
6526                                 union iwreq_data *wrqu, char *extra)
6527 {
6528         struct ipw_priv *priv = ieee80211_priv(dev);
6529         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6530 }
6531
6532 /* SIOCSIWMLME */
6533 static int ipw_wx_set_mlme(struct net_device *dev,
6534                            struct iw_request_info *info,
6535                            union iwreq_data *wrqu, char *extra)
6536 {
6537         struct ipw_priv *priv = ieee80211_priv(dev);
6538         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6539         u16 reason;
6540
6541         reason = cpu_to_le16(mlme->reason_code);
6542
6543         switch (mlme->cmd) {
6544         case IW_MLME_DEAUTH:
6545                 // silently ignore
6546                 break;
6547
6548         case IW_MLME_DISASSOC:
6549                 ipw_disassociate(priv);
6550                 break;
6551
6552         default:
6553                 return -EOPNOTSUPP;
6554         }
6555         return 0;
6556 }
6557
6558 #ifdef CONFIG_IPW_QOS
6559
6560 /* QoS */
6561 /*
6562 * get the modulation type of the current network or
6563 * the card current mode
6564 */
6565 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6566 {
6567         u8 mode = 0;
6568
6569         if (priv->status & STATUS_ASSOCIATED) {
6570                 unsigned long flags;
6571
6572                 spin_lock_irqsave(&priv->ieee->lock, flags);
6573                 mode = priv->assoc_network->mode;
6574                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6575         } else {
6576                 mode = priv->ieee->mode;
6577         }
6578         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6579         return mode;
6580 }
6581
6582 /*
6583 * Handle management frame beacon and probe response
6584 */
6585 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6586                                          int active_network,
6587                                          struct ieee80211_network *network)
6588 {
6589         u32 size = sizeof(struct ieee80211_qos_parameters);
6590
6591         if (network->capability & WLAN_CAPABILITY_IBSS)
6592                 network->qos_data.active = network->qos_data.supported;
6593
6594         if (network->flags & NETWORK_HAS_QOS_MASK) {
6595                 if (active_network &&
6596                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6597                         network->qos_data.active = network->qos_data.supported;
6598
6599                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6600                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6601                     (network->qos_data.old_param_count !=
6602                      network->qos_data.param_count)) {
6603                         network->qos_data.old_param_count =
6604                             network->qos_data.param_count;
6605                         schedule_work(&priv->qos_activate);
6606                         IPW_DEBUG_QOS("QoS parameters change call "
6607                                       "qos_activate\n");
6608                 }
6609         } else {
6610                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6611                         memcpy(&network->qos_data.parameters,
6612                                &def_parameters_CCK, size);
6613                 else
6614                         memcpy(&network->qos_data.parameters,
6615                                &def_parameters_OFDM, size);
6616
6617                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6618                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6619                         schedule_work(&priv->qos_activate);
6620                 }
6621
6622                 network->qos_data.active = 0;
6623                 network->qos_data.supported = 0;
6624         }
6625         if ((priv->status & STATUS_ASSOCIATED) &&
6626             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6627                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6628                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6629                             !(network->flags & NETWORK_EMPTY_ESSID))
6630                                 if ((network->ssid_len ==
6631                                      priv->assoc_network->ssid_len) &&
6632                                     !memcmp(network->ssid,
6633                                             priv->assoc_network->ssid,
6634                                             network->ssid_len)) {
6635                                         queue_work(priv->workqueue,
6636                                                    &priv->merge_networks);
6637                                 }
6638         }
6639
6640         return 0;
6641 }
6642
6643 /*
6644 * This function set up the firmware to support QoS. It sends
6645 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6646 */
6647 static int ipw_qos_activate(struct ipw_priv *priv,
6648                             struct ieee80211_qos_data *qos_network_data)
6649 {
6650         int err;
6651         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6652         struct ieee80211_qos_parameters *active_one = NULL;
6653         u32 size = sizeof(struct ieee80211_qos_parameters);
6654         u32 burst_duration;
6655         int i;
6656         u8 type;
6657
6658         type = ipw_qos_current_mode(priv);
6659
6660         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6661         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6662         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6663         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6664
6665         if (qos_network_data == NULL) {
6666                 if (type == IEEE_B) {
6667                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6668                         active_one = &def_parameters_CCK;
6669                 } else
6670                         active_one = &def_parameters_OFDM;
6671
6672                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6673                 burst_duration = ipw_qos_get_burst_duration(priv);
6674                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6675                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6676                             (u16) burst_duration;
6677         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6678                 if (type == IEEE_B) {
6679                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6680                                       type);
6681                         if (priv->qos_data.qos_enable == 0)
6682                                 active_one = &def_parameters_CCK;
6683                         else
6684                                 active_one = priv->qos_data.def_qos_parm_CCK;
6685                 } else {
6686                         if (priv->qos_data.qos_enable == 0)
6687                                 active_one = &def_parameters_OFDM;
6688                         else
6689                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6690                 }
6691                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6692         } else {
6693                 unsigned long flags;
6694                 int active;
6695
6696                 spin_lock_irqsave(&priv->ieee->lock, flags);
6697                 active_one = &(qos_network_data->parameters);
6698                 qos_network_data->old_param_count =
6699                     qos_network_data->param_count;
6700                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6701                 active = qos_network_data->supported;
6702                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6703
6704                 if (active == 0) {
6705                         burst_duration = ipw_qos_get_burst_duration(priv);
6706                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6707                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6708                                     tx_op_limit[i] = (u16) burst_duration;
6709                 }
6710         }
6711
6712         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6713         err = ipw_send_qos_params_command(priv,
6714                                           (struct ieee80211_qos_parameters *)
6715                                           &(qos_parameters[0]));
6716         if (err)
6717                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6718
6719         return err;
6720 }
6721
6722 /*
6723 * send IPW_CMD_WME_INFO to the firmware
6724 */
6725 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6726 {
6727         int ret = 0;
6728         struct ieee80211_qos_information_element qos_info;
6729
6730         if (priv == NULL)
6731                 return -1;
6732
6733         qos_info.elementID = QOS_ELEMENT_ID;
6734         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6735
6736         qos_info.version = QOS_VERSION_1;
6737         qos_info.ac_info = 0;
6738
6739         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6740         qos_info.qui_type = QOS_OUI_TYPE;
6741         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6742
6743         ret = ipw_send_qos_info_command(priv, &qos_info);
6744         if (ret != 0) {
6745                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6746         }
6747         return ret;
6748 }
6749
6750 /*
6751 * Set the QoS parameter with the association request structure
6752 */
6753 static int ipw_qos_association(struct ipw_priv *priv,
6754                                struct ieee80211_network *network)
6755 {
6756         int err = 0;
6757         struct ieee80211_qos_data *qos_data = NULL;
6758         struct ieee80211_qos_data ibss_data = {
6759                 .supported = 1,
6760                 .active = 1,
6761         };
6762
6763         switch (priv->ieee->iw_mode) {
6764         case IW_MODE_ADHOC:
6765                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
6766                         BUG();
6767
6768                 qos_data = &ibss_data;
6769                 break;
6770
6771         case IW_MODE_INFRA:
6772                 qos_data = &network->qos_data;
6773                 break;
6774
6775         default:
6776                 BUG();
6777                 break;
6778         }
6779
6780         err = ipw_qos_activate(priv, qos_data);
6781         if (err) {
6782                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6783                 return err;
6784         }
6785
6786         if (priv->qos_data.qos_enable && qos_data->supported) {
6787                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6788                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6789                 return ipw_qos_set_info_element(priv);
6790         }
6791
6792         return 0;
6793 }
6794
6795 /*
6796 * handling the beaconing responces. if we get different QoS setting
6797 * of the network from the the associated setting adjust the QoS
6798 * setting
6799 */
6800 static int ipw_qos_association_resp(struct ipw_priv *priv,
6801                                     struct ieee80211_network *network)
6802 {
6803         int ret = 0;
6804         unsigned long flags;
6805         u32 size = sizeof(struct ieee80211_qos_parameters);
6806         int set_qos_param = 0;
6807
6808         if ((priv == NULL) || (network == NULL) ||
6809             (priv->assoc_network == NULL))
6810                 return ret;
6811
6812         if (!(priv->status & STATUS_ASSOCIATED))
6813                 return ret;
6814
6815         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6816                 return ret;
6817
6818         spin_lock_irqsave(&priv->ieee->lock, flags);
6819         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6820                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6821                        sizeof(struct ieee80211_qos_data));
6822                 priv->assoc_network->qos_data.active = 1;
6823                 if ((network->qos_data.old_param_count !=
6824                      network->qos_data.param_count)) {
6825                         set_qos_param = 1;
6826                         network->qos_data.old_param_count =
6827                             network->qos_data.param_count;
6828                 }
6829
6830         } else {
6831                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6832                         memcpy(&priv->assoc_network->qos_data.parameters,
6833                                &def_parameters_CCK, size);
6834                 else
6835                         memcpy(&priv->assoc_network->qos_data.parameters,
6836                                &def_parameters_OFDM, size);
6837                 priv->assoc_network->qos_data.active = 0;
6838                 priv->assoc_network->qos_data.supported = 0;
6839                 set_qos_param = 1;
6840         }
6841
6842         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6843
6844         if (set_qos_param == 1)
6845                 schedule_work(&priv->qos_activate);
6846
6847         return ret;
6848 }
6849
6850 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6851 {
6852         u32 ret = 0;
6853
6854         if ((priv == NULL))
6855                 return 0;
6856
6857         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6858                 ret = priv->qos_data.burst_duration_CCK;
6859         else
6860                 ret = priv->qos_data.burst_duration_OFDM;
6861
6862         return ret;
6863 }
6864
6865 /*
6866 * Initialize the setting of QoS global
6867 */
6868 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6869                          int burst_enable, u32 burst_duration_CCK,
6870                          u32 burst_duration_OFDM)
6871 {
6872         priv->qos_data.qos_enable = enable;
6873
6874         if (priv->qos_data.qos_enable) {
6875                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6876                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6877                 IPW_DEBUG_QOS("QoS is enabled\n");
6878         } else {
6879                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6880                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6881                 IPW_DEBUG_QOS("QoS is not enabled\n");
6882         }
6883
6884         priv->qos_data.burst_enable = burst_enable;
6885
6886         if (burst_enable) {
6887                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6888                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6889         } else {
6890                 priv->qos_data.burst_duration_CCK = 0;
6891                 priv->qos_data.burst_duration_OFDM = 0;
6892         }
6893 }
6894
6895 /*
6896 * map the packet priority to the right TX Queue
6897 */
6898 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6899 {
6900         if (priority > 7 || !priv->qos_data.qos_enable)
6901                 priority = 0;
6902
6903         return from_priority_to_tx_queue[priority] - 1;
6904 }
6905
6906 /*
6907 * add QoS parameter to the TX command
6908 */
6909 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6910                                         u16 priority,
6911                                         struct tfd_data *tfd, u8 unicast)
6912 {
6913         int ret = 0;
6914         int tx_queue_id = 0;
6915         struct ieee80211_qos_data *qos_data = NULL;
6916         int active, supported;
6917         unsigned long flags;
6918
6919         if (!(priv->status & STATUS_ASSOCIATED))
6920                 return 0;
6921
6922         qos_data = &priv->assoc_network->qos_data;
6923
6924         spin_lock_irqsave(&priv->ieee->lock, flags);
6925
6926         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6927                 if (unicast == 0)
6928                         qos_data->active = 0;
6929                 else
6930                         qos_data->active = qos_data->supported;
6931         }
6932
6933         active = qos_data->active;
6934         supported = qos_data->supported;
6935
6936         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6937
6938         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
6939                       "unicast %d\n",
6940                       priv->qos_data.qos_enable, active, supported, unicast);
6941         if (active && priv->qos_data.qos_enable) {
6942                 ret = from_priority_to_tx_queue[priority];
6943                 tx_queue_id = ret - 1;
6944                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6945                 if (priority <= 7) {
6946                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6947                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6948                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
6949                             IEEE80211_STYPE_QOS_DATA;
6950
6951                         if (priv->qos_data.qos_no_ack_mask &
6952                             (1UL << tx_queue_id)) {
6953                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6954                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6955                                     CTRL_QOS_NO_ACK;
6956                         }
6957                 }
6958         }
6959
6960         return ret;
6961 }
6962
6963 /*
6964 * background support to run QoS activate functionality
6965 */
6966 static void ipw_bg_qos_activate(void *data)
6967 {
6968         struct ipw_priv *priv = data;
6969
6970         if (priv == NULL)
6971                 return;
6972
6973         mutex_lock(&priv->mutex);
6974
6975         if (priv->status & STATUS_ASSOCIATED)
6976                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
6977
6978         mutex_unlock(&priv->mutex);
6979 }
6980
6981 static int ipw_handle_probe_response(struct net_device *dev,
6982                                      struct ieee80211_probe_response *resp,
6983                                      struct ieee80211_network *network)
6984 {
6985         struct ipw_priv *priv = ieee80211_priv(dev);
6986         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6987                               (network == priv->assoc_network));
6988
6989         ipw_qos_handle_probe_response(priv, active_network, network);
6990
6991         return 0;
6992 }
6993
6994 static int ipw_handle_beacon(struct net_device *dev,
6995                              struct ieee80211_beacon *resp,
6996                              struct ieee80211_network *network)
6997 {
6998         struct ipw_priv *priv = ieee80211_priv(dev);
6999         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7000                               (network == priv->assoc_network));
7001
7002         ipw_qos_handle_probe_response(priv, active_network, network);
7003
7004         return 0;
7005 }
7006
7007 static int ipw_handle_assoc_response(struct net_device *dev,
7008                                      struct ieee80211_assoc_response *resp,
7009                                      struct ieee80211_network *network)
7010 {
7011         struct ipw_priv *priv = ieee80211_priv(dev);
7012         ipw_qos_association_resp(priv, network);
7013         return 0;
7014 }
7015
7016 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7017                                        *qos_param)
7018 {
7019         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7020                                 sizeof(*qos_param) * 3, qos_param);
7021 }
7022
7023 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7024                                      *qos_param)
7025 {
7026         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7027                                 qos_param);
7028 }
7029
7030 #endif                          /* CONFIG_IPW_QOS */
7031
7032 static int ipw_associate_network(struct ipw_priv *priv,
7033                                  struct ieee80211_network *network,
7034                                  struct ipw_supported_rates *rates, int roaming)
7035 {
7036         int err;
7037
7038         if (priv->config & CFG_FIXED_RATE)
7039                 ipw_set_fixed_rate(priv, network->mode);
7040
7041         if (!(priv->config & CFG_STATIC_ESSID)) {
7042                 priv->essid_len = min(network->ssid_len,
7043                                       (u8) IW_ESSID_MAX_SIZE);
7044                 memcpy(priv->essid, network->ssid, priv->essid_len);
7045         }
7046
7047         network->last_associate = jiffies;
7048
7049         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7050         priv->assoc_request.channel = network->channel;
7051         priv->assoc_request.auth_key = 0;
7052
7053         if ((priv->capability & CAP_PRIVACY_ON) &&
7054             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7055                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7056                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7057
7058                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7059                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7060
7061         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7062                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7063                 priv->assoc_request.auth_type = AUTH_LEAP;
7064         else
7065                 priv->assoc_request.auth_type = AUTH_OPEN;
7066
7067         if (priv->ieee->wpa_ie_len) {
7068                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7069                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7070                                  priv->ieee->wpa_ie_len);
7071         }
7072
7073         /*
7074          * It is valid for our ieee device to support multiple modes, but
7075          * when it comes to associating to a given network we have to choose
7076          * just one mode.
7077          */
7078         if (network->mode & priv->ieee->mode & IEEE_A)
7079                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7080         else if (network->mode & priv->ieee->mode & IEEE_G)
7081                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7082         else if (network->mode & priv->ieee->mode & IEEE_B)
7083                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7084
7085         priv->assoc_request.capability = network->capability;
7086         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7087             && !(priv->config & CFG_PREAMBLE_LONG)) {
7088                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7089         } else {
7090                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7091
7092                 /* Clear the short preamble if we won't be supporting it */
7093                 priv->assoc_request.capability &=
7094                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7095         }
7096
7097         /* Clear capability bits that aren't used in Ad Hoc */
7098         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7099                 priv->assoc_request.capability &=
7100                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7101
7102         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7103                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7104                         roaming ? "Rea" : "A",
7105                         escape_essid(priv->essid, priv->essid_len),
7106                         network->channel,
7107                         ipw_modes[priv->assoc_request.ieee_mode],
7108                         rates->num_rates,
7109                         (priv->assoc_request.preamble_length ==
7110                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7111                         network->capability &
7112                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7113                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7114                         priv->capability & CAP_PRIVACY_ON ?
7115                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7116                          "(open)") : "",
7117                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7118                         priv->capability & CAP_PRIVACY_ON ?
7119                         '1' + priv->ieee->sec.active_key : '.',
7120                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7121
7122         priv->assoc_request.beacon_interval = network->beacon_interval;
7123         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7124             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7125                 priv->assoc_request.assoc_type = HC_IBSS_START;
7126                 priv->assoc_request.assoc_tsf_msw = 0;
7127                 priv->assoc_request.assoc_tsf_lsw = 0;
7128         } else {
7129                 if (unlikely(roaming))
7130                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7131                 else
7132                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7133                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7134                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7135         }
7136
7137         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7138
7139         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7140                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7141                 priv->assoc_request.atim_window = network->atim_window;
7142         } else {
7143                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7144                 priv->assoc_request.atim_window = 0;
7145         }
7146
7147         priv->assoc_request.listen_interval = network->listen_interval;
7148
7149         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7150         if (err) {
7151                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7152                 return err;
7153         }
7154
7155         rates->ieee_mode = priv->assoc_request.ieee_mode;
7156         rates->purpose = IPW_RATE_CONNECT;
7157         ipw_send_supported_rates(priv, rates);
7158
7159         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7160                 priv->sys_config.dot11g_auto_detection = 1;
7161         else
7162                 priv->sys_config.dot11g_auto_detection = 0;
7163
7164         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7165                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7166         else
7167                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7168
7169         err = ipw_send_system_config(priv, &priv->sys_config);
7170         if (err) {
7171                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7172                 return err;
7173         }
7174
7175         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7176         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7177         if (err) {
7178                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7179                 return err;
7180         }
7181
7182         /*
7183          * If preemption is enabled, it is possible for the association
7184          * to complete before we return from ipw_send_associate.  Therefore
7185          * we have to be sure and update our priviate data first.
7186          */
7187         priv->channel = network->channel;
7188         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7189         priv->status |= STATUS_ASSOCIATING;
7190         priv->status &= ~STATUS_SECURITY_UPDATED;
7191
7192         priv->assoc_network = network;
7193
7194 #ifdef CONFIG_IPW_QOS
7195         ipw_qos_association(priv, network);
7196 #endif
7197
7198         err = ipw_send_associate(priv, &priv->assoc_request);
7199         if (err) {
7200                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7201                 return err;
7202         }
7203
7204         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7205                   escape_essid(priv->essid, priv->essid_len),
7206                   MAC_ARG(priv->bssid));
7207
7208         return 0;
7209 }
7210
7211 static void ipw_roam(void *data)
7212 {
7213         struct ipw_priv *priv = data;
7214         struct ieee80211_network *network = NULL;
7215         struct ipw_network_match match = {
7216                 .network = priv->assoc_network
7217         };
7218
7219         /* The roaming process is as follows:
7220          *
7221          * 1.  Missed beacon threshold triggers the roaming process by
7222          *     setting the status ROAM bit and requesting a scan.
7223          * 2.  When the scan completes, it schedules the ROAM work
7224          * 3.  The ROAM work looks at all of the known networks for one that
7225          *     is a better network than the currently associated.  If none
7226          *     found, the ROAM process is over (ROAM bit cleared)
7227          * 4.  If a better network is found, a disassociation request is
7228          *     sent.
7229          * 5.  When the disassociation completes, the roam work is again
7230          *     scheduled.  The second time through, the driver is no longer
7231          *     associated, and the newly selected network is sent an
7232          *     association request.
7233          * 6.  At this point ,the roaming process is complete and the ROAM
7234          *     status bit is cleared.
7235          */
7236
7237         /* If we are no longer associated, and the roaming bit is no longer
7238          * set, then we are not actively roaming, so just return */
7239         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7240                 return;
7241
7242         if (priv->status & STATUS_ASSOCIATED) {
7243                 /* First pass through ROAM process -- look for a better
7244                  * network */
7245                 unsigned long flags;
7246                 u8 rssi = priv->assoc_network->stats.rssi;
7247                 priv->assoc_network->stats.rssi = -128;
7248                 spin_lock_irqsave(&priv->ieee->lock, flags);
7249                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7250                         if (network != priv->assoc_network)
7251                                 ipw_best_network(priv, &match, network, 1);
7252                 }
7253                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7254                 priv->assoc_network->stats.rssi = rssi;
7255
7256                 if (match.network == priv->assoc_network) {
7257                         IPW_DEBUG_ASSOC("No better APs in this network to "
7258                                         "roam to.\n");
7259                         priv->status &= ~STATUS_ROAMING;
7260                         ipw_debug_config(priv);
7261                         return;
7262                 }
7263
7264                 ipw_send_disassociate(priv, 1);
7265                 priv->assoc_network = match.network;
7266
7267                 return;
7268         }
7269
7270         /* Second pass through ROAM process -- request association */
7271         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7272         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7273         priv->status &= ~STATUS_ROAMING;
7274 }
7275
7276 static void ipw_bg_roam(void *data)
7277 {
7278         struct ipw_priv *priv = data;
7279         mutex_lock(&priv->mutex);
7280         ipw_roam(data);
7281         mutex_unlock(&priv->mutex);
7282 }
7283
7284 static int ipw_associate(void *data)
7285 {
7286         struct ipw_priv *priv = data;
7287
7288         struct ieee80211_network *network = NULL;
7289         struct ipw_network_match match = {
7290                 .network = NULL
7291         };
7292         struct ipw_supported_rates *rates;
7293         struct list_head *element;
7294         unsigned long flags;
7295
7296         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7297                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7298                 return 0;
7299         }
7300
7301         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7302                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7303                                 "progress)\n");
7304                 return 0;
7305         }
7306
7307         if (priv->status & STATUS_DISASSOCIATING) {
7308                 IPW_DEBUG_ASSOC("Not attempting association (in "
7309                                 "disassociating)\n ");
7310                 queue_work(priv->workqueue, &priv->associate);
7311                 return 0;
7312         }
7313
7314         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7315                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7316                                 "initialized)\n");
7317                 return 0;
7318         }
7319
7320         if (!(priv->config & CFG_ASSOCIATE) &&
7321             !(priv->config & (CFG_STATIC_ESSID |
7322                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7323                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7324                 return 0;
7325         }
7326
7327         /* Protect our use of the network_list */
7328         spin_lock_irqsave(&priv->ieee->lock, flags);
7329         list_for_each_entry(network, &priv->ieee->network_list, list)
7330             ipw_best_network(priv, &match, network, 0);
7331
7332         network = match.network;
7333         rates = &match.rates;
7334
7335         if (network == NULL &&
7336             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7337             priv->config & CFG_ADHOC_CREATE &&
7338             priv->config & CFG_STATIC_ESSID &&
7339             priv->config & CFG_STATIC_CHANNEL &&
7340             !list_empty(&priv->ieee->network_free_list)) {
7341                 element = priv->ieee->network_free_list.next;
7342                 network = list_entry(element, struct ieee80211_network, list);
7343                 ipw_adhoc_create(priv, network);
7344                 rates = &priv->rates;
7345                 list_del(element);
7346                 list_add_tail(&network->list, &priv->ieee->network_list);
7347         }
7348         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7349
7350         /* If we reached the end of the list, then we don't have any valid
7351          * matching APs */
7352         if (!network) {
7353                 ipw_debug_config(priv);
7354
7355                 if (!(priv->status & STATUS_SCANNING)) {
7356                         if (!(priv->config & CFG_SPEED_SCAN))
7357                                 queue_delayed_work(priv->workqueue,
7358                                                    &priv->request_scan,
7359                                                    SCAN_INTERVAL);
7360                         else
7361                                 queue_work(priv->workqueue,
7362                                            &priv->request_scan);
7363                 }
7364
7365                 return 0;
7366         }
7367
7368         ipw_associate_network(priv, network, rates, 0);
7369
7370         return 1;
7371 }
7372
7373 static void ipw_bg_associate(void *data)
7374 {
7375         struct ipw_priv *priv = data;
7376         mutex_lock(&priv->mutex);
7377         ipw_associate(data);
7378         mutex_unlock(&priv->mutex);
7379 }
7380
7381 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7382                                       struct sk_buff *skb)
7383 {
7384         struct ieee80211_hdr *hdr;
7385         u16 fc;
7386
7387         hdr = (struct ieee80211_hdr *)skb->data;
7388         fc = le16_to_cpu(hdr->frame_ctl);
7389         if (!(fc & IEEE80211_FCTL_PROTECTED))
7390                 return;
7391
7392         fc &= ~IEEE80211_FCTL_PROTECTED;
7393         hdr->frame_ctl = cpu_to_le16(fc);
7394         switch (priv->ieee->sec.level) {
7395         case SEC_LEVEL_3:
7396                 /* Remove CCMP HDR */
7397                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7398                         skb->data + IEEE80211_3ADDR_LEN + 8,
7399                         skb->len - IEEE80211_3ADDR_LEN - 8);
7400                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7401                 break;
7402         case SEC_LEVEL_2:
7403                 break;
7404         case SEC_LEVEL_1:
7405                 /* Remove IV */
7406                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7407                         skb->data + IEEE80211_3ADDR_LEN + 4,
7408                         skb->len - IEEE80211_3ADDR_LEN - 4);
7409                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7410                 break;
7411         case SEC_LEVEL_0:
7412                 break;
7413         default:
7414                 printk(KERN_ERR "Unknow security level %d\n",
7415                        priv->ieee->sec.level);
7416                 break;
7417         }
7418 }
7419
7420 static void ipw_handle_data_packet(struct ipw_priv *priv,
7421                                    struct ipw_rx_mem_buffer *rxb,
7422                                    struct ieee80211_rx_stats *stats)
7423 {
7424         struct ieee80211_hdr_4addr *hdr;
7425         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7426
7427         /* We received data from the HW, so stop the watchdog */
7428         priv->net_dev->trans_start = jiffies;
7429
7430         /* We only process data packets if the
7431          * interface is open */
7432         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7433                      skb_tailroom(rxb->skb))) {
7434                 priv->ieee->stats.rx_errors++;
7435                 priv->wstats.discard.misc++;
7436                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7437                 return;
7438         } else if (unlikely(!netif_running(priv->net_dev))) {
7439                 priv->ieee->stats.rx_dropped++;
7440                 priv->wstats.discard.misc++;
7441                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7442                 return;
7443         }
7444
7445         /* Advance skb->data to the start of the actual payload */
7446         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7447
7448         /* Set the size of the skb to the size of the frame */
7449         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7450
7451         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7452
7453         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7454         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7455         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7456             (is_multicast_ether_addr(hdr->addr1) ?
7457              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7458                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7459
7460         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7461                 priv->ieee->stats.rx_errors++;
7462         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7463                 rxb->skb = NULL;
7464                 __ipw_led_activity_on(priv);
7465         }
7466 }
7467
7468 #ifdef CONFIG_IEEE80211_RADIOTAP
7469 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7470                                            struct ipw_rx_mem_buffer *rxb,
7471                                            struct ieee80211_rx_stats *stats)
7472 {
7473         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7474         struct ipw_rx_frame *frame = &pkt->u.frame;
7475
7476         /* initial pull of some data */
7477         u16 received_channel = frame->received_channel;
7478         u8 antennaAndPhy = frame->antennaAndPhy;
7479         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7480         u16 pktrate = frame->rate;
7481
7482         /* Magic struct that slots into the radiotap header -- no reason
7483          * to build this manually element by element, we can write it much
7484          * more efficiently than we can parse it. ORDER MATTERS HERE */
7485         struct ipw_rt_hdr {
7486                 struct ieee80211_radiotap_header rt_hdr;
7487                 u8 rt_flags;    /* radiotap packet flags */
7488                 u8 rt_rate;     /* rate in 500kb/s */
7489                 u16 rt_channel; /* channel in mhz */
7490                 u16 rt_chbitmask;       /* channel bitfield */
7491                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7492                 u8 rt_antenna;  /* antenna number */
7493         } *ipw_rt;
7494
7495         short len = le16_to_cpu(pkt->u.frame.length);
7496
7497         /* We received data from the HW, so stop the watchdog */
7498         priv->net_dev->trans_start = jiffies;
7499
7500         /* We only process data packets if the
7501          * interface is open */
7502         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7503                      skb_tailroom(rxb->skb))) {
7504                 priv->ieee->stats.rx_errors++;
7505                 priv->wstats.discard.misc++;
7506                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7507                 return;
7508         } else if (unlikely(!netif_running(priv->net_dev))) {
7509                 priv->ieee->stats.rx_dropped++;
7510                 priv->wstats.discard.misc++;
7511                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7512                 return;
7513         }
7514
7515         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7516          * that now */
7517         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7518                 /* FIXME: Should alloc bigger skb instead */
7519                 priv->ieee->stats.rx_dropped++;
7520                 priv->wstats.discard.misc++;
7521                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7522                 return;
7523         }
7524
7525         /* copy the frame itself */
7526         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7527                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7528
7529         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7530          * part of our real header, saves a little time.
7531          *
7532          * No longer necessary since we fill in all our data.  Purge before merging
7533          * patch officially.
7534          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7535          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7536          */
7537
7538         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7539
7540         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7541         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7542         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7543
7544         /* Big bitfield of all the fields we provide in radiotap */
7545         ipw_rt->rt_hdr.it_present =
7546             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7547              (1 << IEEE80211_RADIOTAP_RATE) |
7548              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7549              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7550              (1 << IEEE80211_RADIOTAP_ANTENNA));
7551
7552         /* Zero the flags, we'll add to them as we go */
7553         ipw_rt->rt_flags = 0;
7554
7555         /* Convert signal to DBM */
7556         ipw_rt->rt_dbmsignal = antsignal;
7557
7558         /* Convert the channel data and set the flags */
7559         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7560         if (received_channel > 14) {    /* 802.11a */
7561                 ipw_rt->rt_chbitmask =
7562                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7563         } else if (antennaAndPhy & 32) {        /* 802.11b */
7564                 ipw_rt->rt_chbitmask =
7565                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7566         } else {                /* 802.11g */
7567                 ipw_rt->rt_chbitmask =
7568                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7569         }
7570
7571         /* set the rate in multiples of 500k/s */
7572         switch (pktrate) {
7573         case IPW_TX_RATE_1MB:
7574                 ipw_rt->rt_rate = 2;
7575                 break;
7576         case IPW_TX_RATE_2MB:
7577                 ipw_rt->rt_rate = 4;
7578                 break;
7579         case IPW_TX_RATE_5MB:
7580                 ipw_rt->rt_rate = 10;
7581                 break;
7582         case IPW_TX_RATE_6MB:
7583                 ipw_rt->rt_rate = 12;
7584                 break;
7585         case IPW_TX_RATE_9MB:
7586                 ipw_rt->rt_rate = 18;
7587                 break;
7588         case IPW_TX_RATE_11MB:
7589                 ipw_rt->rt_rate = 22;
7590                 break;
7591         case IPW_TX_RATE_12MB:
7592                 ipw_rt->rt_rate = 24;
7593                 break;
7594         case IPW_TX_RATE_18MB:
7595                 ipw_rt->rt_rate = 36;
7596                 break;
7597         case IPW_TX_RATE_24MB:
7598                 ipw_rt->rt_rate = 48;
7599                 break;
7600         case IPW_TX_RATE_36MB:
7601                 ipw_rt->rt_rate = 72;
7602                 break;
7603         case IPW_TX_RATE_48MB:
7604                 ipw_rt->rt_rate = 96;
7605                 break;
7606         case IPW_TX_RATE_54MB:
7607                 ipw_rt->rt_rate = 108;
7608                 break;
7609         default:
7610                 ipw_rt->rt_rate = 0;
7611                 break;
7612         }
7613
7614         /* antenna number */
7615         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7616
7617         /* set the preamble flag if we have it */
7618         if ((antennaAndPhy & 64))
7619                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7620
7621         /* Set the size of the skb to the size of the frame */
7622         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7623
7624         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7625
7626         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7627                 priv->ieee->stats.rx_errors++;
7628         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7629                 rxb->skb = NULL;
7630                 /* no LED during capture */
7631         }
7632 }
7633 #endif
7634
7635 static int is_network_packet(struct ipw_priv *priv,
7636                                     struct ieee80211_hdr_4addr *header)
7637 {
7638         /* Filter incoming packets to determine if they are targetted toward
7639          * this network, discarding packets coming from ourselves */
7640         switch (priv->ieee->iw_mode) {
7641         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7642                 /* packets from our adapter are dropped (echo) */
7643                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7644                         return 0;
7645
7646                 /* {broad,multi}cast packets to our BSSID go through */
7647                 if (is_multicast_ether_addr(header->addr1))
7648                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7649
7650                 /* packets to our adapter go through */
7651                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7652                                ETH_ALEN);
7653
7654         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7655                 /* packets from our adapter are dropped (echo) */
7656                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7657                         return 0;
7658
7659                 /* {broad,multi}cast packets to our BSS go through */
7660                 if (is_multicast_ether_addr(header->addr1))
7661                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7662
7663                 /* packets to our adapter go through */
7664                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7665                                ETH_ALEN);
7666         }
7667
7668         return 1;
7669 }
7670
7671 #define IPW_PACKET_RETRY_TIME HZ
7672
7673 static  int is_duplicate_packet(struct ipw_priv *priv,
7674                                       struct ieee80211_hdr_4addr *header)
7675 {
7676         u16 sc = le16_to_cpu(header->seq_ctl);
7677         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7678         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7679         u16 *last_seq, *last_frag;
7680         unsigned long *last_time;
7681
7682         switch (priv->ieee->iw_mode) {
7683         case IW_MODE_ADHOC:
7684                 {
7685                         struct list_head *p;
7686                         struct ipw_ibss_seq *entry = NULL;
7687                         u8 *mac = header->addr2;
7688                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7689
7690                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7691                                 entry =
7692                                     list_entry(p, struct ipw_ibss_seq, list);
7693                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7694                                         break;
7695                         }
7696                         if (p == &priv->ibss_mac_hash[index]) {
7697                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7698                                 if (!entry) {
7699                                         IPW_ERROR
7700                                             ("Cannot malloc new mac entry\n");
7701                                         return 0;
7702                                 }
7703                                 memcpy(entry->mac, mac, ETH_ALEN);
7704                                 entry->seq_num = seq;
7705                                 entry->frag_num = frag;
7706                                 entry->packet_time = jiffies;
7707                                 list_add(&entry->list,
7708                                          &priv->ibss_mac_hash[index]);
7709                                 return 0;
7710                         }
7711                         last_seq = &entry->seq_num;
7712                         last_frag = &entry->frag_num;
7713                         last_time = &entry->packet_time;
7714                         break;
7715                 }
7716         case IW_MODE_INFRA:
7717                 last_seq = &priv->last_seq_num;
7718                 last_frag = &priv->last_frag_num;
7719                 last_time = &priv->last_packet_time;
7720                 break;
7721         default:
7722                 return 0;
7723         }
7724         if ((*last_seq == seq) &&
7725             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7726                 if (*last_frag == frag)
7727                         goto drop;
7728                 if (*last_frag + 1 != frag)
7729                         /* out-of-order fragment */
7730                         goto drop;
7731         } else
7732                 *last_seq = seq;
7733
7734         *last_frag = frag;
7735         *last_time = jiffies;
7736         return 0;
7737
7738       drop:
7739         /* Comment this line now since we observed the card receives
7740          * duplicate packets but the FCTL_RETRY bit is not set in the
7741          * IBSS mode with fragmentation enabled.
7742          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7743         return 1;
7744 }
7745
7746 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7747                                    struct ipw_rx_mem_buffer *rxb,
7748                                    struct ieee80211_rx_stats *stats)
7749 {
7750         struct sk_buff *skb = rxb->skb;
7751         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7752         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7753             (skb->data + IPW_RX_FRAME_SIZE);
7754
7755         ieee80211_rx_mgt(priv->ieee, header, stats);
7756
7757         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7758             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7759               IEEE80211_STYPE_PROBE_RESP) ||
7760              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7761               IEEE80211_STYPE_BEACON))) {
7762                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7763                         ipw_add_station(priv, header->addr2);
7764         }
7765
7766         if (priv->config & CFG_NET_STATS) {
7767                 IPW_DEBUG_HC("sending stat packet\n");
7768
7769                 /* Set the size of the skb to the size of the full
7770                  * ipw header and 802.11 frame */
7771                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7772                         IPW_RX_FRAME_SIZE);
7773
7774                 /* Advance past the ipw packet header to the 802.11 frame */
7775                 skb_pull(skb, IPW_RX_FRAME_SIZE);
7776
7777                 /* Push the ieee80211_rx_stats before the 802.11 frame */
7778                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7779
7780                 skb->dev = priv->ieee->dev;
7781
7782                 /* Point raw at the ieee80211_stats */
7783                 skb->mac.raw = skb->data;
7784
7785                 skb->pkt_type = PACKET_OTHERHOST;
7786                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7787                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7788                 netif_rx(skb);
7789                 rxb->skb = NULL;
7790         }
7791 }
7792
7793 /*
7794  * Main entry function for recieving a packet with 80211 headers.  This
7795  * should be called when ever the FW has notified us that there is a new
7796  * skb in the recieve queue.
7797  */
7798 static void ipw_rx(struct ipw_priv *priv)
7799 {
7800         struct ipw_rx_mem_buffer *rxb;
7801         struct ipw_rx_packet *pkt;
7802         struct ieee80211_hdr_4addr *header;
7803         u32 r, w, i;
7804         u8 network_packet;
7805
7806         r = ipw_read32(priv, IPW_RX_READ_INDEX);
7807         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7808         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7809
7810         while (i != r) {
7811                 rxb = priv->rxq->queue[i];
7812 #ifdef CONFIG_IPW2200_DEBUG
7813                 if (unlikely(rxb == NULL)) {
7814                         printk(KERN_CRIT "Queue not allocated!\n");
7815                         break;
7816                 }
7817 #endif
7818                 priv->rxq->queue[i] = NULL;
7819
7820                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7821                                             IPW_RX_BUF_SIZE,
7822                                             PCI_DMA_FROMDEVICE);
7823
7824                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7825                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7826                              pkt->header.message_type,
7827                              pkt->header.rx_seq_num, pkt->header.control_bits);
7828
7829                 switch (pkt->header.message_type) {
7830                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
7831                                 struct ieee80211_rx_stats stats = {
7832                                         .rssi =
7833                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7834                                             IPW_RSSI_TO_DBM,
7835                                         .signal =
7836                                             le16_to_cpu(pkt->u.frame.signal),
7837                                         .noise =
7838                                             le16_to_cpu(pkt->u.frame.noise),
7839                                         .rate = pkt->u.frame.rate,
7840                                         .mac_time = jiffies,
7841                                         .received_channel =
7842                                             pkt->u.frame.received_channel,
7843                                         .freq =
7844                                             (pkt->u.frame.
7845                                              control & (1 << 0)) ?
7846                                             IEEE80211_24GHZ_BAND :
7847                                             IEEE80211_52GHZ_BAND,
7848                                         .len = le16_to_cpu(pkt->u.frame.length),
7849                                 };
7850
7851                                 if (stats.rssi != 0)
7852                                         stats.mask |= IEEE80211_STATMASK_RSSI;
7853                                 if (stats.signal != 0)
7854                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
7855                                 if (stats.noise != 0)
7856                                         stats.mask |= IEEE80211_STATMASK_NOISE;
7857                                 if (stats.rate != 0)
7858                                         stats.mask |= IEEE80211_STATMASK_RATE;
7859
7860                                 priv->rx_packets++;
7861
7862 #ifdef CONFIG_IPW2200_MONITOR
7863                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7864 #ifdef CONFIG_IEEE80211_RADIOTAP
7865                                         ipw_handle_data_packet_monitor(priv,
7866                                                                        rxb,
7867                                                                        &stats);
7868 #else
7869                                         ipw_handle_data_packet(priv, rxb,
7870                                                                &stats);
7871 #endif
7872                                         break;
7873                                 }
7874 #endif
7875
7876                                 header =
7877                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
7878                                                                    data +
7879                                                                    IPW_RX_FRAME_SIZE);
7880                                 /* TODO: Check Ad-Hoc dest/source and make sure
7881                                  * that we are actually parsing these packets
7882                                  * correctly -- we should probably use the
7883                                  * frame control of the packet and disregard
7884                                  * the current iw_mode */
7885
7886                                 network_packet =
7887                                     is_network_packet(priv, header);
7888                                 if (network_packet && priv->assoc_network) {
7889                                         priv->assoc_network->stats.rssi =
7890                                             stats.rssi;
7891                                         average_add(&priv->average_rssi,
7892                                                     stats.rssi);
7893                                         priv->last_rx_rssi = stats.rssi;
7894                                 }
7895
7896                                 IPW_DEBUG_RX("Frame: len=%u\n",
7897                                              le16_to_cpu(pkt->u.frame.length));
7898
7899                                 if (le16_to_cpu(pkt->u.frame.length) <
7900                                     frame_hdr_len(header)) {
7901                                         IPW_DEBUG_DROP
7902                                             ("Received packet is too small. "
7903                                              "Dropping.\n");
7904                                         priv->ieee->stats.rx_errors++;
7905                                         priv->wstats.discard.misc++;
7906                                         break;
7907                                 }
7908
7909                                 switch (WLAN_FC_GET_TYPE
7910                                         (le16_to_cpu(header->frame_ctl))) {
7911
7912                                 case IEEE80211_FTYPE_MGMT:
7913                                         ipw_handle_mgmt_packet(priv, rxb,
7914                                                                &stats);
7915                                         break;
7916
7917                                 case IEEE80211_FTYPE_CTL:
7918                                         break;
7919
7920                                 case IEEE80211_FTYPE_DATA:
7921                                         if (unlikely(!network_packet ||
7922                                                      is_duplicate_packet(priv,
7923                                                                          header)))
7924                                         {
7925                                                 IPW_DEBUG_DROP("Dropping: "
7926                                                                MAC_FMT ", "
7927                                                                MAC_FMT ", "
7928                                                                MAC_FMT "\n",
7929                                                                MAC_ARG(header->
7930                                                                        addr1),
7931                                                                MAC_ARG(header->
7932                                                                        addr2),
7933                                                                MAC_ARG(header->
7934                                                                        addr3));
7935                                                 break;
7936                                         }
7937
7938                                         ipw_handle_data_packet(priv, rxb,
7939                                                                &stats);
7940
7941                                         break;
7942                                 }
7943                                 break;
7944                         }
7945
7946                 case RX_HOST_NOTIFICATION_TYPE:{
7947                                 IPW_DEBUG_RX
7948                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
7949                                      pkt->u.notification.subtype,
7950                                      pkt->u.notification.flags,
7951                                      pkt->u.notification.size);
7952                                 ipw_rx_notification(priv, &pkt->u.notification);
7953                                 break;
7954                         }
7955
7956                 default:
7957                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
7958                                      pkt->header.message_type);
7959                         break;
7960                 }
7961
7962                 /* For now we just don't re-use anything.  We can tweak this
7963                  * later to try and re-use notification packets and SKBs that
7964                  * fail to Rx correctly */
7965                 if (rxb->skb != NULL) {
7966                         dev_kfree_skb_any(rxb->skb);
7967                         rxb->skb = NULL;
7968                 }
7969
7970                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
7971                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
7972                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
7973
7974                 i = (i + 1) % RX_QUEUE_SIZE;
7975         }
7976
7977         /* Backtrack one entry */
7978         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
7979
7980         ipw_rx_queue_restock(priv);
7981 }
7982
7983 #define DEFAULT_RTS_THRESHOLD     2304U
7984 #define MIN_RTS_THRESHOLD         1U
7985 #define MAX_RTS_THRESHOLD         2304U
7986 #define DEFAULT_BEACON_INTERVAL   100U
7987 #define DEFAULT_SHORT_RETRY_LIMIT 7U
7988 #define DEFAULT_LONG_RETRY_LIMIT  4U
7989
7990 static int ipw_sw_reset(struct ipw_priv *priv, int init)
7991 {
7992         int band, modulation;
7993         int old_mode = priv->ieee->iw_mode;
7994
7995         /* Initialize module parameter values here */
7996         priv->config = 0;
7997
7998         /* We default to disabling the LED code as right now it causes
7999          * too many systems to lock up... */
8000         if (!led)
8001                 priv->config |= CFG_NO_LED;
8002
8003         if (associate)
8004                 priv->config |= CFG_ASSOCIATE;
8005         else
8006                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8007
8008         if (auto_create)
8009                 priv->config |= CFG_ADHOC_CREATE;
8010         else
8011                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8012
8013         priv->config &= ~CFG_STATIC_ESSID;
8014         priv->essid_len = 0;
8015         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8016
8017         if (disable) {
8018                 priv->status |= STATUS_RF_KILL_SW;
8019                 IPW_DEBUG_INFO("Radio disabled.\n");
8020         }
8021
8022         if (channel != 0) {
8023                 priv->config |= CFG_STATIC_CHANNEL;
8024                 priv->channel = channel;
8025                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8026                 /* TODO: Validate that provided channel is in range */
8027         }
8028 #ifdef CONFIG_IPW_QOS
8029         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8030                      burst_duration_CCK, burst_duration_OFDM);
8031 #endif                          /* CONFIG_IPW_QOS */
8032
8033         switch (mode) {
8034         case 1:
8035                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8036                 priv->net_dev->type = ARPHRD_ETHER;
8037
8038                 break;
8039 #ifdef CONFIG_IPW2200_MONITOR
8040         case 2:
8041                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8042 #ifdef CONFIG_IEEE80211_RADIOTAP
8043                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8044 #else
8045                 priv->net_dev->type = ARPHRD_IEEE80211;
8046 #endif
8047                 break;
8048 #endif
8049         default:
8050         case 0:
8051                 priv->net_dev->type = ARPHRD_ETHER;
8052                 priv->ieee->iw_mode = IW_MODE_INFRA;
8053                 break;
8054         }
8055
8056         if (hwcrypto) {
8057                 priv->ieee->host_encrypt = 0;
8058                 priv->ieee->host_encrypt_msdu = 0;
8059                 priv->ieee->host_decrypt = 0;
8060                 priv->ieee->host_mc_decrypt = 0;
8061         }
8062         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8063
8064         /* IPW2200/2915 is abled to do hardware fragmentation. */
8065         priv->ieee->host_open_frag = 0;
8066
8067         if ((priv->pci_dev->device == 0x4223) ||
8068             (priv->pci_dev->device == 0x4224)) {
8069                 if (init)
8070                         printk(KERN_INFO DRV_NAME
8071                                ": Detected Intel PRO/Wireless 2915ABG Network "
8072                                "Connection\n");
8073                 priv->ieee->abg_true = 1;
8074                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8075                 modulation = IEEE80211_OFDM_MODULATION |
8076                     IEEE80211_CCK_MODULATION;
8077                 priv->adapter = IPW_2915ABG;
8078                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8079         } else {
8080                 if (init)
8081                         printk(KERN_INFO DRV_NAME
8082                                ": Detected Intel PRO/Wireless 2200BG Network "
8083                                "Connection\n");
8084
8085                 priv->ieee->abg_true = 0;
8086                 band = IEEE80211_24GHZ_BAND;
8087                 modulation = IEEE80211_OFDM_MODULATION |
8088                     IEEE80211_CCK_MODULATION;
8089                 priv->adapter = IPW_2200BG;
8090                 priv->ieee->mode = IEEE_G | IEEE_B;
8091         }
8092
8093         priv->ieee->freq_band = band;
8094         priv->ieee->modulation = modulation;
8095
8096         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8097
8098         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8099         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8100
8101         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8102         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8103         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8104
8105         /* If power management is turned on, default to AC mode */
8106         priv->power_mode = IPW_POWER_AC;
8107         priv->tx_power = IPW_TX_POWER_DEFAULT;
8108
8109         return old_mode == priv->ieee->iw_mode;
8110 }
8111
8112 /*
8113  * This file defines the Wireless Extension handlers.  It does not
8114  * define any methods of hardware manipulation and relies on the
8115  * functions defined in ipw_main to provide the HW interaction.
8116  *
8117  * The exception to this is the use of the ipw_get_ordinal()
8118  * function used to poll the hardware vs. making unecessary calls.
8119  *
8120  */
8121
8122 static int ipw_wx_get_name(struct net_device *dev,
8123                            struct iw_request_info *info,
8124                            union iwreq_data *wrqu, char *extra)
8125 {
8126         struct ipw_priv *priv = ieee80211_priv(dev);
8127         mutex_lock(&priv->mutex);
8128         if (priv->status & STATUS_RF_KILL_MASK)
8129                 strcpy(wrqu->name, "radio off");
8130         else if (!(priv->status & STATUS_ASSOCIATED))
8131                 strcpy(wrqu->name, "unassociated");
8132         else
8133                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8134                          ipw_modes[priv->assoc_request.ieee_mode]);
8135         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8136         mutex_unlock(&priv->mutex);
8137         return 0;
8138 }
8139
8140 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8141 {
8142         if (channel == 0) {
8143                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8144                 priv->config &= ~CFG_STATIC_CHANNEL;
8145                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8146                                 "parameters.\n");
8147                 ipw_associate(priv);
8148                 return 0;
8149         }
8150
8151         priv->config |= CFG_STATIC_CHANNEL;
8152
8153         if (priv->channel == channel) {
8154                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8155                                channel);
8156                 return 0;
8157         }
8158
8159         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8160         priv->channel = channel;
8161
8162 #ifdef CONFIG_IPW2200_MONITOR
8163         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8164                 int i;
8165                 if (priv->status & STATUS_SCANNING) {
8166                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8167                                        "channel change.\n");
8168                         ipw_abort_scan(priv);
8169                 }
8170
8171                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8172                         udelay(10);
8173
8174                 if (priv->status & STATUS_SCANNING)
8175                         IPW_DEBUG_SCAN("Still scanning...\n");
8176                 else
8177                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8178                                        1000 - i);
8179
8180                 return 0;
8181         }
8182 #endif                          /* CONFIG_IPW2200_MONITOR */
8183
8184         /* Network configuration changed -- force [re]association */
8185         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8186         if (!ipw_disassociate(priv))
8187                 ipw_associate(priv);
8188
8189         return 0;
8190 }
8191
8192 static int ipw_wx_set_freq(struct net_device *dev,
8193                            struct iw_request_info *info,
8194                            union iwreq_data *wrqu, char *extra)
8195 {
8196         struct ipw_priv *priv = ieee80211_priv(dev);
8197         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8198         struct iw_freq *fwrq = &wrqu->freq;
8199         int ret = 0, i;
8200         u8 channel, flags;
8201         int band;
8202
8203         if (fwrq->m == 0) {
8204                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8205                 mutex_lock(&priv->mutex);
8206                 ret = ipw_set_channel(priv, 0);
8207                 mutex_unlock(&priv->mutex);
8208                 return ret;
8209         }
8210         /* if setting by freq convert to channel */
8211         if (fwrq->e == 1) {
8212                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8213                 if (channel == 0)
8214                         return -EINVAL;
8215         } else
8216                 channel = fwrq->m;
8217
8218         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8219                 return -EINVAL;
8220
8221         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8222                 i = ieee80211_channel_to_index(priv->ieee, channel);
8223                 if (i == -1)
8224                         return -EINVAL;
8225
8226                 flags = (band == IEEE80211_24GHZ_BAND) ?
8227                     geo->bg[i].flags : geo->a[i].flags;
8228                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8229                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8230                         return -EINVAL;
8231                 }
8232         }
8233
8234         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8235         mutex_lock(&priv->mutex);
8236         ret = ipw_set_channel(priv, channel);
8237         mutex_unlock(&priv->mutex);
8238         return ret;
8239 }
8240
8241 static int ipw_wx_get_freq(struct net_device *dev,
8242                            struct iw_request_info *info,
8243                            union iwreq_data *wrqu, char *extra)
8244 {
8245         struct ipw_priv *priv = ieee80211_priv(dev);
8246
8247         wrqu->freq.e = 0;
8248
8249         /* If we are associated, trying to associate, or have a statically
8250          * configured CHANNEL then return that; otherwise return ANY */
8251         mutex_lock(&priv->mutex);
8252         if (priv->config & CFG_STATIC_CHANNEL ||
8253             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8254                 wrqu->freq.m = priv->channel;
8255         else
8256                 wrqu->freq.m = 0;
8257
8258         mutex_unlock(&priv->mutex);
8259         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8260         return 0;
8261 }
8262
8263 static int ipw_wx_set_mode(struct net_device *dev,
8264                            struct iw_request_info *info,
8265                            union iwreq_data *wrqu, char *extra)
8266 {
8267         struct ipw_priv *priv = ieee80211_priv(dev);
8268         int err = 0;
8269
8270         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8271
8272         switch (wrqu->mode) {
8273 #ifdef CONFIG_IPW2200_MONITOR
8274         case IW_MODE_MONITOR:
8275 #endif
8276         case IW_MODE_ADHOC:
8277         case IW_MODE_INFRA:
8278                 break;
8279         case IW_MODE_AUTO:
8280                 wrqu->mode = IW_MODE_INFRA;
8281                 break;
8282         default:
8283                 return -EINVAL;
8284         }
8285         if (wrqu->mode == priv->ieee->iw_mode)
8286                 return 0;
8287
8288         mutex_lock(&priv->mutex);
8289
8290         ipw_sw_reset(priv, 0);
8291
8292 #ifdef CONFIG_IPW2200_MONITOR
8293         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8294                 priv->net_dev->type = ARPHRD_ETHER;
8295
8296         if (wrqu->mode == IW_MODE_MONITOR)
8297 #ifdef CONFIG_IEEE80211_RADIOTAP
8298                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8299 #else
8300                 priv->net_dev->type = ARPHRD_IEEE80211;
8301 #endif
8302 #endif                          /* CONFIG_IPW2200_MONITOR */
8303
8304         /* Free the existing firmware and reset the fw_loaded
8305          * flag so ipw_load() will bring in the new firmawre */
8306         free_firmware();
8307
8308         priv->ieee->iw_mode = wrqu->mode;
8309
8310         queue_work(priv->workqueue, &priv->adapter_restart);
8311         mutex_unlock(&priv->mutex);
8312         return err;
8313 }
8314
8315 static int ipw_wx_get_mode(struct net_device *dev,
8316                            struct iw_request_info *info,
8317                            union iwreq_data *wrqu, char *extra)
8318 {
8319         struct ipw_priv *priv = ieee80211_priv(dev);
8320         mutex_lock(&priv->mutex);
8321         wrqu->mode = priv->ieee->iw_mode;
8322         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8323         mutex_unlock(&priv->mutex);
8324         return 0;
8325 }
8326
8327 /* Values are in microsecond */
8328 static const s32 timeout_duration[] = {
8329         350000,
8330         250000,
8331         75000,
8332         37000,
8333         25000,
8334 };
8335
8336 static const s32 period_duration[] = {
8337         400000,
8338         700000,
8339         1000000,
8340         1000000,
8341         1000000
8342 };
8343
8344 static int ipw_wx_get_range(struct net_device *dev,
8345                             struct iw_request_info *info,
8346                             union iwreq_data *wrqu, char *extra)
8347 {
8348         struct ipw_priv *priv = ieee80211_priv(dev);
8349         struct iw_range *range = (struct iw_range *)extra;
8350         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8351         int i = 0, j;
8352
8353         wrqu->data.length = sizeof(*range);
8354         memset(range, 0, sizeof(*range));
8355
8356         /* 54Mbs == ~27 Mb/s real (802.11g) */
8357         range->throughput = 27 * 1000 * 1000;
8358
8359         range->max_qual.qual = 100;
8360         /* TODO: Find real max RSSI and stick here */
8361         range->max_qual.level = 0;
8362         range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8363         range->max_qual.updated = 7;    /* Updated all three */
8364
8365         range->avg_qual.qual = 70;
8366         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8367         range->avg_qual.level = 0;      /* FIXME to real average level */
8368         range->avg_qual.noise = 0;
8369         range->avg_qual.updated = 7;    /* Updated all three */
8370         mutex_lock(&priv->mutex);
8371         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8372
8373         for (i = 0; i < range->num_bitrates; i++)
8374                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8375                     500000;
8376
8377         range->max_rts = DEFAULT_RTS_THRESHOLD;
8378         range->min_frag = MIN_FRAG_THRESHOLD;
8379         range->max_frag = MAX_FRAG_THRESHOLD;
8380
8381         range->encoding_size[0] = 5;
8382         range->encoding_size[1] = 13;
8383         range->num_encoding_sizes = 2;
8384         range->max_encoding_tokens = WEP_KEYS;
8385
8386         /* Set the Wireless Extension versions */
8387         range->we_version_compiled = WIRELESS_EXT;
8388         range->we_version_source = 18;
8389
8390         i = 0;
8391         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8392                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8393                      i++, j++) {
8394                         range->freq[i].i = geo->bg[j].channel;
8395                         range->freq[i].m = geo->bg[j].freq * 100000;
8396                         range->freq[i].e = 1;
8397                 }
8398         }
8399
8400         if (priv->ieee->mode & IEEE_A) {
8401                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8402                      i++, j++) {
8403                         range->freq[i].i = geo->a[j].channel;
8404                         range->freq[i].m = geo->a[j].freq * 100000;
8405                         range->freq[i].e = 1;
8406                 }
8407         }
8408
8409         range->num_channels = i;
8410         range->num_frequency = i;
8411
8412         mutex_unlock(&priv->mutex);
8413
8414         /* Event capability (kernel + driver) */
8415         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8416                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8417                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8418         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8419
8420         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8421                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8422
8423         IPW_DEBUG_WX("GET Range\n");
8424         return 0;
8425 }
8426
8427 static int ipw_wx_set_wap(struct net_device *dev,
8428                           struct iw_request_info *info,
8429                           union iwreq_data *wrqu, char *extra)
8430 {
8431         struct ipw_priv *priv = ieee80211_priv(dev);
8432
8433         static const unsigned char any[] = {
8434                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8435         };
8436         static const unsigned char off[] = {
8437                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8438         };
8439
8440         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8441                 return -EINVAL;
8442         mutex_lock(&priv->mutex);
8443         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8444             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8445                 /* we disable mandatory BSSID association */
8446                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8447                 priv->config &= ~CFG_STATIC_BSSID;
8448                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8449                                 "parameters.\n");
8450                 ipw_associate(priv);
8451                 mutex_unlock(&priv->mutex);
8452                 return 0;
8453         }
8454
8455         priv->config |= CFG_STATIC_BSSID;
8456         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8457                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8458                 mutex_unlock(&priv->mutex);
8459                 return 0;
8460         }
8461
8462         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8463                      MAC_ARG(wrqu->ap_addr.sa_data));
8464
8465         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8466
8467         /* Network configuration changed -- force [re]association */
8468         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8469         if (!ipw_disassociate(priv))
8470                 ipw_associate(priv);
8471
8472         mutex_unlock(&priv->mutex);
8473         return 0;
8474 }
8475
8476 static int ipw_wx_get_wap(struct net_device *dev,
8477                           struct iw_request_info *info,
8478                           union iwreq_data *wrqu, char *extra)
8479 {
8480         struct ipw_priv *priv = ieee80211_priv(dev);
8481         /* If we are associated, trying to associate, or have a statically
8482          * configured BSSID then return that; otherwise return ANY */
8483         mutex_lock(&priv->mutex);
8484         if (priv->config & CFG_STATIC_BSSID ||
8485             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8486                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8487                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8488         } else
8489                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8490
8491         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8492                      MAC_ARG(wrqu->ap_addr.sa_data));
8493         mutex_unlock(&priv->mutex);
8494         return 0;
8495 }
8496
8497 static int ipw_wx_set_essid(struct net_device *dev,
8498                             struct iw_request_info *info,
8499                             union iwreq_data *wrqu, char *extra)
8500 {
8501         struct ipw_priv *priv = ieee80211_priv(dev);
8502         char *essid = "";       /* ANY */
8503         int length = 0;
8504         mutex_lock(&priv->mutex);
8505         if (wrqu->essid.flags && wrqu->essid.length) {
8506                 length = wrqu->essid.length - 1;
8507                 essid = extra;
8508         }
8509         if (length == 0) {
8510                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8511                 if ((priv->config & CFG_STATIC_ESSID) &&
8512                     !(priv->status & (STATUS_ASSOCIATED |
8513                                       STATUS_ASSOCIATING))) {
8514                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8515                                         "parameters.\n");
8516                         priv->config &= ~CFG_STATIC_ESSID;
8517                         ipw_associate(priv);
8518                 }
8519                 mutex_unlock(&priv->mutex);
8520                 return 0;
8521         }
8522
8523         length = min(length, IW_ESSID_MAX_SIZE);
8524
8525         priv->config |= CFG_STATIC_ESSID;
8526
8527         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8528                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8529                 mutex_unlock(&priv->mutex);
8530                 return 0;
8531         }
8532
8533         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8534                      length);
8535
8536         priv->essid_len = length;
8537         memcpy(priv->essid, essid, priv->essid_len);
8538
8539         /* Network configuration changed -- force [re]association */
8540         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8541         if (!ipw_disassociate(priv))
8542                 ipw_associate(priv);
8543
8544         mutex_unlock(&priv->mutex);
8545         return 0;
8546 }
8547
8548 static int ipw_wx_get_essid(struct net_device *dev,
8549                             struct iw_request_info *info,
8550                             union iwreq_data *wrqu, char *extra)
8551 {
8552         struct ipw_priv *priv = ieee80211_priv(dev);
8553
8554         /* If we are associated, trying to associate, or have a statically
8555          * configured ESSID then return that; otherwise return ANY */
8556         mutex_lock(&priv->mutex);
8557         if (priv->config & CFG_STATIC_ESSID ||
8558             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8559                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8560                              escape_essid(priv->essid, priv->essid_len));
8561                 memcpy(extra, priv->essid, priv->essid_len);
8562                 wrqu->essid.length = priv->essid_len;
8563                 wrqu->essid.flags = 1;  /* active */
8564         } else {
8565                 IPW_DEBUG_WX("Getting essid: ANY\n");
8566                 wrqu->essid.length = 0;
8567                 wrqu->essid.flags = 0;  /* active */
8568         }
8569         mutex_unlock(&priv->mutex);
8570         return 0;
8571 }
8572
8573 static int ipw_wx_set_nick(struct net_device *dev,
8574                            struct iw_request_info *info,
8575                            union iwreq_data *wrqu, char *extra)
8576 {
8577         struct ipw_priv *priv = ieee80211_priv(dev);
8578
8579         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8580         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8581                 return -E2BIG;
8582         mutex_lock(&priv->mutex);
8583         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8584         memset(priv->nick, 0, sizeof(priv->nick));
8585         memcpy(priv->nick, extra, wrqu->data.length);
8586         IPW_DEBUG_TRACE("<<\n");
8587         mutex_unlock(&priv->mutex);
8588         return 0;
8589
8590 }
8591
8592 static int ipw_wx_get_nick(struct net_device *dev,
8593                            struct iw_request_info *info,
8594                            union iwreq_data *wrqu, char *extra)
8595 {
8596         struct ipw_priv *priv = ieee80211_priv(dev);
8597         IPW_DEBUG_WX("Getting nick\n");
8598         mutex_lock(&priv->mutex);
8599         wrqu->data.length = strlen(priv->nick) + 1;
8600         memcpy(extra, priv->nick, wrqu->data.length);
8601         wrqu->data.flags = 1;   /* active */
8602         mutex_unlock(&priv->mutex);
8603         return 0;
8604 }
8605
8606 static int ipw_wx_set_rate(struct net_device *dev,
8607                            struct iw_request_info *info,
8608                            union iwreq_data *wrqu, char *extra)
8609 {
8610         /* TODO: We should use semaphores or locks for access to priv */
8611         struct ipw_priv *priv = ieee80211_priv(dev);
8612         u32 target_rate = wrqu->bitrate.value;
8613         u32 fixed, mask;
8614
8615         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8616         /* value = X, fixed = 1 means only rate X */
8617         /* value = X, fixed = 0 means all rates lower equal X */
8618
8619         if (target_rate == -1) {
8620                 fixed = 0;
8621                 mask = IEEE80211_DEFAULT_RATES_MASK;
8622                 /* Now we should reassociate */
8623                 goto apply;
8624         }
8625
8626         mask = 0;
8627         fixed = wrqu->bitrate.fixed;
8628
8629         if (target_rate == 1000000 || !fixed)
8630                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8631         if (target_rate == 1000000)
8632                 goto apply;
8633
8634         if (target_rate == 2000000 || !fixed)
8635                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8636         if (target_rate == 2000000)
8637                 goto apply;
8638
8639         if (target_rate == 5500000 || !fixed)
8640                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8641         if (target_rate == 5500000)
8642                 goto apply;
8643
8644         if (target_rate == 6000000 || !fixed)
8645                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8646         if (target_rate == 6000000)
8647                 goto apply;
8648
8649         if (target_rate == 9000000 || !fixed)
8650                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8651         if (target_rate == 9000000)
8652                 goto apply;
8653
8654         if (target_rate == 11000000 || !fixed)
8655                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8656         if (target_rate == 11000000)
8657                 goto apply;
8658
8659         if (target_rate == 12000000 || !fixed)
8660                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8661         if (target_rate == 12000000)
8662                 goto apply;
8663
8664         if (target_rate == 18000000 || !fixed)
8665                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8666         if (target_rate == 18000000)
8667                 goto apply;
8668
8669         if (target_rate == 24000000 || !fixed)
8670                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8671         if (target_rate == 24000000)
8672                 goto apply;
8673
8674         if (target_rate == 36000000 || !fixed)
8675                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8676         if (target_rate == 36000000)
8677                 goto apply;
8678
8679         if (target_rate == 48000000 || !fixed)
8680                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8681         if (target_rate == 48000000)
8682                 goto apply;
8683
8684         if (target_rate == 54000000 || !fixed)
8685                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8686         if (target_rate == 54000000)
8687                 goto apply;
8688
8689         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8690         return -EINVAL;
8691
8692       apply:
8693         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8694                      mask, fixed ? "fixed" : "sub-rates");
8695         mutex_lock(&priv->mutex);
8696         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8697                 priv->config &= ~CFG_FIXED_RATE;
8698                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8699         } else
8700                 priv->config |= CFG_FIXED_RATE;
8701
8702         if (priv->rates_mask == mask) {
8703                 IPW_DEBUG_WX("Mask set to current mask.\n");
8704                 mutex_unlock(&priv->mutex);
8705                 return 0;
8706         }
8707
8708         priv->rates_mask = mask;
8709
8710         /* Network configuration changed -- force [re]association */
8711         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8712         if (!ipw_disassociate(priv))
8713                 ipw_associate(priv);
8714
8715         mutex_unlock(&priv->mutex);
8716         return 0;
8717 }
8718
8719 static int ipw_wx_get_rate(struct net_device *dev,
8720                            struct iw_request_info *info,
8721                            union iwreq_data *wrqu, char *extra)
8722 {
8723         struct ipw_priv *priv = ieee80211_priv(dev);
8724         mutex_lock(&priv->mutex);
8725         wrqu->bitrate.value = priv->last_rate;
8726         mutex_unlock(&priv->mutex);
8727         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8728         return 0;
8729 }
8730
8731 static int ipw_wx_set_rts(struct net_device *dev,
8732                           struct iw_request_info *info,
8733                           union iwreq_data *wrqu, char *extra)
8734 {
8735         struct ipw_priv *priv = ieee80211_priv(dev);
8736         mutex_lock(&priv->mutex);
8737         if (wrqu->rts.disabled)
8738                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8739         else {
8740                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8741                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8742                         mutex_unlock(&priv->mutex);
8743                         return -EINVAL;
8744                 }
8745                 priv->rts_threshold = wrqu->rts.value;
8746         }
8747
8748         ipw_send_rts_threshold(priv, priv->rts_threshold);
8749         mutex_unlock(&priv->mutex);
8750         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8751         return 0;
8752 }
8753
8754 static int ipw_wx_get_rts(struct net_device *dev,
8755                           struct iw_request_info *info,
8756                           union iwreq_data *wrqu, char *extra)
8757 {
8758         struct ipw_priv *priv = ieee80211_priv(dev);
8759         mutex_lock(&priv->mutex);
8760         wrqu->rts.value = priv->rts_threshold;
8761         wrqu->rts.fixed = 0;    /* no auto select */
8762         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8763         mutex_unlock(&priv->mutex);
8764         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8765         return 0;
8766 }
8767
8768 static int ipw_wx_set_txpow(struct net_device *dev,
8769                             struct iw_request_info *info,
8770                             union iwreq_data *wrqu, char *extra)
8771 {
8772         struct ipw_priv *priv = ieee80211_priv(dev);
8773         int err = 0;
8774
8775         mutex_lock(&priv->mutex);
8776         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8777                 err = -EINPROGRESS;
8778                 goto out;
8779         }
8780
8781         if (!wrqu->power.fixed)
8782                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8783
8784         if (wrqu->power.flags != IW_TXPOW_DBM) {
8785                 err = -EINVAL;
8786                 goto out;
8787         }
8788
8789         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8790             (wrqu->power.value < IPW_TX_POWER_MIN)) {
8791                 err = -EINVAL;
8792                 goto out;
8793         }
8794
8795         priv->tx_power = wrqu->power.value;
8796         err = ipw_set_tx_power(priv);
8797       out:
8798         mutex_unlock(&priv->mutex);
8799         return err;
8800 }
8801
8802 static int ipw_wx_get_txpow(struct net_device *dev,
8803                             struct iw_request_info *info,
8804                             union iwreq_data *wrqu, char *extra)
8805 {
8806         struct ipw_priv *priv = ieee80211_priv(dev);
8807         mutex_lock(&priv->mutex);
8808         wrqu->power.value = priv->tx_power;
8809         wrqu->power.fixed = 1;
8810         wrqu->power.flags = IW_TXPOW_DBM;
8811         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8812         mutex_unlock(&priv->mutex);
8813
8814         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8815                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8816
8817         return 0;
8818 }
8819
8820 static int ipw_wx_set_frag(struct net_device *dev,
8821                            struct iw_request_info *info,
8822                            union iwreq_data *wrqu, char *extra)
8823 {
8824         struct ipw_priv *priv = ieee80211_priv(dev);
8825         mutex_lock(&priv->mutex);
8826         if (wrqu->frag.disabled)
8827                 priv->ieee->fts = DEFAULT_FTS;
8828         else {
8829                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8830                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8831                         mutex_unlock(&priv->mutex);
8832                         return -EINVAL;
8833                 }
8834
8835                 priv->ieee->fts = wrqu->frag.value & ~0x1;
8836         }
8837
8838         ipw_send_frag_threshold(priv, wrqu->frag.value);
8839         mutex_unlock(&priv->mutex);
8840         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8841         return 0;
8842 }
8843
8844 static int ipw_wx_get_frag(struct net_device *dev,
8845                            struct iw_request_info *info,
8846                            union iwreq_data *wrqu, char *extra)
8847 {
8848         struct ipw_priv *priv = ieee80211_priv(dev);
8849         mutex_lock(&priv->mutex);
8850         wrqu->frag.value = priv->ieee->fts;
8851         wrqu->frag.fixed = 0;   /* no auto select */
8852         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8853         mutex_unlock(&priv->mutex);
8854         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8855
8856         return 0;
8857 }
8858
8859 static int ipw_wx_set_retry(struct net_device *dev,
8860                             struct iw_request_info *info,
8861                             union iwreq_data *wrqu, char *extra)
8862 {
8863         struct ipw_priv *priv = ieee80211_priv(dev);
8864
8865         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8866                 return -EINVAL;
8867
8868         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8869                 return 0;
8870
8871         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8872                 return -EINVAL;
8873
8874         mutex_lock(&priv->mutex);
8875         if (wrqu->retry.flags & IW_RETRY_MIN)
8876                 priv->short_retry_limit = (u8) wrqu->retry.value;
8877         else if (wrqu->retry.flags & IW_RETRY_MAX)
8878                 priv->long_retry_limit = (u8) wrqu->retry.value;
8879         else {
8880                 priv->short_retry_limit = (u8) wrqu->retry.value;
8881                 priv->long_retry_limit = (u8) wrqu->retry.value;
8882         }
8883
8884         ipw_send_retry_limit(priv, priv->short_retry_limit,
8885                              priv->long_retry_limit);
8886         mutex_unlock(&priv->mutex);
8887         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8888                      priv->short_retry_limit, priv->long_retry_limit);
8889         return 0;
8890 }
8891
8892 static int ipw_wx_get_retry(struct net_device *dev,
8893                             struct iw_request_info *info,
8894                             union iwreq_data *wrqu, char *extra)
8895 {
8896         struct ipw_priv *priv = ieee80211_priv(dev);
8897
8898         mutex_lock(&priv->mutex);
8899         wrqu->retry.disabled = 0;
8900
8901         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8902                 mutex_unlock(&priv->mutex);
8903                 return -EINVAL;
8904         }
8905
8906         if (wrqu->retry.flags & IW_RETRY_MAX) {
8907                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8908                 wrqu->retry.value = priv->long_retry_limit;
8909         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8910                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8911                 wrqu->retry.value = priv->short_retry_limit;
8912         } else {
8913                 wrqu->retry.flags = IW_RETRY_LIMIT;
8914                 wrqu->retry.value = priv->short_retry_limit;
8915         }
8916         mutex_unlock(&priv->mutex);
8917
8918         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8919
8920         return 0;
8921 }
8922
8923 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8924                                    int essid_len)
8925 {
8926         struct ipw_scan_request_ext scan;
8927         int err = 0, scan_type;
8928
8929         if (!(priv->status & STATUS_INIT) ||
8930             (priv->status & STATUS_EXIT_PENDING))
8931                 return 0;
8932
8933         mutex_lock(&priv->mutex);
8934
8935         if (priv->status & STATUS_RF_KILL_MASK) {
8936                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
8937                 priv->status |= STATUS_SCAN_PENDING;
8938                 goto done;
8939         }
8940
8941         IPW_DEBUG_HC("starting request direct scan!\n");
8942
8943         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
8944                 /* We should not sleep here; otherwise we will block most
8945                  * of the system (for instance, we hold rtnl_lock when we
8946                  * get here).
8947                  */
8948                 err = -EAGAIN;
8949                 goto done;
8950         }
8951         memset(&scan, 0, sizeof(scan));
8952
8953         if (priv->config & CFG_SPEED_SCAN)
8954                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8955                     cpu_to_le16(30);
8956         else
8957                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8958                     cpu_to_le16(20);
8959
8960         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
8961             cpu_to_le16(20);
8962         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
8963         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
8964
8965         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
8966
8967         err = ipw_send_ssid(priv, essid, essid_len);
8968         if (err) {
8969                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
8970                 goto done;
8971         }
8972         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
8973
8974         ipw_add_scan_channels(priv, &scan, scan_type);
8975
8976         err = ipw_send_scan_request_ext(priv, &scan);
8977         if (err) {
8978                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
8979                 goto done;
8980         }
8981
8982         priv->status |= STATUS_SCANNING;
8983
8984       done:
8985         mutex_unlock(&priv->mutex);
8986         return err;
8987 }
8988
8989 static int ipw_wx_set_scan(struct net_device *dev,
8990                            struct iw_request_info *info,
8991                            union iwreq_data *wrqu, char *extra)
8992 {
8993         struct ipw_priv *priv = ieee80211_priv(dev);
8994         struct iw_scan_req *req = NULL;
8995         if (wrqu->data.length
8996             && wrqu->data.length == sizeof(struct iw_scan_req)) {
8997                 req = (struct iw_scan_req *)extra;
8998                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
8999                         ipw_request_direct_scan(priv, req->essid,
9000                                                 req->essid_len);
9001                         return 0;
9002                 }
9003         }
9004
9005         IPW_DEBUG_WX("Start scan\n");
9006
9007         queue_work(priv->workqueue, &priv->request_scan);
9008
9009         return 0;
9010 }
9011
9012 static int ipw_wx_get_scan(struct net_device *dev,
9013                            struct iw_request_info *info,
9014                            union iwreq_data *wrqu, char *extra)
9015 {
9016         struct ipw_priv *priv = ieee80211_priv(dev);
9017         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9018 }
9019
9020 static int ipw_wx_set_encode(struct net_device *dev,
9021                              struct iw_request_info *info,
9022                              union iwreq_data *wrqu, char *key)
9023 {
9024         struct ipw_priv *priv = ieee80211_priv(dev);
9025         int ret;
9026         u32 cap = priv->capability;
9027
9028         mutex_lock(&priv->mutex);
9029         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9030
9031         /* In IBSS mode, we need to notify the firmware to update
9032          * the beacon info after we changed the capability. */
9033         if (cap != priv->capability &&
9034             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9035             priv->status & STATUS_ASSOCIATED)
9036                 ipw_disassociate(priv);
9037
9038         mutex_unlock(&priv->mutex);
9039         return ret;
9040 }
9041
9042 static int ipw_wx_get_encode(struct net_device *dev,
9043                              struct iw_request_info *info,
9044                              union iwreq_data *wrqu, char *key)
9045 {
9046         struct ipw_priv *priv = ieee80211_priv(dev);
9047         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9048 }
9049
9050 static int ipw_wx_set_power(struct net_device *dev,
9051                             struct iw_request_info *info,
9052                             union iwreq_data *wrqu, char *extra)
9053 {
9054         struct ipw_priv *priv = ieee80211_priv(dev);
9055         int err;
9056         mutex_lock(&priv->mutex);
9057         if (wrqu->power.disabled) {
9058                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9059                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9060                 if (err) {
9061                         IPW_DEBUG_WX("failed setting power mode.\n");
9062                         mutex_unlock(&priv->mutex);
9063                         return err;
9064                 }
9065                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9066                 mutex_unlock(&priv->mutex);
9067                 return 0;
9068         }
9069
9070         switch (wrqu->power.flags & IW_POWER_MODE) {
9071         case IW_POWER_ON:       /* If not specified */
9072         case IW_POWER_MODE:     /* If set all mask */
9073         case IW_POWER_ALL_R:    /* If explicitely state all */
9074                 break;
9075         default:                /* Otherwise we don't support it */
9076                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9077                              wrqu->power.flags);
9078                 mutex_unlock(&priv->mutex);
9079                 return -EOPNOTSUPP;
9080         }
9081
9082         /* If the user hasn't specified a power management mode yet, default
9083          * to BATTERY */
9084         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9085                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9086         else
9087                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9088         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9089         if (err) {
9090                 IPW_DEBUG_WX("failed setting power mode.\n");
9091                 mutex_unlock(&priv->mutex);
9092                 return err;
9093         }
9094
9095         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9096         mutex_unlock(&priv->mutex);
9097         return 0;
9098 }
9099
9100 static int ipw_wx_get_power(struct net_device *dev,
9101                             struct iw_request_info *info,
9102                             union iwreq_data *wrqu, char *extra)
9103 {
9104         struct ipw_priv *priv = ieee80211_priv(dev);
9105         mutex_lock(&priv->mutex);
9106         if (!(priv->power_mode & IPW_POWER_ENABLED))
9107                 wrqu->power.disabled = 1;
9108         else
9109                 wrqu->power.disabled = 0;
9110
9111         mutex_unlock(&priv->mutex);
9112         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9113
9114         return 0;
9115 }
9116
9117 static int ipw_wx_set_powermode(struct net_device *dev,
9118                                 struct iw_request_info *info,
9119                                 union iwreq_data *wrqu, char *extra)
9120 {
9121         struct ipw_priv *priv = ieee80211_priv(dev);
9122         int mode = *(int *)extra;
9123         int err;
9124         mutex_lock(&priv->mutex);
9125         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9126                 mode = IPW_POWER_AC;
9127                 priv->power_mode = mode;
9128         } else {
9129                 priv->power_mode = IPW_POWER_ENABLED | mode;
9130         }
9131
9132         if (priv->power_mode != mode) {
9133                 err = ipw_send_power_mode(priv, mode);
9134
9135                 if (err) {
9136                         IPW_DEBUG_WX("failed setting power mode.\n");
9137                         mutex_unlock(&priv->mutex);
9138                         return err;
9139                 }
9140         }
9141         mutex_unlock(&priv->mutex);
9142         return 0;
9143 }
9144
9145 #define MAX_WX_STRING 80
9146 static int ipw_wx_get_powermode(struct net_device *dev,
9147                                 struct iw_request_info *info,
9148                                 union iwreq_data *wrqu, char *extra)
9149 {
9150         struct ipw_priv *priv = ieee80211_priv(dev);
9151         int level = IPW_POWER_LEVEL(priv->power_mode);
9152         char *p = extra;
9153
9154         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9155
9156         switch (level) {
9157         case IPW_POWER_AC:
9158                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9159                 break;
9160         case IPW_POWER_BATTERY:
9161                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9162                 break;
9163         default:
9164                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9165                               "(Timeout %dms, Period %dms)",
9166                               timeout_duration[level - 1] / 1000,
9167                               period_duration[level - 1] / 1000);
9168         }
9169
9170         if (!(priv->power_mode & IPW_POWER_ENABLED))
9171                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9172
9173         wrqu->data.length = p - extra + 1;
9174
9175         return 0;
9176 }
9177
9178 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9179                                     struct iw_request_info *info,
9180                                     union iwreq_data *wrqu, char *extra)
9181 {
9182         struct ipw_priv *priv = ieee80211_priv(dev);
9183         int mode = *(int *)extra;
9184         u8 band = 0, modulation = 0;
9185
9186         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9187                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9188                 return -EINVAL;
9189         }
9190         mutex_lock(&priv->mutex);
9191         if (priv->adapter == IPW_2915ABG) {
9192                 priv->ieee->abg_true = 1;
9193                 if (mode & IEEE_A) {
9194                         band |= IEEE80211_52GHZ_BAND;
9195                         modulation |= IEEE80211_OFDM_MODULATION;
9196                 } else
9197                         priv->ieee->abg_true = 0;
9198         } else {
9199                 if (mode & IEEE_A) {
9200                         IPW_WARNING("Attempt to set 2200BG into "
9201                                     "802.11a mode\n");
9202                         mutex_unlock(&priv->mutex);
9203                         return -EINVAL;
9204                 }
9205
9206                 priv->ieee->abg_true = 0;
9207         }
9208
9209         if (mode & IEEE_B) {
9210                 band |= IEEE80211_24GHZ_BAND;
9211                 modulation |= IEEE80211_CCK_MODULATION;
9212         } else
9213                 priv->ieee->abg_true = 0;
9214
9215         if (mode & IEEE_G) {
9216                 band |= IEEE80211_24GHZ_BAND;
9217                 modulation |= IEEE80211_OFDM_MODULATION;
9218         } else
9219                 priv->ieee->abg_true = 0;
9220
9221         priv->ieee->mode = mode;
9222         priv->ieee->freq_band = band;
9223         priv->ieee->modulation = modulation;
9224         init_supported_rates(priv, &priv->rates);
9225
9226         /* Network configuration changed -- force [re]association */
9227         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9228         if (!ipw_disassociate(priv)) {
9229                 ipw_send_supported_rates(priv, &priv->rates);
9230                 ipw_associate(priv);
9231         }
9232
9233         /* Update the band LEDs */
9234         ipw_led_band_on(priv);
9235
9236         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9237                      mode & IEEE_A ? 'a' : '.',
9238                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9239         mutex_unlock(&priv->mutex);
9240         return 0;
9241 }
9242
9243 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9244                                     struct iw_request_info *info,
9245                                     union iwreq_data *wrqu, char *extra)
9246 {
9247         struct ipw_priv *priv = ieee80211_priv(dev);
9248         mutex_lock(&priv->mutex);
9249         switch (priv->ieee->mode) {
9250         case IEEE_A:
9251                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9252                 break;
9253         case IEEE_B:
9254                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9255                 break;
9256         case IEEE_A | IEEE_B:
9257                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9258                 break;
9259         case IEEE_G:
9260                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9261                 break;
9262         case IEEE_A | IEEE_G:
9263                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9264                 break;
9265         case IEEE_B | IEEE_G:
9266                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9267                 break;
9268         case IEEE_A | IEEE_B | IEEE_G:
9269                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9270                 break;
9271         default:
9272                 strncpy(extra, "unknown", MAX_WX_STRING);
9273                 break;
9274         }
9275
9276         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9277
9278         wrqu->data.length = strlen(extra) + 1;
9279         mutex_unlock(&priv->mutex);
9280
9281         return 0;
9282 }
9283
9284 static int ipw_wx_set_preamble(struct net_device *dev,
9285                                struct iw_request_info *info,
9286                                union iwreq_data *wrqu, char *extra)
9287 {
9288         struct ipw_priv *priv = ieee80211_priv(dev);
9289         int mode = *(int *)extra;
9290         mutex_lock(&priv->mutex);
9291         /* Switching from SHORT -> LONG requires a disassociation */
9292         if (mode == 1) {
9293                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9294                         priv->config |= CFG_PREAMBLE_LONG;
9295
9296                         /* Network configuration changed -- force [re]association */
9297                         IPW_DEBUG_ASSOC
9298                             ("[re]association triggered due to preamble change.\n");
9299                         if (!ipw_disassociate(priv))
9300                                 ipw_associate(priv);
9301                 }
9302                 goto done;
9303         }
9304
9305         if (mode == 0) {
9306                 priv->config &= ~CFG_PREAMBLE_LONG;
9307                 goto done;
9308         }
9309         mutex_unlock(&priv->mutex);
9310         return -EINVAL;
9311
9312       done:
9313         mutex_unlock(&priv->mutex);
9314         return 0;
9315 }
9316
9317 static int ipw_wx_get_preamble(struct net_device *dev,
9318                                struct iw_request_info *info,
9319                                union iwreq_data *wrqu, char *extra)
9320 {
9321         struct ipw_priv *priv = ieee80211_priv(dev);
9322         mutex_lock(&priv->mutex);
9323         if (priv->config & CFG_PREAMBLE_LONG)
9324                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9325         else
9326                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9327         mutex_unlock(&priv->mutex);
9328         return 0;
9329 }
9330
9331 #ifdef CONFIG_IPW2200_MONITOR
9332 static int ipw_wx_set_monitor(struct net_device *dev,
9333                               struct iw_request_info *info,
9334                               union iwreq_data *wrqu, char *extra)
9335 {
9336         struct ipw_priv *priv = ieee80211_priv(dev);
9337         int *parms = (int *)extra;
9338         int enable = (parms[0] > 0);
9339         mutex_lock(&priv->mutex);
9340         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9341         if (enable) {
9342                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9343 #ifdef CONFIG_IEEE80211_RADIOTAP
9344                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9345 #else
9346                         priv->net_dev->type = ARPHRD_IEEE80211;
9347 #endif
9348                         queue_work(priv->workqueue, &priv->adapter_restart);
9349                 }
9350
9351                 ipw_set_channel(priv, parms[1]);
9352         } else {
9353                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9354                         mutex_unlock(&priv->mutex);
9355                         return 0;
9356                 }
9357                 priv->net_dev->type = ARPHRD_ETHER;
9358                 queue_work(priv->workqueue, &priv->adapter_restart);
9359         }
9360         mutex_unlock(&priv->mutex);
9361         return 0;
9362 }
9363
9364 #endif                          // CONFIG_IPW2200_MONITOR
9365
9366 static int ipw_wx_reset(struct net_device *dev,
9367                         struct iw_request_info *info,
9368                         union iwreq_data *wrqu, char *extra)
9369 {
9370         struct ipw_priv *priv = ieee80211_priv(dev);
9371         IPW_DEBUG_WX("RESET\n");
9372         queue_work(priv->workqueue, &priv->adapter_restart);
9373         return 0;
9374 }
9375
9376 static int ipw_wx_sw_reset(struct net_device *dev,
9377                            struct iw_request_info *info,
9378                            union iwreq_data *wrqu, char *extra)
9379 {
9380         struct ipw_priv *priv = ieee80211_priv(dev);
9381         union iwreq_data wrqu_sec = {
9382                 .encoding = {
9383                              .flags = IW_ENCODE_DISABLED,
9384                              },
9385         };
9386         int ret;
9387
9388         IPW_DEBUG_WX("SW_RESET\n");
9389
9390         mutex_lock(&priv->mutex);
9391
9392         ret = ipw_sw_reset(priv, 0);
9393         if (!ret) {
9394                 free_firmware();
9395                 ipw_adapter_restart(priv);
9396         }
9397
9398         /* The SW reset bit might have been toggled on by the 'disable'
9399          * module parameter, so take appropriate action */
9400         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9401
9402         mutex_unlock(&priv->mutex);
9403         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9404         mutex_lock(&priv->mutex);
9405
9406         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9407                 /* Configuration likely changed -- force [re]association */
9408                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9409                                 "reset.\n");
9410                 if (!ipw_disassociate(priv))
9411                         ipw_associate(priv);
9412         }
9413
9414         mutex_unlock(&priv->mutex);
9415
9416         return 0;
9417 }
9418
9419 /* Rebase the WE IOCTLs to zero for the handler array */
9420 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9421 static iw_handler ipw_wx_handlers[] = {
9422         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9423         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9424         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9425         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9426         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9427         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9428         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9429         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9430         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9431         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9432         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9433         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9434         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9435         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9436         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9437         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9438         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9439         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9440         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9441         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9442         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9443         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9444         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9445         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9446         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9447         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9448         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9449         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9450         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9451         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9452         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9453         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9454         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9455         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9456         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9457         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9458         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9459         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9460         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9461 };
9462
9463 enum {
9464         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9465         IPW_PRIV_GET_POWER,
9466         IPW_PRIV_SET_MODE,
9467         IPW_PRIV_GET_MODE,
9468         IPW_PRIV_SET_PREAMBLE,
9469         IPW_PRIV_GET_PREAMBLE,
9470         IPW_PRIV_RESET,
9471         IPW_PRIV_SW_RESET,
9472 #ifdef CONFIG_IPW2200_MONITOR
9473         IPW_PRIV_SET_MONITOR,
9474 #endif
9475 };
9476
9477 static struct iw_priv_args ipw_priv_args[] = {
9478         {
9479          .cmd = IPW_PRIV_SET_POWER,
9480          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9481          .name = "set_power"},
9482         {
9483          .cmd = IPW_PRIV_GET_POWER,
9484          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9485          .name = "get_power"},
9486         {
9487          .cmd = IPW_PRIV_SET_MODE,
9488          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9489          .name = "set_mode"},
9490         {
9491          .cmd = IPW_PRIV_GET_MODE,
9492          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9493          .name = "get_mode"},
9494         {
9495          .cmd = IPW_PRIV_SET_PREAMBLE,
9496          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9497          .name = "set_preamble"},
9498         {
9499          .cmd = IPW_PRIV_GET_PREAMBLE,
9500          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9501          .name = "get_preamble"},
9502         {
9503          IPW_PRIV_RESET,
9504          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9505         {
9506          IPW_PRIV_SW_RESET,
9507          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9508 #ifdef CONFIG_IPW2200_MONITOR
9509         {
9510          IPW_PRIV_SET_MONITOR,
9511          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9512 #endif                          /* CONFIG_IPW2200_MONITOR */
9513 };
9514
9515 static iw_handler ipw_priv_handler[] = {
9516         ipw_wx_set_powermode,
9517         ipw_wx_get_powermode,
9518         ipw_wx_set_wireless_mode,
9519         ipw_wx_get_wireless_mode,
9520         ipw_wx_set_preamble,
9521         ipw_wx_get_preamble,
9522         ipw_wx_reset,
9523         ipw_wx_sw_reset,
9524 #ifdef CONFIG_IPW2200_MONITOR
9525         ipw_wx_set_monitor,
9526 #endif
9527 };
9528
9529 static struct iw_handler_def ipw_wx_handler_def = {
9530         .standard = ipw_wx_handlers,
9531         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9532         .num_private = ARRAY_SIZE(ipw_priv_handler),
9533         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9534         .private = ipw_priv_handler,
9535         .private_args = ipw_priv_args,
9536         .get_wireless_stats = ipw_get_wireless_stats,
9537 };
9538
9539 /*
9540  * Get wireless statistics.
9541  * Called by /proc/net/wireless
9542  * Also called by SIOCGIWSTATS
9543  */
9544 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9545 {
9546         struct ipw_priv *priv = ieee80211_priv(dev);
9547         struct iw_statistics *wstats;
9548
9549         wstats = &priv->wstats;
9550
9551         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9552          * netdev->get_wireless_stats seems to be called before fw is
9553          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9554          * and associated; if not associcated, the values are all meaningless
9555          * anyway, so set them all to NULL and INVALID */
9556         if (!(priv->status & STATUS_ASSOCIATED)) {
9557                 wstats->miss.beacon = 0;
9558                 wstats->discard.retries = 0;
9559                 wstats->qual.qual = 0;
9560                 wstats->qual.level = 0;
9561                 wstats->qual.noise = 0;
9562                 wstats->qual.updated = 7;
9563                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9564                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9565                 return wstats;
9566         }
9567
9568         wstats->qual.qual = priv->quality;
9569         wstats->qual.level = average_value(&priv->average_rssi);
9570         wstats->qual.noise = average_value(&priv->average_noise);
9571         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9572             IW_QUAL_NOISE_UPDATED;
9573
9574         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9575         wstats->discard.retries = priv->last_tx_failures;
9576         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9577
9578 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9579         goto fail_get_ordinal;
9580         wstats->discard.retries += tx_retry; */
9581
9582         return wstats;
9583 }
9584
9585 /* net device stuff */
9586
9587 static  void init_sys_config(struct ipw_sys_config *sys_config)
9588 {
9589         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9590         sys_config->bt_coexistence = 0;
9591         sys_config->answer_broadcast_ssid_probe = 0;
9592         sys_config->accept_all_data_frames = 0;
9593         sys_config->accept_non_directed_frames = 1;
9594         sys_config->exclude_unicast_unencrypted = 0;
9595         sys_config->disable_unicast_decryption = 1;
9596         sys_config->exclude_multicast_unencrypted = 0;
9597         sys_config->disable_multicast_decryption = 1;
9598         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
9599         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9600         sys_config->dot11g_auto_detection = 0;
9601         sys_config->enable_cts_to_self = 0;
9602         sys_config->bt_coexist_collision_thr = 0;
9603         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9604 }
9605
9606 static int ipw_net_open(struct net_device *dev)
9607 {
9608         struct ipw_priv *priv = ieee80211_priv(dev);
9609         IPW_DEBUG_INFO("dev->open\n");
9610         /* we should be verifying the device is ready to be opened */
9611         mutex_lock(&priv->mutex);
9612         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9613             (priv->status & STATUS_ASSOCIATED))
9614                 netif_start_queue(dev);
9615         mutex_unlock(&priv->mutex);
9616         return 0;
9617 }
9618
9619 static int ipw_net_stop(struct net_device *dev)
9620 {
9621         IPW_DEBUG_INFO("dev->close\n");
9622         netif_stop_queue(dev);
9623         return 0;
9624 }
9625
9626 /*
9627 todo:
9628
9629 modify to send one tfd per fragment instead of using chunking.  otherwise
9630 we need to heavily modify the ieee80211_skb_to_txb.
9631 */
9632
9633 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9634                              int pri)
9635 {
9636         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9637             txb->fragments[0]->data;
9638         int i = 0;
9639         struct tfd_frame *tfd;
9640 #ifdef CONFIG_IPW_QOS
9641         int tx_id = ipw_get_tx_queue_number(priv, pri);
9642         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9643 #else
9644         struct clx2_tx_queue *txq = &priv->txq[0];
9645 #endif
9646         struct clx2_queue *q = &txq->q;
9647         u8 id, hdr_len, unicast;
9648         u16 remaining_bytes;
9649         int fc;
9650
9651         /* If there isn't room in the queue, we return busy and let the
9652          * network stack requeue the packet for us */
9653         if (ipw_queue_space(q) < q->high_mark)
9654                 return NETDEV_TX_BUSY;
9655
9656         switch (priv->ieee->iw_mode) {
9657         case IW_MODE_ADHOC:
9658                 hdr_len = IEEE80211_3ADDR_LEN;
9659                 unicast = !is_multicast_ether_addr(hdr->addr1);
9660                 id = ipw_find_station(priv, hdr->addr1);
9661                 if (id == IPW_INVALID_STATION) {
9662                         id = ipw_add_station(priv, hdr->addr1);
9663                         if (id == IPW_INVALID_STATION) {
9664                                 IPW_WARNING("Attempt to send data to "
9665                                             "invalid cell: " MAC_FMT "\n",
9666                                             MAC_ARG(hdr->addr1));
9667                                 goto drop;
9668                         }
9669                 }
9670                 break;
9671
9672         case IW_MODE_INFRA:
9673         default:
9674                 unicast = !is_multicast_ether_addr(hdr->addr3);
9675                 hdr_len = IEEE80211_3ADDR_LEN;
9676                 id = 0;
9677                 break;
9678         }
9679
9680         tfd = &txq->bd[q->first_empty];
9681         txq->txb[q->first_empty] = txb;
9682         memset(tfd, 0, sizeof(*tfd));
9683         tfd->u.data.station_number = id;
9684
9685         tfd->control_flags.message_type = TX_FRAME_TYPE;
9686         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9687
9688         tfd->u.data.cmd_id = DINO_CMD_TX;
9689         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9690         remaining_bytes = txb->payload_size;
9691
9692         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9693                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9694         else
9695                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9696
9697         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9698                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9699
9700         fc = le16_to_cpu(hdr->frame_ctl);
9701         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9702
9703         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9704
9705         if (likely(unicast))
9706                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9707
9708         if (txb->encrypted && !priv->ieee->host_encrypt) {
9709                 switch (priv->ieee->sec.level) {
9710                 case SEC_LEVEL_3:
9711                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9712                             IEEE80211_FCTL_PROTECTED;
9713                         /* XXX: ACK flag must be set for CCMP even if it
9714                          * is a multicast/broadcast packet, because CCMP
9715                          * group communication encrypted by GTK is
9716                          * actually done by the AP. */
9717                         if (!unicast)
9718                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9719
9720                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9721                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9722                         tfd->u.data.key_index = 0;
9723                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9724                         break;
9725                 case SEC_LEVEL_2:
9726                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9727                             IEEE80211_FCTL_PROTECTED;
9728                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9729                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9730                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9731                         break;
9732                 case SEC_LEVEL_1:
9733                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9734                             IEEE80211_FCTL_PROTECTED;
9735                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9736                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9737                             40)
9738                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9739                         else
9740                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9741                         break;
9742                 case SEC_LEVEL_0:
9743                         break;
9744                 default:
9745                         printk(KERN_ERR "Unknow security level %d\n",
9746                                priv->ieee->sec.level);
9747                         break;
9748                 }
9749         } else
9750                 /* No hardware encryption */
9751                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9752
9753 #ifdef CONFIG_IPW_QOS
9754         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9755 #endif                          /* CONFIG_IPW_QOS */
9756
9757         /* payload */
9758         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9759                                                  txb->nr_frags));
9760         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9761                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9762         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9763                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9764                                i, le32_to_cpu(tfd->u.data.num_chunks),
9765                                txb->fragments[i]->len - hdr_len);
9766                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9767                              i, tfd->u.data.num_chunks,
9768                              txb->fragments[i]->len - hdr_len);
9769                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9770                            txb->fragments[i]->len - hdr_len);
9771
9772                 tfd->u.data.chunk_ptr[i] =
9773                     cpu_to_le32(pci_map_single
9774                                 (priv->pci_dev,
9775                                  txb->fragments[i]->data + hdr_len,
9776                                  txb->fragments[i]->len - hdr_len,
9777                                  PCI_DMA_TODEVICE));
9778                 tfd->u.data.chunk_len[i] =
9779                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
9780         }
9781
9782         if (i != txb->nr_frags) {
9783                 struct sk_buff *skb;
9784                 u16 remaining_bytes = 0;
9785                 int j;
9786
9787                 for (j = i; j < txb->nr_frags; j++)
9788                         remaining_bytes += txb->fragments[j]->len - hdr_len;
9789
9790                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9791                        remaining_bytes);
9792                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9793                 if (skb != NULL) {
9794                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9795                         for (j = i; j < txb->nr_frags; j++) {
9796                                 int size = txb->fragments[j]->len - hdr_len;
9797
9798                                 printk(KERN_INFO "Adding frag %d %d...\n",
9799                                        j, size);
9800                                 memcpy(skb_put(skb, size),
9801                                        txb->fragments[j]->data + hdr_len, size);
9802                         }
9803                         dev_kfree_skb_any(txb->fragments[i]);
9804                         txb->fragments[i] = skb;
9805                         tfd->u.data.chunk_ptr[i] =
9806                             cpu_to_le32(pci_map_single
9807                                         (priv->pci_dev, skb->data,
9808                                          tfd->u.data.chunk_len[i],
9809                                          PCI_DMA_TODEVICE));
9810
9811                         tfd->u.data.num_chunks =
9812                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9813                                         1);
9814                 }
9815         }
9816
9817         /* kick DMA */
9818         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9819         ipw_write32(priv, q->reg_w, q->first_empty);
9820
9821         return NETDEV_TX_OK;
9822
9823       drop:
9824         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9825         ieee80211_txb_free(txb);
9826         return NETDEV_TX_OK;
9827 }
9828
9829 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9830 {
9831         struct ipw_priv *priv = ieee80211_priv(dev);
9832 #ifdef CONFIG_IPW_QOS
9833         int tx_id = ipw_get_tx_queue_number(priv, pri);
9834         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9835 #else
9836         struct clx2_tx_queue *txq = &priv->txq[0];
9837 #endif                          /* CONFIG_IPW_QOS */
9838
9839         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9840                 return 1;
9841
9842         return 0;
9843 }
9844
9845 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9846                                    struct net_device *dev, int pri)
9847 {
9848         struct ipw_priv *priv = ieee80211_priv(dev);
9849         unsigned long flags;
9850         int ret;
9851
9852         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9853         spin_lock_irqsave(&priv->lock, flags);
9854
9855         if (!(priv->status & STATUS_ASSOCIATED)) {
9856                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9857                 priv->ieee->stats.tx_carrier_errors++;
9858                 netif_stop_queue(dev);
9859                 goto fail_unlock;
9860         }
9861
9862         ret = ipw_tx_skb(priv, txb, pri);
9863         if (ret == NETDEV_TX_OK)
9864                 __ipw_led_activity_on(priv);
9865         spin_unlock_irqrestore(&priv->lock, flags);
9866
9867         return ret;
9868
9869       fail_unlock:
9870         spin_unlock_irqrestore(&priv->lock, flags);
9871         return 1;
9872 }
9873
9874 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9875 {
9876         struct ipw_priv *priv = ieee80211_priv(dev);
9877
9878         priv->ieee->stats.tx_packets = priv->tx_packets;
9879         priv->ieee->stats.rx_packets = priv->rx_packets;
9880         return &priv->ieee->stats;
9881 }
9882
9883 static void ipw_net_set_multicast_list(struct net_device *dev)
9884 {
9885
9886 }
9887
9888 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9889 {
9890         struct ipw_priv *priv = ieee80211_priv(dev);
9891         struct sockaddr *addr = p;
9892         if (!is_valid_ether_addr(addr->sa_data))
9893                 return -EADDRNOTAVAIL;
9894         mutex_lock(&priv->mutex);
9895         priv->config |= CFG_CUSTOM_MAC;
9896         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9897         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9898                priv->net_dev->name, MAC_ARG(priv->mac_addr));
9899         queue_work(priv->workqueue, &priv->adapter_restart);
9900         mutex_unlock(&priv->mutex);
9901         return 0;
9902 }
9903
9904 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9905                                     struct ethtool_drvinfo *info)
9906 {
9907         struct ipw_priv *p = ieee80211_priv(dev);
9908         char vers[64];
9909         char date[32];
9910         u32 len;
9911
9912         strcpy(info->driver, DRV_NAME);
9913         strcpy(info->version, DRV_VERSION);
9914
9915         len = sizeof(vers);
9916         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9917         len = sizeof(date);
9918         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9919
9920         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9921                  vers, date);
9922         strcpy(info->bus_info, pci_name(p->pci_dev));
9923         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9924 }
9925
9926 static u32 ipw_ethtool_get_link(struct net_device *dev)
9927 {
9928         struct ipw_priv *priv = ieee80211_priv(dev);
9929         return (priv->status & STATUS_ASSOCIATED) != 0;
9930 }
9931
9932 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
9933 {
9934         return IPW_EEPROM_IMAGE_SIZE;
9935 }
9936
9937 static int ipw_ethtool_get_eeprom(struct net_device *dev,
9938                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9939 {
9940         struct ipw_priv *p = ieee80211_priv(dev);
9941
9942         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9943                 return -EINVAL;
9944         mutex_lock(&p->mutex);
9945         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
9946         mutex_unlock(&p->mutex);
9947         return 0;
9948 }
9949
9950 static int ipw_ethtool_set_eeprom(struct net_device *dev,
9951                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9952 {
9953         struct ipw_priv *p = ieee80211_priv(dev);
9954         int i;
9955
9956         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9957                 return -EINVAL;
9958         mutex_lock(&p->mutex);
9959         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
9960         for (i = IPW_EEPROM_DATA;
9961              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
9962                 ipw_write8(p, i, p->eeprom[i]);
9963         mutex_unlock(&p->mutex);
9964         return 0;
9965 }
9966
9967 static struct ethtool_ops ipw_ethtool_ops = {
9968         .get_link = ipw_ethtool_get_link,
9969         .get_drvinfo = ipw_ethtool_get_drvinfo,
9970         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
9971         .get_eeprom = ipw_ethtool_get_eeprom,
9972         .set_eeprom = ipw_ethtool_set_eeprom,
9973 };
9974
9975 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
9976 {
9977         struct ipw_priv *priv = data;
9978         u32 inta, inta_mask;
9979
9980         if (!priv)
9981                 return IRQ_NONE;
9982
9983         spin_lock(&priv->lock);
9984
9985         if (!(priv->status & STATUS_INT_ENABLED)) {
9986                 /* Shared IRQ */
9987                 goto none;
9988         }
9989
9990         inta = ipw_read32(priv, IPW_INTA_RW);
9991         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
9992
9993         if (inta == 0xFFFFFFFF) {
9994                 /* Hardware disappeared */
9995                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
9996                 goto none;
9997         }
9998
9999         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10000                 /* Shared interrupt */
10001                 goto none;
10002         }
10003
10004         /* tell the device to stop sending interrupts */
10005         ipw_disable_interrupts(priv);
10006
10007         /* ack current interrupts */
10008         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10009         ipw_write32(priv, IPW_INTA_RW, inta);
10010
10011         /* Cache INTA value for our tasklet */
10012         priv->isr_inta = inta;
10013
10014         tasklet_schedule(&priv->irq_tasklet);
10015
10016         spin_unlock(&priv->lock);
10017
10018         return IRQ_HANDLED;
10019       none:
10020         spin_unlock(&priv->lock);
10021         return IRQ_NONE;
10022 }
10023
10024 static void ipw_rf_kill(void *adapter)
10025 {
10026         struct ipw_priv *priv = adapter;
10027         unsigned long flags;
10028
10029         spin_lock_irqsave(&priv->lock, flags);
10030
10031         if (rf_kill_active(priv)) {
10032                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10033                 if (priv->workqueue)
10034                         queue_delayed_work(priv->workqueue,
10035                                            &priv->rf_kill, 2 * HZ);
10036                 goto exit_unlock;
10037         }
10038
10039         /* RF Kill is now disabled, so bring the device back up */
10040
10041         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10042                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10043                                   "device\n");
10044
10045                 /* we can not do an adapter restart while inside an irq lock */
10046                 queue_work(priv->workqueue, &priv->adapter_restart);
10047         } else
10048                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10049                                   "enabled\n");
10050
10051       exit_unlock:
10052         spin_unlock_irqrestore(&priv->lock, flags);
10053 }
10054
10055 static void ipw_bg_rf_kill(void *data)
10056 {
10057         struct ipw_priv *priv = data;
10058         mutex_lock(&priv->mutex);
10059         ipw_rf_kill(data);
10060         mutex_unlock(&priv->mutex);
10061 }
10062
10063 static void ipw_link_up(struct ipw_priv *priv)
10064 {
10065         priv->last_seq_num = -1;
10066         priv->last_frag_num = -1;
10067         priv->last_packet_time = 0;
10068
10069         netif_carrier_on(priv->net_dev);
10070         if (netif_queue_stopped(priv->net_dev)) {
10071                 IPW_DEBUG_NOTIF("waking queue\n");
10072                 netif_wake_queue(priv->net_dev);
10073         } else {
10074                 IPW_DEBUG_NOTIF("starting queue\n");
10075                 netif_start_queue(priv->net_dev);
10076         }
10077
10078         cancel_delayed_work(&priv->request_scan);
10079         ipw_reset_stats(priv);
10080         /* Ensure the rate is updated immediately */
10081         priv->last_rate = ipw_get_current_rate(priv);
10082         ipw_gather_stats(priv);
10083         ipw_led_link_up(priv);
10084         notify_wx_assoc_event(priv);
10085
10086         if (priv->config & CFG_BACKGROUND_SCAN)
10087                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10088 }
10089
10090 static void ipw_bg_link_up(void *data)
10091 {
10092         struct ipw_priv *priv = data;
10093         mutex_lock(&priv->mutex);
10094         ipw_link_up(data);
10095         mutex_unlock(&priv->mutex);
10096 }
10097
10098 static void ipw_link_down(struct ipw_priv *priv)
10099 {
10100         ipw_led_link_down(priv);
10101         netif_carrier_off(priv->net_dev);
10102         netif_stop_queue(priv->net_dev);
10103         notify_wx_assoc_event(priv);
10104
10105         /* Cancel any queued work ... */
10106         cancel_delayed_work(&priv->request_scan);
10107         cancel_delayed_work(&priv->adhoc_check);
10108         cancel_delayed_work(&priv->gather_stats);
10109
10110         ipw_reset_stats(priv);
10111
10112         if (!(priv->status & STATUS_EXIT_PENDING)) {
10113                 /* Queue up another scan... */
10114                 queue_work(priv->workqueue, &priv->request_scan);
10115         }
10116 }
10117
10118 static void ipw_bg_link_down(void *data)
10119 {
10120         struct ipw_priv *priv = data;
10121         mutex_lock(&priv->mutex);
10122         ipw_link_down(data);
10123         mutex_unlock(&priv->mutex);
10124 }
10125
10126 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10127 {
10128         int ret = 0;
10129
10130         priv->workqueue = create_workqueue(DRV_NAME);
10131         init_waitqueue_head(&priv->wait_command_queue);
10132         init_waitqueue_head(&priv->wait_state);
10133
10134         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10135         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10136         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10137         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10138         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10139         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10140         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10141         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10142         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10143         INIT_WORK(&priv->request_scan,
10144                   (void (*)(void *))ipw_request_scan, priv);
10145         INIT_WORK(&priv->gather_stats,
10146                   (void (*)(void *))ipw_bg_gather_stats, priv);
10147         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10148         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10149         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10150         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10151         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10152         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10153                   priv);
10154         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10155                   priv);
10156         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10157                   priv);
10158         INIT_WORK(&priv->merge_networks,
10159                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10160
10161 #ifdef CONFIG_IPW_QOS
10162         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10163                   priv);
10164 #endif                          /* CONFIG_IPW_QOS */
10165
10166         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10167                      ipw_irq_tasklet, (unsigned long)priv);
10168
10169         return ret;
10170 }
10171
10172 static void shim__set_security(struct net_device *dev,
10173                                struct ieee80211_security *sec)
10174 {
10175         struct ipw_priv *priv = ieee80211_priv(dev);
10176         int i;
10177         for (i = 0; i < 4; i++) {
10178                 if (sec->flags & (1 << i)) {
10179                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10180                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10181                         if (sec->key_sizes[i] == 0)
10182                                 priv->ieee->sec.flags &= ~(1 << i);
10183                         else {
10184                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10185                                        sec->key_sizes[i]);
10186                                 priv->ieee->sec.flags |= (1 << i);
10187                         }
10188                         priv->status |= STATUS_SECURITY_UPDATED;
10189                 } else if (sec->level != SEC_LEVEL_1)
10190                         priv->ieee->sec.flags &= ~(1 << i);
10191         }
10192
10193         if (sec->flags & SEC_ACTIVE_KEY) {
10194                 if (sec->active_key <= 3) {
10195                         priv->ieee->sec.active_key = sec->active_key;
10196                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10197                 } else
10198                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10199                 priv->status |= STATUS_SECURITY_UPDATED;
10200         } else
10201                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10202
10203         if ((sec->flags & SEC_AUTH_MODE) &&
10204             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10205                 priv->ieee->sec.auth_mode = sec->auth_mode;
10206                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10207                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10208                         priv->capability |= CAP_SHARED_KEY;
10209                 else
10210                         priv->capability &= ~CAP_SHARED_KEY;
10211                 priv->status |= STATUS_SECURITY_UPDATED;
10212         }
10213
10214         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10215                 priv->ieee->sec.flags |= SEC_ENABLED;
10216                 priv->ieee->sec.enabled = sec->enabled;
10217                 priv->status |= STATUS_SECURITY_UPDATED;
10218                 if (sec->enabled)
10219                         priv->capability |= CAP_PRIVACY_ON;
10220                 else
10221                         priv->capability &= ~CAP_PRIVACY_ON;
10222         }
10223
10224         if (sec->flags & SEC_ENCRYPT)
10225                 priv->ieee->sec.encrypt = sec->encrypt;
10226
10227         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10228                 priv->ieee->sec.level = sec->level;
10229                 priv->ieee->sec.flags |= SEC_LEVEL;
10230                 priv->status |= STATUS_SECURITY_UPDATED;
10231         }
10232
10233         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10234                 ipw_set_hwcrypto_keys(priv);
10235
10236         /* To match current functionality of ipw2100 (which works well w/
10237          * various supplicants, we don't force a disassociate if the
10238          * privacy capability changes ... */
10239 #if 0
10240         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10241             (((priv->assoc_request.capability &
10242                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10243              (!(priv->assoc_request.capability &
10244                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10245                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10246                                 "change.\n");
10247                 ipw_disassociate(priv);
10248         }
10249 #endif
10250 }
10251
10252 static int init_supported_rates(struct ipw_priv *priv,
10253                                 struct ipw_supported_rates *rates)
10254 {
10255         /* TODO: Mask out rates based on priv->rates_mask */
10256
10257         memset(rates, 0, sizeof(*rates));
10258         /* configure supported rates */
10259         switch (priv->ieee->freq_band) {
10260         case IEEE80211_52GHZ_BAND:
10261                 rates->ieee_mode = IPW_A_MODE;
10262                 rates->purpose = IPW_RATE_CAPABILITIES;
10263                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10264                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10265                 break;
10266
10267         default:                /* Mixed or 2.4Ghz */
10268                 rates->ieee_mode = IPW_G_MODE;
10269                 rates->purpose = IPW_RATE_CAPABILITIES;
10270                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10271                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10272                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10273                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10274                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10275                 }
10276                 break;
10277         }
10278
10279         return 0;
10280 }
10281
10282 static int ipw_config(struct ipw_priv *priv)
10283 {
10284         /* This is only called from ipw_up, which resets/reloads the firmware
10285            so, we don't need to first disable the card before we configure
10286            it */
10287         if (ipw_set_tx_power(priv))
10288                 goto error;
10289
10290         /* initialize adapter address */
10291         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10292                 goto error;
10293
10294         /* set basic system config settings */
10295         init_sys_config(&priv->sys_config);
10296
10297         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10298          * Does not support BT priority yet (don't abort or defer our Tx) */
10299         if (bt_coexist) {
10300                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10301
10302                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10303                         priv->sys_config.bt_coexistence
10304                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10305                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10306                         priv->sys_config.bt_coexistence
10307                             |= CFG_BT_COEXISTENCE_OOB;
10308         }
10309
10310         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10311                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10312         else
10313                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10314
10315         if (ipw_send_system_config(priv, &priv->sys_config))
10316                 goto error;
10317
10318         init_supported_rates(priv, &priv->rates);
10319         if (ipw_send_supported_rates(priv, &priv->rates))
10320                 goto error;
10321
10322         /* Set request-to-send threshold */
10323         if (priv->rts_threshold) {
10324                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10325                         goto error;
10326         }
10327 #ifdef CONFIG_IPW_QOS
10328         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10329         ipw_qos_activate(priv, NULL);
10330 #endif                          /* CONFIG_IPW_QOS */
10331
10332         if (ipw_set_random_seed(priv))
10333                 goto error;
10334
10335         /* final state transition to the RUN state */
10336         if (ipw_send_host_complete(priv))
10337                 goto error;
10338
10339         priv->status |= STATUS_INIT;
10340
10341         ipw_led_init(priv);
10342         ipw_led_radio_on(priv);
10343         priv->notif_missed_beacons = 0;
10344
10345         /* Set hardware WEP key if it is configured. */
10346         if ((priv->capability & CAP_PRIVACY_ON) &&
10347             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10348             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10349                 ipw_set_hwcrypto_keys(priv);
10350
10351         return 0;
10352
10353       error:
10354         return -EIO;
10355 }
10356
10357 /*
10358  * NOTE:
10359  *
10360  * These tables have been tested in conjunction with the
10361  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10362  *
10363  * Altering this values, using it on other hardware, or in geographies
10364  * not intended for resale of the above mentioned Intel adapters has
10365  * not been tested.
10366  *
10367  */
10368 static const struct ieee80211_geo ipw_geos[] = {
10369         {                       /* Restricted */
10370          "---",
10371          .bg_channels = 11,
10372          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10373                 {2427, 4}, {2432, 5}, {2437, 6},
10374                 {2442, 7}, {2447, 8}, {2452, 9},
10375                 {2457, 10}, {2462, 11}},
10376          },
10377
10378         {                       /* Custom US/Canada */
10379          "ZZF",
10380          .bg_channels = 11,
10381          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10382                 {2427, 4}, {2432, 5}, {2437, 6},
10383                 {2442, 7}, {2447, 8}, {2452, 9},
10384                 {2457, 10}, {2462, 11}},
10385          .a_channels = 8,
10386          .a = {{5180, 36},
10387                {5200, 40},
10388                {5220, 44},
10389                {5240, 48},
10390                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10391                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10392                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10393                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10394          },
10395
10396         {                       /* Rest of World */
10397          "ZZD",
10398          .bg_channels = 13,
10399          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10400                 {2427, 4}, {2432, 5}, {2437, 6},
10401                 {2442, 7}, {2447, 8}, {2452, 9},
10402                 {2457, 10}, {2462, 11}, {2467, 12},
10403                 {2472, 13}},
10404          },
10405
10406         {                       /* Custom USA & Europe & High */
10407          "ZZA",
10408          .bg_channels = 11,
10409          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10410                 {2427, 4}, {2432, 5}, {2437, 6},
10411                 {2442, 7}, {2447, 8}, {2452, 9},
10412                 {2457, 10}, {2462, 11}},
10413          .a_channels = 13,
10414          .a = {{5180, 36},
10415                {5200, 40},
10416                {5220, 44},
10417                {5240, 48},
10418                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10419                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10420                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10421                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10422                {5745, 149},
10423                {5765, 153},
10424                {5785, 157},
10425                {5805, 161},
10426                {5825, 165}},
10427          },
10428
10429         {                       /* Custom NA & Europe */
10430          "ZZB",
10431          .bg_channels = 11,
10432          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10433                 {2427, 4}, {2432, 5}, {2437, 6},
10434                 {2442, 7}, {2447, 8}, {2452, 9},
10435                 {2457, 10}, {2462, 11}},
10436          .a_channels = 13,
10437          .a = {{5180, 36},
10438                {5200, 40},
10439                {5220, 44},
10440                {5240, 48},
10441                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10442                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10443                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10444                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10445                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10446                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10447                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10448                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10449                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10450          },
10451
10452         {                       /* Custom Japan */
10453          "ZZC",
10454          .bg_channels = 11,
10455          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10456                 {2427, 4}, {2432, 5}, {2437, 6},
10457                 {2442, 7}, {2447, 8}, {2452, 9},
10458                 {2457, 10}, {2462, 11}},
10459          .a_channels = 4,
10460          .a = {{5170, 34}, {5190, 38},
10461                {5210, 42}, {5230, 46}},
10462          },
10463
10464         {                       /* Custom */
10465          "ZZM",
10466          .bg_channels = 11,
10467          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10468                 {2427, 4}, {2432, 5}, {2437, 6},
10469                 {2442, 7}, {2447, 8}, {2452, 9},
10470                 {2457, 10}, {2462, 11}},
10471          },
10472
10473         {                       /* Europe */
10474          "ZZE",
10475          .bg_channels = 13,
10476          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10477                 {2427, 4}, {2432, 5}, {2437, 6},
10478                 {2442, 7}, {2447, 8}, {2452, 9},
10479                 {2457, 10}, {2462, 11}, {2467, 12},
10480                 {2472, 13}},
10481          .a_channels = 19,
10482          .a = {{5180, 36},
10483                {5200, 40},
10484                {5220, 44},
10485                {5240, 48},
10486                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10487                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10488                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10489                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10490                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10491                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10492                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10493                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10494                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10495                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10496                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10497                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10498                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10499                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10500                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10501          },
10502
10503         {                       /* Custom Japan */
10504          "ZZJ",
10505          .bg_channels = 14,
10506          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10507                 {2427, 4}, {2432, 5}, {2437, 6},
10508                 {2442, 7}, {2447, 8}, {2452, 9},
10509                 {2457, 10}, {2462, 11}, {2467, 12},
10510                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10511          .a_channels = 4,
10512          .a = {{5170, 34}, {5190, 38},
10513                {5210, 42}, {5230, 46}},
10514          },
10515
10516         {                       /* Rest of World */
10517          "ZZR",
10518          .bg_channels = 14,
10519          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10520                 {2427, 4}, {2432, 5}, {2437, 6},
10521                 {2442, 7}, {2447, 8}, {2452, 9},
10522                 {2457, 10}, {2462, 11}, {2467, 12},
10523                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
10524                              IEEE80211_CH_PASSIVE_ONLY}},
10525          },
10526
10527         {                       /* High Band */
10528          "ZZH",
10529          .bg_channels = 13,
10530          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10531                 {2427, 4}, {2432, 5}, {2437, 6},
10532                 {2442, 7}, {2447, 8}, {2452, 9},
10533                 {2457, 10}, {2462, 11},
10534                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10535                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10536          .a_channels = 4,
10537          .a = {{5745, 149}, {5765, 153},
10538                {5785, 157}, {5805, 161}},
10539          },
10540
10541         {                       /* Custom Europe */
10542          "ZZG",
10543          .bg_channels = 13,
10544          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10545                 {2427, 4}, {2432, 5}, {2437, 6},
10546                 {2442, 7}, {2447, 8}, {2452, 9},
10547                 {2457, 10}, {2462, 11},
10548                 {2467, 12}, {2472, 13}},
10549          .a_channels = 4,
10550          .a = {{5180, 36}, {5200, 40},
10551                {5220, 44}, {5240, 48}},
10552          },
10553
10554         {                       /* Europe */
10555          "ZZK",
10556          .bg_channels = 13,
10557          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10558                 {2427, 4}, {2432, 5}, {2437, 6},
10559                 {2442, 7}, {2447, 8}, {2452, 9},
10560                 {2457, 10}, {2462, 11},
10561                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10562                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10563          .a_channels = 24,
10564          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10565                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10566                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10567                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10568                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10569                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10570                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10571                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10572                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10573                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10574                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10575                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10576                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10577                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10578                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10579                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10580                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10581                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10582                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10583                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10584                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10585                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10586                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10587                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10588          },
10589
10590         {                       /* Europe */
10591          "ZZL",
10592          .bg_channels = 11,
10593          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10594                 {2427, 4}, {2432, 5}, {2437, 6},
10595                 {2442, 7}, {2447, 8}, {2452, 9},
10596                 {2457, 10}, {2462, 11}},
10597          .a_channels = 13,
10598          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10599                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10600                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10601                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10602                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10603                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10604                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10605                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10606                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10607                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10608                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10609                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10610                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10611          }
10612 };
10613
10614 #define MAX_HW_RESTARTS 5
10615 static int ipw_up(struct ipw_priv *priv)
10616 {
10617         int rc, i, j;
10618
10619         if (priv->status & STATUS_EXIT_PENDING)
10620                 return -EIO;
10621
10622         if (cmdlog && !priv->cmdlog) {
10623                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10624                                        GFP_KERNEL);
10625                 if (priv->cmdlog == NULL) {
10626                         IPW_ERROR("Error allocating %d command log entries.\n",
10627                                   cmdlog);
10628                 } else {
10629                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10630                         priv->cmdlog_len = cmdlog;
10631                 }
10632         }
10633
10634         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10635                 /* Load the microcode, firmware, and eeprom.
10636                  * Also start the clocks. */
10637                 rc = ipw_load(priv);
10638                 if (rc) {
10639                         IPW_ERROR("Unable to load firmware: %d\n", rc);
10640                         return rc;
10641                 }
10642
10643                 ipw_init_ordinals(priv);
10644                 if (!(priv->config & CFG_CUSTOM_MAC))
10645                         eeprom_parse_mac(priv, priv->mac_addr);
10646                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10647
10648                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10649                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10650                                     ipw_geos[j].name, 3))
10651                                 break;
10652                 }
10653                 if (j == ARRAY_SIZE(ipw_geos)) {
10654                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
10655                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
10656                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
10657                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
10658                         j = 0;
10659                 }
10660                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
10661                         IPW_WARNING("Could not set geography.");
10662                         return 0;
10663                 }
10664
10665                 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
10666                                j, priv->ieee->geo.name);
10667
10668                 if (priv->status & STATUS_RF_KILL_SW) {
10669                         IPW_WARNING("Radio disabled by module parameter.\n");
10670                         return 0;
10671                 } else if (rf_kill_active(priv)) {
10672                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10673                                     "Kill switch must be turned off for "
10674                                     "wireless networking to work.\n");
10675                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10676                                            2 * HZ);
10677                         return 0;
10678                 }
10679
10680                 rc = ipw_config(priv);
10681                 if (!rc) {
10682                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
10683
10684                         /* If configure to try and auto-associate, kick
10685                          * off a scan. */
10686                         queue_work(priv->workqueue, &priv->request_scan);
10687
10688                         return 0;
10689                 }
10690
10691                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10692                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10693                                i, MAX_HW_RESTARTS);
10694
10695                 /* We had an error bringing up the hardware, so take it
10696                  * all the way back down so we can try again */
10697                 ipw_down(priv);
10698         }
10699
10700         /* tried to restart and config the device for as long as our
10701          * patience could withstand */
10702         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10703
10704         return -EIO;
10705 }
10706
10707 static void ipw_bg_up(void *data)
10708 {
10709         struct ipw_priv *priv = data;
10710         mutex_lock(&priv->mutex);
10711         ipw_up(data);
10712         mutex_unlock(&priv->mutex);
10713 }
10714
10715 static void ipw_deinit(struct ipw_priv *priv)
10716 {
10717         int i;
10718
10719         if (priv->status & STATUS_SCANNING) {
10720                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10721                 ipw_abort_scan(priv);
10722         }
10723
10724         if (priv->status & STATUS_ASSOCIATED) {
10725                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10726                 ipw_disassociate(priv);
10727         }
10728
10729         ipw_led_shutdown(priv);
10730
10731         /* Wait up to 1s for status to change to not scanning and not
10732          * associated (disassociation can take a while for a ful 802.11
10733          * exchange */
10734         for (i = 1000; i && (priv->status &
10735                              (STATUS_DISASSOCIATING |
10736                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10737                 udelay(10);
10738
10739         if (priv->status & (STATUS_DISASSOCIATING |
10740                             STATUS_ASSOCIATED | STATUS_SCANNING))
10741                 IPW_DEBUG_INFO("Still associated or scanning...\n");
10742         else
10743                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10744
10745         /* Attempt to disable the card */
10746         ipw_send_card_disable(priv, 0);
10747
10748         priv->status &= ~STATUS_INIT;
10749 }
10750
10751 static void ipw_down(struct ipw_priv *priv)
10752 {
10753         int exit_pending = priv->status & STATUS_EXIT_PENDING;
10754
10755         priv->status |= STATUS_EXIT_PENDING;
10756
10757         if (ipw_is_init(priv))
10758                 ipw_deinit(priv);
10759
10760         /* Wipe out the EXIT_PENDING status bit if we are not actually
10761          * exiting the module */
10762         if (!exit_pending)
10763                 priv->status &= ~STATUS_EXIT_PENDING;
10764
10765         /* tell the device to stop sending interrupts */
10766         ipw_disable_interrupts(priv);
10767
10768         /* Clear all bits but the RF Kill */
10769         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10770         netif_carrier_off(priv->net_dev);
10771         netif_stop_queue(priv->net_dev);
10772
10773         ipw_stop_nic(priv);
10774
10775         ipw_led_radio_off(priv);
10776 }
10777
10778 static void ipw_bg_down(void *data)
10779 {
10780         struct ipw_priv *priv = data;
10781         mutex_lock(&priv->mutex);
10782         ipw_down(data);
10783         mutex_unlock(&priv->mutex);
10784 }
10785
10786 /* Called by register_netdev() */
10787 static int ipw_net_init(struct net_device *dev)
10788 {
10789         struct ipw_priv *priv = ieee80211_priv(dev);
10790         mutex_lock(&priv->mutex);
10791
10792         if (ipw_up(priv)) {
10793                 mutex_unlock(&priv->mutex);
10794                 return -EIO;
10795         }
10796
10797         mutex_unlock(&priv->mutex);
10798         return 0;
10799 }
10800
10801 /* PCI driver stuff */
10802 static struct pci_device_id card_ids[] = {
10803         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10804         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10805         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10806         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10807         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10808         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10809         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10810         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10811         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10812         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10813         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10814         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10815         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10816         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10817         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10818         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10819         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10820         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10821         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10822         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10823         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10824         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10825
10826         /* required last entry */
10827         {0,}
10828 };
10829
10830 MODULE_DEVICE_TABLE(pci, card_ids);
10831
10832 static struct attribute *ipw_sysfs_entries[] = {
10833         &dev_attr_rf_kill.attr,
10834         &dev_attr_direct_dword.attr,
10835         &dev_attr_indirect_byte.attr,
10836         &dev_attr_indirect_dword.attr,
10837         &dev_attr_mem_gpio_reg.attr,
10838         &dev_attr_command_event_reg.attr,
10839         &dev_attr_nic_type.attr,
10840         &dev_attr_status.attr,
10841         &dev_attr_cfg.attr,
10842         &dev_attr_error.attr,
10843         &dev_attr_event_log.attr,
10844         &dev_attr_cmd_log.attr,
10845         &dev_attr_eeprom_delay.attr,
10846         &dev_attr_ucode_version.attr,
10847         &dev_attr_rtc.attr,
10848         &dev_attr_scan_age.attr,
10849         &dev_attr_led.attr,
10850         &dev_attr_speed_scan.attr,
10851         &dev_attr_net_stats.attr,
10852         NULL
10853 };
10854
10855 static struct attribute_group ipw_attribute_group = {
10856         .name = NULL,           /* put in device directory */
10857         .attrs = ipw_sysfs_entries,
10858 };
10859
10860 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10861 {
10862         int err = 0;
10863         struct net_device *net_dev;
10864         void __iomem *base;
10865         u32 length, val;
10866         struct ipw_priv *priv;
10867         int i;
10868
10869         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
10870         if (net_dev == NULL) {
10871                 err = -ENOMEM;
10872                 goto out;
10873         }
10874
10875         priv = ieee80211_priv(net_dev);
10876         priv->ieee = netdev_priv(net_dev);
10877
10878         priv->net_dev = net_dev;
10879         priv->pci_dev = pdev;
10880 #ifdef CONFIG_IPW2200_DEBUG
10881         ipw_debug_level = debug;
10882 #endif
10883         spin_lock_init(&priv->lock);
10884         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
10885                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
10886
10887         mutex_init(&priv->mutex);
10888         if (pci_enable_device(pdev)) {
10889                 err = -ENODEV;
10890                 goto out_free_ieee80211;
10891         }
10892
10893         pci_set_master(pdev);
10894
10895         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
10896         if (!err)
10897                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
10898         if (err) {
10899                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
10900                 goto out_pci_disable_device;
10901         }
10902
10903         pci_set_drvdata(pdev, priv);
10904
10905         err = pci_request_regions(pdev, DRV_NAME);
10906         if (err)
10907                 goto out_pci_disable_device;
10908
10909         /* We disable the RETRY_TIMEOUT register (0x41) to keep
10910          * PCI Tx retries from interfering with C3 CPU state */
10911         pci_read_config_dword(pdev, 0x40, &val);
10912         if ((val & 0x0000ff00) != 0)
10913                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
10914
10915         length = pci_resource_len(pdev, 0);
10916         priv->hw_len = length;
10917
10918         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
10919         if (!base) {
10920                 err = -ENODEV;
10921                 goto out_pci_release_regions;
10922         }
10923
10924         priv->hw_base = base;
10925         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
10926         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
10927
10928         err = ipw_setup_deferred_work(priv);
10929         if (err) {
10930                 IPW_ERROR("Unable to setup deferred work\n");
10931                 goto out_iounmap;
10932         }
10933
10934         ipw_sw_reset(priv, 1);
10935
10936         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
10937         if (err) {
10938                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
10939                 goto out_destroy_workqueue;
10940         }
10941
10942         SET_MODULE_OWNER(net_dev);
10943         SET_NETDEV_DEV(net_dev, &pdev->dev);
10944
10945         mutex_lock(&priv->mutex);
10946
10947         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
10948         priv->ieee->set_security = shim__set_security;
10949         priv->ieee->is_queue_full = ipw_net_is_queue_full;
10950
10951 #ifdef CONFIG_IPW_QOS
10952         priv->ieee->handle_probe_response = ipw_handle_beacon;
10953         priv->ieee->handle_beacon = ipw_handle_probe_response;
10954         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
10955 #endif                          /* CONFIG_IPW_QOS */
10956
10957         priv->ieee->perfect_rssi = -20;
10958         priv->ieee->worst_rssi = -85;
10959
10960         net_dev->open = ipw_net_open;
10961         net_dev->stop = ipw_net_stop;
10962         net_dev->init = ipw_net_init;
10963         net_dev->get_stats = ipw_net_get_stats;
10964         net_dev->set_multicast_list = ipw_net_set_multicast_list;
10965         net_dev->set_mac_address = ipw_net_set_mac_address;
10966         priv->wireless_data.spy_data = &priv->ieee->spy_data;
10967         net_dev->wireless_data = &priv->wireless_data;
10968         net_dev->wireless_handlers = &ipw_wx_handler_def;
10969         net_dev->ethtool_ops = &ipw_ethtool_ops;
10970         net_dev->irq = pdev->irq;
10971         net_dev->base_addr = (unsigned long)priv->hw_base;
10972         net_dev->mem_start = pci_resource_start(pdev, 0);
10973         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
10974
10975         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
10976         if (err) {
10977                 IPW_ERROR("failed to create sysfs device attributes\n");
10978                 mutex_unlock(&priv->mutex);
10979                 goto out_release_irq;
10980         }
10981
10982         mutex_unlock(&priv->mutex);
10983         err = register_netdev(net_dev);
10984         if (err) {
10985                 IPW_ERROR("failed to register network device\n");
10986                 goto out_remove_sysfs;
10987         }
10988         return 0;
10989
10990       out_remove_sysfs:
10991         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
10992       out_release_irq:
10993         free_irq(pdev->irq, priv);
10994       out_destroy_workqueue:
10995         destroy_workqueue(priv->workqueue);
10996         priv->workqueue = NULL;
10997       out_iounmap:
10998         iounmap(priv->hw_base);
10999       out_pci_release_regions:
11000         pci_release_regions(pdev);
11001       out_pci_disable_device:
11002         pci_disable_device(pdev);
11003         pci_set_drvdata(pdev, NULL);
11004       out_free_ieee80211:
11005         free_ieee80211(priv->net_dev);
11006       out:
11007         return err;
11008 }
11009
11010 static void ipw_pci_remove(struct pci_dev *pdev)
11011 {
11012         struct ipw_priv *priv = pci_get_drvdata(pdev);
11013         struct list_head *p, *q;
11014         int i;
11015
11016         if (!priv)
11017                 return;
11018
11019         mutex_lock(&priv->mutex);
11020
11021         priv->status |= STATUS_EXIT_PENDING;
11022         ipw_down(priv);
11023         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11024
11025         mutex_unlock(&priv->mutex);
11026
11027         unregister_netdev(priv->net_dev);
11028
11029         if (priv->rxq) {
11030                 ipw_rx_queue_free(priv, priv->rxq);
11031                 priv->rxq = NULL;
11032         }
11033         ipw_tx_queue_free(priv);
11034
11035         if (priv->cmdlog) {
11036                 kfree(priv->cmdlog);
11037                 priv->cmdlog = NULL;
11038         }
11039         /* ipw_down will ensure that there is no more pending work
11040          * in the workqueue's, so we can safely remove them now. */
11041         cancel_delayed_work(&priv->adhoc_check);
11042         cancel_delayed_work(&priv->gather_stats);
11043         cancel_delayed_work(&priv->request_scan);
11044         cancel_delayed_work(&priv->rf_kill);
11045         cancel_delayed_work(&priv->scan_check);
11046         destroy_workqueue(priv->workqueue);
11047         priv->workqueue = NULL;
11048
11049         /* Free MAC hash list for ADHOC */
11050         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11051                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11052                         list_del(p);
11053                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11054                 }
11055         }
11056
11057         if (priv->error) {
11058                 ipw_free_error_log(priv->error);
11059                 priv->error = NULL;
11060         }
11061
11062         free_irq(pdev->irq, priv);
11063         iounmap(priv->hw_base);
11064         pci_release_regions(pdev);
11065         pci_disable_device(pdev);
11066         pci_set_drvdata(pdev, NULL);
11067         free_ieee80211(priv->net_dev);
11068         free_firmware();
11069 }
11070
11071 #ifdef CONFIG_PM
11072 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11073 {
11074         struct ipw_priv *priv = pci_get_drvdata(pdev);
11075         struct net_device *dev = priv->net_dev;
11076
11077         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11078
11079         /* Take down the device; powers it off, etc. */
11080         ipw_down(priv);
11081
11082         /* Remove the PRESENT state of the device */
11083         netif_device_detach(dev);
11084
11085         pci_save_state(pdev);
11086         pci_disable_device(pdev);
11087         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11088
11089         return 0;
11090 }
11091
11092 static int ipw_pci_resume(struct pci_dev *pdev)
11093 {
11094         struct ipw_priv *priv = pci_get_drvdata(pdev);
11095         struct net_device *dev = priv->net_dev;
11096         u32 val;
11097
11098         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11099
11100         pci_set_power_state(pdev, PCI_D0);
11101         pci_enable_device(pdev);
11102         pci_restore_state(pdev);
11103
11104         /*
11105          * Suspend/Resume resets the PCI configuration space, so we have to
11106          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11107          * from interfering with C3 CPU state. pci_restore_state won't help
11108          * here since it only restores the first 64 bytes pci config header.
11109          */
11110         pci_read_config_dword(pdev, 0x40, &val);
11111         if ((val & 0x0000ff00) != 0)
11112                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11113
11114         /* Set the device back into the PRESENT state; this will also wake
11115          * the queue of needed */
11116         netif_device_attach(dev);
11117
11118         /* Bring the device back up */
11119         queue_work(priv->workqueue, &priv->up);
11120
11121         return 0;
11122 }
11123 #endif
11124
11125 /* driver initialization stuff */
11126 static struct pci_driver ipw_driver = {
11127         .name = DRV_NAME,
11128         .id_table = card_ids,
11129         .probe = ipw_pci_probe,
11130         .remove = __devexit_p(ipw_pci_remove),
11131 #ifdef CONFIG_PM
11132         .suspend = ipw_pci_suspend,
11133         .resume = ipw_pci_resume,
11134 #endif
11135 };
11136
11137 static int __init ipw_init(void)
11138 {
11139         int ret;
11140
11141         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11142         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11143
11144         ret = pci_module_init(&ipw_driver);
11145         if (ret) {
11146                 IPW_ERROR("Unable to initialize PCI module\n");
11147                 return ret;
11148         }
11149
11150         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11151         if (ret) {
11152                 IPW_ERROR("Unable to create driver sysfs file\n");
11153                 pci_unregister_driver(&ipw_driver);
11154                 return ret;
11155         }
11156
11157         return ret;
11158 }
11159
11160 static void __exit ipw_exit(void)
11161 {
11162         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11163         pci_unregister_driver(&ipw_driver);
11164 }
11165
11166 module_param(disable, int, 0444);
11167 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11168
11169 module_param(associate, int, 0444);
11170 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11171
11172 module_param(auto_create, int, 0444);
11173 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11174
11175 module_param(led, int, 0444);
11176 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11177
11178 module_param(debug, int, 0444);
11179 MODULE_PARM_DESC(debug, "debug output mask");
11180
11181 module_param(channel, int, 0444);
11182 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11183
11184 #ifdef CONFIG_IPW_QOS
11185 module_param(qos_enable, int, 0444);
11186 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11187
11188 module_param(qos_burst_enable, int, 0444);
11189 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11190
11191 module_param(qos_no_ack_mask, int, 0444);
11192 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11193
11194 module_param(burst_duration_CCK, int, 0444);
11195 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11196
11197 module_param(burst_duration_OFDM, int, 0444);
11198 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11199 #endif                          /* CONFIG_IPW_QOS */
11200
11201 #ifdef CONFIG_IPW2200_MONITOR
11202 module_param(mode, int, 0444);
11203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11204 #else
11205 module_param(mode, int, 0444);
11206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11207 #endif
11208
11209 module_param(bt_coexist, int, 0444);
11210 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11211
11212 module_param(hwcrypto, int, 0444);
11213 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11214
11215 module_param(cmdlog, int, 0444);
11216 MODULE_PARM_DESC(cmdlog,
11217                  "allocate a ring buffer for logging firmware commands");
11218
11219 module_param(roaming, int, 0444);
11220 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11221
11222 module_exit(ipw_exit);
11223 module_init(ipw_init);