]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ipw2200.c
[PATCH] ipw2200: remove the WPA card associates to non-WPA AP checking
[karo-tx-linux.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36 #define IPW2200_VERSION "git-1.0.10"
37 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
39 #define DRV_VERSION     IPW2200_VERSION
40
41 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
42
43 MODULE_DESCRIPTION(DRV_DESCRIPTION);
44 MODULE_VERSION(DRV_VERSION);
45 MODULE_AUTHOR(DRV_COPYRIGHT);
46 MODULE_LICENSE("GPL");
47
48 static int cmdlog = 0;
49 static int debug = 0;
50 static int channel = 0;
51 static int mode = 0;
52
53 static u32 ipw_debug_level;
54 static int associate = 1;
55 static int auto_create = 1;
56 static int led = 0;
57 static int disable = 0;
58 static int bt_coexist = 0;
59 static int hwcrypto = 0;
60 static int roaming = 1;
61 static const char ipw_modes[] = {
62         'a', 'b', 'g', '?'
63 };
64
65 #ifdef CONFIG_IPW_QOS
66 static int qos_enable = 0;
67 static int qos_burst_enable = 0;
68 static int qos_no_ack_mask = 0;
69 static int burst_duration_CCK = 0;
70 static int burst_duration_OFDM = 0;
71
72 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
73         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
74          QOS_TX3_CW_MIN_OFDM},
75         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
76          QOS_TX3_CW_MAX_OFDM},
77         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
78         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
79         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
80          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
81 };
82
83 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
84         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
85          QOS_TX3_CW_MIN_CCK},
86         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
87          QOS_TX3_CW_MAX_CCK},
88         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
89         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
90         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
91          QOS_TX3_TXOP_LIMIT_CCK}
92 };
93
94 static struct ieee80211_qos_parameters def_parameters_OFDM = {
95         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
96          DEF_TX3_CW_MIN_OFDM},
97         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
98          DEF_TX3_CW_MAX_OFDM},
99         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
100         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
101         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
102          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
103 };
104
105 static struct ieee80211_qos_parameters def_parameters_CCK = {
106         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
107          DEF_TX3_CW_MIN_CCK},
108         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
109          DEF_TX3_CW_MAX_CCK},
110         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
111         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
112         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
113          DEF_TX3_TXOP_LIMIT_CCK}
114 };
115
116 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
117
118 static int from_priority_to_tx_queue[] = {
119         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
120         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
121 };
122
123 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
124
125 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
126                                        *qos_param);
127 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
128                                      *qos_param);
129 #endif                          /* CONFIG_IPW_QOS */
130
131 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
132 static void ipw_remove_current_network(struct ipw_priv *priv);
133 static void ipw_rx(struct ipw_priv *priv);
134 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
135                                 struct clx2_tx_queue *txq, int qindex);
136 static int ipw_queue_reset(struct ipw_priv *priv);
137
138 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
139                              int len, int sync);
140
141 static void ipw_tx_queue_free(struct ipw_priv *);
142
143 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
144 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
145 static void ipw_rx_queue_replenish(void *);
146 static int ipw_up(struct ipw_priv *);
147 static void ipw_bg_up(void *);
148 static void ipw_down(struct ipw_priv *);
149 static void ipw_bg_down(void *);
150 static int ipw_config(struct ipw_priv *);
151 static int init_supported_rates(struct ipw_priv *priv,
152                                 struct ipw_supported_rates *prates);
153 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
154 static void ipw_send_wep_keys(struct ipw_priv *, int);
155
156 static int snprint_line(char *buf, size_t count,
157                         const u8 * data, u32 len, u32 ofs)
158 {
159         int out, i, j, l;
160         char c;
161
162         out = snprintf(buf, count, "%08X", ofs);
163
164         for (l = 0, i = 0; i < 2; i++) {
165                 out += snprintf(buf + out, count - out, " ");
166                 for (j = 0; j < 8 && l < len; j++, l++)
167                         out += snprintf(buf + out, count - out, "%02X ",
168                                         data[(i * 8 + j)]);
169                 for (; j < 8; j++)
170                         out += snprintf(buf + out, count - out, "   ");
171         }
172
173         out += snprintf(buf + out, count - out, " ");
174         for (l = 0, i = 0; i < 2; i++) {
175                 out += snprintf(buf + out, count - out, " ");
176                 for (j = 0; j < 8 && l < len; j++, l++) {
177                         c = data[(i * 8 + j)];
178                         if (!isascii(c) || !isprint(c))
179                                 c = '.';
180
181                         out += snprintf(buf + out, count - out, "%c", c);
182                 }
183
184                 for (; j < 8; j++)
185                         out += snprintf(buf + out, count - out, " ");
186         }
187
188         return out;
189 }
190
191 static void printk_buf(int level, const u8 * data, u32 len)
192 {
193         char line[81];
194         u32 ofs = 0;
195         if (!(ipw_debug_level & level))
196                 return;
197
198         while (len) {
199                 snprint_line(line, sizeof(line), &data[ofs],
200                              min(len, 16U), ofs);
201                 printk(KERN_DEBUG "%s\n", line);
202                 ofs += 16;
203                 len -= min(len, 16U);
204         }
205 }
206
207 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
208 {
209         size_t out = size;
210         u32 ofs = 0;
211         int total = 0;
212
213         while (size && len) {
214                 out = snprint_line(output, size, &data[ofs],
215                                    min_t(size_t, len, 16U), ofs);
216
217                 ofs += 16;
218                 output += out;
219                 size -= out;
220                 len -= min_t(size_t, len, 16U);
221                 total += out;
222         }
223         return total;
224 }
225
226 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
227 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
228 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
229
230 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
231 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
232 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
233
234 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
235 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
236 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
237 {
238         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
239                      __LINE__, (u32) (b), (u32) (c));
240         _ipw_write_reg8(a, b, c);
241 }
242
243 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
244 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
245 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
246 {
247         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
248                      __LINE__, (u32) (b), (u32) (c));
249         _ipw_write_reg16(a, b, c);
250 }
251
252 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
253 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
254 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
255 {
256         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
257                      __LINE__, (u32) (b), (u32) (c));
258         _ipw_write_reg32(a, b, c);
259 }
260
261 /* 8-bit direct write (low 4K) */
262 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
263
264 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
265 #define ipw_write8(ipw, ofs, val) \
266  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
267  _ipw_write8(ipw, ofs, val)
268
269 /* 16-bit direct write (low 4K) */
270 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
271
272 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
273 #define ipw_write16(ipw, ofs, val) \
274  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
275  _ipw_write16(ipw, ofs, val)
276
277 /* 32-bit direct write (low 4K) */
278 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
279
280 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
281 #define ipw_write32(ipw, ofs, val) \
282  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
283  _ipw_write32(ipw, ofs, val)
284
285 /* 8-bit direct read (low 4K) */
286 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
287
288 /* 8-bit direct read (low 4K), with debug wrapper */
289 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
290 {
291         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
292         return _ipw_read8(ipw, ofs);
293 }
294
295 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
296 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
297
298 /* 16-bit direct read (low 4K) */
299 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
300
301 /* 16-bit direct read (low 4K), with debug wrapper */
302 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
303 {
304         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
305         return _ipw_read16(ipw, ofs);
306 }
307
308 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
309 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
310
311 /* 32-bit direct read (low 4K) */
312 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
313
314 /* 32-bit direct read (low 4K), with debug wrapper */
315 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
316 {
317         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
318         return _ipw_read32(ipw, ofs);
319 }
320
321 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
322 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
323
324 /* multi-byte read (above 4K), with debug wrapper */
325 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
326 static inline void __ipw_read_indirect(const char *f, int l,
327                                        struct ipw_priv *a, u32 b, u8 * c, int d)
328 {
329         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
330                      d);
331         _ipw_read_indirect(a, b, c, d);
332 }
333
334 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
335 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
336
337 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
338 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
339                                 int num);
340 #define ipw_write_indirect(a, b, c, d) \
341         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
342         _ipw_write_indirect(a, b, c, d)
343
344 /* 32-bit indirect write (above 4K) */
345 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
346 {
347         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
348         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
349         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
350 }
351
352 /* 8-bit indirect write (above 4K) */
353 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
354 {
355         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
356         u32 dif_len = reg - aligned_addr;
357
358         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
359         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
360         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
361 }
362
363 /* 16-bit indirect write (above 4K) */
364 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
365 {
366         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
367         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
368
369         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
370         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
371         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
372 }
373
374 /* 8-bit indirect read (above 4K) */
375 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
376 {
377         u32 word;
378         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
379         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
380         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
381         return (word >> ((reg & 0x3) * 8)) & 0xff;
382 }
383
384 /* 32-bit indirect read (above 4K) */
385 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
386 {
387         u32 value;
388
389         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
390
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
393         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
394         return value;
395 }
396
397 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
398 /*    for area above 1st 4K of SRAM/reg space */
399 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
400                                int num)
401 {
402         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
403         u32 dif_len = addr - aligned_addr;
404         u32 i;
405
406         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
407
408         if (num <= 0) {
409                 return;
410         }
411
412         /* Read the first dword (or portion) byte by byte */
413         if (unlikely(dif_len)) {
414                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
415                 /* Start reading at aligned_addr + dif_len */
416                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
417                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
418                 aligned_addr += 4;
419         }
420
421         /* Read all of the middle dwords as dwords, with auto-increment */
422         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
423         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
424                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
425
426         /* Read the last dword (or portion) byte by byte */
427         if (unlikely(num)) {
428                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
429                 for (i = 0; num > 0; i++, num--)
430                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
431         }
432 }
433
434 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
435 /*    for area above 1st 4K of SRAM/reg space */
436 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
437                                 int num)
438 {
439         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
440         u32 dif_len = addr - aligned_addr;
441         u32 i;
442
443         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
444
445         if (num <= 0) {
446                 return;
447         }
448
449         /* Write the first dword (or portion) byte by byte */
450         if (unlikely(dif_len)) {
451                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
452                 /* Start writing at aligned_addr + dif_len */
453                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
454                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
455                 aligned_addr += 4;
456         }
457
458         /* Write all of the middle dwords as dwords, with auto-increment */
459         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
460         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
461                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
462
463         /* Write the last dword (or portion) byte by byte */
464         if (unlikely(num)) {
465                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
466                 for (i = 0; num > 0; i++, num--, buf++)
467                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
468         }
469 }
470
471 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
472 /*    for 1st 4K of SRAM/regs space */
473 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
474                              int num)
475 {
476         memcpy_toio((priv->hw_base + addr), buf, num);
477 }
478
479 /* Set bit(s) in low 4K of SRAM/regs */
480 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
481 {
482         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
483 }
484
485 /* Clear bit(s) in low 4K of SRAM/regs */
486 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
487 {
488         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
489 }
490
491 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
492 {
493         if (priv->status & STATUS_INT_ENABLED)
494                 return;
495         priv->status |= STATUS_INT_ENABLED;
496         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
497 }
498
499 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
500 {
501         if (!(priv->status & STATUS_INT_ENABLED))
502                 return;
503         priv->status &= ~STATUS_INT_ENABLED;
504         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
505 }
506
507 #ifdef CONFIG_IPW2200_DEBUG
508 static char *ipw_error_desc(u32 val)
509 {
510         switch (val) {
511         case IPW_FW_ERROR_OK:
512                 return "ERROR_OK";
513         case IPW_FW_ERROR_FAIL:
514                 return "ERROR_FAIL";
515         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
516                 return "MEMORY_UNDERFLOW";
517         case IPW_FW_ERROR_MEMORY_OVERFLOW:
518                 return "MEMORY_OVERFLOW";
519         case IPW_FW_ERROR_BAD_PARAM:
520                 return "BAD_PARAM";
521         case IPW_FW_ERROR_BAD_CHECKSUM:
522                 return "BAD_CHECKSUM";
523         case IPW_FW_ERROR_NMI_INTERRUPT:
524                 return "NMI_INTERRUPT";
525         case IPW_FW_ERROR_BAD_DATABASE:
526                 return "BAD_DATABASE";
527         case IPW_FW_ERROR_ALLOC_FAIL:
528                 return "ALLOC_FAIL";
529         case IPW_FW_ERROR_DMA_UNDERRUN:
530                 return "DMA_UNDERRUN";
531         case IPW_FW_ERROR_DMA_STATUS:
532                 return "DMA_STATUS";
533         case IPW_FW_ERROR_DINO_ERROR:
534                 return "DINO_ERROR";
535         case IPW_FW_ERROR_EEPROM_ERROR:
536                 return "EEPROM_ERROR";
537         case IPW_FW_ERROR_SYSASSERT:
538                 return "SYSASSERT";
539         case IPW_FW_ERROR_FATAL_ERROR:
540                 return "FATAL_ERROR";
541         default:
542                 return "UNKNOWN_ERROR";
543         }
544 }
545
546 static void ipw_dump_error_log(struct ipw_priv *priv,
547                                struct ipw_fw_error *error)
548 {
549         u32 i;
550
551         if (!error) {
552                 IPW_ERROR("Error allocating and capturing error log.  "
553                           "Nothing to dump.\n");
554                 return;
555         }
556
557         IPW_ERROR("Start IPW Error Log Dump:\n");
558         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
559                   error->status, error->config);
560
561         for (i = 0; i < error->elem_len; i++)
562                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
563                           ipw_error_desc(error->elem[i].desc),
564                           error->elem[i].time,
565                           error->elem[i].blink1,
566                           error->elem[i].blink2,
567                           error->elem[i].link1,
568                           error->elem[i].link2, error->elem[i].data);
569         for (i = 0; i < error->log_len; i++)
570                 IPW_ERROR("%i\t0x%08x\t%i\n",
571                           error->log[i].time,
572                           error->log[i].data, error->log[i].event);
573 }
574 #endif
575
576 static inline int ipw_is_init(struct ipw_priv *priv)
577 {
578         return (priv->status & STATUS_INIT) ? 1 : 0;
579 }
580
581 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
582 {
583         u32 addr, field_info, field_len, field_count, total_len;
584
585         IPW_DEBUG_ORD("ordinal = %i\n", ord);
586
587         if (!priv || !val || !len) {
588                 IPW_DEBUG_ORD("Invalid argument\n");
589                 return -EINVAL;
590         }
591
592         /* verify device ordinal tables have been initialized */
593         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
594                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
595                 return -EINVAL;
596         }
597
598         switch (IPW_ORD_TABLE_ID_MASK & ord) {
599         case IPW_ORD_TABLE_0_MASK:
600                 /*
601                  * TABLE 0: Direct access to a table of 32 bit values
602                  *
603                  * This is a very simple table with the data directly
604                  * read from the table
605                  */
606
607                 /* remove the table id from the ordinal */
608                 ord &= IPW_ORD_TABLE_VALUE_MASK;
609
610                 /* boundary check */
611                 if (ord > priv->table0_len) {
612                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
613                                       "max (%i)\n", ord, priv->table0_len);
614                         return -EINVAL;
615                 }
616
617                 /* verify we have enough room to store the value */
618                 if (*len < sizeof(u32)) {
619                         IPW_DEBUG_ORD("ordinal buffer length too small, "
620                                       "need %zd\n", sizeof(u32));
621                         return -EINVAL;
622                 }
623
624                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
625                               ord, priv->table0_addr + (ord << 2));
626
627                 *len = sizeof(u32);
628                 ord <<= 2;
629                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
630                 break;
631
632         case IPW_ORD_TABLE_1_MASK:
633                 /*
634                  * TABLE 1: Indirect access to a table of 32 bit values
635                  *
636                  * This is a fairly large table of u32 values each
637                  * representing starting addr for the data (which is
638                  * also a u32)
639                  */
640
641                 /* remove the table id from the ordinal */
642                 ord &= IPW_ORD_TABLE_VALUE_MASK;
643
644                 /* boundary check */
645                 if (ord > priv->table1_len) {
646                         IPW_DEBUG_ORD("ordinal value too long\n");
647                         return -EINVAL;
648                 }
649
650                 /* verify we have enough room to store the value */
651                 if (*len < sizeof(u32)) {
652                         IPW_DEBUG_ORD("ordinal buffer length too small, "
653                                       "need %zd\n", sizeof(u32));
654                         return -EINVAL;
655                 }
656
657                 *((u32 *) val) =
658                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
659                 *len = sizeof(u32);
660                 break;
661
662         case IPW_ORD_TABLE_2_MASK:
663                 /*
664                  * TABLE 2: Indirect access to a table of variable sized values
665                  *
666                  * This table consist of six values, each containing
667                  *     - dword containing the starting offset of the data
668                  *     - dword containing the lengh in the first 16bits
669                  *       and the count in the second 16bits
670                  */
671
672                 /* remove the table id from the ordinal */
673                 ord &= IPW_ORD_TABLE_VALUE_MASK;
674
675                 /* boundary check */
676                 if (ord > priv->table2_len) {
677                         IPW_DEBUG_ORD("ordinal value too long\n");
678                         return -EINVAL;
679                 }
680
681                 /* get the address of statistic */
682                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
683
684                 /* get the second DW of statistics ;
685                  * two 16-bit words - first is length, second is count */
686                 field_info =
687                     ipw_read_reg32(priv,
688                                    priv->table2_addr + (ord << 3) +
689                                    sizeof(u32));
690
691                 /* get each entry length */
692                 field_len = *((u16 *) & field_info);
693
694                 /* get number of entries */
695                 field_count = *(((u16 *) & field_info) + 1);
696
697                 /* abort if not enought memory */
698                 total_len = field_len * field_count;
699                 if (total_len > *len) {
700                         *len = total_len;
701                         return -EINVAL;
702                 }
703
704                 *len = total_len;
705                 if (!total_len)
706                         return 0;
707
708                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
709                               "field_info = 0x%08x\n",
710                               addr, total_len, field_info);
711                 ipw_read_indirect(priv, addr, val, total_len);
712                 break;
713
714         default:
715                 IPW_DEBUG_ORD("Invalid ordinal!\n");
716                 return -EINVAL;
717
718         }
719
720         return 0;
721 }
722
723 static void ipw_init_ordinals(struct ipw_priv *priv)
724 {
725         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
726         priv->table0_len = ipw_read32(priv, priv->table0_addr);
727
728         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
729                       priv->table0_addr, priv->table0_len);
730
731         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
732         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
733
734         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
735                       priv->table1_addr, priv->table1_len);
736
737         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
738         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
739         priv->table2_len &= 0x0000ffff; /* use first two bytes */
740
741         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
742                       priv->table2_addr, priv->table2_len);
743
744 }
745
746 static u32 ipw_register_toggle(u32 reg)
747 {
748         reg &= ~IPW_START_STANDBY;
749         if (reg & IPW_GATE_ODMA)
750                 reg &= ~IPW_GATE_ODMA;
751         if (reg & IPW_GATE_IDMA)
752                 reg &= ~IPW_GATE_IDMA;
753         if (reg & IPW_GATE_ADMA)
754                 reg &= ~IPW_GATE_ADMA;
755         return reg;
756 }
757
758 /*
759  * LED behavior:
760  * - On radio ON, turn on any LEDs that require to be on during start
761  * - On initialization, start unassociated blink
762  * - On association, disable unassociated blink
763  * - On disassociation, start unassociated blink
764  * - On radio OFF, turn off any LEDs started during radio on
765  *
766  */
767 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
768 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
769 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
770
771 static void ipw_led_link_on(struct ipw_priv *priv)
772 {
773         unsigned long flags;
774         u32 led;
775
776         /* If configured to not use LEDs, or nic_type is 1,
777          * then we don't toggle a LINK led */
778         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
779                 return;
780
781         spin_lock_irqsave(&priv->lock, flags);
782
783         if (!(priv->status & STATUS_RF_KILL_MASK) &&
784             !(priv->status & STATUS_LED_LINK_ON)) {
785                 IPW_DEBUG_LED("Link LED On\n");
786                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
787                 led |= priv->led_association_on;
788
789                 led = ipw_register_toggle(led);
790
791                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
792                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
793
794                 priv->status |= STATUS_LED_LINK_ON;
795
796                 /* If we aren't associated, schedule turning the LED off */
797                 if (!(priv->status & STATUS_ASSOCIATED))
798                         queue_delayed_work(priv->workqueue,
799                                            &priv->led_link_off,
800                                            LD_TIME_LINK_ON);
801         }
802
803         spin_unlock_irqrestore(&priv->lock, flags);
804 }
805
806 static void ipw_bg_led_link_on(void *data)
807 {
808         struct ipw_priv *priv = data;
809         mutex_lock(&priv->mutex);
810         ipw_led_link_on(data);
811         mutex_unlock(&priv->mutex);
812 }
813
814 static void ipw_led_link_off(struct ipw_priv *priv)
815 {
816         unsigned long flags;
817         u32 led;
818
819         /* If configured not to use LEDs, or nic type is 1,
820          * then we don't goggle the LINK led. */
821         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
822                 return;
823
824         spin_lock_irqsave(&priv->lock, flags);
825
826         if (priv->status & STATUS_LED_LINK_ON) {
827                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
828                 led &= priv->led_association_off;
829                 led = ipw_register_toggle(led);
830
831                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
832                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
833
834                 IPW_DEBUG_LED("Link LED Off\n");
835
836                 priv->status &= ~STATUS_LED_LINK_ON;
837
838                 /* If we aren't associated and the radio is on, schedule
839                  * turning the LED on (blink while unassociated) */
840                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
841                     !(priv->status & STATUS_ASSOCIATED))
842                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
843                                            LD_TIME_LINK_OFF);
844
845         }
846
847         spin_unlock_irqrestore(&priv->lock, flags);
848 }
849
850 static void ipw_bg_led_link_off(void *data)
851 {
852         struct ipw_priv *priv = data;
853         mutex_lock(&priv->mutex);
854         ipw_led_link_off(data);
855         mutex_unlock(&priv->mutex);
856 }
857
858 static void __ipw_led_activity_on(struct ipw_priv *priv)
859 {
860         u32 led;
861
862         if (priv->config & CFG_NO_LED)
863                 return;
864
865         if (priv->status & STATUS_RF_KILL_MASK)
866                 return;
867
868         if (!(priv->status & STATUS_LED_ACT_ON)) {
869                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
870                 led |= priv->led_activity_on;
871
872                 led = ipw_register_toggle(led);
873
874                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
875                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
876
877                 IPW_DEBUG_LED("Activity LED On\n");
878
879                 priv->status |= STATUS_LED_ACT_ON;
880
881                 cancel_delayed_work(&priv->led_act_off);
882                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
883                                    LD_TIME_ACT_ON);
884         } else {
885                 /* Reschedule LED off for full time period */
886                 cancel_delayed_work(&priv->led_act_off);
887                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
888                                    LD_TIME_ACT_ON);
889         }
890 }
891
892 #if 0
893 void ipw_led_activity_on(struct ipw_priv *priv)
894 {
895         unsigned long flags;
896         spin_lock_irqsave(&priv->lock, flags);
897         __ipw_led_activity_on(priv);
898         spin_unlock_irqrestore(&priv->lock, flags);
899 }
900 #endif  /*  0  */
901
902 static void ipw_led_activity_off(struct ipw_priv *priv)
903 {
904         unsigned long flags;
905         u32 led;
906
907         if (priv->config & CFG_NO_LED)
908                 return;
909
910         spin_lock_irqsave(&priv->lock, flags);
911
912         if (priv->status & STATUS_LED_ACT_ON) {
913                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
914                 led &= priv->led_activity_off;
915
916                 led = ipw_register_toggle(led);
917
918                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
919                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
920
921                 IPW_DEBUG_LED("Activity LED Off\n");
922
923                 priv->status &= ~STATUS_LED_ACT_ON;
924         }
925
926         spin_unlock_irqrestore(&priv->lock, flags);
927 }
928
929 static void ipw_bg_led_activity_off(void *data)
930 {
931         struct ipw_priv *priv = data;
932         mutex_lock(&priv->mutex);
933         ipw_led_activity_off(data);
934         mutex_unlock(&priv->mutex);
935 }
936
937 static void ipw_led_band_on(struct ipw_priv *priv)
938 {
939         unsigned long flags;
940         u32 led;
941
942         /* Only nic type 1 supports mode LEDs */
943         if (priv->config & CFG_NO_LED ||
944             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
945                 return;
946
947         spin_lock_irqsave(&priv->lock, flags);
948
949         led = ipw_read_reg32(priv, IPW_EVENT_REG);
950         if (priv->assoc_network->mode == IEEE_A) {
951                 led |= priv->led_ofdm_on;
952                 led &= priv->led_association_off;
953                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
954         } else if (priv->assoc_network->mode == IEEE_G) {
955                 led |= priv->led_ofdm_on;
956                 led |= priv->led_association_on;
957                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
958         } else {
959                 led &= priv->led_ofdm_off;
960                 led |= priv->led_association_on;
961                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
962         }
963
964         led = ipw_register_toggle(led);
965
966         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
967         ipw_write_reg32(priv, IPW_EVENT_REG, led);
968
969         spin_unlock_irqrestore(&priv->lock, flags);
970 }
971
972 static void ipw_led_band_off(struct ipw_priv *priv)
973 {
974         unsigned long flags;
975         u32 led;
976
977         /* Only nic type 1 supports mode LEDs */
978         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
979                 return;
980
981         spin_lock_irqsave(&priv->lock, flags);
982
983         led = ipw_read_reg32(priv, IPW_EVENT_REG);
984         led &= priv->led_ofdm_off;
985         led &= priv->led_association_off;
986
987         led = ipw_register_toggle(led);
988
989         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
990         ipw_write_reg32(priv, IPW_EVENT_REG, led);
991
992         spin_unlock_irqrestore(&priv->lock, flags);
993 }
994
995 static void ipw_led_radio_on(struct ipw_priv *priv)
996 {
997         ipw_led_link_on(priv);
998 }
999
1000 static void ipw_led_radio_off(struct ipw_priv *priv)
1001 {
1002         ipw_led_activity_off(priv);
1003         ipw_led_link_off(priv);
1004 }
1005
1006 static void ipw_led_link_up(struct ipw_priv *priv)
1007 {
1008         /* Set the Link Led on for all nic types */
1009         ipw_led_link_on(priv);
1010 }
1011
1012 static void ipw_led_link_down(struct ipw_priv *priv)
1013 {
1014         ipw_led_activity_off(priv);
1015         ipw_led_link_off(priv);
1016
1017         if (priv->status & STATUS_RF_KILL_MASK)
1018                 ipw_led_radio_off(priv);
1019 }
1020
1021 static void ipw_led_init(struct ipw_priv *priv)
1022 {
1023         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1024
1025         /* Set the default PINs for the link and activity leds */
1026         priv->led_activity_on = IPW_ACTIVITY_LED;
1027         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1028
1029         priv->led_association_on = IPW_ASSOCIATED_LED;
1030         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1031
1032         /* Set the default PINs for the OFDM leds */
1033         priv->led_ofdm_on = IPW_OFDM_LED;
1034         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1035
1036         switch (priv->nic_type) {
1037         case EEPROM_NIC_TYPE_1:
1038                 /* In this NIC type, the LEDs are reversed.... */
1039                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1040                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1041                 priv->led_association_on = IPW_ACTIVITY_LED;
1042                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1043
1044                 if (!(priv->config & CFG_NO_LED))
1045                         ipw_led_band_on(priv);
1046
1047                 /* And we don't blink link LEDs for this nic, so
1048                  * just return here */
1049                 return;
1050
1051         case EEPROM_NIC_TYPE_3:
1052         case EEPROM_NIC_TYPE_2:
1053         case EEPROM_NIC_TYPE_4:
1054         case EEPROM_NIC_TYPE_0:
1055                 break;
1056
1057         default:
1058                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1059                                priv->nic_type);
1060                 priv->nic_type = EEPROM_NIC_TYPE_0;
1061                 break;
1062         }
1063
1064         if (!(priv->config & CFG_NO_LED)) {
1065                 if (priv->status & STATUS_ASSOCIATED)
1066                         ipw_led_link_on(priv);
1067                 else
1068                         ipw_led_link_off(priv);
1069         }
1070 }
1071
1072 static void ipw_led_shutdown(struct ipw_priv *priv)
1073 {
1074         ipw_led_activity_off(priv);
1075         ipw_led_link_off(priv);
1076         ipw_led_band_off(priv);
1077         cancel_delayed_work(&priv->led_link_on);
1078         cancel_delayed_work(&priv->led_link_off);
1079         cancel_delayed_work(&priv->led_act_off);
1080 }
1081
1082 /*
1083  * The following adds a new attribute to the sysfs representation
1084  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1085  * used for controling the debug level.
1086  *
1087  * See the level definitions in ipw for details.
1088  */
1089 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1090 {
1091         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1092 }
1093
1094 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1095                                  size_t count)
1096 {
1097         char *p = (char *)buf;
1098         u32 val;
1099
1100         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1101                 p++;
1102                 if (p[0] == 'x' || p[0] == 'X')
1103                         p++;
1104                 val = simple_strtoul(p, &p, 16);
1105         } else
1106                 val = simple_strtoul(p, &p, 10);
1107         if (p == buf)
1108                 printk(KERN_INFO DRV_NAME
1109                        ": %s is not in hex or decimal form.\n", buf);
1110         else
1111                 ipw_debug_level = val;
1112
1113         return strnlen(buf, count);
1114 }
1115
1116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1117                    show_debug_level, store_debug_level);
1118
1119 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1120 {
1121         /* length = 1st dword in log */
1122         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1123 }
1124
1125 static void ipw_capture_event_log(struct ipw_priv *priv,
1126                                   u32 log_len, struct ipw_event *log)
1127 {
1128         u32 base;
1129
1130         if (log_len) {
1131                 base = ipw_read32(priv, IPW_EVENT_LOG);
1132                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1133                                   (u8 *) log, sizeof(*log) * log_len);
1134         }
1135 }
1136
1137 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1138 {
1139         struct ipw_fw_error *error;
1140         u32 log_len = ipw_get_event_log_len(priv);
1141         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1142         u32 elem_len = ipw_read_reg32(priv, base);
1143
1144         error = kmalloc(sizeof(*error) +
1145                         sizeof(*error->elem) * elem_len +
1146                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1147         if (!error) {
1148                 IPW_ERROR("Memory allocation for firmware error log "
1149                           "failed.\n");
1150                 return NULL;
1151         }
1152         error->jiffies = jiffies;
1153         error->status = priv->status;
1154         error->config = priv->config;
1155         error->elem_len = elem_len;
1156         error->log_len = log_len;
1157         error->elem = (struct ipw_error_elem *)error->payload;
1158         error->log = (struct ipw_event *)(error->elem + elem_len);
1159
1160         ipw_capture_event_log(priv, log_len, error->log);
1161
1162         if (elem_len)
1163                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1164                                   sizeof(*error->elem) * elem_len);
1165
1166         return error;
1167 }
1168
1169 static void ipw_free_error_log(struct ipw_fw_error *error)
1170 {
1171         if (error)
1172                 kfree(error);
1173 }
1174
1175 static ssize_t show_event_log(struct device *d,
1176                               struct device_attribute *attr, char *buf)
1177 {
1178         struct ipw_priv *priv = dev_get_drvdata(d);
1179         u32 log_len = ipw_get_event_log_len(priv);
1180         struct ipw_event log[log_len];
1181         u32 len = 0, i;
1182
1183         ipw_capture_event_log(priv, log_len, log);
1184
1185         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1186         for (i = 0; i < log_len; i++)
1187                 len += snprintf(buf + len, PAGE_SIZE - len,
1188                                 "\n%08X%08X%08X",
1189                                 log[i].time, log[i].event, log[i].data);
1190         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1191         return len;
1192 }
1193
1194 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1195
1196 static ssize_t show_error(struct device *d,
1197                           struct device_attribute *attr, char *buf)
1198 {
1199         struct ipw_priv *priv = dev_get_drvdata(d);
1200         u32 len = 0, i;
1201         if (!priv->error)
1202                 return 0;
1203         len += snprintf(buf + len, PAGE_SIZE - len,
1204                         "%08lX%08X%08X%08X",
1205                         priv->error->jiffies,
1206                         priv->error->status,
1207                         priv->error->config, priv->error->elem_len);
1208         for (i = 0; i < priv->error->elem_len; i++)
1209                 len += snprintf(buf + len, PAGE_SIZE - len,
1210                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1211                                 priv->error->elem[i].time,
1212                                 priv->error->elem[i].desc,
1213                                 priv->error->elem[i].blink1,
1214                                 priv->error->elem[i].blink2,
1215                                 priv->error->elem[i].link1,
1216                                 priv->error->elem[i].link2,
1217                                 priv->error->elem[i].data);
1218
1219         len += snprintf(buf + len, PAGE_SIZE - len,
1220                         "\n%08X", priv->error->log_len);
1221         for (i = 0; i < priv->error->log_len; i++)
1222                 len += snprintf(buf + len, PAGE_SIZE - len,
1223                                 "\n%08X%08X%08X",
1224                                 priv->error->log[i].time,
1225                                 priv->error->log[i].event,
1226                                 priv->error->log[i].data);
1227         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1228         return len;
1229 }
1230
1231 static ssize_t clear_error(struct device *d,
1232                            struct device_attribute *attr,
1233                            const char *buf, size_t count)
1234 {
1235         struct ipw_priv *priv = dev_get_drvdata(d);
1236         if (priv->error) {
1237                 ipw_free_error_log(priv->error);
1238                 priv->error = NULL;
1239         }
1240         return count;
1241 }
1242
1243 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1244
1245 static ssize_t show_cmd_log(struct device *d,
1246                             struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 len = 0, i;
1250         if (!priv->cmdlog)
1251                 return 0;
1252         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1253              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1254              i = (i + 1) % priv->cmdlog_len) {
1255                 len +=
1256                     snprintf(buf + len, PAGE_SIZE - len,
1257                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1258                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1259                              priv->cmdlog[i].cmd.len);
1260                 len +=
1261                     snprintk_buf(buf + len, PAGE_SIZE - len,
1262                                  (u8 *) priv->cmdlog[i].cmd.param,
1263                                  priv->cmdlog[i].cmd.len);
1264                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1265         }
1266         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1267         return len;
1268 }
1269
1270 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1271
1272 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1273                              char *buf)
1274 {
1275         struct ipw_priv *priv = dev_get_drvdata(d);
1276         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1277 }
1278
1279 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1280                               const char *buf, size_t count)
1281 {
1282         struct ipw_priv *priv = dev_get_drvdata(d);
1283 #ifdef CONFIG_IPW2200_DEBUG
1284         struct net_device *dev = priv->net_dev;
1285 #endif
1286         char buffer[] = "00000000";
1287         unsigned long len =
1288             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1289         unsigned long val;
1290         char *p = buffer;
1291
1292         IPW_DEBUG_INFO("enter\n");
1293
1294         strncpy(buffer, buf, len);
1295         buffer[len] = 0;
1296
1297         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1298                 p++;
1299                 if (p[0] == 'x' || p[0] == 'X')
1300                         p++;
1301                 val = simple_strtoul(p, &p, 16);
1302         } else
1303                 val = simple_strtoul(p, &p, 10);
1304         if (p == buffer) {
1305                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1306         } else {
1307                 priv->ieee->scan_age = val;
1308                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1309         }
1310
1311         IPW_DEBUG_INFO("exit\n");
1312         return len;
1313 }
1314
1315 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1316
1317 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1318                         char *buf)
1319 {
1320         struct ipw_priv *priv = dev_get_drvdata(d);
1321         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1322 }
1323
1324 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1325                          const char *buf, size_t count)
1326 {
1327         struct ipw_priv *priv = dev_get_drvdata(d);
1328
1329         IPW_DEBUG_INFO("enter\n");
1330
1331         if (count == 0)
1332                 return 0;
1333
1334         if (*buf == 0) {
1335                 IPW_DEBUG_LED("Disabling LED control.\n");
1336                 priv->config |= CFG_NO_LED;
1337                 ipw_led_shutdown(priv);
1338         } else {
1339                 IPW_DEBUG_LED("Enabling LED control.\n");
1340                 priv->config &= ~CFG_NO_LED;
1341                 ipw_led_init(priv);
1342         }
1343
1344         IPW_DEBUG_INFO("exit\n");
1345         return count;
1346 }
1347
1348 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1349
1350 static ssize_t show_status(struct device *d,
1351                            struct device_attribute *attr, char *buf)
1352 {
1353         struct ipw_priv *p = d->driver_data;
1354         return sprintf(buf, "0x%08x\n", (int)p->status);
1355 }
1356
1357 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1358
1359 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1360                         char *buf)
1361 {
1362         struct ipw_priv *p = d->driver_data;
1363         return sprintf(buf, "0x%08x\n", (int)p->config);
1364 }
1365
1366 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1367
1368 static ssize_t show_nic_type(struct device *d,
1369                              struct device_attribute *attr, char *buf)
1370 {
1371         struct ipw_priv *priv = d->driver_data;
1372         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1373 }
1374
1375 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1376
1377 static ssize_t show_ucode_version(struct device *d,
1378                                   struct device_attribute *attr, char *buf)
1379 {
1380         u32 len = sizeof(u32), tmp = 0;
1381         struct ipw_priv *p = d->driver_data;
1382
1383         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1384                 return 0;
1385
1386         return sprintf(buf, "0x%08x\n", tmp);
1387 }
1388
1389 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1390
1391 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1392                         char *buf)
1393 {
1394         u32 len = sizeof(u32), tmp = 0;
1395         struct ipw_priv *p = d->driver_data;
1396
1397         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1398                 return 0;
1399
1400         return sprintf(buf, "0x%08x\n", tmp);
1401 }
1402
1403 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1404
1405 /*
1406  * Add a device attribute to view/control the delay between eeprom
1407  * operations.
1408  */
1409 static ssize_t show_eeprom_delay(struct device *d,
1410                                  struct device_attribute *attr, char *buf)
1411 {
1412         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1413         return sprintf(buf, "%i\n", n);
1414 }
1415 static ssize_t store_eeprom_delay(struct device *d,
1416                                   struct device_attribute *attr,
1417                                   const char *buf, size_t count)
1418 {
1419         struct ipw_priv *p = d->driver_data;
1420         sscanf(buf, "%i", &p->eeprom_delay);
1421         return strnlen(buf, count);
1422 }
1423
1424 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1425                    show_eeprom_delay, store_eeprom_delay);
1426
1427 static ssize_t show_command_event_reg(struct device *d,
1428                                       struct device_attribute *attr, char *buf)
1429 {
1430         u32 reg = 0;
1431         struct ipw_priv *p = d->driver_data;
1432
1433         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1434         return sprintf(buf, "0x%08x\n", reg);
1435 }
1436 static ssize_t store_command_event_reg(struct device *d,
1437                                        struct device_attribute *attr,
1438                                        const char *buf, size_t count)
1439 {
1440         u32 reg;
1441         struct ipw_priv *p = d->driver_data;
1442
1443         sscanf(buf, "%x", &reg);
1444         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1445         return strnlen(buf, count);
1446 }
1447
1448 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1449                    show_command_event_reg, store_command_event_reg);
1450
1451 static ssize_t show_mem_gpio_reg(struct device *d,
1452                                  struct device_attribute *attr, char *buf)
1453 {
1454         u32 reg = 0;
1455         struct ipw_priv *p = d->driver_data;
1456
1457         reg = ipw_read_reg32(p, 0x301100);
1458         return sprintf(buf, "0x%08x\n", reg);
1459 }
1460 static ssize_t store_mem_gpio_reg(struct device *d,
1461                                   struct device_attribute *attr,
1462                                   const char *buf, size_t count)
1463 {
1464         u32 reg;
1465         struct ipw_priv *p = d->driver_data;
1466
1467         sscanf(buf, "%x", &reg);
1468         ipw_write_reg32(p, 0x301100, reg);
1469         return strnlen(buf, count);
1470 }
1471
1472 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1473                    show_mem_gpio_reg, store_mem_gpio_reg);
1474
1475 static ssize_t show_indirect_dword(struct device *d,
1476                                    struct device_attribute *attr, char *buf)
1477 {
1478         u32 reg = 0;
1479         struct ipw_priv *priv = d->driver_data;
1480
1481         if (priv->status & STATUS_INDIRECT_DWORD)
1482                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1483         else
1484                 reg = 0;
1485
1486         return sprintf(buf, "0x%08x\n", reg);
1487 }
1488 static ssize_t store_indirect_dword(struct device *d,
1489                                     struct device_attribute *attr,
1490                                     const char *buf, size_t count)
1491 {
1492         struct ipw_priv *priv = d->driver_data;
1493
1494         sscanf(buf, "%x", &priv->indirect_dword);
1495         priv->status |= STATUS_INDIRECT_DWORD;
1496         return strnlen(buf, count);
1497 }
1498
1499 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1500                    show_indirect_dword, store_indirect_dword);
1501
1502 static ssize_t show_indirect_byte(struct device *d,
1503                                   struct device_attribute *attr, char *buf)
1504 {
1505         u8 reg = 0;
1506         struct ipw_priv *priv = d->driver_data;
1507
1508         if (priv->status & STATUS_INDIRECT_BYTE)
1509                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1510         else
1511                 reg = 0;
1512
1513         return sprintf(buf, "0x%02x\n", reg);
1514 }
1515 static ssize_t store_indirect_byte(struct device *d,
1516                                    struct device_attribute *attr,
1517                                    const char *buf, size_t count)
1518 {
1519         struct ipw_priv *priv = d->driver_data;
1520
1521         sscanf(buf, "%x", &priv->indirect_byte);
1522         priv->status |= STATUS_INDIRECT_BYTE;
1523         return strnlen(buf, count);
1524 }
1525
1526 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1527                    show_indirect_byte, store_indirect_byte);
1528
1529 static ssize_t show_direct_dword(struct device *d,
1530                                  struct device_attribute *attr, char *buf)
1531 {
1532         u32 reg = 0;
1533         struct ipw_priv *priv = d->driver_data;
1534
1535         if (priv->status & STATUS_DIRECT_DWORD)
1536                 reg = ipw_read32(priv, priv->direct_dword);
1537         else
1538                 reg = 0;
1539
1540         return sprintf(buf, "0x%08x\n", reg);
1541 }
1542 static ssize_t store_direct_dword(struct device *d,
1543                                   struct device_attribute *attr,
1544                                   const char *buf, size_t count)
1545 {
1546         struct ipw_priv *priv = d->driver_data;
1547
1548         sscanf(buf, "%x", &priv->direct_dword);
1549         priv->status |= STATUS_DIRECT_DWORD;
1550         return strnlen(buf, count);
1551 }
1552
1553 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1554                    show_direct_dword, store_direct_dword);
1555
1556 static int rf_kill_active(struct ipw_priv *priv)
1557 {
1558         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1559                 priv->status |= STATUS_RF_KILL_HW;
1560         else
1561                 priv->status &= ~STATUS_RF_KILL_HW;
1562
1563         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1564 }
1565
1566 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1567                             char *buf)
1568 {
1569         /* 0 - RF kill not enabled
1570            1 - SW based RF kill active (sysfs)
1571            2 - HW based RF kill active
1572            3 - Both HW and SW baed RF kill active */
1573         struct ipw_priv *priv = d->driver_data;
1574         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1575             (rf_kill_active(priv) ? 0x2 : 0x0);
1576         return sprintf(buf, "%i\n", val);
1577 }
1578
1579 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1580 {
1581         if ((disable_radio ? 1 : 0) ==
1582             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1583                 return 0;
1584
1585         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1586                           disable_radio ? "OFF" : "ON");
1587
1588         if (disable_radio) {
1589                 priv->status |= STATUS_RF_KILL_SW;
1590
1591                 if (priv->workqueue)
1592                         cancel_delayed_work(&priv->request_scan);
1593                 queue_work(priv->workqueue, &priv->down);
1594         } else {
1595                 priv->status &= ~STATUS_RF_KILL_SW;
1596                 if (rf_kill_active(priv)) {
1597                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1598                                           "disabled by HW switch\n");
1599                         /* Make sure the RF_KILL check timer is running */
1600                         cancel_delayed_work(&priv->rf_kill);
1601                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1602                                            2 * HZ);
1603                 } else
1604                         queue_work(priv->workqueue, &priv->up);
1605         }
1606
1607         return 1;
1608 }
1609
1610 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1611                              const char *buf, size_t count)
1612 {
1613         struct ipw_priv *priv = d->driver_data;
1614
1615         ipw_radio_kill_sw(priv, buf[0] == '1');
1616
1617         return count;
1618 }
1619
1620 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1621
1622 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1623                                char *buf)
1624 {
1625         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1626         int pos = 0, len = 0;
1627         if (priv->config & CFG_SPEED_SCAN) {
1628                 while (priv->speed_scan[pos] != 0)
1629                         len += sprintf(&buf[len], "%d ",
1630                                        priv->speed_scan[pos++]);
1631                 return len + sprintf(&buf[len], "\n");
1632         }
1633
1634         return sprintf(buf, "0\n");
1635 }
1636
1637 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1638                                 const char *buf, size_t count)
1639 {
1640         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1641         int channel, pos = 0;
1642         const char *p = buf;
1643
1644         /* list of space separated channels to scan, optionally ending with 0 */
1645         while ((channel = simple_strtol(p, NULL, 0))) {
1646                 if (pos == MAX_SPEED_SCAN - 1) {
1647                         priv->speed_scan[pos] = 0;
1648                         break;
1649                 }
1650
1651                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1652                         priv->speed_scan[pos++] = channel;
1653                 else
1654                         IPW_WARNING("Skipping invalid channel request: %d\n",
1655                                     channel);
1656                 p = strchr(p, ' ');
1657                 if (!p)
1658                         break;
1659                 while (*p == ' ' || *p == '\t')
1660                         p++;
1661         }
1662
1663         if (pos == 0)
1664                 priv->config &= ~CFG_SPEED_SCAN;
1665         else {
1666                 priv->speed_scan_pos = 0;
1667                 priv->config |= CFG_SPEED_SCAN;
1668         }
1669
1670         return count;
1671 }
1672
1673 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1674                    store_speed_scan);
1675
1676 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1677                               char *buf)
1678 {
1679         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1680         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1681 }
1682
1683 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1684                                const char *buf, size_t count)
1685 {
1686         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1687         if (buf[0] == '1')
1688                 priv->config |= CFG_NET_STATS;
1689         else
1690                 priv->config &= ~CFG_NET_STATS;
1691
1692         return count;
1693 }
1694
1695 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1696                    show_net_stats, store_net_stats);
1697
1698 static void notify_wx_assoc_event(struct ipw_priv *priv)
1699 {
1700         union iwreq_data wrqu;
1701         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1702         if (priv->status & STATUS_ASSOCIATED)
1703                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1704         else
1705                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1706         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1707 }
1708
1709 static void ipw_irq_tasklet(struct ipw_priv *priv)
1710 {
1711         u32 inta, inta_mask, handled = 0;
1712         unsigned long flags;
1713         int rc = 0;
1714
1715         spin_lock_irqsave(&priv->lock, flags);
1716
1717         inta = ipw_read32(priv, IPW_INTA_RW);
1718         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1719         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1720
1721         /* Add any cached INTA values that need to be handled */
1722         inta |= priv->isr_inta;
1723
1724         /* handle all the justifications for the interrupt */
1725         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1726                 ipw_rx(priv);
1727                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1728         }
1729
1730         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1731                 IPW_DEBUG_HC("Command completed.\n");
1732                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1733                 priv->status &= ~STATUS_HCMD_ACTIVE;
1734                 wake_up_interruptible(&priv->wait_command_queue);
1735                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1736         }
1737
1738         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1739                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1740                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1741                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1742         }
1743
1744         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1745                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1746                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1747                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1748         }
1749
1750         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1751                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1752                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1753                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1754         }
1755
1756         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1757                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1758                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1759                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1760         }
1761
1762         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1763                 IPW_WARNING("STATUS_CHANGE\n");
1764                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1765         }
1766
1767         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1768                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1769                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1770         }
1771
1772         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1773                 IPW_WARNING("HOST_CMD_DONE\n");
1774                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1775         }
1776
1777         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1778                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1779                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1780         }
1781
1782         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1783                 IPW_WARNING("PHY_OFF_DONE\n");
1784                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1785         }
1786
1787         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1788                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1789                 priv->status |= STATUS_RF_KILL_HW;
1790                 wake_up_interruptible(&priv->wait_command_queue);
1791                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1792                 cancel_delayed_work(&priv->request_scan);
1793                 schedule_work(&priv->link_down);
1794                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1795                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1796         }
1797
1798         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1799                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1800                 if (priv->error) {
1801                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1802 #ifdef CONFIG_IPW2200_DEBUG
1803                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1804                                 struct ipw_fw_error *error =
1805                                     ipw_alloc_error_log(priv);
1806                                 ipw_dump_error_log(priv, error);
1807                                 if (error)
1808                                         ipw_free_error_log(error);
1809                         }
1810 #endif
1811                 } else {
1812                         priv->error = ipw_alloc_error_log(priv);
1813                         if (priv->error)
1814                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1815                         else
1816                                 IPW_ERROR("Error allocating sysfs 'error' "
1817                                           "log.\n");
1818 #ifdef CONFIG_IPW2200_DEBUG
1819                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1820                                 ipw_dump_error_log(priv, priv->error);
1821 #endif
1822                 }
1823
1824                 /* XXX: If hardware encryption is for WPA/WPA2,
1825                  * we have to notify the supplicant. */
1826                 if (priv->ieee->sec.encrypt) {
1827                         priv->status &= ~STATUS_ASSOCIATED;
1828                         notify_wx_assoc_event(priv);
1829                 }
1830
1831                 /* Keep the restart process from trying to send host
1832                  * commands by clearing the INIT status bit */
1833                 priv->status &= ~STATUS_INIT;
1834
1835                 /* Cancel currently queued command. */
1836                 priv->status &= ~STATUS_HCMD_ACTIVE;
1837                 wake_up_interruptible(&priv->wait_command_queue);
1838
1839                 queue_work(priv->workqueue, &priv->adapter_restart);
1840                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1841         }
1842
1843         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1844                 IPW_ERROR("Parity error\n");
1845                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1846         }
1847
1848         if (handled != inta) {
1849                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1850         }
1851
1852         /* enable all interrupts */
1853         ipw_enable_interrupts(priv);
1854
1855         spin_unlock_irqrestore(&priv->lock, flags);
1856 }
1857
1858 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1859 static char *get_cmd_string(u8 cmd)
1860 {
1861         switch (cmd) {
1862                 IPW_CMD(HOST_COMPLETE);
1863                 IPW_CMD(POWER_DOWN);
1864                 IPW_CMD(SYSTEM_CONFIG);
1865                 IPW_CMD(MULTICAST_ADDRESS);
1866                 IPW_CMD(SSID);
1867                 IPW_CMD(ADAPTER_ADDRESS);
1868                 IPW_CMD(PORT_TYPE);
1869                 IPW_CMD(RTS_THRESHOLD);
1870                 IPW_CMD(FRAG_THRESHOLD);
1871                 IPW_CMD(POWER_MODE);
1872                 IPW_CMD(WEP_KEY);
1873                 IPW_CMD(TGI_TX_KEY);
1874                 IPW_CMD(SCAN_REQUEST);
1875                 IPW_CMD(SCAN_REQUEST_EXT);
1876                 IPW_CMD(ASSOCIATE);
1877                 IPW_CMD(SUPPORTED_RATES);
1878                 IPW_CMD(SCAN_ABORT);
1879                 IPW_CMD(TX_FLUSH);
1880                 IPW_CMD(QOS_PARAMETERS);
1881                 IPW_CMD(DINO_CONFIG);
1882                 IPW_CMD(RSN_CAPABILITIES);
1883                 IPW_CMD(RX_KEY);
1884                 IPW_CMD(CARD_DISABLE);
1885                 IPW_CMD(SEED_NUMBER);
1886                 IPW_CMD(TX_POWER);
1887                 IPW_CMD(COUNTRY_INFO);
1888                 IPW_CMD(AIRONET_INFO);
1889                 IPW_CMD(AP_TX_POWER);
1890                 IPW_CMD(CCKM_INFO);
1891                 IPW_CMD(CCX_VER_INFO);
1892                 IPW_CMD(SET_CALIBRATION);
1893                 IPW_CMD(SENSITIVITY_CALIB);
1894                 IPW_CMD(RETRY_LIMIT);
1895                 IPW_CMD(IPW_PRE_POWER_DOWN);
1896                 IPW_CMD(VAP_BEACON_TEMPLATE);
1897                 IPW_CMD(VAP_DTIM_PERIOD);
1898                 IPW_CMD(EXT_SUPPORTED_RATES);
1899                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1900                 IPW_CMD(VAP_QUIET_INTERVALS);
1901                 IPW_CMD(VAP_CHANNEL_SWITCH);
1902                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1903                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1904                 IPW_CMD(VAP_CF_PARAM_SET);
1905                 IPW_CMD(VAP_SET_BEACONING_STATE);
1906                 IPW_CMD(MEASUREMENT);
1907                 IPW_CMD(POWER_CAPABILITY);
1908                 IPW_CMD(SUPPORTED_CHANNELS);
1909                 IPW_CMD(TPC_REPORT);
1910                 IPW_CMD(WME_INFO);
1911                 IPW_CMD(PRODUCTION_COMMAND);
1912         default:
1913                 return "UNKNOWN";
1914         }
1915 }
1916
1917 #define HOST_COMPLETE_TIMEOUT HZ
1918
1919 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1920 {
1921         int rc = 0;
1922         unsigned long flags;
1923
1924         spin_lock_irqsave(&priv->lock, flags);
1925         if (priv->status & STATUS_HCMD_ACTIVE) {
1926                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1927                           get_cmd_string(cmd->cmd));
1928                 spin_unlock_irqrestore(&priv->lock, flags);
1929                 return -EAGAIN;
1930         }
1931
1932         priv->status |= STATUS_HCMD_ACTIVE;
1933
1934         if (priv->cmdlog) {
1935                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1936                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1937                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1938                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1939                        cmd->len);
1940                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1941         }
1942
1943         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1944                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1945                      priv->status);
1946
1947 #ifndef DEBUG_CMD_WEP_KEY
1948         if (cmd->cmd == IPW_CMD_WEP_KEY)
1949                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
1950         else
1951 #endif
1952                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1953
1954         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
1955         if (rc) {
1956                 priv->status &= ~STATUS_HCMD_ACTIVE;
1957                 IPW_ERROR("Failed to send %s: Reason %d\n",
1958                           get_cmd_string(cmd->cmd), rc);
1959                 spin_unlock_irqrestore(&priv->lock, flags);
1960                 goto exit;
1961         }
1962         spin_unlock_irqrestore(&priv->lock, flags);
1963
1964         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1965                                               !(priv->
1966                                                 status & STATUS_HCMD_ACTIVE),
1967                                               HOST_COMPLETE_TIMEOUT);
1968         if (rc == 0) {
1969                 spin_lock_irqsave(&priv->lock, flags);
1970                 if (priv->status & STATUS_HCMD_ACTIVE) {
1971                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1972                                   get_cmd_string(cmd->cmd));
1973                         priv->status &= ~STATUS_HCMD_ACTIVE;
1974                         spin_unlock_irqrestore(&priv->lock, flags);
1975                         rc = -EIO;
1976                         goto exit;
1977                 }
1978                 spin_unlock_irqrestore(&priv->lock, flags);
1979         } else
1980                 rc = 0;
1981
1982         if (priv->status & STATUS_RF_KILL_HW) {
1983                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1984                           get_cmd_string(cmd->cmd));
1985                 rc = -EIO;
1986                 goto exit;
1987         }
1988
1989       exit:
1990         if (priv->cmdlog) {
1991                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1992                 priv->cmdlog_pos %= priv->cmdlog_len;
1993         }
1994         return rc;
1995 }
1996
1997 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
1998 {
1999         struct host_cmd cmd = {
2000                 .cmd = command,
2001         };
2002
2003         return __ipw_send_cmd(priv, &cmd);
2004 }
2005
2006 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2007                             void *data)
2008 {
2009         struct host_cmd cmd = {
2010                 .cmd = command,
2011                 .len = len,
2012                 .param = data,
2013         };
2014
2015         return __ipw_send_cmd(priv, &cmd);
2016 }
2017
2018 static int ipw_send_host_complete(struct ipw_priv *priv)
2019 {
2020         if (!priv) {
2021                 IPW_ERROR("Invalid args\n");
2022                 return -1;
2023         }
2024
2025         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2026 }
2027
2028 static int ipw_send_system_config(struct ipw_priv *priv,
2029                                   struct ipw_sys_config *config)
2030 {
2031         if (!priv || !config) {
2032                 IPW_ERROR("Invalid args\n");
2033                 return -1;
2034         }
2035
2036         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, sizeof(*config),
2037                                 config);
2038 }
2039
2040 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2041 {
2042         if (!priv || !ssid) {
2043                 IPW_ERROR("Invalid args\n");
2044                 return -1;
2045         }
2046
2047         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2048                                 ssid);
2049 }
2050
2051 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2052 {
2053         if (!priv || !mac) {
2054                 IPW_ERROR("Invalid args\n");
2055                 return -1;
2056         }
2057
2058         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2059                        priv->net_dev->name, MAC_ARG(mac));
2060
2061         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2062 }
2063
2064 /*
2065  * NOTE: This must be executed from our workqueue as it results in udelay
2066  * being called which may corrupt the keyboard if executed on default
2067  * workqueue
2068  */
2069 static void ipw_adapter_restart(void *adapter)
2070 {
2071         struct ipw_priv *priv = adapter;
2072
2073         if (priv->status & STATUS_RF_KILL_MASK)
2074                 return;
2075
2076         ipw_down(priv);
2077
2078         if (priv->assoc_network &&
2079             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2080                 ipw_remove_current_network(priv);
2081
2082         if (ipw_up(priv)) {
2083                 IPW_ERROR("Failed to up device\n");
2084                 return;
2085         }
2086 }
2087
2088 static void ipw_bg_adapter_restart(void *data)
2089 {
2090         struct ipw_priv *priv = data;
2091         mutex_lock(&priv->mutex);
2092         ipw_adapter_restart(data);
2093         mutex_unlock(&priv->mutex);
2094 }
2095
2096 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2097
2098 static void ipw_scan_check(void *data)
2099 {
2100         struct ipw_priv *priv = data;
2101         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2102                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2103                                "adapter after (%dms).\n",
2104                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2105                 queue_work(priv->workqueue, &priv->adapter_restart);
2106         }
2107 }
2108
2109 static void ipw_bg_scan_check(void *data)
2110 {
2111         struct ipw_priv *priv = data;
2112         mutex_lock(&priv->mutex);
2113         ipw_scan_check(data);
2114         mutex_unlock(&priv->mutex);
2115 }
2116
2117 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2118                                      struct ipw_scan_request_ext *request)
2119 {
2120         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2121                                 sizeof(*request), request);
2122 }
2123
2124 static int ipw_send_scan_abort(struct ipw_priv *priv)
2125 {
2126         if (!priv) {
2127                 IPW_ERROR("Invalid args\n");
2128                 return -1;
2129         }
2130
2131         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2132 }
2133
2134 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2135 {
2136         struct ipw_sensitivity_calib calib = {
2137                 .beacon_rssi_raw = sens,
2138         };
2139
2140         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2141                                 &calib);
2142 }
2143
2144 static int ipw_send_associate(struct ipw_priv *priv,
2145                               struct ipw_associate *associate)
2146 {
2147         struct ipw_associate tmp_associate;
2148
2149         if (!priv || !associate) {
2150                 IPW_ERROR("Invalid args\n");
2151                 return -1;
2152         }
2153
2154         memcpy(&tmp_associate, associate, sizeof(*associate));
2155         tmp_associate.policy_support =
2156             cpu_to_le16(tmp_associate.policy_support);
2157         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2158         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2159         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2160         tmp_associate.listen_interval =
2161             cpu_to_le16(tmp_associate.listen_interval);
2162         tmp_associate.beacon_interval =
2163             cpu_to_le16(tmp_associate.beacon_interval);
2164         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2165
2166         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2167                                 &tmp_associate);
2168 }
2169
2170 static int ipw_send_supported_rates(struct ipw_priv *priv,
2171                                     struct ipw_supported_rates *rates)
2172 {
2173         if (!priv || !rates) {
2174                 IPW_ERROR("Invalid args\n");
2175                 return -1;
2176         }
2177
2178         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2179                                 rates);
2180 }
2181
2182 static int ipw_set_random_seed(struct ipw_priv *priv)
2183 {
2184         u32 val;
2185
2186         if (!priv) {
2187                 IPW_ERROR("Invalid args\n");
2188                 return -1;
2189         }
2190
2191         get_random_bytes(&val, sizeof(val));
2192
2193         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2194 }
2195
2196 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2197 {
2198         if (!priv) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2204                                 &phy_off);
2205 }
2206
2207 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2208 {
2209         if (!priv || !power) {
2210                 IPW_ERROR("Invalid args\n");
2211                 return -1;
2212         }
2213
2214         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2215 }
2216
2217 static int ipw_set_tx_power(struct ipw_priv *priv)
2218 {
2219         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2220         struct ipw_tx_power tx_power;
2221         s8 max_power;
2222         int i;
2223
2224         memset(&tx_power, 0, sizeof(tx_power));
2225
2226         /* configure device for 'G' band */
2227         tx_power.ieee_mode = IPW_G_MODE;
2228         tx_power.num_channels = geo->bg_channels;
2229         for (i = 0; i < geo->bg_channels; i++) {
2230                 max_power = geo->bg[i].max_power;
2231                 tx_power.channels_tx_power[i].channel_number =
2232                     geo->bg[i].channel;
2233                 tx_power.channels_tx_power[i].tx_power = max_power ?
2234                     min(max_power, priv->tx_power) : priv->tx_power;
2235         }
2236         if (ipw_send_tx_power(priv, &tx_power))
2237                 return -EIO;
2238
2239         /* configure device to also handle 'B' band */
2240         tx_power.ieee_mode = IPW_B_MODE;
2241         if (ipw_send_tx_power(priv, &tx_power))
2242                 return -EIO;
2243
2244         /* configure device to also handle 'A' band */
2245         if (priv->ieee->abg_true) {
2246                 tx_power.ieee_mode = IPW_A_MODE;
2247                 tx_power.num_channels = geo->a_channels;
2248                 for (i = 0; i < tx_power.num_channels; i++) {
2249                         max_power = geo->a[i].max_power;
2250                         tx_power.channels_tx_power[i].channel_number =
2251                             geo->a[i].channel;
2252                         tx_power.channels_tx_power[i].tx_power = max_power ?
2253                             min(max_power, priv->tx_power) : priv->tx_power;
2254                 }
2255                 if (ipw_send_tx_power(priv, &tx_power))
2256                         return -EIO;
2257         }
2258         return 0;
2259 }
2260
2261 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2262 {
2263         struct ipw_rts_threshold rts_threshold = {
2264                 .rts_threshold = rts,
2265         };
2266
2267         if (!priv) {
2268                 IPW_ERROR("Invalid args\n");
2269                 return -1;
2270         }
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2273                                 sizeof(rts_threshold), &rts_threshold);
2274 }
2275
2276 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2277 {
2278         struct ipw_frag_threshold frag_threshold = {
2279                 .frag_threshold = frag,
2280         };
2281
2282         if (!priv) {
2283                 IPW_ERROR("Invalid args\n");
2284                 return -1;
2285         }
2286
2287         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2288                                 sizeof(frag_threshold), &frag_threshold);
2289 }
2290
2291 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2292 {
2293         u32 param;
2294
2295         if (!priv) {
2296                 IPW_ERROR("Invalid args\n");
2297                 return -1;
2298         }
2299
2300         /* If on battery, set to 3, if AC set to CAM, else user
2301          * level */
2302         switch (mode) {
2303         case IPW_POWER_BATTERY:
2304                 param = IPW_POWER_INDEX_3;
2305                 break;
2306         case IPW_POWER_AC:
2307                 param = IPW_POWER_MODE_CAM;
2308                 break;
2309         default:
2310                 param = mode;
2311                 break;
2312         }
2313
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2315                                 &param);
2316 }
2317
2318 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2319 {
2320         struct ipw_retry_limit retry_limit = {
2321                 .short_retry_limit = slimit,
2322                 .long_retry_limit = llimit
2323         };
2324
2325         if (!priv) {
2326                 IPW_ERROR("Invalid args\n");
2327                 return -1;
2328         }
2329
2330         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2331                                 &retry_limit);
2332 }
2333
2334 /*
2335  * The IPW device contains a Microwire compatible EEPROM that stores
2336  * various data like the MAC address.  Usually the firmware has exclusive
2337  * access to the eeprom, but during device initialization (before the
2338  * device driver has sent the HostComplete command to the firmware) the
2339  * device driver has read access to the EEPROM by way of indirect addressing
2340  * through a couple of memory mapped registers.
2341  *
2342  * The following is a simplified implementation for pulling data out of the
2343  * the eeprom, along with some helper functions to find information in
2344  * the per device private data's copy of the eeprom.
2345  *
2346  * NOTE: To better understand how these functions work (i.e what is a chip
2347  *       select and why do have to keep driving the eeprom clock?), read
2348  *       just about any data sheet for a Microwire compatible EEPROM.
2349  */
2350
2351 /* write a 32 bit value into the indirect accessor register */
2352 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2353 {
2354         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2355
2356         /* the eeprom requires some time to complete the operation */
2357         udelay(p->eeprom_delay);
2358
2359         return;
2360 }
2361
2362 /* perform a chip select operation */
2363 static void eeprom_cs(struct ipw_priv *priv)
2364 {
2365         eeprom_write_reg(priv, 0);
2366         eeprom_write_reg(priv, EEPROM_BIT_CS);
2367         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2368         eeprom_write_reg(priv, EEPROM_BIT_CS);
2369 }
2370
2371 /* perform a chip select operation */
2372 static void eeprom_disable_cs(struct ipw_priv *priv)
2373 {
2374         eeprom_write_reg(priv, EEPROM_BIT_CS);
2375         eeprom_write_reg(priv, 0);
2376         eeprom_write_reg(priv, EEPROM_BIT_SK);
2377 }
2378
2379 /* push a single bit down to the eeprom */
2380 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2381 {
2382         int d = (bit ? EEPROM_BIT_DI : 0);
2383         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2384         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2385 }
2386
2387 /* push an opcode followed by an address down to the eeprom */
2388 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2389 {
2390         int i;
2391
2392         eeprom_cs(priv);
2393         eeprom_write_bit(priv, 1);
2394         eeprom_write_bit(priv, op & 2);
2395         eeprom_write_bit(priv, op & 1);
2396         for (i = 7; i >= 0; i--) {
2397                 eeprom_write_bit(priv, addr & (1 << i));
2398         }
2399 }
2400
2401 /* pull 16 bits off the eeprom, one bit at a time */
2402 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2403 {
2404         int i;
2405         u16 r = 0;
2406
2407         /* Send READ Opcode */
2408         eeprom_op(priv, EEPROM_CMD_READ, addr);
2409
2410         /* Send dummy bit */
2411         eeprom_write_reg(priv, EEPROM_BIT_CS);
2412
2413         /* Read the byte off the eeprom one bit at a time */
2414         for (i = 0; i < 16; i++) {
2415                 u32 data = 0;
2416                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2417                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2418                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2419                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2420         }
2421
2422         /* Send another dummy bit */
2423         eeprom_write_reg(priv, 0);
2424         eeprom_disable_cs(priv);
2425
2426         return r;
2427 }
2428
2429 /* helper function for pulling the mac address out of the private */
2430 /* data's copy of the eeprom data                                 */
2431 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2432 {
2433         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2434 }
2435
2436 /*
2437  * Either the device driver (i.e. the host) or the firmware can
2438  * load eeprom data into the designated region in SRAM.  If neither
2439  * happens then the FW will shutdown with a fatal error.
2440  *
2441  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2442  * bit needs region of shared SRAM needs to be non-zero.
2443  */
2444 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2445 {
2446         int i;
2447         u16 *eeprom = (u16 *) priv->eeprom;
2448
2449         IPW_DEBUG_TRACE(">>\n");
2450
2451         /* read entire contents of eeprom into private buffer */
2452         for (i = 0; i < 128; i++)
2453                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2454
2455         /*
2456            If the data looks correct, then copy it to our private
2457            copy.  Otherwise let the firmware know to perform the operation
2458            on its own.
2459          */
2460         if (priv->eeprom[EEPROM_VERSION] != 0) {
2461                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2462
2463                 /* write the eeprom data to sram */
2464                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2465                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2466
2467                 /* Do not load eeprom data on fatal error or suspend */
2468                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2469         } else {
2470                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2471
2472                 /* Load eeprom data on fatal error or suspend */
2473                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2474         }
2475
2476         IPW_DEBUG_TRACE("<<\n");
2477 }
2478
2479 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2480 {
2481         count >>= 2;
2482         if (!count)
2483                 return;
2484         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2485         while (count--)
2486                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2487 }
2488
2489 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2490 {
2491         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2492                         CB_NUMBER_OF_ELEMENTS_SMALL *
2493                         sizeof(struct command_block));
2494 }
2495
2496 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2497 {                               /* start dma engine but no transfers yet */
2498
2499         IPW_DEBUG_FW(">> : \n");
2500
2501         /* Start the dma */
2502         ipw_fw_dma_reset_command_blocks(priv);
2503
2504         /* Write CB base address */
2505         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2506
2507         IPW_DEBUG_FW("<< : \n");
2508         return 0;
2509 }
2510
2511 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2512 {
2513         u32 control = 0;
2514
2515         IPW_DEBUG_FW(">> :\n");
2516
2517         //set the Stop and Abort bit
2518         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2519         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2520         priv->sram_desc.last_cb_index = 0;
2521
2522         IPW_DEBUG_FW("<< \n");
2523 }
2524
2525 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2526                                           struct command_block *cb)
2527 {
2528         u32 address =
2529             IPW_SHARED_SRAM_DMA_CONTROL +
2530             (sizeof(struct command_block) * index);
2531         IPW_DEBUG_FW(">> :\n");
2532
2533         ipw_write_indirect(priv, address, (u8 *) cb,
2534                            (int)sizeof(struct command_block));
2535
2536         IPW_DEBUG_FW("<< :\n");
2537         return 0;
2538
2539 }
2540
2541 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2542 {
2543         u32 control = 0;
2544         u32 index = 0;
2545
2546         IPW_DEBUG_FW(">> :\n");
2547
2548         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2549                 ipw_fw_dma_write_command_block(priv, index,
2550                                                &priv->sram_desc.cb_list[index]);
2551
2552         /* Enable the DMA in the CSR register */
2553         ipw_clear_bit(priv, IPW_RESET_REG,
2554                       IPW_RESET_REG_MASTER_DISABLED |
2555                       IPW_RESET_REG_STOP_MASTER);
2556
2557         /* Set the Start bit. */
2558         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2559         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2560
2561         IPW_DEBUG_FW("<< :\n");
2562         return 0;
2563 }
2564
2565 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2566 {
2567         u32 address;
2568         u32 register_value = 0;
2569         u32 cb_fields_address = 0;
2570
2571         IPW_DEBUG_FW(">> :\n");
2572         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2573         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2574
2575         /* Read the DMA Controlor register */
2576         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2577         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2578
2579         /* Print the CB values */
2580         cb_fields_address = address;
2581         register_value = ipw_read_reg32(priv, cb_fields_address);
2582         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2583
2584         cb_fields_address += sizeof(u32);
2585         register_value = ipw_read_reg32(priv, cb_fields_address);
2586         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2587
2588         cb_fields_address += sizeof(u32);
2589         register_value = ipw_read_reg32(priv, cb_fields_address);
2590         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2591                           register_value);
2592
2593         cb_fields_address += sizeof(u32);
2594         register_value = ipw_read_reg32(priv, cb_fields_address);
2595         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2596
2597         IPW_DEBUG_FW(">> :\n");
2598 }
2599
2600 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2601 {
2602         u32 current_cb_address = 0;
2603         u32 current_cb_index = 0;
2604
2605         IPW_DEBUG_FW("<< :\n");
2606         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2607
2608         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2609             sizeof(struct command_block);
2610
2611         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2612                           current_cb_index, current_cb_address);
2613
2614         IPW_DEBUG_FW(">> :\n");
2615         return current_cb_index;
2616
2617 }
2618
2619 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2620                                         u32 src_address,
2621                                         u32 dest_address,
2622                                         u32 length,
2623                                         int interrupt_enabled, int is_last)
2624 {
2625
2626         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2627             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2628             CB_DEST_SIZE_LONG;
2629         struct command_block *cb;
2630         u32 last_cb_element = 0;
2631
2632         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2633                           src_address, dest_address, length);
2634
2635         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2636                 return -1;
2637
2638         last_cb_element = priv->sram_desc.last_cb_index;
2639         cb = &priv->sram_desc.cb_list[last_cb_element];
2640         priv->sram_desc.last_cb_index++;
2641
2642         /* Calculate the new CB control word */
2643         if (interrupt_enabled)
2644                 control |= CB_INT_ENABLED;
2645
2646         if (is_last)
2647                 control |= CB_LAST_VALID;
2648
2649         control |= length;
2650
2651         /* Calculate the CB Element's checksum value */
2652         cb->status = control ^ src_address ^ dest_address;
2653
2654         /* Copy the Source and Destination addresses */
2655         cb->dest_addr = dest_address;
2656         cb->source_addr = src_address;
2657
2658         /* Copy the Control Word last */
2659         cb->control = control;
2660
2661         return 0;
2662 }
2663
2664 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2665                                  u32 src_phys, u32 dest_address, u32 length)
2666 {
2667         u32 bytes_left = length;
2668         u32 src_offset = 0;
2669         u32 dest_offset = 0;
2670         int status = 0;
2671         IPW_DEBUG_FW(">> \n");
2672         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2673                           src_phys, dest_address, length);
2674         while (bytes_left > CB_MAX_LENGTH) {
2675                 status = ipw_fw_dma_add_command_block(priv,
2676                                                       src_phys + src_offset,
2677                                                       dest_address +
2678                                                       dest_offset,
2679                                                       CB_MAX_LENGTH, 0, 0);
2680                 if (status) {
2681                         IPW_DEBUG_FW_INFO(": Failed\n");
2682                         return -1;
2683                 } else
2684                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2685
2686                 src_offset += CB_MAX_LENGTH;
2687                 dest_offset += CB_MAX_LENGTH;
2688                 bytes_left -= CB_MAX_LENGTH;
2689         }
2690
2691         /* add the buffer tail */
2692         if (bytes_left > 0) {
2693                 status =
2694                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2695                                                  dest_address + dest_offset,
2696                                                  bytes_left, 0, 0);
2697                 if (status) {
2698                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2699                         return -1;
2700                 } else
2701                         IPW_DEBUG_FW_INFO
2702                             (": Adding new cb - the buffer tail\n");
2703         }
2704
2705         IPW_DEBUG_FW("<< \n");
2706         return 0;
2707 }
2708
2709 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2710 {
2711         u32 current_index = 0, previous_index;
2712         u32 watchdog = 0;
2713
2714         IPW_DEBUG_FW(">> : \n");
2715
2716         current_index = ipw_fw_dma_command_block_index(priv);
2717         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2718                           (int)priv->sram_desc.last_cb_index);
2719
2720         while (current_index < priv->sram_desc.last_cb_index) {
2721                 udelay(50);
2722                 previous_index = current_index;
2723                 current_index = ipw_fw_dma_command_block_index(priv);
2724
2725                 if (previous_index < current_index) {
2726                         watchdog = 0;
2727                         continue;
2728                 }
2729                 if (++watchdog > 400) {
2730                         IPW_DEBUG_FW_INFO("Timeout\n");
2731                         ipw_fw_dma_dump_command_block(priv);
2732                         ipw_fw_dma_abort(priv);
2733                         return -1;
2734                 }
2735         }
2736
2737         ipw_fw_dma_abort(priv);
2738
2739         /*Disable the DMA in the CSR register */
2740         ipw_set_bit(priv, IPW_RESET_REG,
2741                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2742
2743         IPW_DEBUG_FW("<< dmaWaitSync \n");
2744         return 0;
2745 }
2746
2747 static void ipw_remove_current_network(struct ipw_priv *priv)
2748 {
2749         struct list_head *element, *safe;
2750         struct ieee80211_network *network = NULL;
2751         unsigned long flags;
2752
2753         spin_lock_irqsave(&priv->ieee->lock, flags);
2754         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2755                 network = list_entry(element, struct ieee80211_network, list);
2756                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2757                         list_del(element);
2758                         list_add_tail(&network->list,
2759                                       &priv->ieee->network_free_list);
2760                 }
2761         }
2762         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2763 }
2764
2765 /**
2766  * Check that card is still alive.
2767  * Reads debug register from domain0.
2768  * If card is present, pre-defined value should
2769  * be found there.
2770  *
2771  * @param priv
2772  * @return 1 if card is present, 0 otherwise
2773  */
2774 static inline int ipw_alive(struct ipw_priv *priv)
2775 {
2776         return ipw_read32(priv, 0x90) == 0xd55555d5;
2777 }
2778
2779 /* timeout in msec, attempted in 10-msec quanta */
2780 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2781                                int timeout)
2782 {
2783         int i = 0;
2784
2785         do {
2786                 if ((ipw_read32(priv, addr) & mask) == mask)
2787                         return i;
2788                 mdelay(10);
2789                 i += 10;
2790         } while (i < timeout);
2791
2792         return -ETIME;
2793 }
2794
2795 /* These functions load the firmware and micro code for the operation of
2796  * the ipw hardware.  It assumes the buffer has all the bits for the
2797  * image and the caller is handling the memory allocation and clean up.
2798  */
2799
2800 static int ipw_stop_master(struct ipw_priv *priv)
2801 {
2802         int rc;
2803
2804         IPW_DEBUG_TRACE(">> \n");
2805         /* stop master. typical delay - 0 */
2806         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2807
2808         /* timeout is in msec, polled in 10-msec quanta */
2809         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2810                           IPW_RESET_REG_MASTER_DISABLED, 100);
2811         if (rc < 0) {
2812                 IPW_ERROR("wait for stop master failed after 100ms\n");
2813                 return -1;
2814         }
2815
2816         IPW_DEBUG_INFO("stop master %dms\n", rc);
2817
2818         return rc;
2819 }
2820
2821 static void ipw_arc_release(struct ipw_priv *priv)
2822 {
2823         IPW_DEBUG_TRACE(">> \n");
2824         mdelay(5);
2825
2826         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2827
2828         /* no one knows timing, for safety add some delay */
2829         mdelay(5);
2830 }
2831
2832 struct fw_header {
2833         u32 version;
2834         u32 mode;
2835 };
2836
2837 struct fw_chunk {
2838         u32 address;
2839         u32 length;
2840 };
2841
2842 #define IPW_FW_MAJOR_VERSION 2
2843 #define IPW_FW_MINOR_VERSION 4
2844
2845 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2846 #define IPW_FW_MAJOR(x) (x & 0xff)
2847
2848 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2849
2850 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2851 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2852
2853 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2854 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2855 #else
2856 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2857 #endif
2858
2859 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2860 {
2861         int rc = 0, i, addr;
2862         u8 cr = 0;
2863         u16 *image;
2864
2865         image = (u16 *) data;
2866
2867         IPW_DEBUG_TRACE(">> \n");
2868
2869         rc = ipw_stop_master(priv);
2870
2871         if (rc < 0)
2872                 return rc;
2873
2874 //      spin_lock_irqsave(&priv->lock, flags);
2875
2876         for (addr = IPW_SHARED_LOWER_BOUND;
2877              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2878                 ipw_write32(priv, addr, 0);
2879         }
2880
2881         /* no ucode (yet) */
2882         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2883         /* destroy DMA queues */
2884         /* reset sequence */
2885
2886         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2887         ipw_arc_release(priv);
2888         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2889         mdelay(1);
2890
2891         /* reset PHY */
2892         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2893         mdelay(1);
2894
2895         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2896         mdelay(1);
2897
2898         /* enable ucode store */
2899         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
2900         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
2901         mdelay(1);
2902
2903         /* write ucode */
2904         /**
2905          * @bug
2906          * Do NOT set indirect address register once and then
2907          * store data to indirect data register in the loop.
2908          * It seems very reasonable, but in this case DINO do not
2909          * accept ucode. It is essential to set address each time.
2910          */
2911         /* load new ipw uCode */
2912         for (i = 0; i < len / 2; i++)
2913                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2914                                 cpu_to_le16(image[i]));
2915
2916         /* enable DINO */
2917         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2918         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2919
2920         /* this is where the igx / win driver deveates from the VAP driver. */
2921
2922         /* wait for alive response */
2923         for (i = 0; i < 100; i++) {
2924                 /* poll for incoming data */
2925                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2926                 if (cr & DINO_RXFIFO_DATA)
2927                         break;
2928                 mdelay(1);
2929         }
2930
2931         if (cr & DINO_RXFIFO_DATA) {
2932                 /* alive_command_responce size is NOT multiple of 4 */
2933                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2934
2935                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2936                         response_buffer[i] =
2937                             le32_to_cpu(ipw_read_reg32(priv,
2938                                                        IPW_BASEBAND_RX_FIFO_READ));
2939                 memcpy(&priv->dino_alive, response_buffer,
2940                        sizeof(priv->dino_alive));
2941                 if (priv->dino_alive.alive_command == 1
2942                     && priv->dino_alive.ucode_valid == 1) {
2943                         rc = 0;
2944                         IPW_DEBUG_INFO
2945                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2946                              "of %02d/%02d/%02d %02d:%02d\n",
2947                              priv->dino_alive.software_revision,
2948                              priv->dino_alive.software_revision,
2949                              priv->dino_alive.device_identifier,
2950                              priv->dino_alive.device_identifier,
2951                              priv->dino_alive.time_stamp[0],
2952                              priv->dino_alive.time_stamp[1],
2953                              priv->dino_alive.time_stamp[2],
2954                              priv->dino_alive.time_stamp[3],
2955                              priv->dino_alive.time_stamp[4]);
2956                 } else {
2957                         IPW_DEBUG_INFO("Microcode is not alive\n");
2958                         rc = -EINVAL;
2959                 }
2960         } else {
2961                 IPW_DEBUG_INFO("No alive response from DINO\n");
2962                 rc = -ETIME;
2963         }
2964
2965         /* disable DINO, otherwise for some reason
2966            firmware have problem getting alive resp. */
2967         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2968
2969 //      spin_unlock_irqrestore(&priv->lock, flags);
2970
2971         return rc;
2972 }
2973
2974 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2975 {
2976         int rc = -1;
2977         int offset = 0;
2978         struct fw_chunk *chunk;
2979         dma_addr_t shared_phys;
2980         u8 *shared_virt;
2981
2982         IPW_DEBUG_TRACE("<< : \n");
2983         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2984
2985         if (!shared_virt)
2986                 return -ENOMEM;
2987
2988         memmove(shared_virt, data, len);
2989
2990         /* Start the Dma */
2991         rc = ipw_fw_dma_enable(priv);
2992
2993         if (priv->sram_desc.last_cb_index > 0) {
2994                 /* the DMA is already ready this would be a bug. */
2995                 BUG();
2996                 goto out;
2997         }
2998
2999         do {
3000                 chunk = (struct fw_chunk *)(data + offset);
3001                 offset += sizeof(struct fw_chunk);
3002                 /* build DMA packet and queue up for sending */
3003                 /* dma to chunk->address, the chunk->length bytes from data +
3004                  * offeset*/
3005                 /* Dma loading */
3006                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3007                                            le32_to_cpu(chunk->address),
3008                                            le32_to_cpu(chunk->length));
3009                 if (rc) {
3010                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3011                         goto out;
3012                 }
3013
3014                 offset += le32_to_cpu(chunk->length);
3015         } while (offset < len);
3016
3017         /* Run the DMA and wait for the answer */
3018         rc = ipw_fw_dma_kick(priv);
3019         if (rc) {
3020                 IPW_ERROR("dmaKick Failed\n");
3021                 goto out;
3022         }
3023
3024         rc = ipw_fw_dma_wait(priv);
3025         if (rc) {
3026                 IPW_ERROR("dmaWaitSync Failed\n");
3027                 goto out;
3028         }
3029       out:
3030         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3031         return rc;
3032 }
3033
3034 /* stop nic */
3035 static int ipw_stop_nic(struct ipw_priv *priv)
3036 {
3037         int rc = 0;
3038
3039         /* stop */
3040         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3041
3042         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3043                           IPW_RESET_REG_MASTER_DISABLED, 500);
3044         if (rc < 0) {
3045                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3046                 return rc;
3047         }
3048
3049         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3050
3051         return rc;
3052 }
3053
3054 static void ipw_start_nic(struct ipw_priv *priv)
3055 {
3056         IPW_DEBUG_TRACE(">>\n");
3057
3058         /* prvHwStartNic  release ARC */
3059         ipw_clear_bit(priv, IPW_RESET_REG,
3060                       IPW_RESET_REG_MASTER_DISABLED |
3061                       IPW_RESET_REG_STOP_MASTER |
3062                       CBD_RESET_REG_PRINCETON_RESET);
3063
3064         /* enable power management */
3065         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3066                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3067
3068         IPW_DEBUG_TRACE("<<\n");
3069 }
3070
3071 static int ipw_init_nic(struct ipw_priv *priv)
3072 {
3073         int rc;
3074
3075         IPW_DEBUG_TRACE(">>\n");
3076         /* reset */
3077         /*prvHwInitNic */
3078         /* set "initialization complete" bit to move adapter to D0 state */
3079         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3080
3081         /* low-level PLL activation */
3082         ipw_write32(priv, IPW_READ_INT_REGISTER,
3083                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3084
3085         /* wait for clock stabilization */
3086         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3087                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3088         if (rc < 0)
3089                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3090
3091         /* assert SW reset */
3092         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3093
3094         udelay(10);
3095
3096         /* set "initialization complete" bit to move adapter to D0 state */
3097         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3098
3099         IPW_DEBUG_TRACE(">>\n");
3100         return 0;
3101 }
3102
3103 /* Call this function from process context, it will sleep in request_firmware.
3104  * Probe is an ok place to call this from.
3105  */
3106 static int ipw_reset_nic(struct ipw_priv *priv)
3107 {
3108         int rc = 0;
3109         unsigned long flags;
3110
3111         IPW_DEBUG_TRACE(">>\n");
3112
3113         rc = ipw_init_nic(priv);
3114
3115         spin_lock_irqsave(&priv->lock, flags);
3116         /* Clear the 'host command active' bit... */
3117         priv->status &= ~STATUS_HCMD_ACTIVE;
3118         wake_up_interruptible(&priv->wait_command_queue);
3119         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3120         wake_up_interruptible(&priv->wait_state);
3121         spin_unlock_irqrestore(&priv->lock, flags);
3122
3123         IPW_DEBUG_TRACE("<<\n");
3124         return rc;
3125 }
3126
3127 static int ipw_get_fw(struct ipw_priv *priv,
3128                       const struct firmware **fw, const char *name)
3129 {
3130         struct fw_header *header;
3131         int rc;
3132
3133         /* ask firmware_class module to get the boot firmware off disk */
3134         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3135         if (rc < 0) {
3136                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3137                 return rc;
3138         }
3139
3140         header = (struct fw_header *)(*fw)->data;
3141         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3142                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3143                           name,
3144                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3145                           IPW_FW_MAJOR_VERSION);
3146                 return -EINVAL;
3147         }
3148
3149         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3150                        name,
3151                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3152                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3153                        (*fw)->size - sizeof(struct fw_header));
3154         return 0;
3155 }
3156
3157 #define IPW_RX_BUF_SIZE (3000)
3158
3159 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3160                                       struct ipw_rx_queue *rxq)
3161 {
3162         unsigned long flags;
3163         int i;
3164
3165         spin_lock_irqsave(&rxq->lock, flags);
3166
3167         INIT_LIST_HEAD(&rxq->rx_free);
3168         INIT_LIST_HEAD(&rxq->rx_used);
3169
3170         /* Fill the rx_used queue with _all_ of the Rx buffers */
3171         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3172                 /* In the reset function, these buffers may have been allocated
3173                  * to an SKB, so we need to unmap and free potential storage */
3174                 if (rxq->pool[i].skb != NULL) {
3175                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3176                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3177                         dev_kfree_skb(rxq->pool[i].skb);
3178                         rxq->pool[i].skb = NULL;
3179                 }
3180                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3181         }
3182
3183         /* Set us so that we have processed and used all buffers, but have
3184          * not restocked the Rx queue with fresh buffers */
3185         rxq->read = rxq->write = 0;
3186         rxq->processed = RX_QUEUE_SIZE - 1;
3187         rxq->free_count = 0;
3188         spin_unlock_irqrestore(&rxq->lock, flags);
3189 }
3190
3191 #ifdef CONFIG_PM
3192 static int fw_loaded = 0;
3193 static const struct firmware *bootfw = NULL;
3194 static const struct firmware *firmware = NULL;
3195 static const struct firmware *ucode = NULL;
3196
3197 static void free_firmware(void)
3198 {
3199         if (fw_loaded) {
3200                 release_firmware(bootfw);
3201                 release_firmware(ucode);
3202                 release_firmware(firmware);
3203                 bootfw = ucode = firmware = NULL;
3204                 fw_loaded = 0;
3205         }
3206 }
3207 #else
3208 #define free_firmware() do {} while (0)
3209 #endif
3210
3211 static int ipw_load(struct ipw_priv *priv)
3212 {
3213 #ifndef CONFIG_PM
3214         const struct firmware *bootfw = NULL;
3215         const struct firmware *firmware = NULL;
3216         const struct firmware *ucode = NULL;
3217 #endif
3218         char *ucode_name;
3219         char *fw_name;
3220         int rc = 0, retries = 3;
3221
3222         switch (priv->ieee->iw_mode) {
3223         case IW_MODE_ADHOC:
3224                 ucode_name = IPW_FW_NAME("ibss_ucode");
3225                 fw_name = IPW_FW_NAME("ibss");
3226                 break;
3227 #ifdef CONFIG_IPW2200_MONITOR
3228         case IW_MODE_MONITOR:
3229                 ucode_name = IPW_FW_NAME("sniffer_ucode");
3230                 fw_name = IPW_FW_NAME("sniffer");
3231                 break;
3232 #endif
3233         case IW_MODE_INFRA:
3234                 ucode_name = IPW_FW_NAME("bss_ucode");
3235                 fw_name = IPW_FW_NAME("bss");
3236                 break;
3237         default:
3238                 rc = -EINVAL;
3239         }
3240
3241         if (rc < 0)
3242                 goto error;
3243
3244         if (!priv->rxq)
3245                 priv->rxq = ipw_rx_queue_alloc(priv);
3246         else
3247                 ipw_rx_queue_reset(priv, priv->rxq);
3248         if (!priv->rxq) {
3249                 IPW_ERROR("Unable to initialize Rx queue\n");
3250                 goto error;
3251         }
3252
3253       retry:
3254         /* Ensure interrupts are disabled */
3255         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3256         priv->status &= ~STATUS_INT_ENABLED;
3257
3258         /* ack pending interrupts */
3259         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3260
3261         ipw_stop_nic(priv);
3262
3263         rc = ipw_reset_nic(priv);
3264         if (rc < 0) {
3265                 IPW_ERROR("Unable to reset NIC\n");
3266                 goto error;
3267         }
3268
3269         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3270                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3271
3272 #ifdef CONFIG_PM
3273         if (!fw_loaded) {
3274 #endif
3275                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3276                 if (rc < 0)
3277                         goto error;
3278 #ifdef CONFIG_PM
3279         }
3280 #endif
3281         /* DMA the initial boot firmware into the device */
3282         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3283                                bootfw->size - sizeof(struct fw_header));
3284         if (rc < 0) {
3285                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3286                 goto error;
3287         }
3288
3289         /* kick start the device */
3290         ipw_start_nic(priv);
3291
3292         /* wait for the device to finish its initial startup sequence */
3293         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3294                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3295         if (rc < 0) {
3296                 IPW_ERROR("device failed to boot initial fw image\n");
3297                 goto error;
3298         }
3299         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3300
3301         /* ack fw init done interrupt */
3302         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3303
3304 #ifdef CONFIG_PM
3305         if (!fw_loaded) {
3306 #endif
3307                 rc = ipw_get_fw(priv, &ucode, ucode_name);
3308                 if (rc < 0)
3309                         goto error;
3310 #ifdef CONFIG_PM
3311         }
3312 #endif
3313
3314         /* DMA the ucode into the device */
3315         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3316                             ucode->size - sizeof(struct fw_header));
3317         if (rc < 0) {
3318                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3319                 goto error;
3320         }
3321
3322         /* stop nic */
3323         ipw_stop_nic(priv);
3324
3325 #ifdef CONFIG_PM
3326         if (!fw_loaded) {
3327 #endif
3328                 rc = ipw_get_fw(priv, &firmware, fw_name);
3329                 if (rc < 0)
3330                         goto error;
3331 #ifdef CONFIG_PM
3332         }
3333 #endif
3334
3335         /* DMA bss firmware into the device */
3336         rc = ipw_load_firmware(priv, firmware->data +
3337                                sizeof(struct fw_header),
3338                                firmware->size - sizeof(struct fw_header));
3339         if (rc < 0) {
3340                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3341                 goto error;
3342         }
3343 #ifdef CONFIG_PM
3344         fw_loaded = 1;
3345 #endif
3346
3347         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3348
3349         rc = ipw_queue_reset(priv);
3350         if (rc < 0) {
3351                 IPW_ERROR("Unable to initialize queues\n");
3352                 goto error;
3353         }
3354
3355         /* Ensure interrupts are disabled */
3356         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3357         /* ack pending interrupts */
3358         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3359
3360         /* kick start the device */
3361         ipw_start_nic(priv);
3362
3363         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3364                 if (retries > 0) {
3365                         IPW_WARNING("Parity error.  Retrying init.\n");
3366                         retries--;
3367                         goto retry;
3368                 }
3369
3370                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3371                 rc = -EIO;
3372                 goto error;
3373         }
3374
3375         /* wait for the device */
3376         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3377                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3378         if (rc < 0) {
3379                 IPW_ERROR("device failed to start within 500ms\n");
3380                 goto error;
3381         }
3382         IPW_DEBUG_INFO("device response after %dms\n", rc);
3383
3384         /* ack fw init done interrupt */
3385         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3386
3387         /* read eeprom data and initialize the eeprom region of sram */
3388         priv->eeprom_delay = 1;
3389         ipw_eeprom_init_sram(priv);
3390
3391         /* enable interrupts */
3392         ipw_enable_interrupts(priv);
3393
3394         /* Ensure our queue has valid packets */
3395         ipw_rx_queue_replenish(priv);
3396
3397         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3398
3399         /* ack pending interrupts */
3400         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3401
3402 #ifndef CONFIG_PM
3403         release_firmware(bootfw);
3404         release_firmware(ucode);
3405         release_firmware(firmware);
3406 #endif
3407         return 0;
3408
3409       error:
3410         if (priv->rxq) {
3411                 ipw_rx_queue_free(priv, priv->rxq);
3412                 priv->rxq = NULL;
3413         }
3414         ipw_tx_queue_free(priv);
3415         if (bootfw)
3416                 release_firmware(bootfw);
3417         if (ucode)
3418                 release_firmware(ucode);
3419         if (firmware)
3420                 release_firmware(firmware);
3421 #ifdef CONFIG_PM
3422         fw_loaded = 0;
3423         bootfw = ucode = firmware = NULL;
3424 #endif
3425
3426         return rc;
3427 }
3428
3429 /**
3430  * DMA services
3431  *
3432  * Theory of operation
3433  *
3434  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3435  * 2 empty entries always kept in the buffer to protect from overflow.
3436  *
3437  * For Tx queue, there are low mark and high mark limits. If, after queuing
3438  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3439  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3440  * Tx queue resumed.
3441  *
3442  * The IPW operates with six queues, one receive queue in the device's
3443  * sram, one transmit queue for sending commands to the device firmware,
3444  * and four transmit queues for data.
3445  *
3446  * The four transmit queues allow for performing quality of service (qos)
3447  * transmissions as per the 802.11 protocol.  Currently Linux does not
3448  * provide a mechanism to the user for utilizing prioritized queues, so
3449  * we only utilize the first data transmit queue (queue1).
3450  */
3451
3452 /**
3453  * Driver allocates buffers of this size for Rx
3454  */
3455
3456 static inline int ipw_queue_space(const struct clx2_queue *q)
3457 {
3458         int s = q->last_used - q->first_empty;
3459         if (s <= 0)
3460                 s += q->n_bd;
3461         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3462         if (s < 0)
3463                 s = 0;
3464         return s;
3465 }
3466
3467 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3468 {
3469         return (++index == n_bd) ? 0 : index;
3470 }
3471
3472 /**
3473  * Initialize common DMA queue structure
3474  *
3475  * @param q                queue to init
3476  * @param count            Number of BD's to allocate. Should be power of 2
3477  * @param read_register    Address for 'read' register
3478  *                         (not offset within BAR, full address)
3479  * @param write_register   Address for 'write' register
3480  *                         (not offset within BAR, full address)
3481  * @param base_register    Address for 'base' register
3482  *                         (not offset within BAR, full address)
3483  * @param size             Address for 'size' register
3484  *                         (not offset within BAR, full address)
3485  */
3486 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3487                            int count, u32 read, u32 write, u32 base, u32 size)
3488 {
3489         q->n_bd = count;
3490
3491         q->low_mark = q->n_bd / 4;
3492         if (q->low_mark < 4)
3493                 q->low_mark = 4;
3494
3495         q->high_mark = q->n_bd / 8;
3496         if (q->high_mark < 2)
3497                 q->high_mark = 2;
3498
3499         q->first_empty = q->last_used = 0;
3500         q->reg_r = read;
3501         q->reg_w = write;
3502
3503         ipw_write32(priv, base, q->dma_addr);
3504         ipw_write32(priv, size, count);
3505         ipw_write32(priv, read, 0);
3506         ipw_write32(priv, write, 0);
3507
3508         _ipw_read32(priv, 0x90);
3509 }
3510
3511 static int ipw_queue_tx_init(struct ipw_priv *priv,
3512                              struct clx2_tx_queue *q,
3513                              int count, u32 read, u32 write, u32 base, u32 size)
3514 {
3515         struct pci_dev *dev = priv->pci_dev;
3516
3517         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3518         if (!q->txb) {
3519                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3520                 return -ENOMEM;
3521         }
3522
3523         q->bd =
3524             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3525         if (!q->bd) {
3526                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3527                           sizeof(q->bd[0]) * count);
3528                 kfree(q->txb);
3529                 q->txb = NULL;
3530                 return -ENOMEM;
3531         }
3532
3533         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3534         return 0;
3535 }
3536
3537 /**
3538  * Free one TFD, those at index [txq->q.last_used].
3539  * Do NOT advance any indexes
3540  *
3541  * @param dev
3542  * @param txq
3543  */
3544 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3545                                   struct clx2_tx_queue *txq)
3546 {
3547         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3548         struct pci_dev *dev = priv->pci_dev;
3549         int i;
3550
3551         /* classify bd */
3552         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3553                 /* nothing to cleanup after for host commands */
3554                 return;
3555
3556         /* sanity check */
3557         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3558                 IPW_ERROR("Too many chunks: %i\n",
3559                           le32_to_cpu(bd->u.data.num_chunks));
3560                 /** @todo issue fatal error, it is quite serious situation */
3561                 return;
3562         }
3563
3564         /* unmap chunks if any */
3565         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3566                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3567                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3568                                  PCI_DMA_TODEVICE);
3569                 if (txq->txb[txq->q.last_used]) {
3570                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3571                         txq->txb[txq->q.last_used] = NULL;
3572                 }
3573         }
3574 }
3575
3576 /**
3577  * Deallocate DMA queue.
3578  *
3579  * Empty queue by removing and destroying all BD's.
3580  * Free all buffers.
3581  *
3582  * @param dev
3583  * @param q
3584  */
3585 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3586 {
3587         struct clx2_queue *q = &txq->q;
3588         struct pci_dev *dev = priv->pci_dev;
3589
3590         if (q->n_bd == 0)
3591                 return;
3592
3593         /* first, empty all BD's */
3594         for (; q->first_empty != q->last_used;
3595              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3596                 ipw_queue_tx_free_tfd(priv, txq);
3597         }
3598
3599         /* free buffers belonging to queue itself */
3600         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3601                             q->dma_addr);
3602         kfree(txq->txb);
3603
3604         /* 0 fill whole structure */
3605         memset(txq, 0, sizeof(*txq));
3606 }
3607
3608 /**
3609  * Destroy all DMA queues and structures
3610  *
3611  * @param priv
3612  */
3613 static void ipw_tx_queue_free(struct ipw_priv *priv)
3614 {
3615         /* Tx CMD queue */
3616         ipw_queue_tx_free(priv, &priv->txq_cmd);
3617
3618         /* Tx queues */
3619         ipw_queue_tx_free(priv, &priv->txq[0]);
3620         ipw_queue_tx_free(priv, &priv->txq[1]);
3621         ipw_queue_tx_free(priv, &priv->txq[2]);
3622         ipw_queue_tx_free(priv, &priv->txq[3]);
3623 }
3624
3625 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3626 {
3627         /* First 3 bytes are manufacturer */
3628         bssid[0] = priv->mac_addr[0];
3629         bssid[1] = priv->mac_addr[1];
3630         bssid[2] = priv->mac_addr[2];
3631
3632         /* Last bytes are random */
3633         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3634
3635         bssid[0] &= 0xfe;       /* clear multicast bit */
3636         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3637 }
3638
3639 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3640 {
3641         struct ipw_station_entry entry;
3642         int i;
3643
3644         for (i = 0; i < priv->num_stations; i++) {
3645                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3646                         /* Another node is active in network */
3647                         priv->missed_adhoc_beacons = 0;
3648                         if (!(priv->config & CFG_STATIC_CHANNEL))
3649                                 /* when other nodes drop out, we drop out */
3650                                 priv->config &= ~CFG_ADHOC_PERSIST;
3651
3652                         return i;
3653                 }
3654         }
3655
3656         if (i == MAX_STATIONS)
3657                 return IPW_INVALID_STATION;
3658
3659         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3660
3661         entry.reserved = 0;
3662         entry.support_mode = 0;
3663         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3664         memcpy(priv->stations[i], bssid, ETH_ALEN);
3665         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3666                          &entry, sizeof(entry));
3667         priv->num_stations++;
3668
3669         return i;
3670 }
3671
3672 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3673 {
3674         int i;
3675
3676         for (i = 0; i < priv->num_stations; i++)
3677                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3678                         return i;
3679
3680         return IPW_INVALID_STATION;
3681 }
3682
3683 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3684 {
3685         int err;
3686
3687         if (priv->status & STATUS_ASSOCIATING) {
3688                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3689                 queue_work(priv->workqueue, &priv->disassociate);
3690                 return;
3691         }
3692
3693         if (!(priv->status & STATUS_ASSOCIATED)) {
3694                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3695                 return;
3696         }
3697
3698         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3699                         "on channel %d.\n",
3700                         MAC_ARG(priv->assoc_request.bssid),
3701                         priv->assoc_request.channel);
3702
3703         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3704         priv->status |= STATUS_DISASSOCIATING;
3705
3706         if (quiet)
3707                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3708         else
3709                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3710
3711         err = ipw_send_associate(priv, &priv->assoc_request);
3712         if (err) {
3713                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3714                              "failed.\n");
3715                 return;
3716         }
3717
3718 }
3719
3720 static int ipw_disassociate(void *data)
3721 {
3722         struct ipw_priv *priv = data;
3723         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3724                 return 0;
3725         ipw_send_disassociate(data, 0);
3726         return 1;
3727 }
3728
3729 static void ipw_bg_disassociate(void *data)
3730 {
3731         struct ipw_priv *priv = data;
3732         mutex_lock(&priv->mutex);
3733         ipw_disassociate(data);
3734         mutex_unlock(&priv->mutex);
3735 }
3736
3737 static void ipw_system_config(void *data)
3738 {
3739         struct ipw_priv *priv = data;
3740         ipw_send_system_config(priv, &priv->sys_config);
3741 }
3742
3743 struct ipw_status_code {
3744         u16 status;
3745         const char *reason;
3746 };
3747
3748 static const struct ipw_status_code ipw_status_codes[] = {
3749         {0x00, "Successful"},
3750         {0x01, "Unspecified failure"},
3751         {0x0A, "Cannot support all requested capabilities in the "
3752          "Capability information field"},
3753         {0x0B, "Reassociation denied due to inability to confirm that "
3754          "association exists"},
3755         {0x0C, "Association denied due to reason outside the scope of this "
3756          "standard"},
3757         {0x0D,
3758          "Responding station does not support the specified authentication "
3759          "algorithm"},
3760         {0x0E,
3761          "Received an Authentication frame with authentication sequence "
3762          "transaction sequence number out of expected sequence"},
3763         {0x0F, "Authentication rejected because of challenge failure"},
3764         {0x10, "Authentication rejected due to timeout waiting for next "
3765          "frame in sequence"},
3766         {0x11, "Association denied because AP is unable to handle additional "
3767          "associated stations"},
3768         {0x12,
3769          "Association denied due to requesting station not supporting all "
3770          "of the datarates in the BSSBasicServiceSet Parameter"},
3771         {0x13,
3772          "Association denied due to requesting station not supporting "
3773          "short preamble operation"},
3774         {0x14,
3775          "Association denied due to requesting station not supporting "
3776          "PBCC encoding"},
3777         {0x15,
3778          "Association denied due to requesting station not supporting "
3779          "channel agility"},
3780         {0x19,
3781          "Association denied due to requesting station not supporting "
3782          "short slot operation"},
3783         {0x1A,
3784          "Association denied due to requesting station not supporting "
3785          "DSSS-OFDM operation"},
3786         {0x28, "Invalid Information Element"},
3787         {0x29, "Group Cipher is not valid"},
3788         {0x2A, "Pairwise Cipher is not valid"},
3789         {0x2B, "AKMP is not valid"},
3790         {0x2C, "Unsupported RSN IE version"},
3791         {0x2D, "Invalid RSN IE Capabilities"},
3792         {0x2E, "Cipher suite is rejected per security policy"},
3793 };
3794
3795 #ifdef CONFIG_IPW2200_DEBUG
3796 static const char *ipw_get_status_code(u16 status)
3797 {
3798         int i;
3799         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3800                 if (ipw_status_codes[i].status == (status & 0xff))
3801                         return ipw_status_codes[i].reason;
3802         return "Unknown status value.";
3803 }
3804 #endif
3805
3806 static void inline average_init(struct average *avg)
3807 {
3808         memset(avg, 0, sizeof(*avg));
3809 }
3810
3811 static void average_add(struct average *avg, s16 val)
3812 {
3813         avg->sum -= avg->entries[avg->pos];
3814         avg->sum += val;
3815         avg->entries[avg->pos++] = val;
3816         if (unlikely(avg->pos == AVG_ENTRIES)) {
3817                 avg->init = 1;
3818                 avg->pos = 0;
3819         }
3820 }
3821
3822 static s16 average_value(struct average *avg)
3823 {
3824         if (!unlikely(avg->init)) {
3825                 if (avg->pos)
3826                         return avg->sum / avg->pos;
3827                 return 0;
3828         }
3829
3830         return avg->sum / AVG_ENTRIES;
3831 }
3832
3833 static void ipw_reset_stats(struct ipw_priv *priv)
3834 {
3835         u32 len = sizeof(u32);
3836
3837         priv->quality = 0;
3838
3839         average_init(&priv->average_missed_beacons);
3840         average_init(&priv->average_rssi);
3841         average_init(&priv->average_noise);
3842
3843         priv->last_rate = 0;
3844         priv->last_missed_beacons = 0;
3845         priv->last_rx_packets = 0;
3846         priv->last_tx_packets = 0;
3847         priv->last_tx_failures = 0;
3848
3849         /* Firmware managed, reset only when NIC is restarted, so we have to
3850          * normalize on the current value */
3851         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3852                         &priv->last_rx_err, &len);
3853         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3854                         &priv->last_tx_failures, &len);
3855
3856         /* Driver managed, reset with each association */
3857         priv->missed_adhoc_beacons = 0;
3858         priv->missed_beacons = 0;
3859         priv->tx_packets = 0;
3860         priv->rx_packets = 0;
3861
3862 }
3863
3864 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3865 {
3866         u32 i = 0x80000000;
3867         u32 mask = priv->rates_mask;
3868         /* If currently associated in B mode, restrict the maximum
3869          * rate match to B rates */
3870         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3871                 mask &= IEEE80211_CCK_RATES_MASK;
3872
3873         /* TODO: Verify that the rate is supported by the current rates
3874          * list. */
3875
3876         while (i && !(mask & i))
3877                 i >>= 1;
3878         switch (i) {
3879         case IEEE80211_CCK_RATE_1MB_MASK:
3880                 return 1000000;
3881         case IEEE80211_CCK_RATE_2MB_MASK:
3882                 return 2000000;
3883         case IEEE80211_CCK_RATE_5MB_MASK:
3884                 return 5500000;
3885         case IEEE80211_OFDM_RATE_6MB_MASK:
3886                 return 6000000;
3887         case IEEE80211_OFDM_RATE_9MB_MASK:
3888                 return 9000000;
3889         case IEEE80211_CCK_RATE_11MB_MASK:
3890                 return 11000000;
3891         case IEEE80211_OFDM_RATE_12MB_MASK:
3892                 return 12000000;
3893         case IEEE80211_OFDM_RATE_18MB_MASK:
3894                 return 18000000;
3895         case IEEE80211_OFDM_RATE_24MB_MASK:
3896                 return 24000000;
3897         case IEEE80211_OFDM_RATE_36MB_MASK:
3898                 return 36000000;
3899         case IEEE80211_OFDM_RATE_48MB_MASK:
3900                 return 48000000;
3901         case IEEE80211_OFDM_RATE_54MB_MASK:
3902                 return 54000000;
3903         }
3904
3905         if (priv->ieee->mode == IEEE_B)
3906                 return 11000000;
3907         else
3908                 return 54000000;
3909 }
3910
3911 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3912 {
3913         u32 rate, len = sizeof(rate);
3914         int err;
3915
3916         if (!(priv->status & STATUS_ASSOCIATED))
3917                 return 0;
3918
3919         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3920                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3921                                       &len);
3922                 if (err) {
3923                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3924                         return 0;
3925                 }
3926         } else
3927                 return ipw_get_max_rate(priv);
3928
3929         switch (rate) {
3930         case IPW_TX_RATE_1MB:
3931                 return 1000000;
3932         case IPW_TX_RATE_2MB:
3933                 return 2000000;
3934         case IPW_TX_RATE_5MB:
3935                 return 5500000;
3936         case IPW_TX_RATE_6MB:
3937                 return 6000000;
3938         case IPW_TX_RATE_9MB:
3939                 return 9000000;
3940         case IPW_TX_RATE_11MB:
3941                 return 11000000;
3942         case IPW_TX_RATE_12MB:
3943                 return 12000000;
3944         case IPW_TX_RATE_18MB:
3945                 return 18000000;
3946         case IPW_TX_RATE_24MB:
3947                 return 24000000;
3948         case IPW_TX_RATE_36MB:
3949                 return 36000000;
3950         case IPW_TX_RATE_48MB:
3951                 return 48000000;
3952         case IPW_TX_RATE_54MB:
3953                 return 54000000;
3954         }
3955
3956         return 0;
3957 }
3958
3959 #define IPW_STATS_INTERVAL (2 * HZ)
3960 static void ipw_gather_stats(struct ipw_priv *priv)
3961 {
3962         u32 rx_err, rx_err_delta, rx_packets_delta;
3963         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3964         u32 missed_beacons_percent, missed_beacons_delta;
3965         u32 quality = 0;
3966         u32 len = sizeof(u32);
3967         s16 rssi;
3968         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3969             rate_quality;
3970         u32 max_rate;
3971
3972         if (!(priv->status & STATUS_ASSOCIATED)) {
3973                 priv->quality = 0;
3974                 return;
3975         }
3976
3977         /* Update the statistics */
3978         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3979                         &priv->missed_beacons, &len);
3980         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3981         priv->last_missed_beacons = priv->missed_beacons;
3982         if (priv->assoc_request.beacon_interval) {
3983                 missed_beacons_percent = missed_beacons_delta *
3984                     (HZ * priv->assoc_request.beacon_interval) /
3985                     (IPW_STATS_INTERVAL * 10);
3986         } else {
3987                 missed_beacons_percent = 0;
3988         }
3989         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3990
3991         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3992         rx_err_delta = rx_err - priv->last_rx_err;
3993         priv->last_rx_err = rx_err;
3994
3995         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3996         tx_failures_delta = tx_failures - priv->last_tx_failures;
3997         priv->last_tx_failures = tx_failures;
3998
3999         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4000         priv->last_rx_packets = priv->rx_packets;
4001
4002         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4003         priv->last_tx_packets = priv->tx_packets;
4004
4005         /* Calculate quality based on the following:
4006          *
4007          * Missed beacon: 100% = 0, 0% = 70% missed
4008          * Rate: 60% = 1Mbs, 100% = Max
4009          * Rx and Tx errors represent a straight % of total Rx/Tx
4010          * RSSI: 100% = > -50,  0% = < -80
4011          * Rx errors: 100% = 0, 0% = 50% missed
4012          *
4013          * The lowest computed quality is used.
4014          *
4015          */
4016 #define BEACON_THRESHOLD 5
4017         beacon_quality = 100 - missed_beacons_percent;
4018         if (beacon_quality < BEACON_THRESHOLD)
4019                 beacon_quality = 0;
4020         else
4021                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4022                     (100 - BEACON_THRESHOLD);
4023         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4024                         beacon_quality, missed_beacons_percent);
4025
4026         priv->last_rate = ipw_get_current_rate(priv);
4027         max_rate = ipw_get_max_rate(priv);
4028         rate_quality = priv->last_rate * 40 / max_rate + 60;
4029         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4030                         rate_quality, priv->last_rate / 1000000);
4031
4032         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4033                 rx_quality = 100 - (rx_err_delta * 100) /
4034                     (rx_packets_delta + rx_err_delta);
4035         else
4036                 rx_quality = 100;
4037         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4038                         rx_quality, rx_err_delta, rx_packets_delta);
4039
4040         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4041                 tx_quality = 100 - (tx_failures_delta * 100) /
4042                     (tx_packets_delta + tx_failures_delta);
4043         else
4044                 tx_quality = 100;
4045         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4046                         tx_quality, tx_failures_delta, tx_packets_delta);
4047
4048         rssi = average_value(&priv->average_rssi);
4049         signal_quality =
4050             (100 *
4051              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4052              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4053              (priv->ieee->perfect_rssi - rssi) *
4054              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4055               62 * (priv->ieee->perfect_rssi - rssi))) /
4056             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4057              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4058         if (signal_quality > 100)
4059                 signal_quality = 100;
4060         else if (signal_quality < 1)
4061                 signal_quality = 0;
4062
4063         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4064                         signal_quality, rssi);
4065
4066         quality = min(beacon_quality,
4067                       min(rate_quality,
4068                           min(tx_quality, min(rx_quality, signal_quality))));
4069         if (quality == beacon_quality)
4070                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4071                                 quality);
4072         if (quality == rate_quality)
4073                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4074                                 quality);
4075         if (quality == tx_quality)
4076                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4077                                 quality);
4078         if (quality == rx_quality)
4079                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4080                                 quality);
4081         if (quality == signal_quality)
4082                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4083                                 quality);
4084
4085         priv->quality = quality;
4086
4087         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4088                            IPW_STATS_INTERVAL);
4089 }
4090
4091 static void ipw_bg_gather_stats(void *data)
4092 {
4093         struct ipw_priv *priv = data;
4094         mutex_lock(&priv->mutex);
4095         ipw_gather_stats(data);
4096         mutex_unlock(&priv->mutex);
4097 }
4098
4099 /* Missed beacon behavior:
4100  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4101  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4102  * Above disassociate threshold, give up and stop scanning.
4103  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4104 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4105                                             int missed_count)
4106 {
4107         priv->notif_missed_beacons = missed_count;
4108
4109         if (missed_count > priv->disassociate_threshold &&
4110             priv->status & STATUS_ASSOCIATED) {
4111                 /* If associated and we've hit the missed
4112                  * beacon threshold, disassociate, turn
4113                  * off roaming, and abort any active scans */
4114                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4115                           IPW_DL_STATE | IPW_DL_ASSOC,
4116                           "Missed beacon: %d - disassociate\n", missed_count);
4117                 priv->status &= ~STATUS_ROAMING;
4118                 if (priv->status & STATUS_SCANNING) {
4119                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4120                                   IPW_DL_STATE,
4121                                   "Aborting scan with missed beacon.\n");
4122                         queue_work(priv->workqueue, &priv->abort_scan);
4123                 }
4124
4125                 queue_work(priv->workqueue, &priv->disassociate);
4126                 return;
4127         }
4128
4129         if (priv->status & STATUS_ROAMING) {
4130                 /* If we are currently roaming, then just
4131                  * print a debug statement... */
4132                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4133                           "Missed beacon: %d - roam in progress\n",
4134                           missed_count);
4135                 return;
4136         }
4137
4138         if (roaming &&
4139             (missed_count > priv->roaming_threshold &&
4140              missed_count <= priv->disassociate_threshold)) {
4141                 /* If we are not already roaming, set the ROAM
4142                  * bit in the status and kick off a scan.
4143                  * This can happen several times before we reach
4144                  * disassociate_threshold. */
4145                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4146                           "Missed beacon: %d - initiate "
4147                           "roaming\n", missed_count);
4148                 if (!(priv->status & STATUS_ROAMING)) {
4149                         priv->status |= STATUS_ROAMING;
4150                         if (!(priv->status & STATUS_SCANNING))
4151                                 queue_work(priv->workqueue,
4152                                            &priv->request_scan);
4153                 }
4154                 return;
4155         }
4156
4157         if (priv->status & STATUS_SCANNING) {
4158                 /* Stop scan to keep fw from getting
4159                  * stuck (only if we aren't roaming --
4160                  * otherwise we'll never scan more than 2 or 3
4161                  * channels..) */
4162                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4163                           "Aborting scan with missed beacon.\n");
4164                 queue_work(priv->workqueue, &priv->abort_scan);
4165         }
4166
4167         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4168 }
4169
4170 /**
4171  * Handle host notification packet.
4172  * Called from interrupt routine
4173  */
4174 static void ipw_rx_notification(struct ipw_priv *priv,
4175                                        struct ipw_rx_notification *notif)
4176 {
4177         notif->size = le16_to_cpu(notif->size);
4178
4179         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4180
4181         switch (notif->subtype) {
4182         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4183                         struct notif_association *assoc = &notif->u.assoc;
4184
4185                         switch (assoc->state) {
4186                         case CMAS_ASSOCIATED:{
4187                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4188                                                   IPW_DL_ASSOC,
4189                                                   "associated: '%s' " MAC_FMT
4190                                                   " \n",
4191                                                   escape_essid(priv->essid,
4192                                                                priv->essid_len),
4193                                                   MAC_ARG(priv->bssid));
4194
4195                                         switch (priv->ieee->iw_mode) {
4196                                         case IW_MODE_INFRA:
4197                                                 memcpy(priv->ieee->bssid,
4198                                                        priv->bssid, ETH_ALEN);
4199                                                 break;
4200
4201                                         case IW_MODE_ADHOC:
4202                                                 memcpy(priv->ieee->bssid,
4203                                                        priv->bssid, ETH_ALEN);
4204
4205                                                 /* clear out the station table */
4206                                                 priv->num_stations = 0;
4207
4208                                                 IPW_DEBUG_ASSOC
4209                                                     ("queueing adhoc check\n");
4210                                                 queue_delayed_work(priv->
4211                                                                    workqueue,
4212                                                                    &priv->
4213                                                                    adhoc_check,
4214                                                                    priv->
4215                                                                    assoc_request.
4216                                                                    beacon_interval);
4217                                                 break;
4218                                         }
4219
4220                                         priv->status &= ~STATUS_ASSOCIATING;
4221                                         priv->status |= STATUS_ASSOCIATED;
4222                                         queue_work(priv->workqueue,
4223                                                    &priv->system_config);
4224
4225 #ifdef CONFIG_IPW_QOS
4226 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4227                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4228                                         if ((priv->status & STATUS_AUTH) &&
4229                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4230                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4231                                                 if ((sizeof
4232                                                      (struct
4233                                                       ieee80211_assoc_response)
4234                                                      <= notif->size)
4235                                                     && (notif->size <= 2314)) {
4236                                                         struct
4237                                                         ieee80211_rx_stats
4238                                                             stats = {
4239                                                                 .len =
4240                                                                     notif->
4241                                                                     size - 1,
4242                                                         };
4243
4244                                                         IPW_DEBUG_QOS
4245                                                             ("QoS Associate "
4246                                                              "size %d\n",
4247                                                              notif->size);
4248                                                         ieee80211_rx_mgt(priv->
4249                                                                          ieee,
4250                                                                          (struct
4251                                                                           ieee80211_hdr_4addr
4252                                                                           *)
4253                                                                          &notif->u.raw, &stats);
4254                                                 }
4255                                         }
4256 #endif
4257
4258                                         schedule_work(&priv->link_up);
4259
4260                                         break;
4261                                 }
4262
4263                         case CMAS_AUTHENTICATED:{
4264                                         if (priv->
4265                                             status & (STATUS_ASSOCIATED |
4266                                                       STATUS_AUTH)) {
4267 #ifdef CONFIG_IPW2200_DEBUG
4268                                                 struct notif_authenticate *auth
4269                                                     = &notif->u.auth;
4270                                                 IPW_DEBUG(IPW_DL_NOTIF |
4271                                                           IPW_DL_STATE |
4272                                                           IPW_DL_ASSOC,
4273                                                           "deauthenticated: '%s' "
4274                                                           MAC_FMT
4275                                                           ": (0x%04X) - %s \n",
4276                                                           escape_essid(priv->
4277                                                                        essid,
4278                                                                        priv->
4279                                                                        essid_len),
4280                                                           MAC_ARG(priv->bssid),
4281                                                           ntohs(auth->status),
4282                                                           ipw_get_status_code
4283                                                           (ntohs
4284                                                            (auth->status)));
4285 #endif
4286
4287                                                 priv->status &=
4288                                                     ~(STATUS_ASSOCIATING |
4289                                                       STATUS_AUTH |
4290                                                       STATUS_ASSOCIATED);
4291
4292                                                 schedule_work(&priv->link_down);
4293                                                 break;
4294                                         }
4295
4296                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4297                                                   IPW_DL_ASSOC,
4298                                                   "authenticated: '%s' " MAC_FMT
4299                                                   "\n",
4300                                                   escape_essid(priv->essid,
4301                                                                priv->essid_len),
4302                                                   MAC_ARG(priv->bssid));
4303                                         break;
4304                                 }
4305
4306                         case CMAS_INIT:{
4307                                         if (priv->status & STATUS_AUTH) {
4308                                                 struct
4309                                                     ieee80211_assoc_response
4310                                                 *resp;
4311                                                 resp =
4312                                                     (struct
4313                                                      ieee80211_assoc_response
4314                                                      *)&notif->u.raw;
4315                                                 IPW_DEBUG(IPW_DL_NOTIF |
4316                                                           IPW_DL_STATE |
4317                                                           IPW_DL_ASSOC,
4318                                                           "association failed (0x%04X): %s\n",
4319                                                           ntohs(resp->status),
4320                                                           ipw_get_status_code
4321                                                           (ntohs
4322                                                            (resp->status)));
4323                                         }
4324
4325                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4326                                                   IPW_DL_ASSOC,
4327                                                   "disassociated: '%s' " MAC_FMT
4328                                                   " \n",
4329                                                   escape_essid(priv->essid,
4330                                                                priv->essid_len),
4331                                                   MAC_ARG(priv->bssid));
4332
4333                                         priv->status &=
4334                                             ~(STATUS_DISASSOCIATING |
4335                                               STATUS_ASSOCIATING |
4336                                               STATUS_ASSOCIATED | STATUS_AUTH);
4337                                         if (priv->assoc_network
4338                                             && (priv->assoc_network->
4339                                                 capability &
4340                                                 WLAN_CAPABILITY_IBSS))
4341                                                 ipw_remove_current_network
4342                                                     (priv);
4343
4344                                         schedule_work(&priv->link_down);
4345
4346                                         break;
4347                                 }
4348
4349                         case CMAS_RX_ASSOC_RESP:
4350                                 break;
4351
4352                         default:
4353                                 IPW_ERROR("assoc: unknown (%d)\n",
4354                                           assoc->state);
4355                                 break;
4356                         }
4357
4358                         break;
4359                 }
4360
4361         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4362                         struct notif_authenticate *auth = &notif->u.auth;
4363                         switch (auth->state) {
4364                         case CMAS_AUTHENTICATED:
4365                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4366                                           "authenticated: '%s' " MAC_FMT " \n",
4367                                           escape_essid(priv->essid,
4368                                                        priv->essid_len),
4369                                           MAC_ARG(priv->bssid));
4370                                 priv->status |= STATUS_AUTH;
4371                                 break;
4372
4373                         case CMAS_INIT:
4374                                 if (priv->status & STATUS_AUTH) {
4375                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4376                                                   IPW_DL_ASSOC,
4377                                                   "authentication failed (0x%04X): %s\n",
4378                                                   ntohs(auth->status),
4379                                                   ipw_get_status_code(ntohs
4380                                                                       (auth->
4381                                                                        status)));
4382                                 }
4383                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4384                                           IPW_DL_ASSOC,
4385                                           "deauthenticated: '%s' " MAC_FMT "\n",
4386                                           escape_essid(priv->essid,
4387                                                        priv->essid_len),
4388                                           MAC_ARG(priv->bssid));
4389
4390                                 priv->status &= ~(STATUS_ASSOCIATING |
4391                                                   STATUS_AUTH |
4392                                                   STATUS_ASSOCIATED);
4393
4394                                 schedule_work(&priv->link_down);
4395                                 break;
4396
4397                         case CMAS_TX_AUTH_SEQ_1:
4398                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4399                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4400                                 break;
4401                         case CMAS_RX_AUTH_SEQ_2:
4402                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4403                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4404                                 break;
4405                         case CMAS_AUTH_SEQ_1_PASS:
4406                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4407                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4408                                 break;
4409                         case CMAS_AUTH_SEQ_1_FAIL:
4410                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4411                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4412                                 break;
4413                         case CMAS_TX_AUTH_SEQ_3:
4414                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4415                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4416                                 break;
4417                         case CMAS_RX_AUTH_SEQ_4:
4418                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4419                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4420                                 break;
4421                         case CMAS_AUTH_SEQ_2_PASS:
4422                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4423                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4424                                 break;
4425                         case CMAS_AUTH_SEQ_2_FAIL:
4426                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4427                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4428                                 break;
4429                         case CMAS_TX_ASSOC:
4430                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4431                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4432                                 break;
4433                         case CMAS_RX_ASSOC_RESP:
4434                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4435                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4436
4437                                 break;
4438                         case CMAS_ASSOCIATED:
4439                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4440                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4441                                 break;
4442                         default:
4443                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4444                                                 auth->state);
4445                                 break;
4446                         }
4447                         break;
4448                 }
4449
4450         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4451                         struct notif_channel_result *x =
4452                             &notif->u.channel_result;
4453
4454                         if (notif->size == sizeof(*x)) {
4455                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4456                                                x->channel_num);
4457                         } else {
4458                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4459                                                "(should be %zd)\n",
4460                                                notif->size, sizeof(*x));
4461                         }
4462                         break;
4463                 }
4464
4465         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4466                         struct notif_scan_complete *x = &notif->u.scan_complete;
4467                         if (notif->size == sizeof(*x)) {
4468                                 IPW_DEBUG_SCAN
4469                                     ("Scan completed: type %d, %d channels, "
4470                                      "%d status\n", x->scan_type,
4471                                      x->num_channels, x->status);
4472                         } else {
4473                                 IPW_ERROR("Scan completed of wrong size %d "
4474                                           "(should be %zd)\n",
4475                                           notif->size, sizeof(*x));
4476                         }
4477
4478                         priv->status &=
4479                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4480
4481                         wake_up_interruptible(&priv->wait_state);
4482                         cancel_delayed_work(&priv->scan_check);
4483
4484                         if (priv->status & STATUS_EXIT_PENDING)
4485                                 break;
4486
4487                         priv->ieee->scans++;
4488
4489 #ifdef CONFIG_IPW2200_MONITOR
4490                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4491                                 priv->status |= STATUS_SCAN_FORCED;
4492                                 queue_work(priv->workqueue,
4493                                            &priv->request_scan);
4494                                 break;
4495                         }
4496                         priv->status &= ~STATUS_SCAN_FORCED;
4497 #endif                          /* CONFIG_IPW2200_MONITOR */
4498
4499                         if (!(priv->status & (STATUS_ASSOCIATED |
4500                                               STATUS_ASSOCIATING |
4501                                               STATUS_ROAMING |
4502                                               STATUS_DISASSOCIATING)))
4503                                 queue_work(priv->workqueue, &priv->associate);
4504                         else if (priv->status & STATUS_ROAMING) {
4505                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4506                                         /* If a scan completed and we are in roam mode, then
4507                                          * the scan that completed was the one requested as a
4508                                          * result of entering roam... so, schedule the
4509                                          * roam work */
4510                                         queue_work(priv->workqueue,
4511                                                    &priv->roam);
4512                                 else
4513                                         /* Don't schedule if we aborted the scan */
4514                                         priv->status &= ~STATUS_ROAMING;
4515                         } else if (priv->status & STATUS_SCAN_PENDING)
4516                                 queue_work(priv->workqueue,
4517                                            &priv->request_scan);
4518                         else if (priv->config & CFG_BACKGROUND_SCAN
4519                                  && priv->status & STATUS_ASSOCIATED)
4520                                 queue_delayed_work(priv->workqueue,
4521                                                    &priv->request_scan, HZ);
4522                         break;
4523                 }
4524
4525         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4526                         struct notif_frag_length *x = &notif->u.frag_len;
4527
4528                         if (notif->size == sizeof(*x))
4529                                 IPW_ERROR("Frag length: %d\n",
4530                                           le16_to_cpu(x->frag_length));
4531                         else
4532                                 IPW_ERROR("Frag length of wrong size %d "
4533                                           "(should be %zd)\n",
4534                                           notif->size, sizeof(*x));
4535                         break;
4536                 }
4537
4538         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4539                         struct notif_link_deterioration *x =
4540                             &notif->u.link_deterioration;
4541
4542                         if (notif->size == sizeof(*x)) {
4543                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4544                                           "link deterioration: '%s' " MAC_FMT
4545                                           " \n", escape_essid(priv->essid,
4546                                                               priv->essid_len),
4547                                           MAC_ARG(priv->bssid));
4548                                 memcpy(&priv->last_link_deterioration, x,
4549                                        sizeof(*x));
4550                         } else {
4551                                 IPW_ERROR("Link Deterioration of wrong size %d "
4552                                           "(should be %zd)\n",
4553                                           notif->size, sizeof(*x));
4554                         }
4555                         break;
4556                 }
4557
4558         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4559                         IPW_ERROR("Dino config\n");
4560                         if (priv->hcmd
4561                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4562                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4563
4564                         break;
4565                 }
4566
4567         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4568                         struct notif_beacon_state *x = &notif->u.beacon_state;
4569                         if (notif->size != sizeof(*x)) {
4570                                 IPW_ERROR
4571                                     ("Beacon state of wrong size %d (should "
4572                                      "be %zd)\n", notif->size, sizeof(*x));
4573                                 break;
4574                         }
4575
4576                         if (le32_to_cpu(x->state) ==
4577                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4578                                 ipw_handle_missed_beacon(priv,
4579                                                          le32_to_cpu(x->
4580                                                                      number));
4581
4582                         break;
4583                 }
4584
4585         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4586                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4587                         if (notif->size == sizeof(*x)) {
4588                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4589                                           "0x%02x station %d\n",
4590                                           x->key_state, x->security_type,
4591                                           x->station_index);
4592                                 break;
4593                         }
4594
4595                         IPW_ERROR
4596                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4597                              notif->size, sizeof(*x));
4598                         break;
4599                 }
4600
4601         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4602                         struct notif_calibration *x = &notif->u.calibration;
4603
4604                         if (notif->size == sizeof(*x)) {
4605                                 memcpy(&priv->calib, x, sizeof(*x));
4606                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4607                                 break;
4608                         }
4609
4610                         IPW_ERROR
4611                             ("Calibration of wrong size %d (should be %zd)\n",
4612                              notif->size, sizeof(*x));
4613                         break;
4614                 }
4615
4616         case HOST_NOTIFICATION_NOISE_STATS:{
4617                         if (notif->size == sizeof(u32)) {
4618                                 priv->last_noise =
4619                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4620                                           0xff);
4621                                 average_add(&priv->average_noise,
4622                                             priv->last_noise);
4623                                 break;
4624                         }
4625
4626                         IPW_ERROR
4627                             ("Noise stat is wrong size %d (should be %zd)\n",
4628                              notif->size, sizeof(u32));
4629                         break;
4630                 }
4631
4632         default:
4633                 IPW_DEBUG_NOTIF("Unknown notification: "
4634                                 "subtype=%d,flags=0x%2x,size=%d\n",
4635                                 notif->subtype, notif->flags, notif->size);
4636         }
4637 }
4638
4639 /**
4640  * Destroys all DMA structures and initialise them again
4641  *
4642  * @param priv
4643  * @return error code
4644  */
4645 static int ipw_queue_reset(struct ipw_priv *priv)
4646 {
4647         int rc = 0;
4648         /** @todo customize queue sizes */
4649         int nTx = 64, nTxCmd = 8;
4650         ipw_tx_queue_free(priv);
4651         /* Tx CMD queue */
4652         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4653                                IPW_TX_CMD_QUEUE_READ_INDEX,
4654                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4655                                IPW_TX_CMD_QUEUE_BD_BASE,
4656                                IPW_TX_CMD_QUEUE_BD_SIZE);
4657         if (rc) {
4658                 IPW_ERROR("Tx Cmd queue init failed\n");
4659                 goto error;
4660         }
4661         /* Tx queue(s) */
4662         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4663                                IPW_TX_QUEUE_0_READ_INDEX,
4664                                IPW_TX_QUEUE_0_WRITE_INDEX,
4665                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4666         if (rc) {
4667                 IPW_ERROR("Tx 0 queue init failed\n");
4668                 goto error;
4669         }
4670         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4671                                IPW_TX_QUEUE_1_READ_INDEX,
4672                                IPW_TX_QUEUE_1_WRITE_INDEX,
4673                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4674         if (rc) {
4675                 IPW_ERROR("Tx 1 queue init failed\n");
4676                 goto error;
4677         }
4678         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4679                                IPW_TX_QUEUE_2_READ_INDEX,
4680                                IPW_TX_QUEUE_2_WRITE_INDEX,
4681                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4682         if (rc) {
4683                 IPW_ERROR("Tx 2 queue init failed\n");
4684                 goto error;
4685         }
4686         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4687                                IPW_TX_QUEUE_3_READ_INDEX,
4688                                IPW_TX_QUEUE_3_WRITE_INDEX,
4689                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4690         if (rc) {
4691                 IPW_ERROR("Tx 3 queue init failed\n");
4692                 goto error;
4693         }
4694         /* statistics */
4695         priv->rx_bufs_min = 0;
4696         priv->rx_pend_max = 0;
4697         return rc;
4698
4699       error:
4700         ipw_tx_queue_free(priv);
4701         return rc;
4702 }
4703
4704 /**
4705  * Reclaim Tx queue entries no more used by NIC.
4706  *
4707  * When FW adwances 'R' index, all entries between old and
4708  * new 'R' index need to be reclaimed. As result, some free space
4709  * forms. If there is enough free space (> low mark), wake Tx queue.
4710  *
4711  * @note Need to protect against garbage in 'R' index
4712  * @param priv
4713  * @param txq
4714  * @param qindex
4715  * @return Number of used entries remains in the queue
4716  */
4717 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4718                                 struct clx2_tx_queue *txq, int qindex)
4719 {
4720         u32 hw_tail;
4721         int used;
4722         struct clx2_queue *q = &txq->q;
4723
4724         hw_tail = ipw_read32(priv, q->reg_r);
4725         if (hw_tail >= q->n_bd) {
4726                 IPW_ERROR
4727                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4728                      hw_tail, q->n_bd);
4729                 goto done;
4730         }
4731         for (; q->last_used != hw_tail;
4732              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4733                 ipw_queue_tx_free_tfd(priv, txq);
4734                 priv->tx_packets++;
4735         }
4736       done:
4737         if ((ipw_queue_space(q) > q->low_mark) &&
4738             (qindex >= 0) &&
4739             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4740                 netif_wake_queue(priv->net_dev);
4741         used = q->first_empty - q->last_used;
4742         if (used < 0)
4743                 used += q->n_bd;
4744
4745         return used;
4746 }
4747
4748 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4749                              int len, int sync)
4750 {
4751         struct clx2_tx_queue *txq = &priv->txq_cmd;
4752         struct clx2_queue *q = &txq->q;
4753         struct tfd_frame *tfd;
4754
4755         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4756                 IPW_ERROR("No space for Tx\n");
4757                 return -EBUSY;
4758         }
4759
4760         tfd = &txq->bd[q->first_empty];
4761         txq->txb[q->first_empty] = NULL;
4762
4763         memset(tfd, 0, sizeof(*tfd));
4764         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4765         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4766         priv->hcmd_seq++;
4767         tfd->u.cmd.index = hcmd;
4768         tfd->u.cmd.length = len;
4769         memcpy(tfd->u.cmd.payload, buf, len);
4770         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4771         ipw_write32(priv, q->reg_w, q->first_empty);
4772         _ipw_read32(priv, 0x90);
4773
4774         return 0;
4775 }
4776
4777 /*
4778  * Rx theory of operation
4779  *
4780  * The host allocates 32 DMA target addresses and passes the host address
4781  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4782  * 0 to 31
4783  *
4784  * Rx Queue Indexes
4785  * The host/firmware share two index registers for managing the Rx buffers.
4786  *
4787  * The READ index maps to the first position that the firmware may be writing
4788  * to -- the driver can read up to (but not including) this position and get
4789  * good data.
4790  * The READ index is managed by the firmware once the card is enabled.
4791  *
4792  * The WRITE index maps to the last position the driver has read from -- the
4793  * position preceding WRITE is the last slot the firmware can place a packet.
4794  *
4795  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4796  * WRITE = READ.
4797  *
4798  * During initialization the host sets up the READ queue position to the first
4799  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4800  *
4801  * When the firmware places a packet in a buffer it will advance the READ index
4802  * and fire the RX interrupt.  The driver can then query the READ index and
4803  * process as many packets as possible, moving the WRITE index forward as it
4804  * resets the Rx queue buffers with new memory.
4805  *
4806  * The management in the driver is as follows:
4807  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4808  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4809  *   to replensish the ipw->rxq->rx_free.
4810  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4811  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4812  *   'processed' and 'read' driver indexes as well)
4813  * + A received packet is processed and handed to the kernel network stack,
4814  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4815  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4816  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4817  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4818  *   were enough free buffers and RX_STALLED is set it is cleared.
4819  *
4820  *
4821  * Driver sequence:
4822  *
4823  * ipw_rx_queue_alloc()       Allocates rx_free
4824  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4825  *                            ipw_rx_queue_restock
4826  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4827  *                            queue, updates firmware pointers, and updates
4828  *                            the WRITE index.  If insufficient rx_free buffers
4829  *                            are available, schedules ipw_rx_queue_replenish
4830  *
4831  * -- enable interrupts --
4832  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4833  *                            READ INDEX, detaching the SKB from the pool.
4834  *                            Moves the packet buffer from queue to rx_used.
4835  *                            Calls ipw_rx_queue_restock to refill any empty
4836  *                            slots.
4837  * ...
4838  *
4839  */
4840
4841 /*
4842  * If there are slots in the RX queue that  need to be restocked,
4843  * and we have free pre-allocated buffers, fill the ranks as much
4844  * as we can pulling from rx_free.
4845  *
4846  * This moves the 'write' index forward to catch up with 'processed', and
4847  * also updates the memory address in the firmware to reference the new
4848  * target buffer.
4849  */
4850 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4851 {
4852         struct ipw_rx_queue *rxq = priv->rxq;
4853         struct list_head *element;
4854         struct ipw_rx_mem_buffer *rxb;
4855         unsigned long flags;
4856         int write;
4857
4858         spin_lock_irqsave(&rxq->lock, flags);
4859         write = rxq->write;
4860         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4861                 element = rxq->rx_free.next;
4862                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4863                 list_del(element);
4864
4865                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4866                             rxb->dma_addr);
4867                 rxq->queue[rxq->write] = rxb;
4868                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4869                 rxq->free_count--;
4870         }
4871         spin_unlock_irqrestore(&rxq->lock, flags);
4872
4873         /* If the pre-allocated buffer pool is dropping low, schedule to
4874          * refill it */
4875         if (rxq->free_count <= RX_LOW_WATERMARK)
4876                 queue_work(priv->workqueue, &priv->rx_replenish);
4877
4878         /* If we've added more space for the firmware to place data, tell it */
4879         if (write != rxq->write)
4880                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4881 }
4882
4883 /*
4884  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4885  * Also restock the Rx queue via ipw_rx_queue_restock.
4886  *
4887  * This is called as a scheduled work item (except for during intialization)
4888  */
4889 static void ipw_rx_queue_replenish(void *data)
4890 {
4891         struct ipw_priv *priv = data;
4892         struct ipw_rx_queue *rxq = priv->rxq;
4893         struct list_head *element;
4894         struct ipw_rx_mem_buffer *rxb;
4895         unsigned long flags;
4896
4897         spin_lock_irqsave(&rxq->lock, flags);
4898         while (!list_empty(&rxq->rx_used)) {
4899                 element = rxq->rx_used.next;
4900                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4901                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4902                 if (!rxb->skb) {
4903                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4904                                priv->net_dev->name);
4905                         /* We don't reschedule replenish work here -- we will
4906                          * call the restock method and if it still needs
4907                          * more buffers it will schedule replenish */
4908                         break;
4909                 }
4910                 list_del(element);
4911
4912                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4913                 rxb->dma_addr =
4914                     pci_map_single(priv->pci_dev, rxb->skb->data,
4915                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4916
4917                 list_add_tail(&rxb->list, &rxq->rx_free);
4918                 rxq->free_count++;
4919         }
4920         spin_unlock_irqrestore(&rxq->lock, flags);
4921
4922         ipw_rx_queue_restock(priv);
4923 }
4924
4925 static void ipw_bg_rx_queue_replenish(void *data)
4926 {
4927         struct ipw_priv *priv = data;
4928         mutex_lock(&priv->mutex);
4929         ipw_rx_queue_replenish(data);
4930         mutex_unlock(&priv->mutex);
4931 }
4932
4933 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4934  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
4935  * This free routine walks the list of POOL entries and if SKB is set to
4936  * non NULL it is unmapped and freed
4937  */
4938 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4939 {
4940         int i;
4941
4942         if (!rxq)
4943                 return;
4944
4945         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4946                 if (rxq->pool[i].skb != NULL) {
4947                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4948                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4949                         dev_kfree_skb(rxq->pool[i].skb);
4950                 }
4951         }
4952
4953         kfree(rxq);
4954 }
4955
4956 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4957 {
4958         struct ipw_rx_queue *rxq;
4959         int i;
4960
4961         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
4962         if (unlikely(!rxq)) {
4963                 IPW_ERROR("memory allocation failed\n");
4964                 return NULL;
4965         }
4966         spin_lock_init(&rxq->lock);
4967         INIT_LIST_HEAD(&rxq->rx_free);
4968         INIT_LIST_HEAD(&rxq->rx_used);
4969
4970         /* Fill the rx_used queue with _all_ of the Rx buffers */
4971         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4972                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4973
4974         /* Set us so that we have processed and used all buffers, but have
4975          * not restocked the Rx queue with fresh buffers */
4976         rxq->read = rxq->write = 0;
4977         rxq->processed = RX_QUEUE_SIZE - 1;
4978         rxq->free_count = 0;
4979
4980         return rxq;
4981 }
4982
4983 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4984 {
4985         rate &= ~IEEE80211_BASIC_RATE_MASK;
4986         if (ieee_mode == IEEE_A) {
4987                 switch (rate) {
4988                 case IEEE80211_OFDM_RATE_6MB:
4989                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4990                             1 : 0;
4991                 case IEEE80211_OFDM_RATE_9MB:
4992                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4993                             1 : 0;
4994                 case IEEE80211_OFDM_RATE_12MB:
4995                         return priv->
4996                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4997                 case IEEE80211_OFDM_RATE_18MB:
4998                         return priv->
4999                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5000                 case IEEE80211_OFDM_RATE_24MB:
5001                         return priv->
5002                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5003                 case IEEE80211_OFDM_RATE_36MB:
5004                         return priv->
5005                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5006                 case IEEE80211_OFDM_RATE_48MB:
5007                         return priv->
5008                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5009                 case IEEE80211_OFDM_RATE_54MB:
5010                         return priv->
5011                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5012                 default:
5013                         return 0;
5014                 }
5015         }
5016
5017         /* B and G mixed */
5018         switch (rate) {
5019         case IEEE80211_CCK_RATE_1MB:
5020                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5021         case IEEE80211_CCK_RATE_2MB:
5022                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5023         case IEEE80211_CCK_RATE_5MB:
5024                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5025         case IEEE80211_CCK_RATE_11MB:
5026                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5027         }
5028
5029         /* If we are limited to B modulations, bail at this point */
5030         if (ieee_mode == IEEE_B)
5031                 return 0;
5032
5033         /* G */
5034         switch (rate) {
5035         case IEEE80211_OFDM_RATE_6MB:
5036                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5037         case IEEE80211_OFDM_RATE_9MB:
5038                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5039         case IEEE80211_OFDM_RATE_12MB:
5040                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5041         case IEEE80211_OFDM_RATE_18MB:
5042                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5043         case IEEE80211_OFDM_RATE_24MB:
5044                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5045         case IEEE80211_OFDM_RATE_36MB:
5046                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5047         case IEEE80211_OFDM_RATE_48MB:
5048                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5049         case IEEE80211_OFDM_RATE_54MB:
5050                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5051         }
5052
5053         return 0;
5054 }
5055
5056 static int ipw_compatible_rates(struct ipw_priv *priv,
5057                                 const struct ieee80211_network *network,
5058                                 struct ipw_supported_rates *rates)
5059 {
5060         int num_rates, i;
5061
5062         memset(rates, 0, sizeof(*rates));
5063         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5064         rates->num_rates = 0;
5065         for (i = 0; i < num_rates; i++) {
5066                 if (!ipw_is_rate_in_mask(priv, network->mode,
5067                                          network->rates[i])) {
5068
5069                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5070                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5071                                                "rate %02X\n",
5072                                                network->rates[i]);
5073                                 rates->supported_rates[rates->num_rates++] =
5074                                     network->rates[i];
5075                                 continue;
5076                         }
5077
5078                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5079                                        network->rates[i], priv->rates_mask);
5080                         continue;
5081                 }
5082
5083                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5084         }
5085
5086         num_rates = min(network->rates_ex_len,
5087                         (u8) (IPW_MAX_RATES - num_rates));
5088         for (i = 0; i < num_rates; i++) {
5089                 if (!ipw_is_rate_in_mask(priv, network->mode,
5090                                          network->rates_ex[i])) {
5091                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5092                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5093                                                "rate %02X\n",
5094                                                network->rates_ex[i]);
5095                                 rates->supported_rates[rates->num_rates++] =
5096                                     network->rates[i];
5097                                 continue;
5098                         }
5099
5100                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5101                                        network->rates_ex[i], priv->rates_mask);
5102                         continue;
5103                 }
5104
5105                 rates->supported_rates[rates->num_rates++] =
5106                     network->rates_ex[i];
5107         }
5108
5109         return 1;
5110 }
5111
5112 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5113                                   const struct ipw_supported_rates *src)
5114 {
5115         u8 i;
5116         for (i = 0; i < src->num_rates; i++)
5117                 dest->supported_rates[i] = src->supported_rates[i];
5118         dest->num_rates = src->num_rates;
5119 }
5120
5121 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5122  * mask should ever be used -- right now all callers to add the scan rates are
5123  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5124 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5125                                    u8 modulation, u32 rate_mask)
5126 {
5127         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5128             IEEE80211_BASIC_RATE_MASK : 0;
5129
5130         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5131                 rates->supported_rates[rates->num_rates++] =
5132                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5133
5134         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5135                 rates->supported_rates[rates->num_rates++] =
5136                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5137
5138         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5139                 rates->supported_rates[rates->num_rates++] = basic_mask |
5140                     IEEE80211_CCK_RATE_5MB;
5141
5142         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5143                 rates->supported_rates[rates->num_rates++] = basic_mask |
5144                     IEEE80211_CCK_RATE_11MB;
5145 }
5146
5147 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5148                                     u8 modulation, u32 rate_mask)
5149 {
5150         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5151             IEEE80211_BASIC_RATE_MASK : 0;
5152
5153         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5154                 rates->supported_rates[rates->num_rates++] = basic_mask |
5155                     IEEE80211_OFDM_RATE_6MB;
5156
5157         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5158                 rates->supported_rates[rates->num_rates++] =
5159                     IEEE80211_OFDM_RATE_9MB;
5160
5161         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5162                 rates->supported_rates[rates->num_rates++] = basic_mask |
5163                     IEEE80211_OFDM_RATE_12MB;
5164
5165         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5166                 rates->supported_rates[rates->num_rates++] =
5167                     IEEE80211_OFDM_RATE_18MB;
5168
5169         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5170                 rates->supported_rates[rates->num_rates++] = basic_mask |
5171                     IEEE80211_OFDM_RATE_24MB;
5172
5173         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5174                 rates->supported_rates[rates->num_rates++] =
5175                     IEEE80211_OFDM_RATE_36MB;
5176
5177         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5178                 rates->supported_rates[rates->num_rates++] =
5179                     IEEE80211_OFDM_RATE_48MB;
5180
5181         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5182                 rates->supported_rates[rates->num_rates++] =
5183                     IEEE80211_OFDM_RATE_54MB;
5184 }
5185
5186 struct ipw_network_match {
5187         struct ieee80211_network *network;
5188         struct ipw_supported_rates rates;
5189 };
5190
5191 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5192                                   struct ipw_network_match *match,
5193                                   struct ieee80211_network *network,
5194                                   int roaming)
5195 {
5196         struct ipw_supported_rates rates;
5197
5198         /* Verify that this network's capability is compatible with the
5199          * current mode (AdHoc or Infrastructure) */
5200         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5201              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5202                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5203                                 "capability mismatch.\n",
5204                                 escape_essid(network->ssid, network->ssid_len),
5205                                 MAC_ARG(network->bssid));
5206                 return 0;
5207         }
5208
5209         /* If we do not have an ESSID for this AP, we can not associate with
5210          * it */
5211         if (network->flags & NETWORK_EMPTY_ESSID) {
5212                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5213                                 "because of hidden ESSID.\n",
5214                                 escape_essid(network->ssid, network->ssid_len),
5215                                 MAC_ARG(network->bssid));
5216                 return 0;
5217         }
5218
5219         if (unlikely(roaming)) {
5220                 /* If we are roaming, then ensure check if this is a valid
5221                  * network to try and roam to */
5222                 if ((network->ssid_len != match->network->ssid_len) ||
5223                     memcmp(network->ssid, match->network->ssid,
5224                            network->ssid_len)) {
5225                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5226                                         "because of non-network ESSID.\n",
5227                                         escape_essid(network->ssid,
5228                                                      network->ssid_len),
5229                                         MAC_ARG(network->bssid));
5230                         return 0;
5231                 }
5232         } else {
5233                 /* If an ESSID has been configured then compare the broadcast
5234                  * ESSID to ours */
5235                 if ((priv->config & CFG_STATIC_ESSID) &&
5236                     ((network->ssid_len != priv->essid_len) ||
5237                      memcmp(network->ssid, priv->essid,
5238                             min(network->ssid_len, priv->essid_len)))) {
5239                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5240
5241                         strncpy(escaped,
5242                                 escape_essid(network->ssid, network->ssid_len),
5243                                 sizeof(escaped));
5244                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5245                                         "because of ESSID mismatch: '%s'.\n",
5246                                         escaped, MAC_ARG(network->bssid),
5247                                         escape_essid(priv->essid,
5248                                                      priv->essid_len));
5249                         return 0;
5250                 }
5251         }
5252
5253         /* If the old network rate is better than this one, don't bother
5254          * testing everything else. */
5255
5256         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5257                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5258                                 "current network.\n",
5259                                 escape_essid(match->network->ssid,
5260                                              match->network->ssid_len));
5261                 return 0;
5262         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5263                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5264                                 "current network.\n",
5265                                 escape_essid(match->network->ssid,
5266                                              match->network->ssid_len));
5267                 return 0;
5268         }
5269
5270         /* Now go through and see if the requested network is valid... */
5271         if (priv->ieee->scan_age != 0 &&
5272             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5273                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5274                                 "because of age: %ums.\n",
5275                                 escape_essid(network->ssid, network->ssid_len),
5276                                 MAC_ARG(network->bssid),
5277                                 jiffies_to_msecs(jiffies -
5278                                                  network->last_scanned));
5279                 return 0;
5280         }
5281
5282         if ((priv->config & CFG_STATIC_CHANNEL) &&
5283             (network->channel != priv->channel)) {
5284                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5285                                 "because of channel mismatch: %d != %d.\n",
5286                                 escape_essid(network->ssid, network->ssid_len),
5287                                 MAC_ARG(network->bssid),
5288                                 network->channel, priv->channel);
5289                 return 0;
5290         }
5291
5292         /* Verify privacy compatability */
5293         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5294             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5295                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5296                                 "because of privacy mismatch: %s != %s.\n",
5297                                 escape_essid(network->ssid, network->ssid_len),
5298                                 MAC_ARG(network->bssid),
5299                                 priv->
5300                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5301                                 network->
5302                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5303                                 "off");
5304                 return 0;
5305         }
5306
5307         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5308                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5309                                 "because of the same BSSID match: " MAC_FMT
5310                                 ".\n", escape_essid(network->ssid,
5311                                                     network->ssid_len),
5312                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5313                 return 0;
5314         }
5315
5316         /* Filter out any incompatible freq / mode combinations */
5317         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5318                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5319                                 "because of invalid frequency/mode "
5320                                 "combination.\n",
5321                                 escape_essid(network->ssid, network->ssid_len),
5322                                 MAC_ARG(network->bssid));
5323                 return 0;
5324         }
5325
5326         /* Ensure that the rates supported by the driver are compatible with
5327          * this AP, including verification of basic rates (mandatory) */
5328         if (!ipw_compatible_rates(priv, network, &rates)) {
5329                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5330                                 "because configured rate mask excludes "
5331                                 "AP mandatory rate.\n",
5332                                 escape_essid(network->ssid, network->ssid_len),
5333                                 MAC_ARG(network->bssid));
5334                 return 0;
5335         }
5336
5337         if (rates.num_rates == 0) {
5338                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5339                                 "because of no compatible rates.\n",
5340                                 escape_essid(network->ssid, network->ssid_len),
5341                                 MAC_ARG(network->bssid));
5342                 return 0;
5343         }
5344
5345         /* TODO: Perform any further minimal comparititive tests.  We do not
5346          * want to put too much policy logic here; intelligent scan selection
5347          * should occur within a generic IEEE 802.11 user space tool.  */
5348
5349         /* Set up 'new' AP to this network */
5350         ipw_copy_rates(&match->rates, &rates);
5351         match->network = network;
5352         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5353                         escape_essid(network->ssid, network->ssid_len),
5354                         MAC_ARG(network->bssid));
5355
5356         return 1;
5357 }
5358
5359 static void ipw_merge_adhoc_network(void *data)
5360 {
5361         struct ipw_priv *priv = data;
5362         struct ieee80211_network *network = NULL;
5363         struct ipw_network_match match = {
5364                 .network = priv->assoc_network
5365         };
5366
5367         if ((priv->status & STATUS_ASSOCIATED) &&
5368             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5369                 /* First pass through ROAM process -- look for a better
5370                  * network */
5371                 unsigned long flags;
5372
5373                 spin_lock_irqsave(&priv->ieee->lock, flags);
5374                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5375                         if (network != priv->assoc_network)
5376                                 ipw_find_adhoc_network(priv, &match, network,
5377                                                        1);
5378                 }
5379                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5380
5381                 if (match.network == priv->assoc_network) {
5382                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5383                                         "merge to.\n");
5384                         return;
5385                 }
5386
5387                 mutex_lock(&priv->mutex);
5388                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5389                         IPW_DEBUG_MERGE("remove network %s\n",
5390                                         escape_essid(priv->essid,
5391                                                      priv->essid_len));
5392                         ipw_remove_current_network(priv);
5393                 }
5394
5395                 ipw_disassociate(priv);
5396                 priv->assoc_network = match.network;
5397                 mutex_unlock(&priv->mutex);
5398                 return;
5399         }
5400 }
5401
5402 static int ipw_best_network(struct ipw_priv *priv,
5403                             struct ipw_network_match *match,
5404                             struct ieee80211_network *network, int roaming)
5405 {
5406         struct ipw_supported_rates rates;
5407
5408         /* Verify that this network's capability is compatible with the
5409          * current mode (AdHoc or Infrastructure) */
5410         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5411              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5412             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5413              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5414                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5415                                 "capability mismatch.\n",
5416                                 escape_essid(network->ssid, network->ssid_len),
5417                                 MAC_ARG(network->bssid));
5418                 return 0;
5419         }
5420
5421         /* If we do not have an ESSID for this AP, we can not associate with
5422          * it */
5423         if (network->flags & NETWORK_EMPTY_ESSID) {
5424                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5425                                 "because of hidden ESSID.\n",
5426                                 escape_essid(network->ssid, network->ssid_len),
5427                                 MAC_ARG(network->bssid));
5428                 return 0;
5429         }
5430
5431         if (unlikely(roaming)) {
5432                 /* If we are roaming, then ensure check if this is a valid
5433                  * network to try and roam to */
5434                 if ((network->ssid_len != match->network->ssid_len) ||
5435                     memcmp(network->ssid, match->network->ssid,
5436                            network->ssid_len)) {
5437                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5438                                         "because of non-network ESSID.\n",
5439                                         escape_essid(network->ssid,
5440                                                      network->ssid_len),
5441                                         MAC_ARG(network->bssid));
5442                         return 0;
5443                 }
5444         } else {
5445                 /* If an ESSID has been configured then compare the broadcast
5446                  * ESSID to ours */
5447                 if ((priv->config & CFG_STATIC_ESSID) &&
5448                     ((network->ssid_len != priv->essid_len) ||
5449                      memcmp(network->ssid, priv->essid,
5450                             min(network->ssid_len, priv->essid_len)))) {
5451                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5452                         strncpy(escaped,
5453                                 escape_essid(network->ssid, network->ssid_len),
5454                                 sizeof(escaped));
5455                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5456                                         "because of ESSID mismatch: '%s'.\n",
5457                                         escaped, MAC_ARG(network->bssid),
5458                                         escape_essid(priv->essid,
5459                                                      priv->essid_len));
5460                         return 0;
5461                 }
5462         }
5463
5464         /* If the old network rate is better than this one, don't bother
5465          * testing everything else. */
5466         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5467                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5468                 strncpy(escaped,
5469                         escape_essid(network->ssid, network->ssid_len),
5470                         sizeof(escaped));
5471                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5472                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5473                                 escaped, MAC_ARG(network->bssid),
5474                                 escape_essid(match->network->ssid,
5475                                              match->network->ssid_len),
5476                                 MAC_ARG(match->network->bssid));
5477                 return 0;
5478         }
5479
5480         /* If this network has already had an association attempt within the
5481          * last 3 seconds, do not try and associate again... */
5482         if (network->last_associate &&
5483             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5484                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5485                                 "because of storming (%ums since last "
5486                                 "assoc attempt).\n",
5487                                 escape_essid(network->ssid, network->ssid_len),
5488                                 MAC_ARG(network->bssid),
5489                                 jiffies_to_msecs(jiffies -
5490                                                  network->last_associate));
5491                 return 0;
5492         }
5493
5494         /* Now go through and see if the requested network is valid... */
5495         if (priv->ieee->scan_age != 0 &&
5496             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5497                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5498                                 "because of age: %ums.\n",
5499                                 escape_essid(network->ssid, network->ssid_len),
5500                                 MAC_ARG(network->bssid),
5501                                 jiffies_to_msecs(jiffies -
5502                                                  network->last_scanned));
5503                 return 0;
5504         }
5505
5506         if ((priv->config & CFG_STATIC_CHANNEL) &&
5507             (network->channel != priv->channel)) {
5508                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5509                                 "because of channel mismatch: %d != %d.\n",
5510                                 escape_essid(network->ssid, network->ssid_len),
5511                                 MAC_ARG(network->bssid),
5512                                 network->channel, priv->channel);
5513                 return 0;
5514         }
5515
5516         /* Verify privacy compatability */
5517         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5518             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5519                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5520                                 "because of privacy mismatch: %s != %s.\n",
5521                                 escape_essid(network->ssid, network->ssid_len),
5522                                 MAC_ARG(network->bssid),
5523                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5524                                 "off",
5525                                 network->capability &
5526                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5527                 return 0;
5528         }
5529
5530         if ((priv->config & CFG_STATIC_BSSID) &&
5531             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5532                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5533                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5534                                 escape_essid(network->ssid, network->ssid_len),
5535                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5536                 return 0;
5537         }
5538
5539         /* Filter out any incompatible freq / mode combinations */
5540         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5541                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5542                                 "because of invalid frequency/mode "
5543                                 "combination.\n",
5544                                 escape_essid(network->ssid, network->ssid_len),
5545                                 MAC_ARG(network->bssid));
5546                 return 0;
5547         }
5548
5549         /* Filter out invalid channel in current GEO */
5550         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5551                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5552                                 "because of invalid channel in current GEO\n",
5553                                 escape_essid(network->ssid, network->ssid_len),
5554                                 MAC_ARG(network->bssid));
5555                 return 0;
5556         }
5557
5558         /* Ensure that the rates supported by the driver are compatible with
5559          * this AP, including verification of basic rates (mandatory) */
5560         if (!ipw_compatible_rates(priv, network, &rates)) {
5561                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5562                                 "because configured rate mask excludes "
5563                                 "AP mandatory rate.\n",
5564                                 escape_essid(network->ssid, network->ssid_len),
5565                                 MAC_ARG(network->bssid));
5566                 return 0;
5567         }
5568
5569         if (rates.num_rates == 0) {
5570                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5571                                 "because of no compatible rates.\n",
5572                                 escape_essid(network->ssid, network->ssid_len),
5573                                 MAC_ARG(network->bssid));
5574                 return 0;
5575         }
5576
5577         /* TODO: Perform any further minimal comparititive tests.  We do not
5578          * want to put too much policy logic here; intelligent scan selection
5579          * should occur within a generic IEEE 802.11 user space tool.  */
5580
5581         /* Set up 'new' AP to this network */
5582         ipw_copy_rates(&match->rates, &rates);
5583         match->network = network;
5584
5585         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5586                         escape_essid(network->ssid, network->ssid_len),
5587                         MAC_ARG(network->bssid));
5588
5589         return 1;
5590 }
5591
5592 static void ipw_adhoc_create(struct ipw_priv *priv,
5593                              struct ieee80211_network *network)
5594 {
5595         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5596         int i;
5597
5598         /*
5599          * For the purposes of scanning, we can set our wireless mode
5600          * to trigger scans across combinations of bands, but when it
5601          * comes to creating a new ad-hoc network, we have tell the FW
5602          * exactly which band to use.
5603          *
5604          * We also have the possibility of an invalid channel for the
5605          * chossen band.  Attempting to create a new ad-hoc network
5606          * with an invalid channel for wireless mode will trigger a
5607          * FW fatal error.
5608          *
5609          */
5610         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5611         case IEEE80211_52GHZ_BAND:
5612                 network->mode = IEEE_A;
5613                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5614                 if (i == -1)
5615                         BUG();
5616                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5617                         IPW_WARNING("Overriding invalid channel\n");
5618                         priv->channel = geo->a[0].channel;
5619                 }
5620                 break;
5621
5622         case IEEE80211_24GHZ_BAND:
5623                 if (priv->ieee->mode & IEEE_G)
5624                         network->mode = IEEE_G;
5625                 else
5626                         network->mode = IEEE_B;
5627                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5628                 if (i == -1)
5629                         BUG();
5630                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5631                         IPW_WARNING("Overriding invalid channel\n");
5632                         priv->channel = geo->bg[0].channel;
5633                 }
5634                 break;
5635
5636         default:
5637                 IPW_WARNING("Overriding invalid channel\n");
5638                 if (priv->ieee->mode & IEEE_A) {
5639                         network->mode = IEEE_A;
5640                         priv->channel = geo->a[0].channel;
5641                 } else if (priv->ieee->mode & IEEE_G) {
5642                         network->mode = IEEE_G;
5643                         priv->channel = geo->bg[0].channel;
5644                 } else {
5645                         network->mode = IEEE_B;
5646                         priv->channel = geo->bg[0].channel;
5647                 }
5648                 break;
5649         }
5650
5651         network->channel = priv->channel;
5652         priv->config |= CFG_ADHOC_PERSIST;
5653         ipw_create_bssid(priv, network->bssid);
5654         network->ssid_len = priv->essid_len;
5655         memcpy(network->ssid, priv->essid, priv->essid_len);
5656         memset(&network->stats, 0, sizeof(network->stats));
5657         network->capability = WLAN_CAPABILITY_IBSS;
5658         if (!(priv->config & CFG_PREAMBLE_LONG))
5659                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5660         if (priv->capability & CAP_PRIVACY_ON)
5661                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5662         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5663         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5664         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5665         memcpy(network->rates_ex,
5666                &priv->rates.supported_rates[network->rates_len],
5667                network->rates_ex_len);
5668         network->last_scanned = 0;
5669         network->flags = 0;
5670         network->last_associate = 0;
5671         network->time_stamp[0] = 0;
5672         network->time_stamp[1] = 0;
5673         network->beacon_interval = 100; /* Default */
5674         network->listen_interval = 10;  /* Default */
5675         network->atim_window = 0;       /* Default */
5676         network->wpa_ie_len = 0;
5677         network->rsn_ie_len = 0;
5678 }
5679
5680 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5681 {
5682         struct ipw_tgi_tx_key key;
5683
5684         if (!(priv->ieee->sec.flags & (1 << index)))
5685                 return;
5686
5687         key.key_id = index;
5688         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5689         key.security_type = type;
5690         key.station_index = 0;  /* always 0 for BSS */
5691         key.flags = 0;
5692         /* 0 for new key; previous value of counter (after fatal error) */
5693         key.tx_counter[0] = 0;
5694         key.tx_counter[1] = 0;
5695
5696         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5697 }
5698
5699 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5700 {
5701         struct ipw_wep_key key;
5702         int i;
5703
5704         key.cmd_id = DINO_CMD_WEP_KEY;
5705         key.seq_num = 0;
5706
5707         /* Note: AES keys cannot be set for multiple times.
5708          * Only set it at the first time. */
5709         for (i = 0; i < 4; i++) {
5710                 key.key_index = i | type;
5711                 if (!(priv->ieee->sec.flags & (1 << i))) {
5712                         key.key_size = 0;
5713                         continue;
5714                 }
5715
5716                 key.key_size = priv->ieee->sec.key_sizes[i];
5717                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5718
5719                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5720         }
5721 }
5722
5723 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5724 {
5725         if (priv->ieee->host_encrypt)
5726                 return;
5727
5728         switch (level) {
5729         case SEC_LEVEL_3:
5730                 priv->sys_config.disable_unicast_decryption = 0;
5731                 priv->ieee->host_decrypt = 0;
5732                 break;
5733         case SEC_LEVEL_2:
5734                 priv->sys_config.disable_unicast_decryption = 1;
5735                 priv->ieee->host_decrypt = 1;
5736                 break;
5737         case SEC_LEVEL_1:
5738                 priv->sys_config.disable_unicast_decryption = 0;
5739                 priv->ieee->host_decrypt = 0;
5740                 break;
5741         case SEC_LEVEL_0:
5742                 priv->sys_config.disable_unicast_decryption = 1;
5743                 break;
5744         default:
5745                 break;
5746         }
5747 }
5748
5749 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5750 {
5751         if (priv->ieee->host_encrypt)
5752                 return;
5753
5754         switch (level) {
5755         case SEC_LEVEL_3:
5756                 priv->sys_config.disable_multicast_decryption = 0;
5757                 break;
5758         case SEC_LEVEL_2:
5759                 priv->sys_config.disable_multicast_decryption = 1;
5760                 break;
5761         case SEC_LEVEL_1:
5762                 priv->sys_config.disable_multicast_decryption = 0;
5763                 break;
5764         case SEC_LEVEL_0:
5765                 priv->sys_config.disable_multicast_decryption = 1;
5766                 break;
5767         default:
5768                 break;
5769         }
5770 }
5771
5772 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5773 {
5774         switch (priv->ieee->sec.level) {
5775         case SEC_LEVEL_3:
5776                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5777                         ipw_send_tgi_tx_key(priv,
5778                                             DCT_FLAG_EXT_SECURITY_CCM,
5779                                             priv->ieee->sec.active_key);
5780
5781                 if (!priv->ieee->host_mc_decrypt)
5782                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5783                 break;
5784         case SEC_LEVEL_2:
5785                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5786                         ipw_send_tgi_tx_key(priv,
5787                                             DCT_FLAG_EXT_SECURITY_TKIP,
5788                                             priv->ieee->sec.active_key);
5789                 break;
5790         case SEC_LEVEL_1:
5791                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5792                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5793                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5794                 break;
5795         case SEC_LEVEL_0:
5796         default:
5797                 break;
5798         }
5799 }
5800
5801 static void ipw_adhoc_check(void *data)
5802 {
5803         struct ipw_priv *priv = data;
5804
5805         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5806             !(priv->config & CFG_ADHOC_PERSIST)) {
5807                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5808                           IPW_DL_STATE | IPW_DL_ASSOC,
5809                           "Missed beacon: %d - disassociate\n",
5810                           priv->missed_adhoc_beacons);
5811                 ipw_remove_current_network(priv);
5812                 ipw_disassociate(priv);
5813                 return;
5814         }
5815
5816         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5817                            priv->assoc_request.beacon_interval);
5818 }
5819
5820 static void ipw_bg_adhoc_check(void *data)
5821 {
5822         struct ipw_priv *priv = data;
5823         mutex_lock(&priv->mutex);
5824         ipw_adhoc_check(data);
5825         mutex_unlock(&priv->mutex);
5826 }
5827
5828 #ifdef CONFIG_IPW2200_DEBUG
5829 static void ipw_debug_config(struct ipw_priv *priv)
5830 {
5831         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5832                        "[CFG 0x%08X]\n", priv->config);
5833         if (priv->config & CFG_STATIC_CHANNEL)
5834                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5835         else
5836                 IPW_DEBUG_INFO("Channel unlocked.\n");
5837         if (priv->config & CFG_STATIC_ESSID)
5838                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5839                                escape_essid(priv->essid, priv->essid_len));
5840         else
5841                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5842         if (priv->config & CFG_STATIC_BSSID)
5843                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5844                                MAC_ARG(priv->bssid));
5845         else
5846                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5847         if (priv->capability & CAP_PRIVACY_ON)
5848                 IPW_DEBUG_INFO("PRIVACY on\n");
5849         else
5850                 IPW_DEBUG_INFO("PRIVACY off\n");
5851         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5852 }
5853 #else
5854 #define ipw_debug_config(x) do {} while (0)
5855 #endif
5856
5857 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5858 {
5859         /* TODO: Verify that this works... */
5860         struct ipw_fixed_rate fr = {
5861                 .tx_rates = priv->rates_mask
5862         };
5863         u32 reg;
5864         u16 mask = 0;
5865
5866         /* Identify 'current FW band' and match it with the fixed
5867          * Tx rates */
5868
5869         switch (priv->ieee->freq_band) {
5870         case IEEE80211_52GHZ_BAND:      /* A only */
5871                 /* IEEE_A */
5872                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5873                         /* Invalid fixed rate mask */
5874                         IPW_DEBUG_WX
5875                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5876                         fr.tx_rates = 0;
5877                         break;
5878                 }
5879
5880                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5881                 break;
5882
5883         default:                /* 2.4Ghz or Mixed */
5884                 /* IEEE_B */
5885                 if (mode == IEEE_B) {
5886                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5887                                 /* Invalid fixed rate mask */
5888                                 IPW_DEBUG_WX
5889                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5890                                 fr.tx_rates = 0;
5891                         }
5892                         break;
5893                 }
5894
5895                 /* IEEE_G */
5896                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5897                                     IEEE80211_OFDM_RATES_MASK)) {
5898                         /* Invalid fixed rate mask */
5899                         IPW_DEBUG_WX
5900                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5901                         fr.tx_rates = 0;
5902                         break;
5903                 }
5904
5905                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5906                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5907                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5908                 }
5909
5910                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5911                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5912                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5913                 }
5914
5915                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5916                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5917                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5918                 }
5919
5920                 fr.tx_rates |= mask;
5921                 break;
5922         }
5923
5924         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5925         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5926 }
5927
5928 static void ipw_abort_scan(struct ipw_priv *priv)
5929 {
5930         int err;
5931
5932         if (priv->status & STATUS_SCAN_ABORTING) {
5933                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5934                 return;
5935         }
5936         priv->status |= STATUS_SCAN_ABORTING;
5937
5938         err = ipw_send_scan_abort(priv);
5939         if (err)
5940                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5941 }
5942
5943 static void ipw_add_scan_channels(struct ipw_priv *priv,
5944                                   struct ipw_scan_request_ext *scan,
5945                                   int scan_type)
5946 {
5947         int channel_index = 0;
5948         const struct ieee80211_geo *geo;
5949         int i;
5950
5951         geo = ieee80211_get_geo(priv->ieee);
5952
5953         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5954                 int start = channel_index;
5955                 for (i = 0; i < geo->a_channels; i++) {
5956                         if ((priv->status & STATUS_ASSOCIATED) &&
5957                             geo->a[i].channel == priv->channel)
5958                                 continue;
5959                         channel_index++;
5960                         scan->channels_list[channel_index] = geo->a[i].channel;
5961                         ipw_set_scan_type(scan, channel_index,
5962                                           geo->a[i].
5963                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5964                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5965                                           scan_type);
5966                 }
5967
5968                 if (start != channel_index) {
5969                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5970                             (channel_index - start);
5971                         channel_index++;
5972                 }
5973         }
5974
5975         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5976                 int start = channel_index;
5977                 if (priv->config & CFG_SPEED_SCAN) {
5978                         int index;
5979                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5980                                 /* nop out the list */
5981                                 [0] = 0
5982                         };
5983
5984                         u8 channel;
5985                         while (channel_index < IPW_SCAN_CHANNELS) {
5986                                 channel =
5987                                     priv->speed_scan[priv->speed_scan_pos];
5988                                 if (channel == 0) {
5989                                         priv->speed_scan_pos = 0;
5990                                         channel = priv->speed_scan[0];
5991                                 }
5992                                 if ((priv->status & STATUS_ASSOCIATED) &&
5993                                     channel == priv->channel) {
5994                                         priv->speed_scan_pos++;
5995                                         continue;
5996                                 }
5997
5998                                 /* If this channel has already been
5999                                  * added in scan, break from loop
6000                                  * and this will be the first channel
6001                                  * in the next scan.
6002                                  */
6003                                 if (channels[channel - 1] != 0)
6004                                         break;
6005
6006                                 channels[channel - 1] = 1;
6007                                 priv->speed_scan_pos++;
6008                                 channel_index++;
6009                                 scan->channels_list[channel_index] = channel;
6010                                 index =
6011                                     ieee80211_channel_to_index(priv->ieee, channel);
6012                                 ipw_set_scan_type(scan, channel_index,
6013                                                   geo->bg[index].
6014                                                   flags &
6015                                                   IEEE80211_CH_PASSIVE_ONLY ?
6016                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6017                                                   : scan_type);
6018                         }
6019                 } else {
6020                         for (i = 0; i < geo->bg_channels; i++) {
6021                                 if ((priv->status & STATUS_ASSOCIATED) &&
6022                                     geo->bg[i].channel == priv->channel)
6023                                         continue;
6024                                 channel_index++;
6025                                 scan->channels_list[channel_index] =
6026                                     geo->bg[i].channel;
6027                                 ipw_set_scan_type(scan, channel_index,
6028                                                   geo->bg[i].
6029                                                   flags &
6030                                                   IEEE80211_CH_PASSIVE_ONLY ?
6031                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6032                                                   : scan_type);
6033                         }
6034                 }
6035
6036                 if (start != channel_index) {
6037                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6038                             (channel_index - start);
6039                 }
6040         }
6041 }
6042
6043 static int ipw_request_scan(struct ipw_priv *priv)
6044 {
6045         struct ipw_scan_request_ext scan;
6046         int err = 0, scan_type;
6047
6048         if (!(priv->status & STATUS_INIT) ||
6049             (priv->status & STATUS_EXIT_PENDING))
6050                 return 0;
6051
6052         mutex_lock(&priv->mutex);
6053
6054         if (priv->status & STATUS_SCANNING) {
6055                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6056                 priv->status |= STATUS_SCAN_PENDING;
6057                 goto done;
6058         }
6059
6060         if (!(priv->status & STATUS_SCAN_FORCED) &&
6061             priv->status & STATUS_SCAN_ABORTING) {
6062                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6063                 priv->status |= STATUS_SCAN_PENDING;
6064                 goto done;
6065         }
6066
6067         if (priv->status & STATUS_RF_KILL_MASK) {
6068                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6069                 priv->status |= STATUS_SCAN_PENDING;
6070                 goto done;
6071         }
6072
6073         memset(&scan, 0, sizeof(scan));
6074
6075         if (priv->config & CFG_SPEED_SCAN)
6076                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6077                     cpu_to_le16(30);
6078         else
6079                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6080                     cpu_to_le16(20);
6081
6082         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6083             cpu_to_le16(20);
6084         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6085
6086         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6087
6088 #ifdef CONFIG_IPW2200_MONITOR
6089         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6090                 u8 channel;
6091                 u8 band = 0;
6092
6093                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6094                 case IEEE80211_52GHZ_BAND:
6095                         band = (u8) (IPW_A_MODE << 6) | 1;
6096                         channel = priv->channel;
6097                         break;
6098
6099                 case IEEE80211_24GHZ_BAND:
6100                         band = (u8) (IPW_B_MODE << 6) | 1;
6101                         channel = priv->channel;
6102                         break;
6103
6104                 default:
6105                         band = (u8) (IPW_B_MODE << 6) | 1;
6106                         channel = 9;
6107                         break;
6108                 }
6109
6110                 scan.channels_list[0] = band;
6111                 scan.channels_list[1] = channel;
6112                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6113
6114                 /* NOTE:  The card will sit on this channel for this time
6115                  * period.  Scan aborts are timing sensitive and frequently
6116                  * result in firmware restarts.  As such, it is best to
6117                  * set a small dwell_time here and just keep re-issuing
6118                  * scans.  Otherwise fast channel hopping will not actually
6119                  * hop channels.
6120                  *
6121                  * TODO: Move SPEED SCAN support to all modes and bands */
6122                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6123                     cpu_to_le16(2000);
6124         } else {
6125 #endif                          /* CONFIG_IPW2200_MONITOR */
6126                 /* If we are roaming, then make this a directed scan for the
6127                  * current network.  Otherwise, ensure that every other scan
6128                  * is a fast channel hop scan */
6129                 if ((priv->status & STATUS_ROAMING)
6130                     || (!(priv->status & STATUS_ASSOCIATED)
6131                         && (priv->config & CFG_STATIC_ESSID)
6132                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6133                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6134                         if (err) {
6135                                 IPW_DEBUG_HC("Attempt to send SSID command "
6136                                              "failed.\n");
6137                                 goto done;
6138                         }
6139
6140                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6141                 } else
6142                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6143
6144                 ipw_add_scan_channels(priv, &scan, scan_type);
6145 #ifdef CONFIG_IPW2200_MONITOR
6146         }
6147 #endif
6148
6149         err = ipw_send_scan_request_ext(priv, &scan);
6150         if (err) {
6151                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6152                 goto done;
6153         }
6154
6155         priv->status |= STATUS_SCANNING;
6156         priv->status &= ~STATUS_SCAN_PENDING;
6157         queue_delayed_work(priv->workqueue, &priv->scan_check,
6158                            IPW_SCAN_CHECK_WATCHDOG);
6159       done:
6160         mutex_unlock(&priv->mutex);
6161         return err;
6162 }
6163
6164 static void ipw_bg_abort_scan(void *data)
6165 {
6166         struct ipw_priv *priv = data;
6167         mutex_lock(&priv->mutex);
6168         ipw_abort_scan(data);
6169         mutex_unlock(&priv->mutex);
6170 }
6171
6172 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6173 {
6174         /* This is called when wpa_supplicant loads and closes the driver
6175          * interface. */
6176         priv->ieee->wpa_enabled = value;
6177         return 0;
6178 }
6179
6180 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6181 {
6182         struct ieee80211_device *ieee = priv->ieee;
6183         struct ieee80211_security sec = {
6184                 .flags = SEC_AUTH_MODE,
6185         };
6186         int ret = 0;
6187
6188         if (value & IW_AUTH_ALG_SHARED_KEY) {
6189                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6190                 ieee->open_wep = 0;
6191         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6192                 sec.auth_mode = WLAN_AUTH_OPEN;
6193                 ieee->open_wep = 1;
6194         } else if (value & IW_AUTH_ALG_LEAP) {
6195                 sec.auth_mode = WLAN_AUTH_LEAP;
6196                 ieee->open_wep = 1;
6197         } else
6198                 return -EINVAL;
6199
6200         if (ieee->set_security)
6201                 ieee->set_security(ieee->dev, &sec);
6202         else
6203                 ret = -EOPNOTSUPP;
6204
6205         return ret;
6206 }
6207
6208 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6209                                 int wpa_ie_len)
6210 {
6211         /* make sure WPA is enabled */
6212         ipw_wpa_enable(priv, 1);
6213
6214         ipw_disassociate(priv);
6215 }
6216
6217 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6218                             char *capabilities, int length)
6219 {
6220         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6221
6222         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6223                                 capabilities);
6224 }
6225
6226 /*
6227  * WE-18 support
6228  */
6229
6230 /* SIOCSIWGENIE */
6231 static int ipw_wx_set_genie(struct net_device *dev,
6232                             struct iw_request_info *info,
6233                             union iwreq_data *wrqu, char *extra)
6234 {
6235         struct ipw_priv *priv = ieee80211_priv(dev);
6236         struct ieee80211_device *ieee = priv->ieee;
6237         u8 *buf;
6238         int err = 0;
6239
6240         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6241             (wrqu->data.length && extra == NULL))
6242                 return -EINVAL;
6243
6244         //mutex_lock(&priv->mutex);
6245
6246         //if (!ieee->wpa_enabled) {
6247         //      err = -EOPNOTSUPP;
6248         //      goto out;
6249         //}
6250
6251         if (wrqu->data.length) {
6252                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6253                 if (buf == NULL) {
6254                         err = -ENOMEM;
6255                         goto out;
6256                 }
6257
6258                 memcpy(buf, extra, wrqu->data.length);
6259                 kfree(ieee->wpa_ie);
6260                 ieee->wpa_ie = buf;
6261                 ieee->wpa_ie_len = wrqu->data.length;
6262         } else {
6263                 kfree(ieee->wpa_ie);
6264                 ieee->wpa_ie = NULL;
6265                 ieee->wpa_ie_len = 0;
6266         }
6267
6268         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6269       out:
6270         //mutex_unlock(&priv->mutex);
6271         return err;
6272 }
6273
6274 /* SIOCGIWGENIE */
6275 static int ipw_wx_get_genie(struct net_device *dev,
6276                             struct iw_request_info *info,
6277                             union iwreq_data *wrqu, char *extra)
6278 {
6279         struct ipw_priv *priv = ieee80211_priv(dev);
6280         struct ieee80211_device *ieee = priv->ieee;
6281         int err = 0;
6282
6283         //mutex_lock(&priv->mutex);
6284
6285         //if (!ieee->wpa_enabled) {
6286         //      err = -EOPNOTSUPP;
6287         //      goto out;
6288         //}
6289
6290         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6291                 wrqu->data.length = 0;
6292                 goto out;
6293         }
6294
6295         if (wrqu->data.length < ieee->wpa_ie_len) {
6296                 err = -E2BIG;
6297                 goto out;
6298         }
6299
6300         wrqu->data.length = ieee->wpa_ie_len;
6301         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6302
6303       out:
6304         //mutex_unlock(&priv->mutex);
6305         return err;
6306 }
6307
6308 static int wext_cipher2level(int cipher)
6309 {
6310         switch (cipher) {
6311         case IW_AUTH_CIPHER_NONE:
6312                 return SEC_LEVEL_0;
6313         case IW_AUTH_CIPHER_WEP40:
6314         case IW_AUTH_CIPHER_WEP104:
6315                 return SEC_LEVEL_1;
6316         case IW_AUTH_CIPHER_TKIP:
6317                 return SEC_LEVEL_2;
6318         case IW_AUTH_CIPHER_CCMP:
6319                 return SEC_LEVEL_3;
6320         default:
6321                 return -1;
6322         }
6323 }
6324
6325 /* SIOCSIWAUTH */
6326 static int ipw_wx_set_auth(struct net_device *dev,
6327                            struct iw_request_info *info,
6328                            union iwreq_data *wrqu, char *extra)
6329 {
6330         struct ipw_priv *priv = ieee80211_priv(dev);
6331         struct ieee80211_device *ieee = priv->ieee;
6332         struct iw_param *param = &wrqu->param;
6333         struct ieee80211_crypt_data *crypt;
6334         unsigned long flags;
6335         int ret = 0;
6336
6337         switch (param->flags & IW_AUTH_INDEX) {
6338         case IW_AUTH_WPA_VERSION:
6339                 break;
6340         case IW_AUTH_CIPHER_PAIRWISE:
6341                 ipw_set_hw_decrypt_unicast(priv,
6342                                            wext_cipher2level(param->value));
6343                 break;
6344         case IW_AUTH_CIPHER_GROUP:
6345                 ipw_set_hw_decrypt_multicast(priv,
6346                                              wext_cipher2level(param->value));
6347                 break;
6348         case IW_AUTH_KEY_MGMT:
6349                 /*
6350                  * ipw2200 does not use these parameters
6351                  */
6352                 break;
6353
6354         case IW_AUTH_TKIP_COUNTERMEASURES:
6355                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6356                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6357                         break;
6358
6359                 flags = crypt->ops->get_flags(crypt->priv);
6360
6361                 if (param->value)
6362                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6363                 else
6364                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6365
6366                 crypt->ops->set_flags(flags, crypt->priv);
6367
6368                 break;
6369
6370         case IW_AUTH_DROP_UNENCRYPTED:{
6371                         /* HACK:
6372                          *
6373                          * wpa_supplicant calls set_wpa_enabled when the driver
6374                          * is loaded and unloaded, regardless of if WPA is being
6375                          * used.  No other calls are made which can be used to
6376                          * determine if encryption will be used or not prior to
6377                          * association being expected.  If encryption is not being
6378                          * used, drop_unencrypted is set to false, else true -- we
6379                          * can use this to determine if the CAP_PRIVACY_ON bit should
6380                          * be set.
6381                          */
6382                         struct ieee80211_security sec = {
6383                                 .flags = SEC_ENABLED,
6384                                 .enabled = param->value,
6385                         };
6386                         priv->ieee->drop_unencrypted = param->value;
6387                         /* We only change SEC_LEVEL for open mode. Others
6388                          * are set by ipw_wpa_set_encryption.
6389                          */
6390                         if (!param->value) {
6391                                 sec.flags |= SEC_LEVEL;
6392                                 sec.level = SEC_LEVEL_0;
6393                         } else {
6394                                 sec.flags |= SEC_LEVEL;
6395                                 sec.level = SEC_LEVEL_1;
6396                         }
6397                         if (priv->ieee->set_security)
6398                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6399                         break;
6400                 }
6401
6402         case IW_AUTH_80211_AUTH_ALG:
6403                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6404                 break;
6405
6406         case IW_AUTH_WPA_ENABLED:
6407                 ret = ipw_wpa_enable(priv, param->value);
6408                 break;
6409
6410         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6411                 ieee->ieee802_1x = param->value;
6412                 break;
6413
6414                 //case IW_AUTH_ROAMING_CONTROL:
6415         case IW_AUTH_PRIVACY_INVOKED:
6416                 ieee->privacy_invoked = param->value;
6417                 break;
6418
6419         default:
6420                 return -EOPNOTSUPP;
6421         }
6422         return ret;
6423 }
6424
6425 /* SIOCGIWAUTH */
6426 static int ipw_wx_get_auth(struct net_device *dev,
6427                            struct iw_request_info *info,
6428                            union iwreq_data *wrqu, char *extra)
6429 {
6430         struct ipw_priv *priv = ieee80211_priv(dev);
6431         struct ieee80211_device *ieee = priv->ieee;
6432         struct ieee80211_crypt_data *crypt;
6433         struct iw_param *param = &wrqu->param;
6434         int ret = 0;
6435
6436         switch (param->flags & IW_AUTH_INDEX) {
6437         case IW_AUTH_WPA_VERSION:
6438         case IW_AUTH_CIPHER_PAIRWISE:
6439         case IW_AUTH_CIPHER_GROUP:
6440         case IW_AUTH_KEY_MGMT:
6441                 /*
6442                  * wpa_supplicant will control these internally
6443                  */
6444                 ret = -EOPNOTSUPP;
6445                 break;
6446
6447         case IW_AUTH_TKIP_COUNTERMEASURES:
6448                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6449                 if (!crypt || !crypt->ops->get_flags)
6450                         break;
6451
6452                 param->value = (crypt->ops->get_flags(crypt->priv) &
6453                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6454
6455                 break;
6456
6457         case IW_AUTH_DROP_UNENCRYPTED:
6458                 param->value = ieee->drop_unencrypted;
6459                 break;
6460
6461         case IW_AUTH_80211_AUTH_ALG:
6462                 param->value = ieee->sec.auth_mode;
6463                 break;
6464
6465         case IW_AUTH_WPA_ENABLED:
6466                 param->value = ieee->wpa_enabled;
6467                 break;
6468
6469         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6470                 param->value = ieee->ieee802_1x;
6471                 break;
6472
6473         case IW_AUTH_ROAMING_CONTROL:
6474         case IW_AUTH_PRIVACY_INVOKED:
6475                 param->value = ieee->privacy_invoked;
6476                 break;
6477
6478         default:
6479                 return -EOPNOTSUPP;
6480         }
6481         return 0;
6482 }
6483
6484 /* SIOCSIWENCODEEXT */
6485 static int ipw_wx_set_encodeext(struct net_device *dev,
6486                                 struct iw_request_info *info,
6487                                 union iwreq_data *wrqu, char *extra)
6488 {
6489         struct ipw_priv *priv = ieee80211_priv(dev);
6490         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6491
6492         if (hwcrypto) {
6493                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6494                         /* IPW HW can't build TKIP MIC,
6495                            host decryption still needed */
6496                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6497                                 priv->ieee->host_mc_decrypt = 1;
6498                         else {
6499                                 priv->ieee->host_encrypt = 0;
6500                                 priv->ieee->host_encrypt_msdu = 1;
6501                                 priv->ieee->host_decrypt = 1;
6502                         }
6503                 } else {
6504                         priv->ieee->host_encrypt = 0;
6505                         priv->ieee->host_encrypt_msdu = 0;
6506                         priv->ieee->host_decrypt = 0;
6507                         priv->ieee->host_mc_decrypt = 0;
6508                 }
6509         }
6510
6511         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6512 }
6513
6514 /* SIOCGIWENCODEEXT */
6515 static int ipw_wx_get_encodeext(struct net_device *dev,
6516                                 struct iw_request_info *info,
6517                                 union iwreq_data *wrqu, char *extra)
6518 {
6519         struct ipw_priv *priv = ieee80211_priv(dev);
6520         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6521 }
6522
6523 /* SIOCSIWMLME */
6524 static int ipw_wx_set_mlme(struct net_device *dev,
6525                            struct iw_request_info *info,
6526                            union iwreq_data *wrqu, char *extra)
6527 {
6528         struct ipw_priv *priv = ieee80211_priv(dev);
6529         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6530         u16 reason;
6531
6532         reason = cpu_to_le16(mlme->reason_code);
6533
6534         switch (mlme->cmd) {
6535         case IW_MLME_DEAUTH:
6536                 // silently ignore
6537                 break;
6538
6539         case IW_MLME_DISASSOC:
6540                 ipw_disassociate(priv);
6541                 break;
6542
6543         default:
6544                 return -EOPNOTSUPP;
6545         }
6546         return 0;
6547 }
6548
6549 #ifdef CONFIG_IPW_QOS
6550
6551 /* QoS */
6552 /*
6553 * get the modulation type of the current network or
6554 * the card current mode
6555 */
6556 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6557 {
6558         u8 mode = 0;
6559
6560         if (priv->status & STATUS_ASSOCIATED) {
6561                 unsigned long flags;
6562
6563                 spin_lock_irqsave(&priv->ieee->lock, flags);
6564                 mode = priv->assoc_network->mode;
6565                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6566         } else {
6567                 mode = priv->ieee->mode;
6568         }
6569         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6570         return mode;
6571 }
6572
6573 /*
6574 * Handle management frame beacon and probe response
6575 */
6576 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6577                                          int active_network,
6578                                          struct ieee80211_network *network)
6579 {
6580         u32 size = sizeof(struct ieee80211_qos_parameters);
6581
6582         if (network->capability & WLAN_CAPABILITY_IBSS)
6583                 network->qos_data.active = network->qos_data.supported;
6584
6585         if (network->flags & NETWORK_HAS_QOS_MASK) {
6586                 if (active_network &&
6587                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6588                         network->qos_data.active = network->qos_data.supported;
6589
6590                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6591                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6592                     (network->qos_data.old_param_count !=
6593                      network->qos_data.param_count)) {
6594                         network->qos_data.old_param_count =
6595                             network->qos_data.param_count;
6596                         schedule_work(&priv->qos_activate);
6597                         IPW_DEBUG_QOS("QoS parameters change call "
6598                                       "qos_activate\n");
6599                 }
6600         } else {
6601                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6602                         memcpy(&network->qos_data.parameters,
6603                                &def_parameters_CCK, size);
6604                 else
6605                         memcpy(&network->qos_data.parameters,
6606                                &def_parameters_OFDM, size);
6607
6608                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6609                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6610                         schedule_work(&priv->qos_activate);
6611                 }
6612
6613                 network->qos_data.active = 0;
6614                 network->qos_data.supported = 0;
6615         }
6616         if ((priv->status & STATUS_ASSOCIATED) &&
6617             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6618                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6619                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6620                             !(network->flags & NETWORK_EMPTY_ESSID))
6621                                 if ((network->ssid_len ==
6622                                      priv->assoc_network->ssid_len) &&
6623                                     !memcmp(network->ssid,
6624                                             priv->assoc_network->ssid,
6625                                             network->ssid_len)) {
6626                                         queue_work(priv->workqueue,
6627                                                    &priv->merge_networks);
6628                                 }
6629         }
6630
6631         return 0;
6632 }
6633
6634 /*
6635 * This function set up the firmware to support QoS. It sends
6636 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6637 */
6638 static int ipw_qos_activate(struct ipw_priv *priv,
6639                             struct ieee80211_qos_data *qos_network_data)
6640 {
6641         int err;
6642         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6643         struct ieee80211_qos_parameters *active_one = NULL;
6644         u32 size = sizeof(struct ieee80211_qos_parameters);
6645         u32 burst_duration;
6646         int i;
6647         u8 type;
6648
6649         type = ipw_qos_current_mode(priv);
6650
6651         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6652         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6653         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6654         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6655
6656         if (qos_network_data == NULL) {
6657                 if (type == IEEE_B) {
6658                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6659                         active_one = &def_parameters_CCK;
6660                 } else
6661                         active_one = &def_parameters_OFDM;
6662
6663                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6664                 burst_duration = ipw_qos_get_burst_duration(priv);
6665                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6666                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6667                             (u16) burst_duration;
6668         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6669                 if (type == IEEE_B) {
6670                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6671                                       type);
6672                         if (priv->qos_data.qos_enable == 0)
6673                                 active_one = &def_parameters_CCK;
6674                         else
6675                                 active_one = priv->qos_data.def_qos_parm_CCK;
6676                 } else {
6677                         if (priv->qos_data.qos_enable == 0)
6678                                 active_one = &def_parameters_OFDM;
6679                         else
6680                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6681                 }
6682                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6683         } else {
6684                 unsigned long flags;
6685                 int active;
6686
6687                 spin_lock_irqsave(&priv->ieee->lock, flags);
6688                 active_one = &(qos_network_data->parameters);
6689                 qos_network_data->old_param_count =
6690                     qos_network_data->param_count;
6691                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6692                 active = qos_network_data->supported;
6693                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6694
6695                 if (active == 0) {
6696                         burst_duration = ipw_qos_get_burst_duration(priv);
6697                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6698                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6699                                     tx_op_limit[i] = (u16) burst_duration;
6700                 }
6701         }
6702
6703         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6704         err = ipw_send_qos_params_command(priv,
6705                                           (struct ieee80211_qos_parameters *)
6706                                           &(qos_parameters[0]));
6707         if (err)
6708                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6709
6710         return err;
6711 }
6712
6713 /*
6714 * send IPW_CMD_WME_INFO to the firmware
6715 */
6716 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6717 {
6718         int ret = 0;
6719         struct ieee80211_qos_information_element qos_info;
6720
6721         if (priv == NULL)
6722                 return -1;
6723
6724         qos_info.elementID = QOS_ELEMENT_ID;
6725         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6726
6727         qos_info.version = QOS_VERSION_1;
6728         qos_info.ac_info = 0;
6729
6730         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6731         qos_info.qui_type = QOS_OUI_TYPE;
6732         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6733
6734         ret = ipw_send_qos_info_command(priv, &qos_info);
6735         if (ret != 0) {
6736                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6737         }
6738         return ret;
6739 }
6740
6741 /*
6742 * Set the QoS parameter with the association request structure
6743 */
6744 static int ipw_qos_association(struct ipw_priv *priv,
6745                                struct ieee80211_network *network)
6746 {
6747         int err = 0;
6748         struct ieee80211_qos_data *qos_data = NULL;
6749         struct ieee80211_qos_data ibss_data = {
6750                 .supported = 1,
6751                 .active = 1,
6752         };
6753
6754         switch (priv->ieee->iw_mode) {
6755         case IW_MODE_ADHOC:
6756                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
6757                         BUG();
6758
6759                 qos_data = &ibss_data;
6760                 break;
6761
6762         case IW_MODE_INFRA:
6763                 qos_data = &network->qos_data;
6764                 break;
6765
6766         default:
6767                 BUG();
6768                 break;
6769         }
6770
6771         err = ipw_qos_activate(priv, qos_data);
6772         if (err) {
6773                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6774                 return err;
6775         }
6776
6777         if (priv->qos_data.qos_enable && qos_data->supported) {
6778                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6779                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6780                 return ipw_qos_set_info_element(priv);
6781         }
6782
6783         return 0;
6784 }
6785
6786 /*
6787 * handling the beaconing responces. if we get different QoS setting
6788 * of the network from the the associated setting adjust the QoS
6789 * setting
6790 */
6791 static int ipw_qos_association_resp(struct ipw_priv *priv,
6792                                     struct ieee80211_network *network)
6793 {
6794         int ret = 0;
6795         unsigned long flags;
6796         u32 size = sizeof(struct ieee80211_qos_parameters);
6797         int set_qos_param = 0;
6798
6799         if ((priv == NULL) || (network == NULL) ||
6800             (priv->assoc_network == NULL))
6801                 return ret;
6802
6803         if (!(priv->status & STATUS_ASSOCIATED))
6804                 return ret;
6805
6806         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6807                 return ret;
6808
6809         spin_lock_irqsave(&priv->ieee->lock, flags);
6810         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6811                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6812                        sizeof(struct ieee80211_qos_data));
6813                 priv->assoc_network->qos_data.active = 1;
6814                 if ((network->qos_data.old_param_count !=
6815                      network->qos_data.param_count)) {
6816                         set_qos_param = 1;
6817                         network->qos_data.old_param_count =
6818                             network->qos_data.param_count;
6819                 }
6820
6821         } else {
6822                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6823                         memcpy(&priv->assoc_network->qos_data.parameters,
6824                                &def_parameters_CCK, size);
6825                 else
6826                         memcpy(&priv->assoc_network->qos_data.parameters,
6827                                &def_parameters_OFDM, size);
6828                 priv->assoc_network->qos_data.active = 0;
6829                 priv->assoc_network->qos_data.supported = 0;
6830                 set_qos_param = 1;
6831         }
6832
6833         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6834
6835         if (set_qos_param == 1)
6836                 schedule_work(&priv->qos_activate);
6837
6838         return ret;
6839 }
6840
6841 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6842 {
6843         u32 ret = 0;
6844
6845         if ((priv == NULL))
6846                 return 0;
6847
6848         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6849                 ret = priv->qos_data.burst_duration_CCK;
6850         else
6851                 ret = priv->qos_data.burst_duration_OFDM;
6852
6853         return ret;
6854 }
6855
6856 /*
6857 * Initialize the setting of QoS global
6858 */
6859 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6860                          int burst_enable, u32 burst_duration_CCK,
6861                          u32 burst_duration_OFDM)
6862 {
6863         priv->qos_data.qos_enable = enable;
6864
6865         if (priv->qos_data.qos_enable) {
6866                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6867                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6868                 IPW_DEBUG_QOS("QoS is enabled\n");
6869         } else {
6870                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6871                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6872                 IPW_DEBUG_QOS("QoS is not enabled\n");
6873         }
6874
6875         priv->qos_data.burst_enable = burst_enable;
6876
6877         if (burst_enable) {
6878                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6879                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6880         } else {
6881                 priv->qos_data.burst_duration_CCK = 0;
6882                 priv->qos_data.burst_duration_OFDM = 0;
6883         }
6884 }
6885
6886 /*
6887 * map the packet priority to the right TX Queue
6888 */
6889 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6890 {
6891         if (priority > 7 || !priv->qos_data.qos_enable)
6892                 priority = 0;
6893
6894         return from_priority_to_tx_queue[priority] - 1;
6895 }
6896
6897 /*
6898 * add QoS parameter to the TX command
6899 */
6900 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6901                                         u16 priority,
6902                                         struct tfd_data *tfd, u8 unicast)
6903 {
6904         int ret = 0;
6905         int tx_queue_id = 0;
6906         struct ieee80211_qos_data *qos_data = NULL;
6907         int active, supported;
6908         unsigned long flags;
6909
6910         if (!(priv->status & STATUS_ASSOCIATED))
6911                 return 0;
6912
6913         qos_data = &priv->assoc_network->qos_data;
6914
6915         spin_lock_irqsave(&priv->ieee->lock, flags);
6916
6917         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6918                 if (unicast == 0)
6919                         qos_data->active = 0;
6920                 else
6921                         qos_data->active = qos_data->supported;
6922         }
6923
6924         active = qos_data->active;
6925         supported = qos_data->supported;
6926
6927         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6928
6929         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
6930                       "unicast %d\n",
6931                       priv->qos_data.qos_enable, active, supported, unicast);
6932         if (active && priv->qos_data.qos_enable) {
6933                 ret = from_priority_to_tx_queue[priority];
6934                 tx_queue_id = ret - 1;
6935                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6936                 if (priority <= 7) {
6937                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6938                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6939                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
6940                             IEEE80211_STYPE_QOS_DATA;
6941
6942                         if (priv->qos_data.qos_no_ack_mask &
6943                             (1UL << tx_queue_id)) {
6944                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6945                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6946                                     CTRL_QOS_NO_ACK;
6947                         }
6948                 }
6949         }
6950
6951         return ret;
6952 }
6953
6954 /*
6955 * background support to run QoS activate functionality
6956 */
6957 static void ipw_bg_qos_activate(void *data)
6958 {
6959         struct ipw_priv *priv = data;
6960
6961         if (priv == NULL)
6962                 return;
6963
6964         mutex_lock(&priv->mutex);
6965
6966         if (priv->status & STATUS_ASSOCIATED)
6967                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
6968
6969         mutex_unlock(&priv->mutex);
6970 }
6971
6972 static int ipw_handle_probe_response(struct net_device *dev,
6973                                      struct ieee80211_probe_response *resp,
6974                                      struct ieee80211_network *network)
6975 {
6976         struct ipw_priv *priv = ieee80211_priv(dev);
6977         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6978                               (network == priv->assoc_network));
6979
6980         ipw_qos_handle_probe_response(priv, active_network, network);
6981
6982         return 0;
6983 }
6984
6985 static int ipw_handle_beacon(struct net_device *dev,
6986                              struct ieee80211_beacon *resp,
6987                              struct ieee80211_network *network)
6988 {
6989         struct ipw_priv *priv = ieee80211_priv(dev);
6990         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6991                               (network == priv->assoc_network));
6992
6993         ipw_qos_handle_probe_response(priv, active_network, network);
6994
6995         return 0;
6996 }
6997
6998 static int ipw_handle_assoc_response(struct net_device *dev,
6999                                      struct ieee80211_assoc_response *resp,
7000                                      struct ieee80211_network *network)
7001 {
7002         struct ipw_priv *priv = ieee80211_priv(dev);
7003         ipw_qos_association_resp(priv, network);
7004         return 0;
7005 }
7006
7007 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7008                                        *qos_param)
7009 {
7010         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7011                                 sizeof(*qos_param) * 3, qos_param);
7012 }
7013
7014 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7015                                      *qos_param)
7016 {
7017         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7018                                 qos_param);
7019 }
7020
7021 #endif                          /* CONFIG_IPW_QOS */
7022
7023 static int ipw_associate_network(struct ipw_priv *priv,
7024                                  struct ieee80211_network *network,
7025                                  struct ipw_supported_rates *rates, int roaming)
7026 {
7027         int err;
7028
7029         if (priv->config & CFG_FIXED_RATE)
7030                 ipw_set_fixed_rate(priv, network->mode);
7031
7032         if (!(priv->config & CFG_STATIC_ESSID)) {
7033                 priv->essid_len = min(network->ssid_len,
7034                                       (u8) IW_ESSID_MAX_SIZE);
7035                 memcpy(priv->essid, network->ssid, priv->essid_len);
7036         }
7037
7038         network->last_associate = jiffies;
7039
7040         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7041         priv->assoc_request.channel = network->channel;
7042         priv->assoc_request.auth_key = 0;
7043
7044         if ((priv->capability & CAP_PRIVACY_ON) &&
7045             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7046                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7047                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7048
7049                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7050                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7051
7052         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7053                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7054                 priv->assoc_request.auth_type = AUTH_LEAP;
7055         else
7056                 priv->assoc_request.auth_type = AUTH_OPEN;
7057
7058         if (priv->ieee->wpa_ie_len) {
7059                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7060                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7061                                  priv->ieee->wpa_ie_len);
7062         }
7063
7064         /*
7065          * It is valid for our ieee device to support multiple modes, but
7066          * when it comes to associating to a given network we have to choose
7067          * just one mode.
7068          */
7069         if (network->mode & priv->ieee->mode & IEEE_A)
7070                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7071         else if (network->mode & priv->ieee->mode & IEEE_G)
7072                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7073         else if (network->mode & priv->ieee->mode & IEEE_B)
7074                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7075
7076         priv->assoc_request.capability = network->capability;
7077         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7078             && !(priv->config & CFG_PREAMBLE_LONG)) {
7079                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7080         } else {
7081                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7082
7083                 /* Clear the short preamble if we won't be supporting it */
7084                 priv->assoc_request.capability &=
7085                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7086         }
7087
7088         /* Clear capability bits that aren't used in Ad Hoc */
7089         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7090                 priv->assoc_request.capability &=
7091                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7092
7093         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7094                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7095                         roaming ? "Rea" : "A",
7096                         escape_essid(priv->essid, priv->essid_len),
7097                         network->channel,
7098                         ipw_modes[priv->assoc_request.ieee_mode],
7099                         rates->num_rates,
7100                         (priv->assoc_request.preamble_length ==
7101                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7102                         network->capability &
7103                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7104                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7105                         priv->capability & CAP_PRIVACY_ON ?
7106                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7107                          "(open)") : "",
7108                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7109                         priv->capability & CAP_PRIVACY_ON ?
7110                         '1' + priv->ieee->sec.active_key : '.',
7111                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7112
7113         priv->assoc_request.beacon_interval = network->beacon_interval;
7114         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7115             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7116                 priv->assoc_request.assoc_type = HC_IBSS_START;
7117                 priv->assoc_request.assoc_tsf_msw = 0;
7118                 priv->assoc_request.assoc_tsf_lsw = 0;
7119         } else {
7120                 if (unlikely(roaming))
7121                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7122                 else
7123                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7124                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7125                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7126         }
7127
7128         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7129
7130         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7131                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7132                 priv->assoc_request.atim_window = network->atim_window;
7133         } else {
7134                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7135                 priv->assoc_request.atim_window = 0;
7136         }
7137
7138         priv->assoc_request.listen_interval = network->listen_interval;
7139
7140         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7141         if (err) {
7142                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7143                 return err;
7144         }
7145
7146         rates->ieee_mode = priv->assoc_request.ieee_mode;
7147         rates->purpose = IPW_RATE_CONNECT;
7148         ipw_send_supported_rates(priv, rates);
7149
7150         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7151                 priv->sys_config.dot11g_auto_detection = 1;
7152         else
7153                 priv->sys_config.dot11g_auto_detection = 0;
7154
7155         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7156                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7157         else
7158                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7159
7160         err = ipw_send_system_config(priv, &priv->sys_config);
7161         if (err) {
7162                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7163                 return err;
7164         }
7165
7166         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7167         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7168         if (err) {
7169                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7170                 return err;
7171         }
7172
7173         /*
7174          * If preemption is enabled, it is possible for the association
7175          * to complete before we return from ipw_send_associate.  Therefore
7176          * we have to be sure and update our priviate data first.
7177          */
7178         priv->channel = network->channel;
7179         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7180         priv->status |= STATUS_ASSOCIATING;
7181         priv->status &= ~STATUS_SECURITY_UPDATED;
7182
7183         priv->assoc_network = network;
7184
7185 #ifdef CONFIG_IPW_QOS
7186         ipw_qos_association(priv, network);
7187 #endif
7188
7189         err = ipw_send_associate(priv, &priv->assoc_request);
7190         if (err) {
7191                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7192                 return err;
7193         }
7194
7195         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7196                   escape_essid(priv->essid, priv->essid_len),
7197                   MAC_ARG(priv->bssid));
7198
7199         return 0;
7200 }
7201
7202 static void ipw_roam(void *data)
7203 {
7204         struct ipw_priv *priv = data;
7205         struct ieee80211_network *network = NULL;
7206         struct ipw_network_match match = {
7207                 .network = priv->assoc_network
7208         };
7209
7210         /* The roaming process is as follows:
7211          *
7212          * 1.  Missed beacon threshold triggers the roaming process by
7213          *     setting the status ROAM bit and requesting a scan.
7214          * 2.  When the scan completes, it schedules the ROAM work
7215          * 3.  The ROAM work looks at all of the known networks for one that
7216          *     is a better network than the currently associated.  If none
7217          *     found, the ROAM process is over (ROAM bit cleared)
7218          * 4.  If a better network is found, a disassociation request is
7219          *     sent.
7220          * 5.  When the disassociation completes, the roam work is again
7221          *     scheduled.  The second time through, the driver is no longer
7222          *     associated, and the newly selected network is sent an
7223          *     association request.
7224          * 6.  At this point ,the roaming process is complete and the ROAM
7225          *     status bit is cleared.
7226          */
7227
7228         /* If we are no longer associated, and the roaming bit is no longer
7229          * set, then we are not actively roaming, so just return */
7230         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7231                 return;
7232
7233         if (priv->status & STATUS_ASSOCIATED) {
7234                 /* First pass through ROAM process -- look for a better
7235                  * network */
7236                 unsigned long flags;
7237                 u8 rssi = priv->assoc_network->stats.rssi;
7238                 priv->assoc_network->stats.rssi = -128;
7239                 spin_lock_irqsave(&priv->ieee->lock, flags);
7240                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7241                         if (network != priv->assoc_network)
7242                                 ipw_best_network(priv, &match, network, 1);
7243                 }
7244                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7245                 priv->assoc_network->stats.rssi = rssi;
7246
7247                 if (match.network == priv->assoc_network) {
7248                         IPW_DEBUG_ASSOC("No better APs in this network to "
7249                                         "roam to.\n");
7250                         priv->status &= ~STATUS_ROAMING;
7251                         ipw_debug_config(priv);
7252                         return;
7253                 }
7254
7255                 ipw_send_disassociate(priv, 1);
7256                 priv->assoc_network = match.network;
7257
7258                 return;
7259         }
7260
7261         /* Second pass through ROAM process -- request association */
7262         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7263         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7264         priv->status &= ~STATUS_ROAMING;
7265 }
7266
7267 static void ipw_bg_roam(void *data)
7268 {
7269         struct ipw_priv *priv = data;
7270         mutex_lock(&priv->mutex);
7271         ipw_roam(data);
7272         mutex_unlock(&priv->mutex);
7273 }
7274
7275 static int ipw_associate(void *data)
7276 {
7277         struct ipw_priv *priv = data;
7278
7279         struct ieee80211_network *network = NULL;
7280         struct ipw_network_match match = {
7281                 .network = NULL
7282         };
7283         struct ipw_supported_rates *rates;
7284         struct list_head *element;
7285         unsigned long flags;
7286
7287         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7288                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7289                 return 0;
7290         }
7291
7292         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7293                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7294                                 "progress)\n");
7295                 return 0;
7296         }
7297
7298         if (priv->status & STATUS_DISASSOCIATING) {
7299                 IPW_DEBUG_ASSOC("Not attempting association (in "
7300                                 "disassociating)\n ");
7301                 queue_work(priv->workqueue, &priv->associate);
7302                 return 0;
7303         }
7304
7305         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7306                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7307                                 "initialized)\n");
7308                 return 0;
7309         }
7310
7311         if (!(priv->config & CFG_ASSOCIATE) &&
7312             !(priv->config & (CFG_STATIC_ESSID |
7313                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7314                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7315                 return 0;
7316         }
7317
7318         /* Protect our use of the network_list */
7319         spin_lock_irqsave(&priv->ieee->lock, flags);
7320         list_for_each_entry(network, &priv->ieee->network_list, list)
7321             ipw_best_network(priv, &match, network, 0);
7322
7323         network = match.network;
7324         rates = &match.rates;
7325
7326         if (network == NULL &&
7327             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7328             priv->config & CFG_ADHOC_CREATE &&
7329             priv->config & CFG_STATIC_ESSID &&
7330             priv->config & CFG_STATIC_CHANNEL &&
7331             !list_empty(&priv->ieee->network_free_list)) {
7332                 element = priv->ieee->network_free_list.next;
7333                 network = list_entry(element, struct ieee80211_network, list);
7334                 ipw_adhoc_create(priv, network);
7335                 rates = &priv->rates;
7336                 list_del(element);
7337                 list_add_tail(&network->list, &priv->ieee->network_list);
7338         }
7339         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7340
7341         /* If we reached the end of the list, then we don't have any valid
7342          * matching APs */
7343         if (!network) {
7344                 ipw_debug_config(priv);
7345
7346                 if (!(priv->status & STATUS_SCANNING)) {
7347                         if (!(priv->config & CFG_SPEED_SCAN))
7348                                 queue_delayed_work(priv->workqueue,
7349                                                    &priv->request_scan,
7350                                                    SCAN_INTERVAL);
7351                         else
7352                                 queue_work(priv->workqueue,
7353                                            &priv->request_scan);
7354                 }
7355
7356                 return 0;
7357         }
7358
7359         ipw_associate_network(priv, network, rates, 0);
7360
7361         return 1;
7362 }
7363
7364 static void ipw_bg_associate(void *data)
7365 {
7366         struct ipw_priv *priv = data;
7367         mutex_lock(&priv->mutex);
7368         ipw_associate(data);
7369         mutex_unlock(&priv->mutex);
7370 }
7371
7372 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7373                                       struct sk_buff *skb)
7374 {
7375         struct ieee80211_hdr *hdr;
7376         u16 fc;
7377
7378         hdr = (struct ieee80211_hdr *)skb->data;
7379         fc = le16_to_cpu(hdr->frame_ctl);
7380         if (!(fc & IEEE80211_FCTL_PROTECTED))
7381                 return;
7382
7383         fc &= ~IEEE80211_FCTL_PROTECTED;
7384         hdr->frame_ctl = cpu_to_le16(fc);
7385         switch (priv->ieee->sec.level) {
7386         case SEC_LEVEL_3:
7387                 /* Remove CCMP HDR */
7388                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7389                         skb->data + IEEE80211_3ADDR_LEN + 8,
7390                         skb->len - IEEE80211_3ADDR_LEN - 8);
7391                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7392                 break;
7393         case SEC_LEVEL_2:
7394                 break;
7395         case SEC_LEVEL_1:
7396                 /* Remove IV */
7397                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7398                         skb->data + IEEE80211_3ADDR_LEN + 4,
7399                         skb->len - IEEE80211_3ADDR_LEN - 4);
7400                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7401                 break;
7402         case SEC_LEVEL_0:
7403                 break;
7404         default:
7405                 printk(KERN_ERR "Unknow security level %d\n",
7406                        priv->ieee->sec.level);
7407                 break;
7408         }
7409 }
7410
7411 static void ipw_handle_data_packet(struct ipw_priv *priv,
7412                                    struct ipw_rx_mem_buffer *rxb,
7413                                    struct ieee80211_rx_stats *stats)
7414 {
7415         struct ieee80211_hdr_4addr *hdr;
7416         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7417
7418         /* We received data from the HW, so stop the watchdog */
7419         priv->net_dev->trans_start = jiffies;
7420
7421         /* We only process data packets if the
7422          * interface is open */
7423         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7424                      skb_tailroom(rxb->skb))) {
7425                 priv->ieee->stats.rx_errors++;
7426                 priv->wstats.discard.misc++;
7427                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7428                 return;
7429         } else if (unlikely(!netif_running(priv->net_dev))) {
7430                 priv->ieee->stats.rx_dropped++;
7431                 priv->wstats.discard.misc++;
7432                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7433                 return;
7434         }
7435
7436         /* Advance skb->data to the start of the actual payload */
7437         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7438
7439         /* Set the size of the skb to the size of the frame */
7440         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7441
7442         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7443
7444         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7445         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7446         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7447             (is_multicast_ether_addr(hdr->addr1) ?
7448              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7449                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7450
7451         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7452                 priv->ieee->stats.rx_errors++;
7453         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7454                 rxb->skb = NULL;
7455                 __ipw_led_activity_on(priv);
7456         }
7457 }
7458
7459 #ifdef CONFIG_IEEE80211_RADIOTAP
7460 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7461                                            struct ipw_rx_mem_buffer *rxb,
7462                                            struct ieee80211_rx_stats *stats)
7463 {
7464         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7465         struct ipw_rx_frame *frame = &pkt->u.frame;
7466
7467         /* initial pull of some data */
7468         u16 received_channel = frame->received_channel;
7469         u8 antennaAndPhy = frame->antennaAndPhy;
7470         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7471         u16 pktrate = frame->rate;
7472
7473         /* Magic struct that slots into the radiotap header -- no reason
7474          * to build this manually element by element, we can write it much
7475          * more efficiently than we can parse it. ORDER MATTERS HERE */
7476         struct ipw_rt_hdr {
7477                 struct ieee80211_radiotap_header rt_hdr;
7478                 u8 rt_flags;    /* radiotap packet flags */
7479                 u8 rt_rate;     /* rate in 500kb/s */
7480                 u16 rt_channel; /* channel in mhz */
7481                 u16 rt_chbitmask;       /* channel bitfield */
7482                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7483                 u8 rt_antenna;  /* antenna number */
7484         } *ipw_rt;
7485
7486         short len = le16_to_cpu(pkt->u.frame.length);
7487
7488         /* We received data from the HW, so stop the watchdog */
7489         priv->net_dev->trans_start = jiffies;
7490
7491         /* We only process data packets if the
7492          * interface is open */
7493         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7494                      skb_tailroom(rxb->skb))) {
7495                 priv->ieee->stats.rx_errors++;
7496                 priv->wstats.discard.misc++;
7497                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7498                 return;
7499         } else if (unlikely(!netif_running(priv->net_dev))) {
7500                 priv->ieee->stats.rx_dropped++;
7501                 priv->wstats.discard.misc++;
7502                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7503                 return;
7504         }
7505
7506         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7507          * that now */
7508         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7509                 /* FIXME: Should alloc bigger skb instead */
7510                 priv->ieee->stats.rx_dropped++;
7511                 priv->wstats.discard.misc++;
7512                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7513                 return;
7514         }
7515
7516         /* copy the frame itself */
7517         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7518                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7519
7520         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7521          * part of our real header, saves a little time.
7522          *
7523          * No longer necessary since we fill in all our data.  Purge before merging
7524          * patch officially.
7525          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7526          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7527          */
7528
7529         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7530
7531         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7532         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7533         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7534
7535         /* Big bitfield of all the fields we provide in radiotap */
7536         ipw_rt->rt_hdr.it_present =
7537             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7538              (1 << IEEE80211_RADIOTAP_RATE) |
7539              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7540              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7541              (1 << IEEE80211_RADIOTAP_ANTENNA));
7542
7543         /* Zero the flags, we'll add to them as we go */
7544         ipw_rt->rt_flags = 0;
7545
7546         /* Convert signal to DBM */
7547         ipw_rt->rt_dbmsignal = antsignal;
7548
7549         /* Convert the channel data and set the flags */
7550         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7551         if (received_channel > 14) {    /* 802.11a */
7552                 ipw_rt->rt_chbitmask =
7553                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7554         } else if (antennaAndPhy & 32) {        /* 802.11b */
7555                 ipw_rt->rt_chbitmask =
7556                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7557         } else {                /* 802.11g */
7558                 ipw_rt->rt_chbitmask =
7559                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7560         }
7561
7562         /* set the rate in multiples of 500k/s */
7563         switch (pktrate) {
7564         case IPW_TX_RATE_1MB:
7565                 ipw_rt->rt_rate = 2;
7566                 break;
7567         case IPW_TX_RATE_2MB:
7568                 ipw_rt->rt_rate = 4;
7569                 break;
7570         case IPW_TX_RATE_5MB:
7571                 ipw_rt->rt_rate = 10;
7572                 break;
7573         case IPW_TX_RATE_6MB:
7574                 ipw_rt->rt_rate = 12;
7575                 break;
7576         case IPW_TX_RATE_9MB:
7577                 ipw_rt->rt_rate = 18;
7578                 break;
7579         case IPW_TX_RATE_11MB:
7580                 ipw_rt->rt_rate = 22;
7581                 break;
7582         case IPW_TX_RATE_12MB:
7583                 ipw_rt->rt_rate = 24;
7584                 break;
7585         case IPW_TX_RATE_18MB:
7586                 ipw_rt->rt_rate = 36;
7587                 break;
7588         case IPW_TX_RATE_24MB:
7589                 ipw_rt->rt_rate = 48;
7590                 break;
7591         case IPW_TX_RATE_36MB:
7592                 ipw_rt->rt_rate = 72;
7593                 break;
7594         case IPW_TX_RATE_48MB:
7595                 ipw_rt->rt_rate = 96;
7596                 break;
7597         case IPW_TX_RATE_54MB:
7598                 ipw_rt->rt_rate = 108;
7599                 break;
7600         default:
7601                 ipw_rt->rt_rate = 0;
7602                 break;
7603         }
7604
7605         /* antenna number */
7606         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7607
7608         /* set the preamble flag if we have it */
7609         if ((antennaAndPhy & 64))
7610                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7611
7612         /* Set the size of the skb to the size of the frame */
7613         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7614
7615         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7616
7617         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7618                 priv->ieee->stats.rx_errors++;
7619         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7620                 rxb->skb = NULL;
7621                 /* no LED during capture */
7622         }
7623 }
7624 #endif
7625
7626 static int is_network_packet(struct ipw_priv *priv,
7627                                     struct ieee80211_hdr_4addr *header)
7628 {
7629         /* Filter incoming packets to determine if they are targetted toward
7630          * this network, discarding packets coming from ourselves */
7631         switch (priv->ieee->iw_mode) {
7632         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7633                 /* packets from our adapter are dropped (echo) */
7634                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7635                         return 0;
7636
7637                 /* {broad,multi}cast packets to our BSSID go through */
7638                 if (is_multicast_ether_addr(header->addr1))
7639                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7640
7641                 /* packets to our adapter go through */
7642                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7643                                ETH_ALEN);
7644
7645         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7646                 /* packets from our adapter are dropped (echo) */
7647                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7648                         return 0;
7649
7650                 /* {broad,multi}cast packets to our BSS go through */
7651                 if (is_multicast_ether_addr(header->addr1))
7652                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7653
7654                 /* packets to our adapter go through */
7655                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7656                                ETH_ALEN);
7657         }
7658
7659         return 1;
7660 }
7661
7662 #define IPW_PACKET_RETRY_TIME HZ
7663
7664 static  int is_duplicate_packet(struct ipw_priv *priv,
7665                                       struct ieee80211_hdr_4addr *header)
7666 {
7667         u16 sc = le16_to_cpu(header->seq_ctl);
7668         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7669         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7670         u16 *last_seq, *last_frag;
7671         unsigned long *last_time;
7672
7673         switch (priv->ieee->iw_mode) {
7674         case IW_MODE_ADHOC:
7675                 {
7676                         struct list_head *p;
7677                         struct ipw_ibss_seq *entry = NULL;
7678                         u8 *mac = header->addr2;
7679                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7680
7681                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7682                                 entry =
7683                                     list_entry(p, struct ipw_ibss_seq, list);
7684                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7685                                         break;
7686                         }
7687                         if (p == &priv->ibss_mac_hash[index]) {
7688                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7689                                 if (!entry) {
7690                                         IPW_ERROR
7691                                             ("Cannot malloc new mac entry\n");
7692                                         return 0;
7693                                 }
7694                                 memcpy(entry->mac, mac, ETH_ALEN);
7695                                 entry->seq_num = seq;
7696                                 entry->frag_num = frag;
7697                                 entry->packet_time = jiffies;
7698                                 list_add(&entry->list,
7699                                          &priv->ibss_mac_hash[index]);
7700                                 return 0;
7701                         }
7702                         last_seq = &entry->seq_num;
7703                         last_frag = &entry->frag_num;
7704                         last_time = &entry->packet_time;
7705                         break;
7706                 }
7707         case IW_MODE_INFRA:
7708                 last_seq = &priv->last_seq_num;
7709                 last_frag = &priv->last_frag_num;
7710                 last_time = &priv->last_packet_time;
7711                 break;
7712         default:
7713                 return 0;
7714         }
7715         if ((*last_seq == seq) &&
7716             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7717                 if (*last_frag == frag)
7718                         goto drop;
7719                 if (*last_frag + 1 != frag)
7720                         /* out-of-order fragment */
7721                         goto drop;
7722         } else
7723                 *last_seq = seq;
7724
7725         *last_frag = frag;
7726         *last_time = jiffies;
7727         return 0;
7728
7729       drop:
7730         /* Comment this line now since we observed the card receives
7731          * duplicate packets but the FCTL_RETRY bit is not set in the
7732          * IBSS mode with fragmentation enabled.
7733          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7734         return 1;
7735 }
7736
7737 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7738                                    struct ipw_rx_mem_buffer *rxb,
7739                                    struct ieee80211_rx_stats *stats)
7740 {
7741         struct sk_buff *skb = rxb->skb;
7742         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7743         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7744             (skb->data + IPW_RX_FRAME_SIZE);
7745
7746         ieee80211_rx_mgt(priv->ieee, header, stats);
7747
7748         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7749             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7750               IEEE80211_STYPE_PROBE_RESP) ||
7751              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7752               IEEE80211_STYPE_BEACON))) {
7753                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7754                         ipw_add_station(priv, header->addr2);
7755         }
7756
7757         if (priv->config & CFG_NET_STATS) {
7758                 IPW_DEBUG_HC("sending stat packet\n");
7759
7760                 /* Set the size of the skb to the size of the full
7761                  * ipw header and 802.11 frame */
7762                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7763                         IPW_RX_FRAME_SIZE);
7764
7765                 /* Advance past the ipw packet header to the 802.11 frame */
7766                 skb_pull(skb, IPW_RX_FRAME_SIZE);
7767
7768                 /* Push the ieee80211_rx_stats before the 802.11 frame */
7769                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7770
7771                 skb->dev = priv->ieee->dev;
7772
7773                 /* Point raw at the ieee80211_stats */
7774                 skb->mac.raw = skb->data;
7775
7776                 skb->pkt_type = PACKET_OTHERHOST;
7777                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7778                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7779                 netif_rx(skb);
7780                 rxb->skb = NULL;
7781         }
7782 }
7783
7784 /*
7785  * Main entry function for recieving a packet with 80211 headers.  This
7786  * should be called when ever the FW has notified us that there is a new
7787  * skb in the recieve queue.
7788  */
7789 static void ipw_rx(struct ipw_priv *priv)
7790 {
7791         struct ipw_rx_mem_buffer *rxb;
7792         struct ipw_rx_packet *pkt;
7793         struct ieee80211_hdr_4addr *header;
7794         u32 r, w, i;
7795         u8 network_packet;
7796
7797         r = ipw_read32(priv, IPW_RX_READ_INDEX);
7798         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7799         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7800
7801         while (i != r) {
7802                 rxb = priv->rxq->queue[i];
7803                 if (unlikely(rxb == NULL)) {
7804                         printk(KERN_CRIT "Queue not allocated!\n");
7805                         break;
7806                 }
7807                 priv->rxq->queue[i] = NULL;
7808
7809                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7810                                             IPW_RX_BUF_SIZE,
7811                                             PCI_DMA_FROMDEVICE);
7812
7813                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7814                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7815                              pkt->header.message_type,
7816                              pkt->header.rx_seq_num, pkt->header.control_bits);
7817
7818                 switch (pkt->header.message_type) {
7819                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
7820                                 struct ieee80211_rx_stats stats = {
7821                                         .rssi =
7822                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7823                                             IPW_RSSI_TO_DBM,
7824                                         .signal =
7825                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7826                                             IPW_RSSI_TO_DBM + 0x100,
7827                                         .noise =
7828                                             le16_to_cpu(pkt->u.frame.noise),
7829                                         .rate = pkt->u.frame.rate,
7830                                         .mac_time = jiffies,
7831                                         .received_channel =
7832                                             pkt->u.frame.received_channel,
7833                                         .freq =
7834                                             (pkt->u.frame.
7835                                              control & (1 << 0)) ?
7836                                             IEEE80211_24GHZ_BAND :
7837                                             IEEE80211_52GHZ_BAND,
7838                                         .len = le16_to_cpu(pkt->u.frame.length),
7839                                 };
7840
7841                                 if (stats.rssi != 0)
7842                                         stats.mask |= IEEE80211_STATMASK_RSSI;
7843                                 if (stats.signal != 0)
7844                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
7845                                 if (stats.noise != 0)
7846                                         stats.mask |= IEEE80211_STATMASK_NOISE;
7847                                 if (stats.rate != 0)
7848                                         stats.mask |= IEEE80211_STATMASK_RATE;
7849
7850                                 priv->rx_packets++;
7851
7852 #ifdef CONFIG_IPW2200_MONITOR
7853                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7854 #ifdef CONFIG_IEEE80211_RADIOTAP
7855                                         ipw_handle_data_packet_monitor(priv,
7856                                                                        rxb,
7857                                                                        &stats);
7858 #else
7859                                         ipw_handle_data_packet(priv, rxb,
7860                                                                &stats);
7861 #endif
7862                                         break;
7863                                 }
7864 #endif
7865
7866                                 header =
7867                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
7868                                                                    data +
7869                                                                    IPW_RX_FRAME_SIZE);
7870                                 /* TODO: Check Ad-Hoc dest/source and make sure
7871                                  * that we are actually parsing these packets
7872                                  * correctly -- we should probably use the
7873                                  * frame control of the packet and disregard
7874                                  * the current iw_mode */
7875
7876                                 network_packet =
7877                                     is_network_packet(priv, header);
7878                                 if (network_packet && priv->assoc_network) {
7879                                         priv->assoc_network->stats.rssi =
7880                                             stats.rssi;
7881                                         average_add(&priv->average_rssi,
7882                                                     stats.rssi);
7883                                         priv->last_rx_rssi = stats.rssi;
7884                                 }
7885
7886                                 IPW_DEBUG_RX("Frame: len=%u\n",
7887                                              le16_to_cpu(pkt->u.frame.length));
7888
7889                                 if (le16_to_cpu(pkt->u.frame.length) <
7890                                     ieee80211_get_hdrlen(le16_to_cpu(
7891                                                     header->frame_ctl))) {
7892                                         IPW_DEBUG_DROP
7893                                             ("Received packet is too small. "
7894                                              "Dropping.\n");
7895                                         priv->ieee->stats.rx_errors++;
7896                                         priv->wstats.discard.misc++;
7897                                         break;
7898                                 }
7899
7900                                 switch (WLAN_FC_GET_TYPE
7901                                         (le16_to_cpu(header->frame_ctl))) {
7902
7903                                 case IEEE80211_FTYPE_MGMT:
7904                                         ipw_handle_mgmt_packet(priv, rxb,
7905                                                                &stats);
7906                                         break;
7907
7908                                 case IEEE80211_FTYPE_CTL:
7909                                         break;
7910
7911                                 case IEEE80211_FTYPE_DATA:
7912                                         if (unlikely(!network_packet ||
7913                                                      is_duplicate_packet(priv,
7914                                                                          header)))
7915                                         {
7916                                                 IPW_DEBUG_DROP("Dropping: "
7917                                                                MAC_FMT ", "
7918                                                                MAC_FMT ", "
7919                                                                MAC_FMT "\n",
7920                                                                MAC_ARG(header->
7921                                                                        addr1),
7922                                                                MAC_ARG(header->
7923                                                                        addr2),
7924                                                                MAC_ARG(header->
7925                                                                        addr3));
7926                                                 break;
7927                                         }
7928
7929                                         ipw_handle_data_packet(priv, rxb,
7930                                                                &stats);
7931
7932                                         break;
7933                                 }
7934                                 break;
7935                         }
7936
7937                 case RX_HOST_NOTIFICATION_TYPE:{
7938                                 IPW_DEBUG_RX
7939                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
7940                                      pkt->u.notification.subtype,
7941                                      pkt->u.notification.flags,
7942                                      pkt->u.notification.size);
7943                                 ipw_rx_notification(priv, &pkt->u.notification);
7944                                 break;
7945                         }
7946
7947                 default:
7948                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
7949                                      pkt->header.message_type);
7950                         break;
7951                 }
7952
7953                 /* For now we just don't re-use anything.  We can tweak this
7954                  * later to try and re-use notification packets and SKBs that
7955                  * fail to Rx correctly */
7956                 if (rxb->skb != NULL) {
7957                         dev_kfree_skb_any(rxb->skb);
7958                         rxb->skb = NULL;
7959                 }
7960
7961                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
7962                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
7963                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
7964
7965                 i = (i + 1) % RX_QUEUE_SIZE;
7966         }
7967
7968         /* Backtrack one entry */
7969         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
7970
7971         ipw_rx_queue_restock(priv);
7972 }
7973
7974 #define DEFAULT_RTS_THRESHOLD     2304U
7975 #define MIN_RTS_THRESHOLD         1U
7976 #define MAX_RTS_THRESHOLD         2304U
7977 #define DEFAULT_BEACON_INTERVAL   100U
7978 #define DEFAULT_SHORT_RETRY_LIMIT 7U
7979 #define DEFAULT_LONG_RETRY_LIMIT  4U
7980
7981 static int ipw_sw_reset(struct ipw_priv *priv, int init)
7982 {
7983         int band, modulation;
7984         int old_mode = priv->ieee->iw_mode;
7985
7986         /* Initialize module parameter values here */
7987         priv->config = 0;
7988
7989         /* We default to disabling the LED code as right now it causes
7990          * too many systems to lock up... */
7991         if (!led)
7992                 priv->config |= CFG_NO_LED;
7993
7994         if (associate)
7995                 priv->config |= CFG_ASSOCIATE;
7996         else
7997                 IPW_DEBUG_INFO("Auto associate disabled.\n");
7998
7999         if (auto_create)
8000                 priv->config |= CFG_ADHOC_CREATE;
8001         else
8002                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8003
8004         priv->config &= ~CFG_STATIC_ESSID;
8005         priv->essid_len = 0;
8006         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8007
8008         if (disable) {
8009                 priv->status |= STATUS_RF_KILL_SW;
8010                 IPW_DEBUG_INFO("Radio disabled.\n");
8011         }
8012
8013         if (channel != 0) {
8014                 priv->config |= CFG_STATIC_CHANNEL;
8015                 priv->channel = channel;
8016                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8017                 /* TODO: Validate that provided channel is in range */
8018         }
8019 #ifdef CONFIG_IPW_QOS
8020         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8021                      burst_duration_CCK, burst_duration_OFDM);
8022 #endif                          /* CONFIG_IPW_QOS */
8023
8024         switch (mode) {
8025         case 1:
8026                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8027                 priv->net_dev->type = ARPHRD_ETHER;
8028
8029                 break;
8030 #ifdef CONFIG_IPW2200_MONITOR
8031         case 2:
8032                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8033 #ifdef CONFIG_IEEE80211_RADIOTAP
8034                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8035 #else
8036                 priv->net_dev->type = ARPHRD_IEEE80211;
8037 #endif
8038                 break;
8039 #endif
8040         default:
8041         case 0:
8042                 priv->net_dev->type = ARPHRD_ETHER;
8043                 priv->ieee->iw_mode = IW_MODE_INFRA;
8044                 break;
8045         }
8046
8047         if (hwcrypto) {
8048                 priv->ieee->host_encrypt = 0;
8049                 priv->ieee->host_encrypt_msdu = 0;
8050                 priv->ieee->host_decrypt = 0;
8051                 priv->ieee->host_mc_decrypt = 0;
8052         }
8053         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8054
8055         /* IPW2200/2915 is abled to do hardware fragmentation. */
8056         priv->ieee->host_open_frag = 0;
8057
8058         if ((priv->pci_dev->device == 0x4223) ||
8059             (priv->pci_dev->device == 0x4224)) {
8060                 if (init)
8061                         printk(KERN_INFO DRV_NAME
8062                                ": Detected Intel PRO/Wireless 2915ABG Network "
8063                                "Connection\n");
8064                 priv->ieee->abg_true = 1;
8065                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8066                 modulation = IEEE80211_OFDM_MODULATION |
8067                     IEEE80211_CCK_MODULATION;
8068                 priv->adapter = IPW_2915ABG;
8069                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8070         } else {
8071                 if (init)
8072                         printk(KERN_INFO DRV_NAME
8073                                ": Detected Intel PRO/Wireless 2200BG Network "
8074                                "Connection\n");
8075
8076                 priv->ieee->abg_true = 0;
8077                 band = IEEE80211_24GHZ_BAND;
8078                 modulation = IEEE80211_OFDM_MODULATION |
8079                     IEEE80211_CCK_MODULATION;
8080                 priv->adapter = IPW_2200BG;
8081                 priv->ieee->mode = IEEE_G | IEEE_B;
8082         }
8083
8084         priv->ieee->freq_band = band;
8085         priv->ieee->modulation = modulation;
8086
8087         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8088
8089         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8090         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8091
8092         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8093         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8094         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8095
8096         /* If power management is turned on, default to AC mode */
8097         priv->power_mode = IPW_POWER_AC;
8098         priv->tx_power = IPW_TX_POWER_DEFAULT;
8099
8100         return old_mode == priv->ieee->iw_mode;
8101 }
8102
8103 /*
8104  * This file defines the Wireless Extension handlers.  It does not
8105  * define any methods of hardware manipulation and relies on the
8106  * functions defined in ipw_main to provide the HW interaction.
8107  *
8108  * The exception to this is the use of the ipw_get_ordinal()
8109  * function used to poll the hardware vs. making unecessary calls.
8110  *
8111  */
8112
8113 static int ipw_wx_get_name(struct net_device *dev,
8114                            struct iw_request_info *info,
8115                            union iwreq_data *wrqu, char *extra)
8116 {
8117         struct ipw_priv *priv = ieee80211_priv(dev);
8118         mutex_lock(&priv->mutex);
8119         if (priv->status & STATUS_RF_KILL_MASK)
8120                 strcpy(wrqu->name, "radio off");
8121         else if (!(priv->status & STATUS_ASSOCIATED))
8122                 strcpy(wrqu->name, "unassociated");
8123         else
8124                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8125                          ipw_modes[priv->assoc_request.ieee_mode]);
8126         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8127         mutex_unlock(&priv->mutex);
8128         return 0;
8129 }
8130
8131 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8132 {
8133         if (channel == 0) {
8134                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8135                 priv->config &= ~CFG_STATIC_CHANNEL;
8136                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8137                                 "parameters.\n");
8138                 ipw_associate(priv);
8139                 return 0;
8140         }
8141
8142         priv->config |= CFG_STATIC_CHANNEL;
8143
8144         if (priv->channel == channel) {
8145                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8146                                channel);
8147                 return 0;
8148         }
8149
8150         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8151         priv->channel = channel;
8152
8153 #ifdef CONFIG_IPW2200_MONITOR
8154         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8155                 int i;
8156                 if (priv->status & STATUS_SCANNING) {
8157                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8158                                        "channel change.\n");
8159                         ipw_abort_scan(priv);
8160                 }
8161
8162                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8163                         udelay(10);
8164
8165                 if (priv->status & STATUS_SCANNING)
8166                         IPW_DEBUG_SCAN("Still scanning...\n");
8167                 else
8168                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8169                                        1000 - i);
8170
8171                 return 0;
8172         }
8173 #endif                          /* CONFIG_IPW2200_MONITOR */
8174
8175         /* Network configuration changed -- force [re]association */
8176         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8177         if (!ipw_disassociate(priv))
8178                 ipw_associate(priv);
8179
8180         return 0;
8181 }
8182
8183 static int ipw_wx_set_freq(struct net_device *dev,
8184                            struct iw_request_info *info,
8185                            union iwreq_data *wrqu, char *extra)
8186 {
8187         struct ipw_priv *priv = ieee80211_priv(dev);
8188         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8189         struct iw_freq *fwrq = &wrqu->freq;
8190         int ret = 0, i;
8191         u8 channel, flags;
8192         int band;
8193
8194         if (fwrq->m == 0) {
8195                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8196                 mutex_lock(&priv->mutex);
8197                 ret = ipw_set_channel(priv, 0);
8198                 mutex_unlock(&priv->mutex);
8199                 return ret;
8200         }
8201         /* if setting by freq convert to channel */
8202         if (fwrq->e == 1) {
8203                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8204                 if (channel == 0)
8205                         return -EINVAL;
8206         } else
8207                 channel = fwrq->m;
8208
8209         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8210                 return -EINVAL;
8211
8212         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8213                 i = ieee80211_channel_to_index(priv->ieee, channel);
8214                 if (i == -1)
8215                         return -EINVAL;
8216
8217                 flags = (band == IEEE80211_24GHZ_BAND) ?
8218                     geo->bg[i].flags : geo->a[i].flags;
8219                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8220                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8221                         return -EINVAL;
8222                 }
8223         }
8224
8225         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8226         mutex_lock(&priv->mutex);
8227         ret = ipw_set_channel(priv, channel);
8228         mutex_unlock(&priv->mutex);
8229         return ret;
8230 }
8231
8232 static int ipw_wx_get_freq(struct net_device *dev,
8233                            struct iw_request_info *info,
8234                            union iwreq_data *wrqu, char *extra)
8235 {
8236         struct ipw_priv *priv = ieee80211_priv(dev);
8237
8238         wrqu->freq.e = 0;
8239
8240         /* If we are associated, trying to associate, or have a statically
8241          * configured CHANNEL then return that; otherwise return ANY */
8242         mutex_lock(&priv->mutex);
8243         if (priv->config & CFG_STATIC_CHANNEL ||
8244             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8245                 wrqu->freq.m = priv->channel;
8246         else
8247                 wrqu->freq.m = 0;
8248
8249         mutex_unlock(&priv->mutex);
8250         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8251         return 0;
8252 }
8253
8254 static int ipw_wx_set_mode(struct net_device *dev,
8255                            struct iw_request_info *info,
8256                            union iwreq_data *wrqu, char *extra)
8257 {
8258         struct ipw_priv *priv = ieee80211_priv(dev);
8259         int err = 0;
8260
8261         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8262
8263         switch (wrqu->mode) {
8264 #ifdef CONFIG_IPW2200_MONITOR
8265         case IW_MODE_MONITOR:
8266 #endif
8267         case IW_MODE_ADHOC:
8268         case IW_MODE_INFRA:
8269                 break;
8270         case IW_MODE_AUTO:
8271                 wrqu->mode = IW_MODE_INFRA;
8272                 break;
8273         default:
8274                 return -EINVAL;
8275         }
8276         if (wrqu->mode == priv->ieee->iw_mode)
8277                 return 0;
8278
8279         mutex_lock(&priv->mutex);
8280
8281         ipw_sw_reset(priv, 0);
8282
8283 #ifdef CONFIG_IPW2200_MONITOR
8284         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8285                 priv->net_dev->type = ARPHRD_ETHER;
8286
8287         if (wrqu->mode == IW_MODE_MONITOR)
8288 #ifdef CONFIG_IEEE80211_RADIOTAP
8289                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8290 #else
8291                 priv->net_dev->type = ARPHRD_IEEE80211;
8292 #endif
8293 #endif                          /* CONFIG_IPW2200_MONITOR */
8294
8295         /* Free the existing firmware and reset the fw_loaded
8296          * flag so ipw_load() will bring in the new firmawre */
8297         free_firmware();
8298
8299         priv->ieee->iw_mode = wrqu->mode;
8300
8301         queue_work(priv->workqueue, &priv->adapter_restart);
8302         mutex_unlock(&priv->mutex);
8303         return err;
8304 }
8305
8306 static int ipw_wx_get_mode(struct net_device *dev,
8307                            struct iw_request_info *info,
8308                            union iwreq_data *wrqu, char *extra)
8309 {
8310         struct ipw_priv *priv = ieee80211_priv(dev);
8311         mutex_lock(&priv->mutex);
8312         wrqu->mode = priv->ieee->iw_mode;
8313         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8314         mutex_unlock(&priv->mutex);
8315         return 0;
8316 }
8317
8318 /* Values are in microsecond */
8319 static const s32 timeout_duration[] = {
8320         350000,
8321         250000,
8322         75000,
8323         37000,
8324         25000,
8325 };
8326
8327 static const s32 period_duration[] = {
8328         400000,
8329         700000,
8330         1000000,
8331         1000000,
8332         1000000
8333 };
8334
8335 static int ipw_wx_get_range(struct net_device *dev,
8336                             struct iw_request_info *info,
8337                             union iwreq_data *wrqu, char *extra)
8338 {
8339         struct ipw_priv *priv = ieee80211_priv(dev);
8340         struct iw_range *range = (struct iw_range *)extra;
8341         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8342         int i = 0, j;
8343
8344         wrqu->data.length = sizeof(*range);
8345         memset(range, 0, sizeof(*range));
8346
8347         /* 54Mbs == ~27 Mb/s real (802.11g) */
8348         range->throughput = 27 * 1000 * 1000;
8349
8350         range->max_qual.qual = 100;
8351         /* TODO: Find real max RSSI and stick here */
8352         range->max_qual.level = 0;
8353         range->max_qual.noise = 0;
8354         range->max_qual.updated = 7;    /* Updated all three */
8355
8356         range->avg_qual.qual = 70;
8357         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8358         range->avg_qual.level = 0;      /* FIXME to real average level */
8359         range->avg_qual.noise = 0;
8360         range->avg_qual.updated = 7;    /* Updated all three */
8361         mutex_lock(&priv->mutex);
8362         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8363
8364         for (i = 0; i < range->num_bitrates; i++)
8365                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8366                     500000;
8367
8368         range->max_rts = DEFAULT_RTS_THRESHOLD;
8369         range->min_frag = MIN_FRAG_THRESHOLD;
8370         range->max_frag = MAX_FRAG_THRESHOLD;
8371
8372         range->encoding_size[0] = 5;
8373         range->encoding_size[1] = 13;
8374         range->num_encoding_sizes = 2;
8375         range->max_encoding_tokens = WEP_KEYS;
8376
8377         /* Set the Wireless Extension versions */
8378         range->we_version_compiled = WIRELESS_EXT;
8379         range->we_version_source = 18;
8380
8381         i = 0;
8382         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8383                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8384                      i++, j++) {
8385                         range->freq[i].i = geo->bg[j].channel;
8386                         range->freq[i].m = geo->bg[j].freq * 100000;
8387                         range->freq[i].e = 1;
8388                 }
8389         }
8390
8391         if (priv->ieee->mode & IEEE_A) {
8392                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8393                      i++, j++) {
8394                         range->freq[i].i = geo->a[j].channel;
8395                         range->freq[i].m = geo->a[j].freq * 100000;
8396                         range->freq[i].e = 1;
8397                 }
8398         }
8399
8400         range->num_channels = i;
8401         range->num_frequency = i;
8402
8403         mutex_unlock(&priv->mutex);
8404
8405         /* Event capability (kernel + driver) */
8406         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8407                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8408                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8409         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8410
8411         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8412                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8413
8414         IPW_DEBUG_WX("GET Range\n");
8415         return 0;
8416 }
8417
8418 static int ipw_wx_set_wap(struct net_device *dev,
8419                           struct iw_request_info *info,
8420                           union iwreq_data *wrqu, char *extra)
8421 {
8422         struct ipw_priv *priv = ieee80211_priv(dev);
8423
8424         static const unsigned char any[] = {
8425                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8426         };
8427         static const unsigned char off[] = {
8428                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8429         };
8430
8431         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8432                 return -EINVAL;
8433         mutex_lock(&priv->mutex);
8434         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8435             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8436                 /* we disable mandatory BSSID association */
8437                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8438                 priv->config &= ~CFG_STATIC_BSSID;
8439                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8440                                 "parameters.\n");
8441                 ipw_associate(priv);
8442                 mutex_unlock(&priv->mutex);
8443                 return 0;
8444         }
8445
8446         priv->config |= CFG_STATIC_BSSID;
8447         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8448                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8449                 mutex_unlock(&priv->mutex);
8450                 return 0;
8451         }
8452
8453         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8454                      MAC_ARG(wrqu->ap_addr.sa_data));
8455
8456         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8457
8458         /* Network configuration changed -- force [re]association */
8459         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8460         if (!ipw_disassociate(priv))
8461                 ipw_associate(priv);
8462
8463         mutex_unlock(&priv->mutex);
8464         return 0;
8465 }
8466
8467 static int ipw_wx_get_wap(struct net_device *dev,
8468                           struct iw_request_info *info,
8469                           union iwreq_data *wrqu, char *extra)
8470 {
8471         struct ipw_priv *priv = ieee80211_priv(dev);
8472         /* If we are associated, trying to associate, or have a statically
8473          * configured BSSID then return that; otherwise return ANY */
8474         mutex_lock(&priv->mutex);
8475         if (priv->config & CFG_STATIC_BSSID ||
8476             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8477                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8478                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8479         } else
8480                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8481
8482         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8483                      MAC_ARG(wrqu->ap_addr.sa_data));
8484         mutex_unlock(&priv->mutex);
8485         return 0;
8486 }
8487
8488 static int ipw_wx_set_essid(struct net_device *dev,
8489                             struct iw_request_info *info,
8490                             union iwreq_data *wrqu, char *extra)
8491 {
8492         struct ipw_priv *priv = ieee80211_priv(dev);
8493         char *essid = "";       /* ANY */
8494         int length = 0;
8495         mutex_lock(&priv->mutex);
8496         if (wrqu->essid.flags && wrqu->essid.length) {
8497                 length = wrqu->essid.length - 1;
8498                 essid = extra;
8499         }
8500         if (length == 0) {
8501                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8502                 if ((priv->config & CFG_STATIC_ESSID) &&
8503                     !(priv->status & (STATUS_ASSOCIATED |
8504                                       STATUS_ASSOCIATING))) {
8505                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8506                                         "parameters.\n");
8507                         priv->config &= ~CFG_STATIC_ESSID;
8508                         ipw_associate(priv);
8509                 }
8510                 mutex_unlock(&priv->mutex);
8511                 return 0;
8512         }
8513
8514         length = min(length, IW_ESSID_MAX_SIZE);
8515
8516         priv->config |= CFG_STATIC_ESSID;
8517
8518         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8519                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8520                 mutex_unlock(&priv->mutex);
8521                 return 0;
8522         }
8523
8524         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8525                      length);
8526
8527         priv->essid_len = length;
8528         memcpy(priv->essid, essid, priv->essid_len);
8529
8530         /* Network configuration changed -- force [re]association */
8531         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8532         if (!ipw_disassociate(priv))
8533                 ipw_associate(priv);
8534
8535         mutex_unlock(&priv->mutex);
8536         return 0;
8537 }
8538
8539 static int ipw_wx_get_essid(struct net_device *dev,
8540                             struct iw_request_info *info,
8541                             union iwreq_data *wrqu, char *extra)
8542 {
8543         struct ipw_priv *priv = ieee80211_priv(dev);
8544
8545         /* If we are associated, trying to associate, or have a statically
8546          * configured ESSID then return that; otherwise return ANY */
8547         mutex_lock(&priv->mutex);
8548         if (priv->config & CFG_STATIC_ESSID ||
8549             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8550                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8551                              escape_essid(priv->essid, priv->essid_len));
8552                 memcpy(extra, priv->essid, priv->essid_len);
8553                 wrqu->essid.length = priv->essid_len;
8554                 wrqu->essid.flags = 1;  /* active */
8555         } else {
8556                 IPW_DEBUG_WX("Getting essid: ANY\n");
8557                 wrqu->essid.length = 0;
8558                 wrqu->essid.flags = 0;  /* active */
8559         }
8560         mutex_unlock(&priv->mutex);
8561         return 0;
8562 }
8563
8564 static int ipw_wx_set_nick(struct net_device *dev,
8565                            struct iw_request_info *info,
8566                            union iwreq_data *wrqu, char *extra)
8567 {
8568         struct ipw_priv *priv = ieee80211_priv(dev);
8569
8570         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8571         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8572                 return -E2BIG;
8573         mutex_lock(&priv->mutex);
8574         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8575         memset(priv->nick, 0, sizeof(priv->nick));
8576         memcpy(priv->nick, extra, wrqu->data.length);
8577         IPW_DEBUG_TRACE("<<\n");
8578         mutex_unlock(&priv->mutex);
8579         return 0;
8580
8581 }
8582
8583 static int ipw_wx_get_nick(struct net_device *dev,
8584                            struct iw_request_info *info,
8585                            union iwreq_data *wrqu, char *extra)
8586 {
8587         struct ipw_priv *priv = ieee80211_priv(dev);
8588         IPW_DEBUG_WX("Getting nick\n");
8589         mutex_lock(&priv->mutex);
8590         wrqu->data.length = strlen(priv->nick) + 1;
8591         memcpy(extra, priv->nick, wrqu->data.length);
8592         wrqu->data.flags = 1;   /* active */
8593         mutex_unlock(&priv->mutex);
8594         return 0;
8595 }
8596
8597 static int ipw_wx_set_rate(struct net_device *dev,
8598                            struct iw_request_info *info,
8599                            union iwreq_data *wrqu, char *extra)
8600 {
8601         /* TODO: We should use semaphores or locks for access to priv */
8602         struct ipw_priv *priv = ieee80211_priv(dev);
8603         u32 target_rate = wrqu->bitrate.value;
8604         u32 fixed, mask;
8605
8606         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8607         /* value = X, fixed = 1 means only rate X */
8608         /* value = X, fixed = 0 means all rates lower equal X */
8609
8610         if (target_rate == -1) {
8611                 fixed = 0;
8612                 mask = IEEE80211_DEFAULT_RATES_MASK;
8613                 /* Now we should reassociate */
8614                 goto apply;
8615         }
8616
8617         mask = 0;
8618         fixed = wrqu->bitrate.fixed;
8619
8620         if (target_rate == 1000000 || !fixed)
8621                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8622         if (target_rate == 1000000)
8623                 goto apply;
8624
8625         if (target_rate == 2000000 || !fixed)
8626                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8627         if (target_rate == 2000000)
8628                 goto apply;
8629
8630         if (target_rate == 5500000 || !fixed)
8631                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8632         if (target_rate == 5500000)
8633                 goto apply;
8634
8635         if (target_rate == 6000000 || !fixed)
8636                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8637         if (target_rate == 6000000)
8638                 goto apply;
8639
8640         if (target_rate == 9000000 || !fixed)
8641                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8642         if (target_rate == 9000000)
8643                 goto apply;
8644
8645         if (target_rate == 11000000 || !fixed)
8646                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8647         if (target_rate == 11000000)
8648                 goto apply;
8649
8650         if (target_rate == 12000000 || !fixed)
8651                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8652         if (target_rate == 12000000)
8653                 goto apply;
8654
8655         if (target_rate == 18000000 || !fixed)
8656                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8657         if (target_rate == 18000000)
8658                 goto apply;
8659
8660         if (target_rate == 24000000 || !fixed)
8661                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8662         if (target_rate == 24000000)
8663                 goto apply;
8664
8665         if (target_rate == 36000000 || !fixed)
8666                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8667         if (target_rate == 36000000)
8668                 goto apply;
8669
8670         if (target_rate == 48000000 || !fixed)
8671                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8672         if (target_rate == 48000000)
8673                 goto apply;
8674
8675         if (target_rate == 54000000 || !fixed)
8676                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8677         if (target_rate == 54000000)
8678                 goto apply;
8679
8680         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8681         return -EINVAL;
8682
8683       apply:
8684         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8685                      mask, fixed ? "fixed" : "sub-rates");
8686         mutex_lock(&priv->mutex);
8687         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8688                 priv->config &= ~CFG_FIXED_RATE;
8689                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8690         } else
8691                 priv->config |= CFG_FIXED_RATE;
8692
8693         if (priv->rates_mask == mask) {
8694                 IPW_DEBUG_WX("Mask set to current mask.\n");
8695                 mutex_unlock(&priv->mutex);
8696                 return 0;
8697         }
8698
8699         priv->rates_mask = mask;
8700
8701         /* Network configuration changed -- force [re]association */
8702         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8703         if (!ipw_disassociate(priv))
8704                 ipw_associate(priv);
8705
8706         mutex_unlock(&priv->mutex);
8707         return 0;
8708 }
8709
8710 static int ipw_wx_get_rate(struct net_device *dev,
8711                            struct iw_request_info *info,
8712                            union iwreq_data *wrqu, char *extra)
8713 {
8714         struct ipw_priv *priv = ieee80211_priv(dev);
8715         mutex_lock(&priv->mutex);
8716         wrqu->bitrate.value = priv->last_rate;
8717         mutex_unlock(&priv->mutex);
8718         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8719         return 0;
8720 }
8721
8722 static int ipw_wx_set_rts(struct net_device *dev,
8723                           struct iw_request_info *info,
8724                           union iwreq_data *wrqu, char *extra)
8725 {
8726         struct ipw_priv *priv = ieee80211_priv(dev);
8727         mutex_lock(&priv->mutex);
8728         if (wrqu->rts.disabled)
8729                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8730         else {
8731                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8732                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8733                         mutex_unlock(&priv->mutex);
8734                         return -EINVAL;
8735                 }
8736                 priv->rts_threshold = wrqu->rts.value;
8737         }
8738
8739         ipw_send_rts_threshold(priv, priv->rts_threshold);
8740         mutex_unlock(&priv->mutex);
8741         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8742         return 0;
8743 }
8744
8745 static int ipw_wx_get_rts(struct net_device *dev,
8746                           struct iw_request_info *info,
8747                           union iwreq_data *wrqu, char *extra)
8748 {
8749         struct ipw_priv *priv = ieee80211_priv(dev);
8750         mutex_lock(&priv->mutex);
8751         wrqu->rts.value = priv->rts_threshold;
8752         wrqu->rts.fixed = 0;    /* no auto select */
8753         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8754         mutex_unlock(&priv->mutex);
8755         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8756         return 0;
8757 }
8758
8759 static int ipw_wx_set_txpow(struct net_device *dev,
8760                             struct iw_request_info *info,
8761                             union iwreq_data *wrqu, char *extra)
8762 {
8763         struct ipw_priv *priv = ieee80211_priv(dev);
8764         int err = 0;
8765
8766         mutex_lock(&priv->mutex);
8767         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8768                 err = -EINPROGRESS;
8769                 goto out;
8770         }
8771
8772         if (!wrqu->power.fixed)
8773                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8774
8775         if (wrqu->power.flags != IW_TXPOW_DBM) {
8776                 err = -EINVAL;
8777                 goto out;
8778         }
8779
8780         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8781             (wrqu->power.value < IPW_TX_POWER_MIN)) {
8782                 err = -EINVAL;
8783                 goto out;
8784         }
8785
8786         priv->tx_power = wrqu->power.value;
8787         err = ipw_set_tx_power(priv);
8788       out:
8789         mutex_unlock(&priv->mutex);
8790         return err;
8791 }
8792
8793 static int ipw_wx_get_txpow(struct net_device *dev,
8794                             struct iw_request_info *info,
8795                             union iwreq_data *wrqu, char *extra)
8796 {
8797         struct ipw_priv *priv = ieee80211_priv(dev);
8798         mutex_lock(&priv->mutex);
8799         wrqu->power.value = priv->tx_power;
8800         wrqu->power.fixed = 1;
8801         wrqu->power.flags = IW_TXPOW_DBM;
8802         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8803         mutex_unlock(&priv->mutex);
8804
8805         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8806                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8807
8808         return 0;
8809 }
8810
8811 static int ipw_wx_set_frag(struct net_device *dev,
8812                            struct iw_request_info *info,
8813                            union iwreq_data *wrqu, char *extra)
8814 {
8815         struct ipw_priv *priv = ieee80211_priv(dev);
8816         mutex_lock(&priv->mutex);
8817         if (wrqu->frag.disabled)
8818                 priv->ieee->fts = DEFAULT_FTS;
8819         else {
8820                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8821                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8822                         mutex_unlock(&priv->mutex);
8823                         return -EINVAL;
8824                 }
8825
8826                 priv->ieee->fts = wrqu->frag.value & ~0x1;
8827         }
8828
8829         ipw_send_frag_threshold(priv, wrqu->frag.value);
8830         mutex_unlock(&priv->mutex);
8831         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8832         return 0;
8833 }
8834
8835 static int ipw_wx_get_frag(struct net_device *dev,
8836                            struct iw_request_info *info,
8837                            union iwreq_data *wrqu, char *extra)
8838 {
8839         struct ipw_priv *priv = ieee80211_priv(dev);
8840         mutex_lock(&priv->mutex);
8841         wrqu->frag.value = priv->ieee->fts;
8842         wrqu->frag.fixed = 0;   /* no auto select */
8843         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8844         mutex_unlock(&priv->mutex);
8845         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8846
8847         return 0;
8848 }
8849
8850 static int ipw_wx_set_retry(struct net_device *dev,
8851                             struct iw_request_info *info,
8852                             union iwreq_data *wrqu, char *extra)
8853 {
8854         struct ipw_priv *priv = ieee80211_priv(dev);
8855
8856         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8857                 return -EINVAL;
8858
8859         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8860                 return 0;
8861
8862         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8863                 return -EINVAL;
8864
8865         mutex_lock(&priv->mutex);
8866         if (wrqu->retry.flags & IW_RETRY_MIN)
8867                 priv->short_retry_limit = (u8) wrqu->retry.value;
8868         else if (wrqu->retry.flags & IW_RETRY_MAX)
8869                 priv->long_retry_limit = (u8) wrqu->retry.value;
8870         else {
8871                 priv->short_retry_limit = (u8) wrqu->retry.value;
8872                 priv->long_retry_limit = (u8) wrqu->retry.value;
8873         }
8874
8875         ipw_send_retry_limit(priv, priv->short_retry_limit,
8876                              priv->long_retry_limit);
8877         mutex_unlock(&priv->mutex);
8878         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8879                      priv->short_retry_limit, priv->long_retry_limit);
8880         return 0;
8881 }
8882
8883 static int ipw_wx_get_retry(struct net_device *dev,
8884                             struct iw_request_info *info,
8885                             union iwreq_data *wrqu, char *extra)
8886 {
8887         struct ipw_priv *priv = ieee80211_priv(dev);
8888
8889         mutex_lock(&priv->mutex);
8890         wrqu->retry.disabled = 0;
8891
8892         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8893                 mutex_unlock(&priv->mutex);
8894                 return -EINVAL;
8895         }
8896
8897         if (wrqu->retry.flags & IW_RETRY_MAX) {
8898                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8899                 wrqu->retry.value = priv->long_retry_limit;
8900         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8901                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8902                 wrqu->retry.value = priv->short_retry_limit;
8903         } else {
8904                 wrqu->retry.flags = IW_RETRY_LIMIT;
8905                 wrqu->retry.value = priv->short_retry_limit;
8906         }
8907         mutex_unlock(&priv->mutex);
8908
8909         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8910
8911         return 0;
8912 }
8913
8914 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8915                                    int essid_len)
8916 {
8917         struct ipw_scan_request_ext scan;
8918         int err = 0, scan_type;
8919
8920         if (!(priv->status & STATUS_INIT) ||
8921             (priv->status & STATUS_EXIT_PENDING))
8922                 return 0;
8923
8924         mutex_lock(&priv->mutex);
8925
8926         if (priv->status & STATUS_RF_KILL_MASK) {
8927                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
8928                 priv->status |= STATUS_SCAN_PENDING;
8929                 goto done;
8930         }
8931
8932         IPW_DEBUG_HC("starting request direct scan!\n");
8933
8934         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
8935                 /* We should not sleep here; otherwise we will block most
8936                  * of the system (for instance, we hold rtnl_lock when we
8937                  * get here).
8938                  */
8939                 err = -EAGAIN;
8940                 goto done;
8941         }
8942         memset(&scan, 0, sizeof(scan));
8943
8944         if (priv->config & CFG_SPEED_SCAN)
8945                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8946                     cpu_to_le16(30);
8947         else
8948                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8949                     cpu_to_le16(20);
8950
8951         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
8952             cpu_to_le16(20);
8953         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
8954         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
8955
8956         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
8957
8958         err = ipw_send_ssid(priv, essid, essid_len);
8959         if (err) {
8960                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
8961                 goto done;
8962         }
8963         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
8964
8965         ipw_add_scan_channels(priv, &scan, scan_type);
8966
8967         err = ipw_send_scan_request_ext(priv, &scan);
8968         if (err) {
8969                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
8970                 goto done;
8971         }
8972
8973         priv->status |= STATUS_SCANNING;
8974
8975       done:
8976         mutex_unlock(&priv->mutex);
8977         return err;
8978 }
8979
8980 static int ipw_wx_set_scan(struct net_device *dev,
8981                            struct iw_request_info *info,
8982                            union iwreq_data *wrqu, char *extra)
8983 {
8984         struct ipw_priv *priv = ieee80211_priv(dev);
8985         struct iw_scan_req *req = NULL;
8986         if (wrqu->data.length
8987             && wrqu->data.length == sizeof(struct iw_scan_req)) {
8988                 req = (struct iw_scan_req *)extra;
8989                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
8990                         ipw_request_direct_scan(priv, req->essid,
8991                                                 req->essid_len);
8992                         return 0;
8993                 }
8994         }
8995
8996         IPW_DEBUG_WX("Start scan\n");
8997
8998         queue_work(priv->workqueue, &priv->request_scan);
8999
9000         return 0;
9001 }
9002
9003 static int ipw_wx_get_scan(struct net_device *dev,
9004                            struct iw_request_info *info,
9005                            union iwreq_data *wrqu, char *extra)
9006 {
9007         struct ipw_priv *priv = ieee80211_priv(dev);
9008         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9009 }
9010
9011 static int ipw_wx_set_encode(struct net_device *dev,
9012                              struct iw_request_info *info,
9013                              union iwreq_data *wrqu, char *key)
9014 {
9015         struct ipw_priv *priv = ieee80211_priv(dev);
9016         int ret;
9017         u32 cap = priv->capability;
9018
9019         mutex_lock(&priv->mutex);
9020         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9021
9022         /* In IBSS mode, we need to notify the firmware to update
9023          * the beacon info after we changed the capability. */
9024         if (cap != priv->capability &&
9025             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9026             priv->status & STATUS_ASSOCIATED)
9027                 ipw_disassociate(priv);
9028
9029         mutex_unlock(&priv->mutex);
9030         return ret;
9031 }
9032
9033 static int ipw_wx_get_encode(struct net_device *dev,
9034                              struct iw_request_info *info,
9035                              union iwreq_data *wrqu, char *key)
9036 {
9037         struct ipw_priv *priv = ieee80211_priv(dev);
9038         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9039 }
9040
9041 static int ipw_wx_set_power(struct net_device *dev,
9042                             struct iw_request_info *info,
9043                             union iwreq_data *wrqu, char *extra)
9044 {
9045         struct ipw_priv *priv = ieee80211_priv(dev);
9046         int err;
9047         mutex_lock(&priv->mutex);
9048         if (wrqu->power.disabled) {
9049                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9050                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9051                 if (err) {
9052                         IPW_DEBUG_WX("failed setting power mode.\n");
9053                         mutex_unlock(&priv->mutex);
9054                         return err;
9055                 }
9056                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9057                 mutex_unlock(&priv->mutex);
9058                 return 0;
9059         }
9060
9061         switch (wrqu->power.flags & IW_POWER_MODE) {
9062         case IW_POWER_ON:       /* If not specified */
9063         case IW_POWER_MODE:     /* If set all mask */
9064         case IW_POWER_ALL_R:    /* If explicitely state all */
9065                 break;
9066         default:                /* Otherwise we don't support it */
9067                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9068                              wrqu->power.flags);
9069                 mutex_unlock(&priv->mutex);
9070                 return -EOPNOTSUPP;
9071         }
9072
9073         /* If the user hasn't specified a power management mode yet, default
9074          * to BATTERY */
9075         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9076                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9077         else
9078                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9079         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9080         if (err) {
9081                 IPW_DEBUG_WX("failed setting power mode.\n");
9082                 mutex_unlock(&priv->mutex);
9083                 return err;
9084         }
9085
9086         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9087         mutex_unlock(&priv->mutex);
9088         return 0;
9089 }
9090
9091 static int ipw_wx_get_power(struct net_device *dev,
9092                             struct iw_request_info *info,
9093                             union iwreq_data *wrqu, char *extra)
9094 {
9095         struct ipw_priv *priv = ieee80211_priv(dev);
9096         mutex_lock(&priv->mutex);
9097         if (!(priv->power_mode & IPW_POWER_ENABLED))
9098                 wrqu->power.disabled = 1;
9099         else
9100                 wrqu->power.disabled = 0;
9101
9102         mutex_unlock(&priv->mutex);
9103         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9104
9105         return 0;
9106 }
9107
9108 static int ipw_wx_set_powermode(struct net_device *dev,
9109                                 struct iw_request_info *info,
9110                                 union iwreq_data *wrqu, char *extra)
9111 {
9112         struct ipw_priv *priv = ieee80211_priv(dev);
9113         int mode = *(int *)extra;
9114         int err;
9115         mutex_lock(&priv->mutex);
9116         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9117                 mode = IPW_POWER_AC;
9118                 priv->power_mode = mode;
9119         } else {
9120                 priv->power_mode = IPW_POWER_ENABLED | mode;
9121         }
9122
9123         if (priv->power_mode != mode) {
9124                 err = ipw_send_power_mode(priv, mode);
9125
9126                 if (err) {
9127                         IPW_DEBUG_WX("failed setting power mode.\n");
9128                         mutex_unlock(&priv->mutex);
9129                         return err;
9130                 }
9131         }
9132         mutex_unlock(&priv->mutex);
9133         return 0;
9134 }
9135
9136 #define MAX_WX_STRING 80
9137 static int ipw_wx_get_powermode(struct net_device *dev,
9138                                 struct iw_request_info *info,
9139                                 union iwreq_data *wrqu, char *extra)
9140 {
9141         struct ipw_priv *priv = ieee80211_priv(dev);
9142         int level = IPW_POWER_LEVEL(priv->power_mode);
9143         char *p = extra;
9144
9145         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9146
9147         switch (level) {
9148         case IPW_POWER_AC:
9149                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9150                 break;
9151         case IPW_POWER_BATTERY:
9152                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9153                 break;
9154         default:
9155                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9156                               "(Timeout %dms, Period %dms)",
9157                               timeout_duration[level - 1] / 1000,
9158                               period_duration[level - 1] / 1000);
9159         }
9160
9161         if (!(priv->power_mode & IPW_POWER_ENABLED))
9162                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9163
9164         wrqu->data.length = p - extra + 1;
9165
9166         return 0;
9167 }
9168
9169 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9170                                     struct iw_request_info *info,
9171                                     union iwreq_data *wrqu, char *extra)
9172 {
9173         struct ipw_priv *priv = ieee80211_priv(dev);
9174         int mode = *(int *)extra;
9175         u8 band = 0, modulation = 0;
9176
9177         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9178                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9179                 return -EINVAL;
9180         }
9181         mutex_lock(&priv->mutex);
9182         if (priv->adapter == IPW_2915ABG) {
9183                 priv->ieee->abg_true = 1;
9184                 if (mode & IEEE_A) {
9185                         band |= IEEE80211_52GHZ_BAND;
9186                         modulation |= IEEE80211_OFDM_MODULATION;
9187                 } else
9188                         priv->ieee->abg_true = 0;
9189         } else {
9190                 if (mode & IEEE_A) {
9191                         IPW_WARNING("Attempt to set 2200BG into "
9192                                     "802.11a mode\n");
9193                         mutex_unlock(&priv->mutex);
9194                         return -EINVAL;
9195                 }
9196
9197                 priv->ieee->abg_true = 0;
9198         }
9199
9200         if (mode & IEEE_B) {
9201                 band |= IEEE80211_24GHZ_BAND;
9202                 modulation |= IEEE80211_CCK_MODULATION;
9203         } else
9204                 priv->ieee->abg_true = 0;
9205
9206         if (mode & IEEE_G) {
9207                 band |= IEEE80211_24GHZ_BAND;
9208                 modulation |= IEEE80211_OFDM_MODULATION;
9209         } else
9210                 priv->ieee->abg_true = 0;
9211
9212         priv->ieee->mode = mode;
9213         priv->ieee->freq_band = band;
9214         priv->ieee->modulation = modulation;
9215         init_supported_rates(priv, &priv->rates);
9216
9217         /* Network configuration changed -- force [re]association */
9218         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9219         if (!ipw_disassociate(priv)) {
9220                 ipw_send_supported_rates(priv, &priv->rates);
9221                 ipw_associate(priv);
9222         }
9223
9224         /* Update the band LEDs */
9225         ipw_led_band_on(priv);
9226
9227         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9228                      mode & IEEE_A ? 'a' : '.',
9229                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9230         mutex_unlock(&priv->mutex);
9231         return 0;
9232 }
9233
9234 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9235                                     struct iw_request_info *info,
9236                                     union iwreq_data *wrqu, char *extra)
9237 {
9238         struct ipw_priv *priv = ieee80211_priv(dev);
9239         mutex_lock(&priv->mutex);
9240         switch (priv->ieee->mode) {
9241         case IEEE_A:
9242                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9243                 break;
9244         case IEEE_B:
9245                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9246                 break;
9247         case IEEE_A | IEEE_B:
9248                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9249                 break;
9250         case IEEE_G:
9251                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9252                 break;
9253         case IEEE_A | IEEE_G:
9254                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9255                 break;
9256         case IEEE_B | IEEE_G:
9257                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9258                 break;
9259         case IEEE_A | IEEE_B | IEEE_G:
9260                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9261                 break;
9262         default:
9263                 strncpy(extra, "unknown", MAX_WX_STRING);
9264                 break;
9265         }
9266
9267         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9268
9269         wrqu->data.length = strlen(extra) + 1;
9270         mutex_unlock(&priv->mutex);
9271
9272         return 0;
9273 }
9274
9275 static int ipw_wx_set_preamble(struct net_device *dev,
9276                                struct iw_request_info *info,
9277                                union iwreq_data *wrqu, char *extra)
9278 {
9279         struct ipw_priv *priv = ieee80211_priv(dev);
9280         int mode = *(int *)extra;
9281         mutex_lock(&priv->mutex);
9282         /* Switching from SHORT -> LONG requires a disassociation */
9283         if (mode == 1) {
9284                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9285                         priv->config |= CFG_PREAMBLE_LONG;
9286
9287                         /* Network configuration changed -- force [re]association */
9288                         IPW_DEBUG_ASSOC
9289                             ("[re]association triggered due to preamble change.\n");
9290                         if (!ipw_disassociate(priv))
9291                                 ipw_associate(priv);
9292                 }
9293                 goto done;
9294         }
9295
9296         if (mode == 0) {
9297                 priv->config &= ~CFG_PREAMBLE_LONG;
9298                 goto done;
9299         }
9300         mutex_unlock(&priv->mutex);
9301         return -EINVAL;
9302
9303       done:
9304         mutex_unlock(&priv->mutex);
9305         return 0;
9306 }
9307
9308 static int ipw_wx_get_preamble(struct net_device *dev,
9309                                struct iw_request_info *info,
9310                                union iwreq_data *wrqu, char *extra)
9311 {
9312         struct ipw_priv *priv = ieee80211_priv(dev);
9313         mutex_lock(&priv->mutex);
9314         if (priv->config & CFG_PREAMBLE_LONG)
9315                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9316         else
9317                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9318         mutex_unlock(&priv->mutex);
9319         return 0;
9320 }
9321
9322 #ifdef CONFIG_IPW2200_MONITOR
9323 static int ipw_wx_set_monitor(struct net_device *dev,
9324                               struct iw_request_info *info,
9325                               union iwreq_data *wrqu, char *extra)
9326 {
9327         struct ipw_priv *priv = ieee80211_priv(dev);
9328         int *parms = (int *)extra;
9329         int enable = (parms[0] > 0);
9330         mutex_lock(&priv->mutex);
9331         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9332         if (enable) {
9333                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9334 #ifdef CONFIG_IEEE80211_RADIOTAP
9335                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9336 #else
9337                         priv->net_dev->type = ARPHRD_IEEE80211;
9338 #endif
9339                         queue_work(priv->workqueue, &priv->adapter_restart);
9340                 }
9341
9342                 ipw_set_channel(priv, parms[1]);
9343         } else {
9344                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9345                         mutex_unlock(&priv->mutex);
9346                         return 0;
9347                 }
9348                 priv->net_dev->type = ARPHRD_ETHER;
9349                 queue_work(priv->workqueue, &priv->adapter_restart);
9350         }
9351         mutex_unlock(&priv->mutex);
9352         return 0;
9353 }
9354
9355 #endif                          // CONFIG_IPW2200_MONITOR
9356
9357 static int ipw_wx_reset(struct net_device *dev,
9358                         struct iw_request_info *info,
9359                         union iwreq_data *wrqu, char *extra)
9360 {
9361         struct ipw_priv *priv = ieee80211_priv(dev);
9362         IPW_DEBUG_WX("RESET\n");
9363         queue_work(priv->workqueue, &priv->adapter_restart);
9364         return 0;
9365 }
9366
9367 static int ipw_wx_sw_reset(struct net_device *dev,
9368                            struct iw_request_info *info,
9369                            union iwreq_data *wrqu, char *extra)
9370 {
9371         struct ipw_priv *priv = ieee80211_priv(dev);
9372         union iwreq_data wrqu_sec = {
9373                 .encoding = {
9374                              .flags = IW_ENCODE_DISABLED,
9375                              },
9376         };
9377         int ret;
9378
9379         IPW_DEBUG_WX("SW_RESET\n");
9380
9381         mutex_lock(&priv->mutex);
9382
9383         ret = ipw_sw_reset(priv, 0);
9384         if (!ret) {
9385                 free_firmware();
9386                 ipw_adapter_restart(priv);
9387         }
9388
9389         /* The SW reset bit might have been toggled on by the 'disable'
9390          * module parameter, so take appropriate action */
9391         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9392
9393         mutex_unlock(&priv->mutex);
9394         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9395         mutex_lock(&priv->mutex);
9396
9397         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9398                 /* Configuration likely changed -- force [re]association */
9399                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9400                                 "reset.\n");
9401                 if (!ipw_disassociate(priv))
9402                         ipw_associate(priv);
9403         }
9404
9405         mutex_unlock(&priv->mutex);
9406
9407         return 0;
9408 }
9409
9410 /* Rebase the WE IOCTLs to zero for the handler array */
9411 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9412 static iw_handler ipw_wx_handlers[] = {
9413         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9414         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9415         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9416         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9417         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9418         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9419         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9420         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9421         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9422         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9423         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9424         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9425         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9426         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9427         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9428         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9429         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9430         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9431         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9432         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9433         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9434         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9435         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9436         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9437         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9438         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9439         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9440         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9441         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9442         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9443         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9444         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9445         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9446         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9447         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9448         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9449         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9450         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9451         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9452 };
9453
9454 enum {
9455         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9456         IPW_PRIV_GET_POWER,
9457         IPW_PRIV_SET_MODE,
9458         IPW_PRIV_GET_MODE,
9459         IPW_PRIV_SET_PREAMBLE,
9460         IPW_PRIV_GET_PREAMBLE,
9461         IPW_PRIV_RESET,
9462         IPW_PRIV_SW_RESET,
9463 #ifdef CONFIG_IPW2200_MONITOR
9464         IPW_PRIV_SET_MONITOR,
9465 #endif
9466 };
9467
9468 static struct iw_priv_args ipw_priv_args[] = {
9469         {
9470          .cmd = IPW_PRIV_SET_POWER,
9471          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9472          .name = "set_power"},
9473         {
9474          .cmd = IPW_PRIV_GET_POWER,
9475          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9476          .name = "get_power"},
9477         {
9478          .cmd = IPW_PRIV_SET_MODE,
9479          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9480          .name = "set_mode"},
9481         {
9482          .cmd = IPW_PRIV_GET_MODE,
9483          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9484          .name = "get_mode"},
9485         {
9486          .cmd = IPW_PRIV_SET_PREAMBLE,
9487          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9488          .name = "set_preamble"},
9489         {
9490          .cmd = IPW_PRIV_GET_PREAMBLE,
9491          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9492          .name = "get_preamble"},
9493         {
9494          IPW_PRIV_RESET,
9495          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9496         {
9497          IPW_PRIV_SW_RESET,
9498          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9499 #ifdef CONFIG_IPW2200_MONITOR
9500         {
9501          IPW_PRIV_SET_MONITOR,
9502          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9503 #endif                          /* CONFIG_IPW2200_MONITOR */
9504 };
9505
9506 static iw_handler ipw_priv_handler[] = {
9507         ipw_wx_set_powermode,
9508         ipw_wx_get_powermode,
9509         ipw_wx_set_wireless_mode,
9510         ipw_wx_get_wireless_mode,
9511         ipw_wx_set_preamble,
9512         ipw_wx_get_preamble,
9513         ipw_wx_reset,
9514         ipw_wx_sw_reset,
9515 #ifdef CONFIG_IPW2200_MONITOR
9516         ipw_wx_set_monitor,
9517 #endif
9518 };
9519
9520 static struct iw_handler_def ipw_wx_handler_def = {
9521         .standard = ipw_wx_handlers,
9522         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9523         .num_private = ARRAY_SIZE(ipw_priv_handler),
9524         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9525         .private = ipw_priv_handler,
9526         .private_args = ipw_priv_args,
9527         .get_wireless_stats = ipw_get_wireless_stats,
9528 };
9529
9530 /*
9531  * Get wireless statistics.
9532  * Called by /proc/net/wireless
9533  * Also called by SIOCGIWSTATS
9534  */
9535 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9536 {
9537         struct ipw_priv *priv = ieee80211_priv(dev);
9538         struct iw_statistics *wstats;
9539
9540         wstats = &priv->wstats;
9541
9542         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9543          * netdev->get_wireless_stats seems to be called before fw is
9544          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9545          * and associated; if not associcated, the values are all meaningless
9546          * anyway, so set them all to NULL and INVALID */
9547         if (!(priv->status & STATUS_ASSOCIATED)) {
9548                 wstats->miss.beacon = 0;
9549                 wstats->discard.retries = 0;
9550                 wstats->qual.qual = 0;
9551                 wstats->qual.level = 0;
9552                 wstats->qual.noise = 0;
9553                 wstats->qual.updated = 7;
9554                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9555                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9556                 return wstats;
9557         }
9558
9559         wstats->qual.qual = priv->quality;
9560         wstats->qual.level = average_value(&priv->average_rssi);
9561         wstats->qual.noise = average_value(&priv->average_noise);
9562         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9563             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9564
9565         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9566         wstats->discard.retries = priv->last_tx_failures;
9567         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9568
9569 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9570         goto fail_get_ordinal;
9571         wstats->discard.retries += tx_retry; */
9572
9573         return wstats;
9574 }
9575
9576 /* net device stuff */
9577
9578 static  void init_sys_config(struct ipw_sys_config *sys_config)
9579 {
9580         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9581         sys_config->bt_coexistence = 0;
9582         sys_config->answer_broadcast_ssid_probe = 0;
9583         sys_config->accept_all_data_frames = 0;
9584         sys_config->accept_non_directed_frames = 1;
9585         sys_config->exclude_unicast_unencrypted = 0;
9586         sys_config->disable_unicast_decryption = 1;
9587         sys_config->exclude_multicast_unencrypted = 0;
9588         sys_config->disable_multicast_decryption = 1;
9589         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
9590         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9591         sys_config->dot11g_auto_detection = 0;
9592         sys_config->enable_cts_to_self = 0;
9593         sys_config->bt_coexist_collision_thr = 0;
9594         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9595 }
9596
9597 static int ipw_net_open(struct net_device *dev)
9598 {
9599         struct ipw_priv *priv = ieee80211_priv(dev);
9600         IPW_DEBUG_INFO("dev->open\n");
9601         /* we should be verifying the device is ready to be opened */
9602         mutex_lock(&priv->mutex);
9603         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9604             (priv->status & STATUS_ASSOCIATED))
9605                 netif_start_queue(dev);
9606         mutex_unlock(&priv->mutex);
9607         return 0;
9608 }
9609
9610 static int ipw_net_stop(struct net_device *dev)
9611 {
9612         IPW_DEBUG_INFO("dev->close\n");
9613         netif_stop_queue(dev);
9614         return 0;
9615 }
9616
9617 /*
9618 todo:
9619
9620 modify to send one tfd per fragment instead of using chunking.  otherwise
9621 we need to heavily modify the ieee80211_skb_to_txb.
9622 */
9623
9624 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9625                              int pri)
9626 {
9627         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9628             txb->fragments[0]->data;
9629         int i = 0;
9630         struct tfd_frame *tfd;
9631 #ifdef CONFIG_IPW_QOS
9632         int tx_id = ipw_get_tx_queue_number(priv, pri);
9633         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9634 #else
9635         struct clx2_tx_queue *txq = &priv->txq[0];
9636 #endif
9637         struct clx2_queue *q = &txq->q;
9638         u8 id, hdr_len, unicast;
9639         u16 remaining_bytes;
9640         int fc;
9641
9642         switch (priv->ieee->iw_mode) {
9643         case IW_MODE_ADHOC:
9644                 hdr_len = IEEE80211_3ADDR_LEN;
9645                 unicast = !is_multicast_ether_addr(hdr->addr1);
9646                 id = ipw_find_station(priv, hdr->addr1);
9647                 if (id == IPW_INVALID_STATION) {
9648                         id = ipw_add_station(priv, hdr->addr1);
9649                         if (id == IPW_INVALID_STATION) {
9650                                 IPW_WARNING("Attempt to send data to "
9651                                             "invalid cell: " MAC_FMT "\n",
9652                                             MAC_ARG(hdr->addr1));
9653                                 goto drop;
9654                         }
9655                 }
9656                 break;
9657
9658         case IW_MODE_INFRA:
9659         default:
9660                 unicast = !is_multicast_ether_addr(hdr->addr3);
9661                 hdr_len = IEEE80211_3ADDR_LEN;
9662                 id = 0;
9663                 break;
9664         }
9665
9666         tfd = &txq->bd[q->first_empty];
9667         txq->txb[q->first_empty] = txb;
9668         memset(tfd, 0, sizeof(*tfd));
9669         tfd->u.data.station_number = id;
9670
9671         tfd->control_flags.message_type = TX_FRAME_TYPE;
9672         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9673
9674         tfd->u.data.cmd_id = DINO_CMD_TX;
9675         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9676         remaining_bytes = txb->payload_size;
9677
9678         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9679                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9680         else
9681                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9682
9683         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9684                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9685
9686         fc = le16_to_cpu(hdr->frame_ctl);
9687         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9688
9689         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9690
9691         if (likely(unicast))
9692                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9693
9694         if (txb->encrypted && !priv->ieee->host_encrypt) {
9695                 switch (priv->ieee->sec.level) {
9696                 case SEC_LEVEL_3:
9697                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9698                             IEEE80211_FCTL_PROTECTED;
9699                         /* XXX: ACK flag must be set for CCMP even if it
9700                          * is a multicast/broadcast packet, because CCMP
9701                          * group communication encrypted by GTK is
9702                          * actually done by the AP. */
9703                         if (!unicast)
9704                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9705
9706                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9707                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9708                         tfd->u.data.key_index = 0;
9709                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9710                         break;
9711                 case SEC_LEVEL_2:
9712                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9713                             IEEE80211_FCTL_PROTECTED;
9714                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9715                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9716                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9717                         break;
9718                 case SEC_LEVEL_1:
9719                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9720                             IEEE80211_FCTL_PROTECTED;
9721                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9722                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9723                             40)
9724                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9725                         else
9726                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9727                         break;
9728                 case SEC_LEVEL_0:
9729                         break;
9730                 default:
9731                         printk(KERN_ERR "Unknow security level %d\n",
9732                                priv->ieee->sec.level);
9733                         break;
9734                 }
9735         } else
9736                 /* No hardware encryption */
9737                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9738
9739 #ifdef CONFIG_IPW_QOS
9740         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9741 #endif                          /* CONFIG_IPW_QOS */
9742
9743         /* payload */
9744         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9745                                                  txb->nr_frags));
9746         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9747                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9748         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9749                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9750                                i, le32_to_cpu(tfd->u.data.num_chunks),
9751                                txb->fragments[i]->len - hdr_len);
9752                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9753                              i, tfd->u.data.num_chunks,
9754                              txb->fragments[i]->len - hdr_len);
9755                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9756                            txb->fragments[i]->len - hdr_len);
9757
9758                 tfd->u.data.chunk_ptr[i] =
9759                     cpu_to_le32(pci_map_single
9760                                 (priv->pci_dev,
9761                                  txb->fragments[i]->data + hdr_len,
9762                                  txb->fragments[i]->len - hdr_len,
9763                                  PCI_DMA_TODEVICE));
9764                 tfd->u.data.chunk_len[i] =
9765                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
9766         }
9767
9768         if (i != txb->nr_frags) {
9769                 struct sk_buff *skb;
9770                 u16 remaining_bytes = 0;
9771                 int j;
9772
9773                 for (j = i; j < txb->nr_frags; j++)
9774                         remaining_bytes += txb->fragments[j]->len - hdr_len;
9775
9776                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9777                        remaining_bytes);
9778                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9779                 if (skb != NULL) {
9780                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9781                         for (j = i; j < txb->nr_frags; j++) {
9782                                 int size = txb->fragments[j]->len - hdr_len;
9783
9784                                 printk(KERN_INFO "Adding frag %d %d...\n",
9785                                        j, size);
9786                                 memcpy(skb_put(skb, size),
9787                                        txb->fragments[j]->data + hdr_len, size);
9788                         }
9789                         dev_kfree_skb_any(txb->fragments[i]);
9790                         txb->fragments[i] = skb;
9791                         tfd->u.data.chunk_ptr[i] =
9792                             cpu_to_le32(pci_map_single
9793                                         (priv->pci_dev, skb->data,
9794                                          tfd->u.data.chunk_len[i],
9795                                          PCI_DMA_TODEVICE));
9796
9797                         tfd->u.data.num_chunks =
9798                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9799                                         1);
9800                 }
9801         }
9802
9803         /* kick DMA */
9804         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9805         ipw_write32(priv, q->reg_w, q->first_empty);
9806
9807         if (ipw_queue_space(q) < q->high_mark)
9808                 netif_stop_queue(priv->net_dev);
9809
9810         return NETDEV_TX_OK;
9811
9812       drop:
9813         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9814         ieee80211_txb_free(txb);
9815         return NETDEV_TX_OK;
9816 }
9817
9818 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9819 {
9820         struct ipw_priv *priv = ieee80211_priv(dev);
9821 #ifdef CONFIG_IPW_QOS
9822         int tx_id = ipw_get_tx_queue_number(priv, pri);
9823         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9824 #else
9825         struct clx2_tx_queue *txq = &priv->txq[0];
9826 #endif                          /* CONFIG_IPW_QOS */
9827
9828         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9829                 return 1;
9830
9831         return 0;
9832 }
9833
9834 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9835                                    struct net_device *dev, int pri)
9836 {
9837         struct ipw_priv *priv = ieee80211_priv(dev);
9838         unsigned long flags;
9839         int ret;
9840
9841         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9842         spin_lock_irqsave(&priv->lock, flags);
9843
9844         if (!(priv->status & STATUS_ASSOCIATED)) {
9845                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9846                 priv->ieee->stats.tx_carrier_errors++;
9847                 netif_stop_queue(dev);
9848                 goto fail_unlock;
9849         }
9850
9851         ret = ipw_tx_skb(priv, txb, pri);
9852         if (ret == NETDEV_TX_OK)
9853                 __ipw_led_activity_on(priv);
9854         spin_unlock_irqrestore(&priv->lock, flags);
9855
9856         return ret;
9857
9858       fail_unlock:
9859         spin_unlock_irqrestore(&priv->lock, flags);
9860         return 1;
9861 }
9862
9863 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9864 {
9865         struct ipw_priv *priv = ieee80211_priv(dev);
9866
9867         priv->ieee->stats.tx_packets = priv->tx_packets;
9868         priv->ieee->stats.rx_packets = priv->rx_packets;
9869         return &priv->ieee->stats;
9870 }
9871
9872 static void ipw_net_set_multicast_list(struct net_device *dev)
9873 {
9874
9875 }
9876
9877 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9878 {
9879         struct ipw_priv *priv = ieee80211_priv(dev);
9880         struct sockaddr *addr = p;
9881         if (!is_valid_ether_addr(addr->sa_data))
9882                 return -EADDRNOTAVAIL;
9883         mutex_lock(&priv->mutex);
9884         priv->config |= CFG_CUSTOM_MAC;
9885         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9886         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9887                priv->net_dev->name, MAC_ARG(priv->mac_addr));
9888         queue_work(priv->workqueue, &priv->adapter_restart);
9889         mutex_unlock(&priv->mutex);
9890         return 0;
9891 }
9892
9893 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9894                                     struct ethtool_drvinfo *info)
9895 {
9896         struct ipw_priv *p = ieee80211_priv(dev);
9897         char vers[64];
9898         char date[32];
9899         u32 len;
9900
9901         strcpy(info->driver, DRV_NAME);
9902         strcpy(info->version, DRV_VERSION);
9903
9904         len = sizeof(vers);
9905         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9906         len = sizeof(date);
9907         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9908
9909         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9910                  vers, date);
9911         strcpy(info->bus_info, pci_name(p->pci_dev));
9912         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9913 }
9914
9915 static u32 ipw_ethtool_get_link(struct net_device *dev)
9916 {
9917         struct ipw_priv *priv = ieee80211_priv(dev);
9918         return (priv->status & STATUS_ASSOCIATED) != 0;
9919 }
9920
9921 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
9922 {
9923         return IPW_EEPROM_IMAGE_SIZE;
9924 }
9925
9926 static int ipw_ethtool_get_eeprom(struct net_device *dev,
9927                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9928 {
9929         struct ipw_priv *p = ieee80211_priv(dev);
9930
9931         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9932                 return -EINVAL;
9933         mutex_lock(&p->mutex);
9934         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
9935         mutex_unlock(&p->mutex);
9936         return 0;
9937 }
9938
9939 static int ipw_ethtool_set_eeprom(struct net_device *dev,
9940                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9941 {
9942         struct ipw_priv *p = ieee80211_priv(dev);
9943         int i;
9944
9945         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9946                 return -EINVAL;
9947         mutex_lock(&p->mutex);
9948         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
9949         for (i = IPW_EEPROM_DATA;
9950              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
9951                 ipw_write8(p, i, p->eeprom[i]);
9952         mutex_unlock(&p->mutex);
9953         return 0;
9954 }
9955
9956 static struct ethtool_ops ipw_ethtool_ops = {
9957         .get_link = ipw_ethtool_get_link,
9958         .get_drvinfo = ipw_ethtool_get_drvinfo,
9959         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
9960         .get_eeprom = ipw_ethtool_get_eeprom,
9961         .set_eeprom = ipw_ethtool_set_eeprom,
9962 };
9963
9964 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
9965 {
9966         struct ipw_priv *priv = data;
9967         u32 inta, inta_mask;
9968
9969         if (!priv)
9970                 return IRQ_NONE;
9971
9972         spin_lock(&priv->lock);
9973
9974         if (!(priv->status & STATUS_INT_ENABLED)) {
9975                 /* Shared IRQ */
9976                 goto none;
9977         }
9978
9979         inta = ipw_read32(priv, IPW_INTA_RW);
9980         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
9981
9982         if (inta == 0xFFFFFFFF) {
9983                 /* Hardware disappeared */
9984                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
9985                 goto none;
9986         }
9987
9988         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
9989                 /* Shared interrupt */
9990                 goto none;
9991         }
9992
9993         /* tell the device to stop sending interrupts */
9994         ipw_disable_interrupts(priv);
9995
9996         /* ack current interrupts */
9997         inta &= (IPW_INTA_MASK_ALL & inta_mask);
9998         ipw_write32(priv, IPW_INTA_RW, inta);
9999
10000         /* Cache INTA value for our tasklet */
10001         priv->isr_inta = inta;
10002
10003         tasklet_schedule(&priv->irq_tasklet);
10004
10005         spin_unlock(&priv->lock);
10006
10007         return IRQ_HANDLED;
10008       none:
10009         spin_unlock(&priv->lock);
10010         return IRQ_NONE;
10011 }
10012
10013 static void ipw_rf_kill(void *adapter)
10014 {
10015         struct ipw_priv *priv = adapter;
10016         unsigned long flags;
10017
10018         spin_lock_irqsave(&priv->lock, flags);
10019
10020         if (rf_kill_active(priv)) {
10021                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10022                 if (priv->workqueue)
10023                         queue_delayed_work(priv->workqueue,
10024                                            &priv->rf_kill, 2 * HZ);
10025                 goto exit_unlock;
10026         }
10027
10028         /* RF Kill is now disabled, so bring the device back up */
10029
10030         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10031                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10032                                   "device\n");
10033
10034                 /* we can not do an adapter restart while inside an irq lock */
10035                 queue_work(priv->workqueue, &priv->adapter_restart);
10036         } else
10037                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10038                                   "enabled\n");
10039
10040       exit_unlock:
10041         spin_unlock_irqrestore(&priv->lock, flags);
10042 }
10043
10044 static void ipw_bg_rf_kill(void *data)
10045 {
10046         struct ipw_priv *priv = data;
10047         mutex_lock(&priv->mutex);
10048         ipw_rf_kill(data);
10049         mutex_unlock(&priv->mutex);
10050 }
10051
10052 static void ipw_link_up(struct ipw_priv *priv)
10053 {
10054         priv->last_seq_num = -1;
10055         priv->last_frag_num = -1;
10056         priv->last_packet_time = 0;
10057
10058         netif_carrier_on(priv->net_dev);
10059         if (netif_queue_stopped(priv->net_dev)) {
10060                 IPW_DEBUG_NOTIF("waking queue\n");
10061                 netif_wake_queue(priv->net_dev);
10062         } else {
10063                 IPW_DEBUG_NOTIF("starting queue\n");
10064                 netif_start_queue(priv->net_dev);
10065         }
10066
10067         cancel_delayed_work(&priv->request_scan);
10068         ipw_reset_stats(priv);
10069         /* Ensure the rate is updated immediately */
10070         priv->last_rate = ipw_get_current_rate(priv);
10071         ipw_gather_stats(priv);
10072         ipw_led_link_up(priv);
10073         notify_wx_assoc_event(priv);
10074
10075         if (priv->config & CFG_BACKGROUND_SCAN)
10076                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10077 }
10078
10079 static void ipw_bg_link_up(void *data)
10080 {
10081         struct ipw_priv *priv = data;
10082         mutex_lock(&priv->mutex);
10083         ipw_link_up(data);
10084         mutex_unlock(&priv->mutex);
10085 }
10086
10087 static void ipw_link_down(struct ipw_priv *priv)
10088 {
10089         ipw_led_link_down(priv);
10090         netif_carrier_off(priv->net_dev);
10091         netif_stop_queue(priv->net_dev);
10092         notify_wx_assoc_event(priv);
10093
10094         /* Cancel any queued work ... */
10095         cancel_delayed_work(&priv->request_scan);
10096         cancel_delayed_work(&priv->adhoc_check);
10097         cancel_delayed_work(&priv->gather_stats);
10098
10099         ipw_reset_stats(priv);
10100
10101         if (!(priv->status & STATUS_EXIT_PENDING)) {
10102                 /* Queue up another scan... */
10103                 queue_work(priv->workqueue, &priv->request_scan);
10104         }
10105 }
10106
10107 static void ipw_bg_link_down(void *data)
10108 {
10109         struct ipw_priv *priv = data;
10110         mutex_lock(&priv->mutex);
10111         ipw_link_down(data);
10112         mutex_unlock(&priv->mutex);
10113 }
10114
10115 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10116 {
10117         int ret = 0;
10118
10119         priv->workqueue = create_workqueue(DRV_NAME);
10120         init_waitqueue_head(&priv->wait_command_queue);
10121         init_waitqueue_head(&priv->wait_state);
10122
10123         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10124         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10125         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10126         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10127         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10128         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10129         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10130         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10131         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10132         INIT_WORK(&priv->request_scan,
10133                   (void (*)(void *))ipw_request_scan, priv);
10134         INIT_WORK(&priv->gather_stats,
10135                   (void (*)(void *))ipw_bg_gather_stats, priv);
10136         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10137         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10138         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10139         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10140         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10141         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10142                   priv);
10143         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10144                   priv);
10145         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10146                   priv);
10147         INIT_WORK(&priv->merge_networks,
10148                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10149
10150 #ifdef CONFIG_IPW_QOS
10151         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10152                   priv);
10153 #endif                          /* CONFIG_IPW_QOS */
10154
10155         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10156                      ipw_irq_tasklet, (unsigned long)priv);
10157
10158         return ret;
10159 }
10160
10161 static void shim__set_security(struct net_device *dev,
10162                                struct ieee80211_security *sec)
10163 {
10164         struct ipw_priv *priv = ieee80211_priv(dev);
10165         int i;
10166         for (i = 0; i < 4; i++) {
10167                 if (sec->flags & (1 << i)) {
10168                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10169                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10170                         if (sec->key_sizes[i] == 0)
10171                                 priv->ieee->sec.flags &= ~(1 << i);
10172                         else {
10173                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10174                                        sec->key_sizes[i]);
10175                                 priv->ieee->sec.flags |= (1 << i);
10176                         }
10177                         priv->status |= STATUS_SECURITY_UPDATED;
10178                 } else if (sec->level != SEC_LEVEL_1)
10179                         priv->ieee->sec.flags &= ~(1 << i);
10180         }
10181
10182         if (sec->flags & SEC_ACTIVE_KEY) {
10183                 if (sec->active_key <= 3) {
10184                         priv->ieee->sec.active_key = sec->active_key;
10185                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10186                 } else
10187                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10188                 priv->status |= STATUS_SECURITY_UPDATED;
10189         } else
10190                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10191
10192         if ((sec->flags & SEC_AUTH_MODE) &&
10193             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10194                 priv->ieee->sec.auth_mode = sec->auth_mode;
10195                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10196                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10197                         priv->capability |= CAP_SHARED_KEY;
10198                 else
10199                         priv->capability &= ~CAP_SHARED_KEY;
10200                 priv->status |= STATUS_SECURITY_UPDATED;
10201         }
10202
10203         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10204                 priv->ieee->sec.flags |= SEC_ENABLED;
10205                 priv->ieee->sec.enabled = sec->enabled;
10206                 priv->status |= STATUS_SECURITY_UPDATED;
10207                 if (sec->enabled)
10208                         priv->capability |= CAP_PRIVACY_ON;
10209                 else
10210                         priv->capability &= ~CAP_PRIVACY_ON;
10211         }
10212
10213         if (sec->flags & SEC_ENCRYPT)
10214                 priv->ieee->sec.encrypt = sec->encrypt;
10215
10216         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10217                 priv->ieee->sec.level = sec->level;
10218                 priv->ieee->sec.flags |= SEC_LEVEL;
10219                 priv->status |= STATUS_SECURITY_UPDATED;
10220         }
10221
10222         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10223                 ipw_set_hwcrypto_keys(priv);
10224
10225         /* To match current functionality of ipw2100 (which works well w/
10226          * various supplicants, we don't force a disassociate if the
10227          * privacy capability changes ... */
10228 #if 0
10229         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10230             (((priv->assoc_request.capability &
10231                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10232              (!(priv->assoc_request.capability &
10233                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10234                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10235                                 "change.\n");
10236                 ipw_disassociate(priv);
10237         }
10238 #endif
10239 }
10240
10241 static int init_supported_rates(struct ipw_priv *priv,
10242                                 struct ipw_supported_rates *rates)
10243 {
10244         /* TODO: Mask out rates based on priv->rates_mask */
10245
10246         memset(rates, 0, sizeof(*rates));
10247         /* configure supported rates */
10248         switch (priv->ieee->freq_band) {
10249         case IEEE80211_52GHZ_BAND:
10250                 rates->ieee_mode = IPW_A_MODE;
10251                 rates->purpose = IPW_RATE_CAPABILITIES;
10252                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10253                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10254                 break;
10255
10256         default:                /* Mixed or 2.4Ghz */
10257                 rates->ieee_mode = IPW_G_MODE;
10258                 rates->purpose = IPW_RATE_CAPABILITIES;
10259                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10260                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10261                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10262                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10263                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10264                 }
10265                 break;
10266         }
10267
10268         return 0;
10269 }
10270
10271 static int ipw_config(struct ipw_priv *priv)
10272 {
10273         /* This is only called from ipw_up, which resets/reloads the firmware
10274            so, we don't need to first disable the card before we configure
10275            it */
10276         if (ipw_set_tx_power(priv))
10277                 goto error;
10278
10279         /* initialize adapter address */
10280         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10281                 goto error;
10282
10283         /* set basic system config settings */
10284         init_sys_config(&priv->sys_config);
10285
10286         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10287          * Does not support BT priority yet (don't abort or defer our Tx) */
10288         if (bt_coexist) {
10289                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10290
10291                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10292                         priv->sys_config.bt_coexistence
10293                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10294                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10295                         priv->sys_config.bt_coexistence
10296                             |= CFG_BT_COEXISTENCE_OOB;
10297         }
10298
10299         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10300                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10301         else
10302                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10303
10304         if (ipw_send_system_config(priv, &priv->sys_config))
10305                 goto error;
10306
10307         init_supported_rates(priv, &priv->rates);
10308         if (ipw_send_supported_rates(priv, &priv->rates))
10309                 goto error;
10310
10311         /* Set request-to-send threshold */
10312         if (priv->rts_threshold) {
10313                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10314                         goto error;
10315         }
10316 #ifdef CONFIG_IPW_QOS
10317         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10318         ipw_qos_activate(priv, NULL);
10319 #endif                          /* CONFIG_IPW_QOS */
10320
10321         if (ipw_set_random_seed(priv))
10322                 goto error;
10323
10324         /* final state transition to the RUN state */
10325         if (ipw_send_host_complete(priv))
10326                 goto error;
10327
10328         priv->status |= STATUS_INIT;
10329
10330         ipw_led_init(priv);
10331         ipw_led_radio_on(priv);
10332         priv->notif_missed_beacons = 0;
10333
10334         /* Set hardware WEP key if it is configured. */
10335         if ((priv->capability & CAP_PRIVACY_ON) &&
10336             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10337             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10338                 ipw_set_hwcrypto_keys(priv);
10339
10340         return 0;
10341
10342       error:
10343         return -EIO;
10344 }
10345
10346 /*
10347  * NOTE:
10348  *
10349  * These tables have been tested in conjunction with the
10350  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10351  *
10352  * Altering this values, using it on other hardware, or in geographies
10353  * not intended for resale of the above mentioned Intel adapters has
10354  * not been tested.
10355  *
10356  * Remember to update the table in README.ipw2200 when changing this
10357  * table.
10358  *
10359  */
10360 static const struct ieee80211_geo ipw_geos[] = {
10361         {                       /* Restricted */
10362          "---",
10363          .bg_channels = 11,
10364          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10365                 {2427, 4}, {2432, 5}, {2437, 6},
10366                 {2442, 7}, {2447, 8}, {2452, 9},
10367                 {2457, 10}, {2462, 11}},
10368          },
10369
10370         {                       /* Custom US/Canada */
10371          "ZZF",
10372          .bg_channels = 11,
10373          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10374                 {2427, 4}, {2432, 5}, {2437, 6},
10375                 {2442, 7}, {2447, 8}, {2452, 9},
10376                 {2457, 10}, {2462, 11}},
10377          .a_channels = 8,
10378          .a = {{5180, 36},
10379                {5200, 40},
10380                {5220, 44},
10381                {5240, 48},
10382                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10383                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10384                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10385                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10386          },
10387
10388         {                       /* Rest of World */
10389          "ZZD",
10390          .bg_channels = 13,
10391          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10392                 {2427, 4}, {2432, 5}, {2437, 6},
10393                 {2442, 7}, {2447, 8}, {2452, 9},
10394                 {2457, 10}, {2462, 11}, {2467, 12},
10395                 {2472, 13}},
10396          },
10397
10398         {                       /* Custom USA & Europe & High */
10399          "ZZA",
10400          .bg_channels = 11,
10401          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10402                 {2427, 4}, {2432, 5}, {2437, 6},
10403                 {2442, 7}, {2447, 8}, {2452, 9},
10404                 {2457, 10}, {2462, 11}},
10405          .a_channels = 13,
10406          .a = {{5180, 36},
10407                {5200, 40},
10408                {5220, 44},
10409                {5240, 48},
10410                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10411                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10412                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10413                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10414                {5745, 149},
10415                {5765, 153},
10416                {5785, 157},
10417                {5805, 161},
10418                {5825, 165}},
10419          },
10420
10421         {                       /* Custom NA & Europe */
10422          "ZZB",
10423          .bg_channels = 11,
10424          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10425                 {2427, 4}, {2432, 5}, {2437, 6},
10426                 {2442, 7}, {2447, 8}, {2452, 9},
10427                 {2457, 10}, {2462, 11}},
10428          .a_channels = 13,
10429          .a = {{5180, 36},
10430                {5200, 40},
10431                {5220, 44},
10432                {5240, 48},
10433                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10434                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10435                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10436                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10437                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10438                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10439                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10440                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10441                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10442          },
10443
10444         {                       /* Custom Japan */
10445          "ZZC",
10446          .bg_channels = 11,
10447          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10448                 {2427, 4}, {2432, 5}, {2437, 6},
10449                 {2442, 7}, {2447, 8}, {2452, 9},
10450                 {2457, 10}, {2462, 11}},
10451          .a_channels = 4,
10452          .a = {{5170, 34}, {5190, 38},
10453                {5210, 42}, {5230, 46}},
10454          },
10455
10456         {                       /* Custom */
10457          "ZZM",
10458          .bg_channels = 11,
10459          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10460                 {2427, 4}, {2432, 5}, {2437, 6},
10461                 {2442, 7}, {2447, 8}, {2452, 9},
10462                 {2457, 10}, {2462, 11}},
10463          },
10464
10465         {                       /* Europe */
10466          "ZZE",
10467          .bg_channels = 13,
10468          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10469                 {2427, 4}, {2432, 5}, {2437, 6},
10470                 {2442, 7}, {2447, 8}, {2452, 9},
10471                 {2457, 10}, {2462, 11}, {2467, 12},
10472                 {2472, 13}},
10473          .a_channels = 19,
10474          .a = {{5180, 36},
10475                {5200, 40},
10476                {5220, 44},
10477                {5240, 48},
10478                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10479                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10480                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10481                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10482                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10483                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10484                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10485                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10486                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10487                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10488                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10489                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10490                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10491                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10492                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10493          },
10494
10495         {                       /* Custom Japan */
10496          "ZZJ",
10497          .bg_channels = 14,
10498          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10499                 {2427, 4}, {2432, 5}, {2437, 6},
10500                 {2442, 7}, {2447, 8}, {2452, 9},
10501                 {2457, 10}, {2462, 11}, {2467, 12},
10502                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10503          .a_channels = 4,
10504          .a = {{5170, 34}, {5190, 38},
10505                {5210, 42}, {5230, 46}},
10506          },
10507
10508         {                       /* Rest of World */
10509          "ZZR",
10510          .bg_channels = 14,
10511          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10512                 {2427, 4}, {2432, 5}, {2437, 6},
10513                 {2442, 7}, {2447, 8}, {2452, 9},
10514                 {2457, 10}, {2462, 11}, {2467, 12},
10515                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
10516                              IEEE80211_CH_PASSIVE_ONLY}},
10517          },
10518
10519         {                       /* High Band */
10520          "ZZH",
10521          .bg_channels = 13,
10522          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10523                 {2427, 4}, {2432, 5}, {2437, 6},
10524                 {2442, 7}, {2447, 8}, {2452, 9},
10525                 {2457, 10}, {2462, 11},
10526                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10527                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10528          .a_channels = 4,
10529          .a = {{5745, 149}, {5765, 153},
10530                {5785, 157}, {5805, 161}},
10531          },
10532
10533         {                       /* Custom Europe */
10534          "ZZG",
10535          .bg_channels = 13,
10536          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10537                 {2427, 4}, {2432, 5}, {2437, 6},
10538                 {2442, 7}, {2447, 8}, {2452, 9},
10539                 {2457, 10}, {2462, 11},
10540                 {2467, 12}, {2472, 13}},
10541          .a_channels = 4,
10542          .a = {{5180, 36}, {5200, 40},
10543                {5220, 44}, {5240, 48}},
10544          },
10545
10546         {                       /* Europe */
10547          "ZZK",
10548          .bg_channels = 13,
10549          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10550                 {2427, 4}, {2432, 5}, {2437, 6},
10551                 {2442, 7}, {2447, 8}, {2452, 9},
10552                 {2457, 10}, {2462, 11},
10553                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10554                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10555          .a_channels = 24,
10556          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10557                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10558                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10559                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10560                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10561                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10562                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10563                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10564                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10565                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10566                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10567                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10568                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10569                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10570                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10571                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10572                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10573                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10574                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10575                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10576                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10577                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10578                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10579                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10580          },
10581
10582         {                       /* Europe */
10583          "ZZL",
10584          .bg_channels = 11,
10585          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10586                 {2427, 4}, {2432, 5}, {2437, 6},
10587                 {2442, 7}, {2447, 8}, {2452, 9},
10588                 {2457, 10}, {2462, 11}},
10589          .a_channels = 13,
10590          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10591                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10592                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10593                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10594                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10595                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10596                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10597                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10598                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10599                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10600                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10601                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10602                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10603          }
10604 };
10605
10606 #define MAX_HW_RESTARTS 5
10607 static int ipw_up(struct ipw_priv *priv)
10608 {
10609         int rc, i, j;
10610
10611         if (priv->status & STATUS_EXIT_PENDING)
10612                 return -EIO;
10613
10614         if (cmdlog && !priv->cmdlog) {
10615                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10616                                        GFP_KERNEL);
10617                 if (priv->cmdlog == NULL) {
10618                         IPW_ERROR("Error allocating %d command log entries.\n",
10619                                   cmdlog);
10620                 } else {
10621                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10622                         priv->cmdlog_len = cmdlog;
10623                 }
10624         }
10625
10626         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10627                 /* Load the microcode, firmware, and eeprom.
10628                  * Also start the clocks. */
10629                 rc = ipw_load(priv);
10630                 if (rc) {
10631                         IPW_ERROR("Unable to load firmware: %d\n", rc);
10632                         return rc;
10633                 }
10634
10635                 ipw_init_ordinals(priv);
10636                 if (!(priv->config & CFG_CUSTOM_MAC))
10637                         eeprom_parse_mac(priv, priv->mac_addr);
10638                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10639
10640                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10641                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10642                                     ipw_geos[j].name, 3))
10643                                 break;
10644                 }
10645                 if (j == ARRAY_SIZE(ipw_geos)) {
10646                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
10647                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
10648                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
10649                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
10650                         j = 0;
10651                 }
10652                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
10653                         IPW_WARNING("Could not set geography.");
10654                         return 0;
10655                 }
10656
10657                 if (priv->status & STATUS_RF_KILL_SW) {
10658                         IPW_WARNING("Radio disabled by module parameter.\n");
10659                         return 0;
10660                 } else if (rf_kill_active(priv)) {
10661                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10662                                     "Kill switch must be turned off for "
10663                                     "wireless networking to work.\n");
10664                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10665                                            2 * HZ);
10666                         return 0;
10667                 }
10668
10669                 rc = ipw_config(priv);
10670                 if (!rc) {
10671                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
10672
10673                         /* If configure to try and auto-associate, kick
10674                          * off a scan. */
10675                         queue_work(priv->workqueue, &priv->request_scan);
10676
10677                         return 0;
10678                 }
10679
10680                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10681                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10682                                i, MAX_HW_RESTARTS);
10683
10684                 /* We had an error bringing up the hardware, so take it
10685                  * all the way back down so we can try again */
10686                 ipw_down(priv);
10687         }
10688
10689         /* tried to restart and config the device for as long as our
10690          * patience could withstand */
10691         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10692
10693         return -EIO;
10694 }
10695
10696 static void ipw_bg_up(void *data)
10697 {
10698         struct ipw_priv *priv = data;
10699         mutex_lock(&priv->mutex);
10700         ipw_up(data);
10701         mutex_unlock(&priv->mutex);
10702 }
10703
10704 static void ipw_deinit(struct ipw_priv *priv)
10705 {
10706         int i;
10707
10708         if (priv->status & STATUS_SCANNING) {
10709                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10710                 ipw_abort_scan(priv);
10711         }
10712
10713         if (priv->status & STATUS_ASSOCIATED) {
10714                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10715                 ipw_disassociate(priv);
10716         }
10717
10718         ipw_led_shutdown(priv);
10719
10720         /* Wait up to 1s for status to change to not scanning and not
10721          * associated (disassociation can take a while for a ful 802.11
10722          * exchange */
10723         for (i = 1000; i && (priv->status &
10724                              (STATUS_DISASSOCIATING |
10725                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10726                 udelay(10);
10727
10728         if (priv->status & (STATUS_DISASSOCIATING |
10729                             STATUS_ASSOCIATED | STATUS_SCANNING))
10730                 IPW_DEBUG_INFO("Still associated or scanning...\n");
10731         else
10732                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10733
10734         /* Attempt to disable the card */
10735         ipw_send_card_disable(priv, 0);
10736
10737         priv->status &= ~STATUS_INIT;
10738 }
10739
10740 static void ipw_down(struct ipw_priv *priv)
10741 {
10742         int exit_pending = priv->status & STATUS_EXIT_PENDING;
10743
10744         priv->status |= STATUS_EXIT_PENDING;
10745
10746         if (ipw_is_init(priv))
10747                 ipw_deinit(priv);
10748
10749         /* Wipe out the EXIT_PENDING status bit if we are not actually
10750          * exiting the module */
10751         if (!exit_pending)
10752                 priv->status &= ~STATUS_EXIT_PENDING;
10753
10754         /* tell the device to stop sending interrupts */
10755         ipw_disable_interrupts(priv);
10756
10757         /* Clear all bits but the RF Kill */
10758         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10759         netif_carrier_off(priv->net_dev);
10760         netif_stop_queue(priv->net_dev);
10761
10762         ipw_stop_nic(priv);
10763
10764         ipw_led_radio_off(priv);
10765 }
10766
10767 static void ipw_bg_down(void *data)
10768 {
10769         struct ipw_priv *priv = data;
10770         mutex_lock(&priv->mutex);
10771         ipw_down(data);
10772         mutex_unlock(&priv->mutex);
10773 }
10774
10775 /* Called by register_netdev() */
10776 static int ipw_net_init(struct net_device *dev)
10777 {
10778         struct ipw_priv *priv = ieee80211_priv(dev);
10779         mutex_lock(&priv->mutex);
10780
10781         if (ipw_up(priv)) {
10782                 mutex_unlock(&priv->mutex);
10783                 return -EIO;
10784         }
10785
10786         mutex_unlock(&priv->mutex);
10787         return 0;
10788 }
10789
10790 /* PCI driver stuff */
10791 static struct pci_device_id card_ids[] = {
10792         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10793         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10794         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10795         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10796         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10797         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10798         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10799         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10800         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10801         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10802         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10803         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10804         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10805         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10806         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10807         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10808         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10809         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10810         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10811         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10812         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10813         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10814
10815         /* required last entry */
10816         {0,}
10817 };
10818
10819 MODULE_DEVICE_TABLE(pci, card_ids);
10820
10821 static struct attribute *ipw_sysfs_entries[] = {
10822         &dev_attr_rf_kill.attr,
10823         &dev_attr_direct_dword.attr,
10824         &dev_attr_indirect_byte.attr,
10825         &dev_attr_indirect_dword.attr,
10826         &dev_attr_mem_gpio_reg.attr,
10827         &dev_attr_command_event_reg.attr,
10828         &dev_attr_nic_type.attr,
10829         &dev_attr_status.attr,
10830         &dev_attr_cfg.attr,
10831         &dev_attr_error.attr,
10832         &dev_attr_event_log.attr,
10833         &dev_attr_cmd_log.attr,
10834         &dev_attr_eeprom_delay.attr,
10835         &dev_attr_ucode_version.attr,
10836         &dev_attr_rtc.attr,
10837         &dev_attr_scan_age.attr,
10838         &dev_attr_led.attr,
10839         &dev_attr_speed_scan.attr,
10840         &dev_attr_net_stats.attr,
10841         NULL
10842 };
10843
10844 static struct attribute_group ipw_attribute_group = {
10845         .name = NULL,           /* put in device directory */
10846         .attrs = ipw_sysfs_entries,
10847 };
10848
10849 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10850 {
10851         int err = 0;
10852         struct net_device *net_dev;
10853         void __iomem *base;
10854         u32 length, val;
10855         struct ipw_priv *priv;
10856         int i;
10857
10858         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
10859         if (net_dev == NULL) {
10860                 err = -ENOMEM;
10861                 goto out;
10862         }
10863
10864         priv = ieee80211_priv(net_dev);
10865         priv->ieee = netdev_priv(net_dev);
10866
10867         priv->net_dev = net_dev;
10868         priv->pci_dev = pdev;
10869 #ifdef CONFIG_IPW2200_DEBUG
10870         ipw_debug_level = debug;
10871 #endif
10872         spin_lock_init(&priv->lock);
10873         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
10874                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
10875
10876         mutex_init(&priv->mutex);
10877         if (pci_enable_device(pdev)) {
10878                 err = -ENODEV;
10879                 goto out_free_ieee80211;
10880         }
10881
10882         pci_set_master(pdev);
10883
10884         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
10885         if (!err)
10886                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
10887         if (err) {
10888                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
10889                 goto out_pci_disable_device;
10890         }
10891
10892         pci_set_drvdata(pdev, priv);
10893
10894         err = pci_request_regions(pdev, DRV_NAME);
10895         if (err)
10896                 goto out_pci_disable_device;
10897
10898         /* We disable the RETRY_TIMEOUT register (0x41) to keep
10899          * PCI Tx retries from interfering with C3 CPU state */
10900         pci_read_config_dword(pdev, 0x40, &val);
10901         if ((val & 0x0000ff00) != 0)
10902                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
10903
10904         length = pci_resource_len(pdev, 0);
10905         priv->hw_len = length;
10906
10907         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
10908         if (!base) {
10909                 err = -ENODEV;
10910                 goto out_pci_release_regions;
10911         }
10912
10913         priv->hw_base = base;
10914         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
10915         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
10916
10917         err = ipw_setup_deferred_work(priv);
10918         if (err) {
10919                 IPW_ERROR("Unable to setup deferred work\n");
10920                 goto out_iounmap;
10921         }
10922
10923         ipw_sw_reset(priv, 1);
10924
10925         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
10926         if (err) {
10927                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
10928                 goto out_destroy_workqueue;
10929         }
10930
10931         SET_MODULE_OWNER(net_dev);
10932         SET_NETDEV_DEV(net_dev, &pdev->dev);
10933
10934         mutex_lock(&priv->mutex);
10935
10936         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
10937         priv->ieee->set_security = shim__set_security;
10938         priv->ieee->is_queue_full = ipw_net_is_queue_full;
10939
10940 #ifdef CONFIG_IPW_QOS
10941         priv->ieee->handle_probe_response = ipw_handle_beacon;
10942         priv->ieee->handle_beacon = ipw_handle_probe_response;
10943         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
10944 #endif                          /* CONFIG_IPW_QOS */
10945
10946         priv->ieee->perfect_rssi = -20;
10947         priv->ieee->worst_rssi = -85;
10948
10949         net_dev->open = ipw_net_open;
10950         net_dev->stop = ipw_net_stop;
10951         net_dev->init = ipw_net_init;
10952         net_dev->get_stats = ipw_net_get_stats;
10953         net_dev->set_multicast_list = ipw_net_set_multicast_list;
10954         net_dev->set_mac_address = ipw_net_set_mac_address;
10955         priv->wireless_data.spy_data = &priv->ieee->spy_data;
10956         net_dev->wireless_data = &priv->wireless_data;
10957         net_dev->wireless_handlers = &ipw_wx_handler_def;
10958         net_dev->ethtool_ops = &ipw_ethtool_ops;
10959         net_dev->irq = pdev->irq;
10960         net_dev->base_addr = (unsigned long)priv->hw_base;
10961         net_dev->mem_start = pci_resource_start(pdev, 0);
10962         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
10963
10964         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
10965         if (err) {
10966                 IPW_ERROR("failed to create sysfs device attributes\n");
10967                 mutex_unlock(&priv->mutex);
10968                 goto out_release_irq;
10969         }
10970
10971         mutex_unlock(&priv->mutex);
10972         err = register_netdev(net_dev);
10973         if (err) {
10974                 IPW_ERROR("failed to register network device\n");
10975                 goto out_remove_sysfs;
10976         }
10977
10978         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
10979                "channels, %d 802.11a channels)\n",
10980                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
10981                priv->ieee->geo.a_channels);
10982
10983         return 0;
10984
10985       out_remove_sysfs:
10986         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
10987       out_release_irq:
10988         free_irq(pdev->irq, priv);
10989       out_destroy_workqueue:
10990         destroy_workqueue(priv->workqueue);
10991         priv->workqueue = NULL;
10992       out_iounmap:
10993         iounmap(priv->hw_base);
10994       out_pci_release_regions:
10995         pci_release_regions(pdev);
10996       out_pci_disable_device:
10997         pci_disable_device(pdev);
10998         pci_set_drvdata(pdev, NULL);
10999       out_free_ieee80211:
11000         free_ieee80211(priv->net_dev);
11001       out:
11002         return err;
11003 }
11004
11005 static void ipw_pci_remove(struct pci_dev *pdev)
11006 {
11007         struct ipw_priv *priv = pci_get_drvdata(pdev);
11008         struct list_head *p, *q;
11009         int i;
11010
11011         if (!priv)
11012                 return;
11013
11014         mutex_lock(&priv->mutex);
11015
11016         priv->status |= STATUS_EXIT_PENDING;
11017         ipw_down(priv);
11018         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11019
11020         mutex_unlock(&priv->mutex);
11021
11022         unregister_netdev(priv->net_dev);
11023
11024         if (priv->rxq) {
11025                 ipw_rx_queue_free(priv, priv->rxq);
11026                 priv->rxq = NULL;
11027         }
11028         ipw_tx_queue_free(priv);
11029
11030         if (priv->cmdlog) {
11031                 kfree(priv->cmdlog);
11032                 priv->cmdlog = NULL;
11033         }
11034         /* ipw_down will ensure that there is no more pending work
11035          * in the workqueue's, so we can safely remove them now. */
11036         cancel_delayed_work(&priv->adhoc_check);
11037         cancel_delayed_work(&priv->gather_stats);
11038         cancel_delayed_work(&priv->request_scan);
11039         cancel_delayed_work(&priv->rf_kill);
11040         cancel_delayed_work(&priv->scan_check);
11041         destroy_workqueue(priv->workqueue);
11042         priv->workqueue = NULL;
11043
11044         /* Free MAC hash list for ADHOC */
11045         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11046                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11047                         list_del(p);
11048                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11049                 }
11050         }
11051
11052         if (priv->error) {
11053                 ipw_free_error_log(priv->error);
11054                 priv->error = NULL;
11055         }
11056
11057         free_irq(pdev->irq, priv);
11058         iounmap(priv->hw_base);
11059         pci_release_regions(pdev);
11060         pci_disable_device(pdev);
11061         pci_set_drvdata(pdev, NULL);
11062         free_ieee80211(priv->net_dev);
11063         free_firmware();
11064 }
11065
11066 #ifdef CONFIG_PM
11067 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11068 {
11069         struct ipw_priv *priv = pci_get_drvdata(pdev);
11070         struct net_device *dev = priv->net_dev;
11071
11072         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11073
11074         /* Take down the device; powers it off, etc. */
11075         ipw_down(priv);
11076
11077         /* Remove the PRESENT state of the device */
11078         netif_device_detach(dev);
11079
11080         pci_save_state(pdev);
11081         pci_disable_device(pdev);
11082         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11083
11084         return 0;
11085 }
11086
11087 static int ipw_pci_resume(struct pci_dev *pdev)
11088 {
11089         struct ipw_priv *priv = pci_get_drvdata(pdev);
11090         struct net_device *dev = priv->net_dev;
11091         u32 val;
11092
11093         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11094
11095         pci_set_power_state(pdev, PCI_D0);
11096         pci_enable_device(pdev);
11097         pci_restore_state(pdev);
11098
11099         /*
11100          * Suspend/Resume resets the PCI configuration space, so we have to
11101          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11102          * from interfering with C3 CPU state. pci_restore_state won't help
11103          * here since it only restores the first 64 bytes pci config header.
11104          */
11105         pci_read_config_dword(pdev, 0x40, &val);
11106         if ((val & 0x0000ff00) != 0)
11107                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11108
11109         /* Set the device back into the PRESENT state; this will also wake
11110          * the queue of needed */
11111         netif_device_attach(dev);
11112
11113         /* Bring the device back up */
11114         queue_work(priv->workqueue, &priv->up);
11115
11116         return 0;
11117 }
11118 #endif
11119
11120 /* driver initialization stuff */
11121 static struct pci_driver ipw_driver = {
11122         .name = DRV_NAME,
11123         .id_table = card_ids,
11124         .probe = ipw_pci_probe,
11125         .remove = __devexit_p(ipw_pci_remove),
11126 #ifdef CONFIG_PM
11127         .suspend = ipw_pci_suspend,
11128         .resume = ipw_pci_resume,
11129 #endif
11130 };
11131
11132 static int __init ipw_init(void)
11133 {
11134         int ret;
11135
11136         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11137         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11138
11139         ret = pci_module_init(&ipw_driver);
11140         if (ret) {
11141                 IPW_ERROR("Unable to initialize PCI module\n");
11142                 return ret;
11143         }
11144
11145         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11146         if (ret) {
11147                 IPW_ERROR("Unable to create driver sysfs file\n");
11148                 pci_unregister_driver(&ipw_driver);
11149                 return ret;
11150         }
11151
11152         return ret;
11153 }
11154
11155 static void __exit ipw_exit(void)
11156 {
11157         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11158         pci_unregister_driver(&ipw_driver);
11159 }
11160
11161 module_param(disable, int, 0444);
11162 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11163
11164 module_param(associate, int, 0444);
11165 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11166
11167 module_param(auto_create, int, 0444);
11168 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11169
11170 module_param(led, int, 0444);
11171 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11172
11173 module_param(debug, int, 0444);
11174 MODULE_PARM_DESC(debug, "debug output mask");
11175
11176 module_param(channel, int, 0444);
11177 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11178
11179 #ifdef CONFIG_IPW_QOS
11180 module_param(qos_enable, int, 0444);
11181 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11182
11183 module_param(qos_burst_enable, int, 0444);
11184 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11185
11186 module_param(qos_no_ack_mask, int, 0444);
11187 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11188
11189 module_param(burst_duration_CCK, int, 0444);
11190 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11191
11192 module_param(burst_duration_OFDM, int, 0444);
11193 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11194 #endif                          /* CONFIG_IPW_QOS */
11195
11196 #ifdef CONFIG_IPW2200_MONITOR
11197 module_param(mode, int, 0444);
11198 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11199 #else
11200 module_param(mode, int, 0444);
11201 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11202 #endif
11203
11204 module_param(bt_coexist, int, 0444);
11205 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11206
11207 module_param(hwcrypto, int, 0444);
11208 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11209
11210 module_param(cmdlog, int, 0444);
11211 MODULE_PARM_DESC(cmdlog,
11212                  "allocate a ring buffer for logging firmware commands");
11213
11214 module_param(roaming, int, 0444);
11215 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11216
11217 module_exit(ipw_exit);
11218 module_init(ipw_init);