]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ipw2x00/ipw2100.c
Merge remote-tracking branch 'signal/for-next'
[karo-tx-linux.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793                 return 0;
1794         }
1795         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797         lock = LOCK_NONE;
1798         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799                 printk(KERN_ERR DRV_NAME
1800                        ": %s: Failed to clear ordinal lock.\n",
1801                        priv->net_dev->name);
1802                 rc = 1;
1803                 goto exit;
1804         }
1805
1806         priv->status &= ~STATUS_SCANNING;
1807
1808         if (rf_kill_active(priv)) {
1809                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810                        priv->net_dev->name);
1811
1812                 if (priv->stop_rf_kill) {
1813                         priv->stop_rf_kill = 0;
1814                         schedule_delayed_work(&priv->rf_kill,
1815                                               round_jiffies_relative(HZ));
1816                 }
1817
1818                 deferred = 1;
1819         }
1820
1821         /* Turn on the interrupt so that commands can be processed */
1822         ipw2100_enable_interrupts(priv);
1823
1824         /* Send all of the commands that must be sent prior to
1825          * HOST_COMPLETE */
1826         if (ipw2100_adapter_setup(priv)) {
1827                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828                        priv->net_dev->name);
1829                 rc = 1;
1830                 goto exit;
1831         }
1832
1833         if (!deferred) {
1834                 /* Enable the adapter - sends HOST_COMPLETE */
1835                 if (ipw2100_enable_adapter(priv)) {
1836                         printk(KERN_ERR DRV_NAME ": "
1837                                "%s: failed in call to enable adapter.\n",
1838                                priv->net_dev->name);
1839                         ipw2100_hw_stop_adapter(priv);
1840                         rc = 1;
1841                         goto exit;
1842                 }
1843
1844                 /* Start a scan . . . */
1845                 ipw2100_set_scan_options(priv);
1846                 ipw2100_start_scan(priv);
1847         }
1848
1849       exit:
1850         return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855         unsigned long flags;
1856         union iwreq_data wrqu = {
1857                 .ap_addr = {
1858                             .sa_family = ARPHRD_ETHER}
1859         };
1860         int associated = priv->status & STATUS_ASSOCIATED;
1861
1862         /* Kill the RF switch timer */
1863         if (!priv->stop_rf_kill) {
1864                 priv->stop_rf_kill = 1;
1865                 cancel_delayed_work(&priv->rf_kill);
1866         }
1867
1868         /* Kill the firmware hang check timer */
1869         if (!priv->stop_hang_check) {
1870                 priv->stop_hang_check = 1;
1871                 cancel_delayed_work(&priv->hang_check);
1872         }
1873
1874         /* Kill any pending resets */
1875         if (priv->status & STATUS_RESET_PENDING)
1876                 cancel_delayed_work(&priv->reset_work);
1877
1878         /* Make sure the interrupt is on so that FW commands will be
1879          * processed correctly */
1880         spin_lock_irqsave(&priv->low_lock, flags);
1881         ipw2100_enable_interrupts(priv);
1882         spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884         if (ipw2100_hw_stop_adapter(priv))
1885                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886                        priv->net_dev->name);
1887
1888         /* Do not disable the interrupt until _after_ we disable
1889          * the adaptor.  Otherwise the CARD_DISABLE command will never
1890          * be ack'd by the firmware */
1891         spin_lock_irqsave(&priv->low_lock, flags);
1892         ipw2100_disable_interrupts(priv);
1893         spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897         /* We have to signal any supplicant if we are disassociating */
1898         if (associated)
1899                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902         netif_carrier_off(priv->net_dev);
1903         netif_stop_queue(priv->net_dev);
1904 }
1905
1906 static int ipw2100_wdev_init(struct net_device *dev)
1907 {
1908         struct ipw2100_priv *priv = libipw_priv(dev);
1909         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1910         struct wireless_dev *wdev = &priv->ieee->wdev;
1911         int i;
1912
1913         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1914
1915         /* fill-out priv->ieee->bg_band */
1916         if (geo->bg_channels) {
1917                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1918
1919                 bg_band->band = IEEE80211_BAND_2GHZ;
1920                 bg_band->n_channels = geo->bg_channels;
1921                 bg_band->channels = kcalloc(geo->bg_channels,
1922                                             sizeof(struct ieee80211_channel),
1923                                             GFP_KERNEL);
1924                 if (!bg_band->channels) {
1925                         ipw2100_down(priv);
1926                         return -ENOMEM;
1927                 }
1928                 /* translate geo->bg to bg_band.channels */
1929                 for (i = 0; i < geo->bg_channels; i++) {
1930                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1931                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1932                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1933                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1934                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_PASSIVE_SCAN;
1937                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_NO_IBSS;
1940                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1941                                 bg_band->channels[i].flags |=
1942                                         IEEE80211_CHAN_RADAR;
1943                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1944                            LIBIPW_CH_UNIFORM_SPREADING, or
1945                            LIBIPW_CH_B_ONLY... */
1946                 }
1947                 /* point at bitrate info */
1948                 bg_band->bitrates = ipw2100_bg_rates;
1949                 bg_band->n_bitrates = RATE_COUNT;
1950
1951                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1952         }
1953
1954         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1955         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1956
1957         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958         if (wiphy_register(wdev->wiphy))
1959                 return -EIO;
1960         return 0;
1961 }
1962
1963 static void ipw2100_reset_adapter(struct work_struct *work)
1964 {
1965         struct ipw2100_priv *priv =
1966                 container_of(work, struct ipw2100_priv, reset_work.work);
1967         unsigned long flags;
1968         union iwreq_data wrqu = {
1969                 .ap_addr = {
1970                             .sa_family = ARPHRD_ETHER}
1971         };
1972         int associated = priv->status & STATUS_ASSOCIATED;
1973
1974         spin_lock_irqsave(&priv->low_lock, flags);
1975         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1976         priv->resets++;
1977         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1978         priv->status |= STATUS_SECURITY_UPDATED;
1979
1980         /* Force a power cycle even if interface hasn't been opened
1981          * yet */
1982         cancel_delayed_work(&priv->reset_work);
1983         priv->status |= STATUS_RESET_PENDING;
1984         spin_unlock_irqrestore(&priv->low_lock, flags);
1985
1986         mutex_lock(&priv->action_mutex);
1987         /* stop timed checks so that they don't interfere with reset */
1988         priv->stop_hang_check = 1;
1989         cancel_delayed_work(&priv->hang_check);
1990
1991         /* We have to signal any supplicant if we are disassociating */
1992         if (associated)
1993                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1994
1995         ipw2100_up(priv, 0);
1996         mutex_unlock(&priv->action_mutex);
1997
1998 }
1999
2000 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2001 {
2002
2003 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2004         int ret;
2005         unsigned int len, essid_len;
2006         char essid[IW_ESSID_MAX_SIZE];
2007         u32 txrate;
2008         u32 chan;
2009         char *txratename;
2010         u8 bssid[ETH_ALEN];
2011         DECLARE_SSID_BUF(ssid);
2012
2013         /*
2014          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2015          *      an actual MAC of the AP. Seems like FW sets this
2016          *      address too late. Read it later and expose through
2017          *      /proc or schedule a later task to query and update
2018          */
2019
2020         essid_len = IW_ESSID_MAX_SIZE;
2021         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2022                                   essid, &essid_len);
2023         if (ret) {
2024                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2025                                __LINE__);
2026                 return;
2027         }
2028
2029         len = sizeof(u32);
2030         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2031         if (ret) {
2032                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033                                __LINE__);
2034                 return;
2035         }
2036
2037         len = sizeof(u32);
2038         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2039         if (ret) {
2040                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041                                __LINE__);
2042                 return;
2043         }
2044         len = ETH_ALEN;
2045         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2046                                   &len);
2047         if (ret) {
2048                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2049                                __LINE__);
2050                 return;
2051         }
2052         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2053
2054         switch (txrate) {
2055         case TX_RATE_1_MBIT:
2056                 txratename = "1Mbps";
2057                 break;
2058         case TX_RATE_2_MBIT:
2059                 txratename = "2Mbsp";
2060                 break;
2061         case TX_RATE_5_5_MBIT:
2062                 txratename = "5.5Mbps";
2063                 break;
2064         case TX_RATE_11_MBIT:
2065                 txratename = "11Mbps";
2066                 break;
2067         default:
2068                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2069                 txratename = "unknown rate";
2070                 break;
2071         }
2072
2073         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2074                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2075                        txratename, chan, bssid);
2076
2077         /* now we copy read ssid into dev */
2078         if (!(priv->config & CFG_STATIC_ESSID)) {
2079                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2080                 memcpy(priv->essid, essid, priv->essid_len);
2081         }
2082         priv->channel = chan;
2083         memcpy(priv->bssid, bssid, ETH_ALEN);
2084
2085         priv->status |= STATUS_ASSOCIATING;
2086         priv->connect_start = get_seconds();
2087
2088         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2089 }
2090
2091 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2092                              int length, int batch_mode)
2093 {
2094         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2095         struct host_command cmd = {
2096                 .host_command = SSID,
2097                 .host_command_sequence = 0,
2098                 .host_command_length = ssid_len
2099         };
2100         int err;
2101         DECLARE_SSID_BUF(ssid);
2102
2103         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2104
2105         if (ssid_len)
2106                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2107
2108         if (!batch_mode) {
2109                 err = ipw2100_disable_adapter(priv);
2110                 if (err)
2111                         return err;
2112         }
2113
2114         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2115          * disable auto association -- so we cheat by setting a bogus SSID */
2116         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2117                 int i;
2118                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2119                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2120                         bogus[i] = 0x18 + i;
2121                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2122         }
2123
2124         /* NOTE:  We always send the SSID command even if the provided ESSID is
2125          * the same as what we currently think is set. */
2126
2127         err = ipw2100_hw_send_command(priv, &cmd);
2128         if (!err) {
2129                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2130                 memcpy(priv->essid, essid, ssid_len);
2131                 priv->essid_len = ssid_len;
2132         }
2133
2134         if (!batch_mode) {
2135                 if (ipw2100_enable_adapter(priv))
2136                         err = -EIO;
2137         }
2138
2139         return err;
2140 }
2141
2142 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2143 {
2144         DECLARE_SSID_BUF(ssid);
2145
2146         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2147                   "disassociated: '%s' %pM\n",
2148                   print_ssid(ssid, priv->essid, priv->essid_len),
2149                   priv->bssid);
2150
2151         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2152
2153         if (priv->status & STATUS_STOPPING) {
2154                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2155                 return;
2156         }
2157
2158         memset(priv->bssid, 0, ETH_ALEN);
2159         memset(priv->ieee->bssid, 0, ETH_ALEN);
2160
2161         netif_carrier_off(priv->net_dev);
2162         netif_stop_queue(priv->net_dev);
2163
2164         if (!(priv->status & STATUS_RUNNING))
2165                 return;
2166
2167         if (priv->status & STATUS_SECURITY_UPDATED)
2168                 schedule_delayed_work(&priv->security_work, 0);
2169
2170         schedule_delayed_work(&priv->wx_event_work, 0);
2171 }
2172
2173 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2174 {
2175         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2176                        priv->net_dev->name);
2177
2178         /* RF_KILL is now enabled (else we wouldn't be here) */
2179         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2180         priv->status |= STATUS_RF_KILL_HW;
2181
2182         /* Make sure the RF Kill check timer is running */
2183         priv->stop_rf_kill = 0;
2184         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2185 }
2186
2187 static void send_scan_event(void *data)
2188 {
2189         struct ipw2100_priv *priv = data;
2190         union iwreq_data wrqu;
2191
2192         wrqu.data.length = 0;
2193         wrqu.data.flags = 0;
2194         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2195 }
2196
2197 static void ipw2100_scan_event_later(struct work_struct *work)
2198 {
2199         send_scan_event(container_of(work, struct ipw2100_priv,
2200                                         scan_event_later.work));
2201 }
2202
2203 static void ipw2100_scan_event_now(struct work_struct *work)
2204 {
2205         send_scan_event(container_of(work, struct ipw2100_priv,
2206                                         scan_event_now));
2207 }
2208
2209 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2210 {
2211         IPW_DEBUG_SCAN("scan complete\n");
2212         /* Age the scan results... */
2213         priv->ieee->scans++;
2214         priv->status &= ~STATUS_SCANNING;
2215
2216         /* Only userspace-requested scan completion events go out immediately */
2217         if (!priv->user_requested_scan) {
2218                 if (!delayed_work_pending(&priv->scan_event_later))
2219                         schedule_delayed_work(&priv->scan_event_later,
2220                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2221         } else {
2222                 priv->user_requested_scan = 0;
2223                 cancel_delayed_work(&priv->scan_event_later);
2224                 schedule_work(&priv->scan_event_now);
2225         }
2226 }
2227
2228 #ifdef CONFIG_IPW2100_DEBUG
2229 #define IPW2100_HANDLER(v, f) { v, f, # v }
2230 struct ipw2100_status_indicator {
2231         int status;
2232         void (*cb) (struct ipw2100_priv * priv, u32 status);
2233         char *name;
2234 };
2235 #else
2236 #define IPW2100_HANDLER(v, f) { v, f }
2237 struct ipw2100_status_indicator {
2238         int status;
2239         void (*cb) (struct ipw2100_priv * priv, u32 status);
2240 };
2241 #endif                          /* CONFIG_IPW2100_DEBUG */
2242
2243 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2244 {
2245         IPW_DEBUG_SCAN("Scanning...\n");
2246         priv->status |= STATUS_SCANNING;
2247 }
2248
2249 static const struct ipw2100_status_indicator status_handlers[] = {
2250         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2251         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2252         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2253         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2254         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2255         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2256         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2257         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2258         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2259         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2260         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2261         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2262         IPW2100_HANDLER(-1, NULL)
2263 };
2264
2265 static void isr_status_change(struct ipw2100_priv *priv, int status)
2266 {
2267         int i;
2268
2269         if (status == IPW_STATE_SCANNING &&
2270             priv->status & STATUS_ASSOCIATED &&
2271             !(priv->status & STATUS_SCANNING)) {
2272                 IPW_DEBUG_INFO("Scan detected while associated, with "
2273                                "no scan request.  Restarting firmware.\n");
2274
2275                 /* Wake up any sleeping jobs */
2276                 schedule_reset(priv);
2277         }
2278
2279         for (i = 0; status_handlers[i].status != -1; i++) {
2280                 if (status == status_handlers[i].status) {
2281                         IPW_DEBUG_NOTIF("Status change: %s\n",
2282                                         status_handlers[i].name);
2283                         if (status_handlers[i].cb)
2284                                 status_handlers[i].cb(priv, status);
2285                         priv->wstats.status = status;
2286                         return;
2287                 }
2288         }
2289
2290         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2291 }
2292
2293 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2294                                     struct ipw2100_cmd_header *cmd)
2295 {
2296 #ifdef CONFIG_IPW2100_DEBUG
2297         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2298                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2299                              command_types[cmd->host_command_reg],
2300                              cmd->host_command_reg);
2301         }
2302 #endif
2303         if (cmd->host_command_reg == HOST_COMPLETE)
2304                 priv->status |= STATUS_ENABLED;
2305
2306         if (cmd->host_command_reg == CARD_DISABLE)
2307                 priv->status &= ~STATUS_ENABLED;
2308
2309         priv->status &= ~STATUS_CMD_ACTIVE;
2310
2311         wake_up_interruptible(&priv->wait_command_queue);
2312 }
2313
2314 #ifdef CONFIG_IPW2100_DEBUG
2315 static const char *frame_types[] = {
2316         "COMMAND_STATUS_VAL",
2317         "STATUS_CHANGE_VAL",
2318         "P80211_DATA_VAL",
2319         "P8023_DATA_VAL",
2320         "HOST_NOTIFICATION_VAL"
2321 };
2322 #endif
2323
2324 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2325                                     struct ipw2100_rx_packet *packet)
2326 {
2327         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2328         if (!packet->skb)
2329                 return -ENOMEM;
2330
2331         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2332         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2333                                           sizeof(struct ipw2100_rx),
2334                                           PCI_DMA_FROMDEVICE);
2335         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2336          *       dma_addr */
2337
2338         return 0;
2339 }
2340
2341 #define SEARCH_ERROR   0xffffffff
2342 #define SEARCH_FAIL    0xfffffffe
2343 #define SEARCH_SUCCESS 0xfffffff0
2344 #define SEARCH_DISCARD 0
2345 #define SEARCH_SNAPSHOT 1
2346
2347 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2348 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2349 {
2350         int i;
2351         if (!priv->snapshot[0])
2352                 return;
2353         for (i = 0; i < 0x30; i++)
2354                 kfree(priv->snapshot[i]);
2355         priv->snapshot[0] = NULL;
2356 }
2357
2358 #ifdef IPW2100_DEBUG_C3
2359 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2360 {
2361         int i;
2362         if (priv->snapshot[0])
2363                 return 1;
2364         for (i = 0; i < 0x30; i++) {
2365                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2366                 if (!priv->snapshot[i]) {
2367                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2368                                        "buffer %d\n", priv->net_dev->name, i);
2369                         while (i > 0)
2370                                 kfree(priv->snapshot[--i]);
2371                         priv->snapshot[0] = NULL;
2372                         return 0;
2373                 }
2374         }
2375
2376         return 1;
2377 }
2378
2379 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2380                                     size_t len, int mode)
2381 {
2382         u32 i, j;
2383         u32 tmp;
2384         u8 *s, *d;
2385         u32 ret;
2386
2387         s = in_buf;
2388         if (mode == SEARCH_SNAPSHOT) {
2389                 if (!ipw2100_snapshot_alloc(priv))
2390                         mode = SEARCH_DISCARD;
2391         }
2392
2393         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2394                 read_nic_dword(priv->net_dev, i, &tmp);
2395                 if (mode == SEARCH_SNAPSHOT)
2396                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2397                 if (ret == SEARCH_FAIL) {
2398                         d = (u8 *) & tmp;
2399                         for (j = 0; j < 4; j++) {
2400                                 if (*s != *d) {
2401                                         s = in_buf;
2402                                         continue;
2403                                 }
2404
2405                                 s++;
2406                                 d++;
2407
2408                                 if ((s - in_buf) == len)
2409                                         ret = (i + j) - len + 1;
2410                         }
2411                 } else if (mode == SEARCH_DISCARD)
2412                         return ret;
2413         }
2414
2415         return ret;
2416 }
2417 #endif
2418
2419 /*
2420  *
2421  * 0) Disconnect the SKB from the firmware (just unmap)
2422  * 1) Pack the ETH header into the SKB
2423  * 2) Pass the SKB to the network stack
2424  *
2425  * When packet is provided by the firmware, it contains the following:
2426  *
2427  * .  libipw_hdr
2428  * .  libipw_snap_hdr
2429  *
2430  * The size of the constructed ethernet
2431  *
2432  */
2433 #ifdef IPW2100_RX_DEBUG
2434 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2435 #endif
2436
2437 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2438 {
2439 #ifdef IPW2100_DEBUG_C3
2440         struct ipw2100_status *status = &priv->status_queue.drv[i];
2441         u32 match, reg;
2442         int j;
2443 #endif
2444
2445         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2446                        i * sizeof(struct ipw2100_status));
2447
2448 #ifdef IPW2100_DEBUG_C3
2449         /* Halt the firmware so we can get a good image */
2450         write_register(priv->net_dev, IPW_REG_RESET_REG,
2451                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2452         j = 5;
2453         do {
2454                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2455                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2456
2457                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2458                         break;
2459         } while (j--);
2460
2461         match = ipw2100_match_buf(priv, (u8 *) status,
2462                                   sizeof(struct ipw2100_status),
2463                                   SEARCH_SNAPSHOT);
2464         if (match < SEARCH_SUCCESS)
2465                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2466                                "offset 0x%06X, length %d:\n",
2467                                priv->net_dev->name, match,
2468                                sizeof(struct ipw2100_status));
2469         else
2470                 IPW_DEBUG_INFO("%s: No DMA status match in "
2471                                "Firmware.\n", priv->net_dev->name);
2472
2473         printk_buf((u8 *) priv->status_queue.drv,
2474                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2475 #endif
2476
2477         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2478         priv->net_dev->stats.rx_errors++;
2479         schedule_reset(priv);
2480 }
2481
2482 static void isr_rx(struct ipw2100_priv *priv, int i,
2483                           struct libipw_rx_stats *stats)
2484 {
2485         struct net_device *dev = priv->net_dev;
2486         struct ipw2100_status *status = &priv->status_queue.drv[i];
2487         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2488
2489         IPW_DEBUG_RX("Handler...\n");
2490
2491         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2492                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2493                                "  Dropping.\n",
2494                                dev->name,
2495                                status->frame_size, skb_tailroom(packet->skb));
2496                 dev->stats.rx_errors++;
2497                 return;
2498         }
2499
2500         if (unlikely(!netif_running(dev))) {
2501                 dev->stats.rx_errors++;
2502                 priv->wstats.discard.misc++;
2503                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504                 return;
2505         }
2506
2507         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2508                      !(priv->status & STATUS_ASSOCIATED))) {
2509                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2510                 priv->wstats.discard.misc++;
2511                 return;
2512         }
2513
2514         pci_unmap_single(priv->pci_dev,
2515                          packet->dma_addr,
2516                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2517
2518         skb_put(packet->skb, status->frame_size);
2519
2520 #ifdef IPW2100_RX_DEBUG
2521         /* Make a copy of the frame so we can dump it to the logs if
2522          * libipw_rx fails */
2523         skb_copy_from_linear_data(packet->skb, packet_data,
2524                                   min_t(u32, status->frame_size,
2525                                              IPW_RX_NIC_BUFFER_LENGTH));
2526 #endif
2527
2528         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2529 #ifdef IPW2100_RX_DEBUG
2530                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2531                                dev->name);
2532                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2533 #endif
2534                 dev->stats.rx_errors++;
2535
2536                 /* libipw_rx failed, so it didn't free the SKB */
2537                 dev_kfree_skb_any(packet->skb);
2538                 packet->skb = NULL;
2539         }
2540
2541         /* We need to allocate a new SKB and attach it to the RDB. */
2542         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2543                 printk(KERN_WARNING DRV_NAME ": "
2544                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2545                        "adapter.\n", dev->name);
2546                 /* TODO: schedule adapter shutdown */
2547                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2548         }
2549
2550         /* Update the RDB entry */
2551         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2552 }
2553
2554 #ifdef CONFIG_IPW2100_MONITOR
2555
2556 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2557                    struct libipw_rx_stats *stats)
2558 {
2559         struct net_device *dev = priv->net_dev;
2560         struct ipw2100_status *status = &priv->status_queue.drv[i];
2561         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2562
2563         /* Magic struct that slots into the radiotap header -- no reason
2564          * to build this manually element by element, we can write it much
2565          * more efficiently than we can parse it. ORDER MATTERS HERE */
2566         struct ipw_rt_hdr {
2567                 struct ieee80211_radiotap_header rt_hdr;
2568                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2569         } *ipw_rt;
2570
2571         IPW_DEBUG_RX("Handler...\n");
2572
2573         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2574                                 sizeof(struct ipw_rt_hdr))) {
2575                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2576                                "  Dropping.\n",
2577                                dev->name,
2578                                status->frame_size,
2579                                skb_tailroom(packet->skb));
2580                 dev->stats.rx_errors++;
2581                 return;
2582         }
2583
2584         if (unlikely(!netif_running(dev))) {
2585                 dev->stats.rx_errors++;
2586                 priv->wstats.discard.misc++;
2587                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2588                 return;
2589         }
2590
2591         if (unlikely(priv->config & CFG_CRC_CHECK &&
2592                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2593                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2594                 dev->stats.rx_errors++;
2595                 return;
2596         }
2597
2598         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2599                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2600         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2601                 packet->skb->data, status->frame_size);
2602
2603         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2604
2605         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2606         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2607         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2608
2609         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2610
2611         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2612
2613         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2614
2615         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2616                 dev->stats.rx_errors++;
2617
2618                 /* libipw_rx failed, so it didn't free the SKB */
2619                 dev_kfree_skb_any(packet->skb);
2620                 packet->skb = NULL;
2621         }
2622
2623         /* We need to allocate a new SKB and attach it to the RDB. */
2624         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2625                 IPW_DEBUG_WARNING(
2626                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2627                         "adapter.\n", dev->name);
2628                 /* TODO: schedule adapter shutdown */
2629                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2630         }
2631
2632         /* Update the RDB entry */
2633         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2634 }
2635
2636 #endif
2637
2638 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2639 {
2640         struct ipw2100_status *status = &priv->status_queue.drv[i];
2641         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2642         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2643
2644         switch (frame_type) {
2645         case COMMAND_STATUS_VAL:
2646                 return (status->frame_size != sizeof(u->rx_data.command));
2647         case STATUS_CHANGE_VAL:
2648                 return (status->frame_size != sizeof(u->rx_data.status));
2649         case HOST_NOTIFICATION_VAL:
2650                 return (status->frame_size < sizeof(u->rx_data.notification));
2651         case P80211_DATA_VAL:
2652         case P8023_DATA_VAL:
2653 #ifdef CONFIG_IPW2100_MONITOR
2654                 return 0;
2655 #else
2656                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2657                 case IEEE80211_FTYPE_MGMT:
2658                 case IEEE80211_FTYPE_CTL:
2659                         return 0;
2660                 case IEEE80211_FTYPE_DATA:
2661                         return (status->frame_size >
2662                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2663                 }
2664 #endif
2665         }
2666
2667         return 1;
2668 }
2669
2670 /*
2671  * ipw2100 interrupts are disabled at this point, and the ISR
2672  * is the only code that calls this method.  So, we do not need
2673  * to play with any locks.
2674  *
2675  * RX Queue works as follows:
2676  *
2677  * Read index - firmware places packet in entry identified by the
2678  *              Read index and advances Read index.  In this manner,
2679  *              Read index will always point to the next packet to
2680  *              be filled--but not yet valid.
2681  *
2682  * Write index - driver fills this entry with an unused RBD entry.
2683  *               This entry has not filled by the firmware yet.
2684  *
2685  * In between the W and R indexes are the RBDs that have been received
2686  * but not yet processed.
2687  *
2688  * The process of handling packets will start at WRITE + 1 and advance
2689  * until it reaches the READ index.
2690  *
2691  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2692  *
2693  */
2694 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2695 {
2696         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2697         struct ipw2100_status_queue *sq = &priv->status_queue;
2698         struct ipw2100_rx_packet *packet;
2699         u16 frame_type;
2700         u32 r, w, i, s;
2701         struct ipw2100_rx *u;
2702         struct libipw_rx_stats stats = {
2703                 .mac_time = jiffies,
2704         };
2705
2706         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2707         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2708
2709         if (r >= rxq->entries) {
2710                 IPW_DEBUG_RX("exit - bad read index\n");
2711                 return;
2712         }
2713
2714         i = (rxq->next + 1) % rxq->entries;
2715         s = i;
2716         while (i != r) {
2717                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2718                    r, rxq->next, i); */
2719
2720                 packet = &priv->rx_buffers[i];
2721
2722                 /* Sync the DMA for the RX buffer so CPU is sure to get
2723                  * the correct values */
2724                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2725                                             sizeof(struct ipw2100_rx),
2726                                             PCI_DMA_FROMDEVICE);
2727
2728                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2729                         ipw2100_corruption_detected(priv, i);
2730                         goto increment;
2731                 }
2732
2733                 u = packet->rxp;
2734                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2735                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2736                 stats.len = sq->drv[i].frame_size;
2737
2738                 stats.mask = 0;
2739                 if (stats.rssi != 0)
2740                         stats.mask |= LIBIPW_STATMASK_RSSI;
2741                 stats.freq = LIBIPW_24GHZ_BAND;
2742
2743                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2744                              priv->net_dev->name, frame_types[frame_type],
2745                              stats.len);
2746
2747                 switch (frame_type) {
2748                 case COMMAND_STATUS_VAL:
2749                         /* Reset Rx watchdog */
2750                         isr_rx_complete_command(priv, &u->rx_data.command);
2751                         break;
2752
2753                 case STATUS_CHANGE_VAL:
2754                         isr_status_change(priv, u->rx_data.status);
2755                         break;
2756
2757                 case P80211_DATA_VAL:
2758                 case P8023_DATA_VAL:
2759 #ifdef CONFIG_IPW2100_MONITOR
2760                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2761                                 isr_rx_monitor(priv, i, &stats);
2762                                 break;
2763                         }
2764 #endif
2765                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2766                                 break;
2767                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2768                         case IEEE80211_FTYPE_MGMT:
2769                                 libipw_rx_mgt(priv->ieee,
2770                                                  &u->rx_data.header, &stats);
2771                                 break;
2772
2773                         case IEEE80211_FTYPE_CTL:
2774                                 break;
2775
2776                         case IEEE80211_FTYPE_DATA:
2777                                 isr_rx(priv, i, &stats);
2778                                 break;
2779
2780                         }
2781                         break;
2782                 }
2783
2784               increment:
2785                 /* clear status field associated with this RBD */
2786                 rxq->drv[i].status.info.field = 0;
2787
2788                 i = (i + 1) % rxq->entries;
2789         }
2790
2791         if (i != s) {
2792                 /* backtrack one entry, wrapping to end if at 0 */
2793                 rxq->next = (i ? i : rxq->entries) - 1;
2794
2795                 write_register(priv->net_dev,
2796                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2797         }
2798 }
2799
2800 /*
2801  * __ipw2100_tx_process
2802  *
2803  * This routine will determine whether the next packet on
2804  * the fw_pend_list has been processed by the firmware yet.
2805  *
2806  * If not, then it does nothing and returns.
2807  *
2808  * If so, then it removes the item from the fw_pend_list, frees
2809  * any associated storage, and places the item back on the
2810  * free list of its source (either msg_free_list or tx_free_list)
2811  *
2812  * TX Queue works as follows:
2813  *
2814  * Read index - points to the next TBD that the firmware will
2815  *              process.  The firmware will read the data, and once
2816  *              done processing, it will advance the Read index.
2817  *
2818  * Write index - driver fills this entry with an constructed TBD
2819  *               entry.  The Write index is not advanced until the
2820  *               packet has been configured.
2821  *
2822  * In between the W and R indexes are the TBDs that have NOT been
2823  * processed.  Lagging behind the R index are packets that have
2824  * been processed but have not been freed by the driver.
2825  *
2826  * In order to free old storage, an internal index will be maintained
2827  * that points to the next packet to be freed.  When all used
2828  * packets have been freed, the oldest index will be the same as the
2829  * firmware's read index.
2830  *
2831  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2832  *
2833  * Because the TBD structure can not contain arbitrary data, the
2834  * driver must keep an internal queue of cached allocations such that
2835  * it can put that data back into the tx_free_list and msg_free_list
2836  * for use by future command and data packets.
2837  *
2838  */
2839 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2840 {
2841         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2842         struct ipw2100_bd *tbd;
2843         struct list_head *element;
2844         struct ipw2100_tx_packet *packet;
2845         int descriptors_used;
2846         int e, i;
2847         u32 r, w, frag_num = 0;
2848
2849         if (list_empty(&priv->fw_pend_list))
2850                 return 0;
2851
2852         element = priv->fw_pend_list.next;
2853
2854         packet = list_entry(element, struct ipw2100_tx_packet, list);
2855         tbd = &txq->drv[packet->index];
2856
2857         /* Determine how many TBD entries must be finished... */
2858         switch (packet->type) {
2859         case COMMAND:
2860                 /* COMMAND uses only one slot; don't advance */
2861                 descriptors_used = 1;
2862                 e = txq->oldest;
2863                 break;
2864
2865         case DATA:
2866                 /* DATA uses two slots; advance and loop position. */
2867                 descriptors_used = tbd->num_fragments;
2868                 frag_num = tbd->num_fragments - 1;
2869                 e = txq->oldest + frag_num;
2870                 e %= txq->entries;
2871                 break;
2872
2873         default:
2874                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2875                        priv->net_dev->name);
2876                 return 0;
2877         }
2878
2879         /* if the last TBD is not done by NIC yet, then packet is
2880          * not ready to be released.
2881          *
2882          */
2883         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2884                       &r);
2885         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2886                       &w);
2887         if (w != txq->next)
2888                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2889                        priv->net_dev->name);
2890
2891         /*
2892          * txq->next is the index of the last packet written txq->oldest is
2893          * the index of the r is the index of the next packet to be read by
2894          * firmware
2895          */
2896
2897         /*
2898          * Quick graphic to help you visualize the following
2899          * if / else statement
2900          *
2901          * ===>|                     s---->|===============
2902          *                               e>|
2903          * | a | b | c | d | e | f | g | h | i | j | k | l
2904          *       r---->|
2905          *               w
2906          *
2907          * w - updated by driver
2908          * r - updated by firmware
2909          * s - start of oldest BD entry (txq->oldest)
2910          * e - end of oldest BD entry
2911          *
2912          */
2913         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2914                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2915                 return 0;
2916         }
2917
2918         list_del(element);
2919         DEC_STAT(&priv->fw_pend_stat);
2920
2921 #ifdef CONFIG_IPW2100_DEBUG
2922         {
2923                 i = txq->oldest;
2924                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2925                              &txq->drv[i],
2926                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2927                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2928
2929                 if (packet->type == DATA) {
2930                         i = (i + 1) % txq->entries;
2931
2932                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933                                      &txq->drv[i],
2934                                      (u32) (txq->nic + i *
2935                                             sizeof(struct ipw2100_bd)),
2936                                      (u32) txq->drv[i].host_addr,
2937                                      txq->drv[i].buf_length);
2938                 }
2939         }
2940 #endif
2941
2942         switch (packet->type) {
2943         case DATA:
2944                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2945                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2946                                "Expecting DATA TBD but pulled "
2947                                "something else: ids %d=%d.\n",
2948                                priv->net_dev->name, txq->oldest, packet->index);
2949
2950                 /* DATA packet; we have to unmap and free the SKB */
2951                 for (i = 0; i < frag_num; i++) {
2952                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2953
2954                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2955                                      (packet->index + 1 + i) % txq->entries,
2956                                      tbd->host_addr, tbd->buf_length);
2957
2958                         pci_unmap_single(priv->pci_dev,
2959                                          tbd->host_addr,
2960                                          tbd->buf_length, PCI_DMA_TODEVICE);
2961                 }
2962
2963                 libipw_txb_free(packet->info.d_struct.txb);
2964                 packet->info.d_struct.txb = NULL;
2965
2966                 list_add_tail(element, &priv->tx_free_list);
2967                 INC_STAT(&priv->tx_free_stat);
2968
2969                 /* We have a free slot in the Tx queue, so wake up the
2970                  * transmit layer if it is stopped. */
2971                 if (priv->status & STATUS_ASSOCIATED)
2972                         netif_wake_queue(priv->net_dev);
2973
2974                 /* A packet was processed by the hardware, so update the
2975                  * watchdog */
2976                 priv->net_dev->trans_start = jiffies;
2977
2978                 break;
2979
2980         case COMMAND:
2981                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2982                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2983                                "Expecting COMMAND TBD but pulled "
2984                                "something else: ids %d=%d.\n",
2985                                priv->net_dev->name, txq->oldest, packet->index);
2986
2987 #ifdef CONFIG_IPW2100_DEBUG
2988                 if (packet->info.c_struct.cmd->host_command_reg <
2989                     ARRAY_SIZE(command_types))
2990                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2991                                      command_types[packet->info.c_struct.cmd->
2992                                                    host_command_reg],
2993                                      packet->info.c_struct.cmd->
2994                                      host_command_reg,
2995                                      packet->info.c_struct.cmd->cmd_status_reg);
2996 #endif
2997
2998                 list_add_tail(element, &priv->msg_free_list);
2999                 INC_STAT(&priv->msg_free_stat);
3000                 break;
3001         }
3002
3003         /* advance oldest used TBD pointer to start of next entry */
3004         txq->oldest = (e + 1) % txq->entries;
3005         /* increase available TBDs number */
3006         txq->available += descriptors_used;
3007         SET_STAT(&priv->txq_stat, txq->available);
3008
3009         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3010                      jiffies - packet->jiffy_start);
3011
3012         return (!list_empty(&priv->fw_pend_list));
3013 }
3014
3015 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3016 {
3017         int i = 0;
3018
3019         while (__ipw2100_tx_process(priv) && i < 200)
3020                 i++;
3021
3022         if (i == 200) {
3023                 printk(KERN_WARNING DRV_NAME ": "
3024                        "%s: Driver is running slow (%d iters).\n",
3025                        priv->net_dev->name, i);
3026         }
3027 }
3028
3029 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3030 {
3031         struct list_head *element;
3032         struct ipw2100_tx_packet *packet;
3033         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3034         struct ipw2100_bd *tbd;
3035         int next = txq->next;
3036
3037         while (!list_empty(&priv->msg_pend_list)) {
3038                 /* if there isn't enough space in TBD queue, then
3039                  * don't stuff a new one in.
3040                  * NOTE: 3 are needed as a command will take one,
3041                  *       and there is a minimum of 2 that must be
3042                  *       maintained between the r and w indexes
3043                  */
3044                 if (txq->available <= 3) {
3045                         IPW_DEBUG_TX("no room in tx_queue\n");
3046                         break;
3047                 }
3048
3049                 element = priv->msg_pend_list.next;
3050                 list_del(element);
3051                 DEC_STAT(&priv->msg_pend_stat);
3052
3053                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3054
3055                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3056                              &txq->drv[txq->next],
3057                              (u32) (txq->nic + txq->next *
3058                                       sizeof(struct ipw2100_bd)));
3059
3060                 packet->index = txq->next;
3061
3062                 tbd = &txq->drv[txq->next];
3063
3064                 /* initialize TBD */
3065                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3066                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3067                 /* not marking number of fragments causes problems
3068                  * with f/w debug version */
3069                 tbd->num_fragments = 1;
3070                 tbd->status.info.field =
3071                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3072                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3073
3074                 /* update TBD queue counters */
3075                 txq->next++;
3076                 txq->next %= txq->entries;
3077                 txq->available--;
3078                 DEC_STAT(&priv->txq_stat);
3079
3080                 list_add_tail(element, &priv->fw_pend_list);
3081                 INC_STAT(&priv->fw_pend_stat);
3082         }
3083
3084         if (txq->next != next) {
3085                 /* kick off the DMA by notifying firmware the
3086                  * write index has moved; make sure TBD stores are sync'd */
3087                 wmb();
3088                 write_register(priv->net_dev,
3089                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3090                                txq->next);
3091         }
3092 }
3093
3094 /*
3095  * ipw2100_tx_send_data
3096  *
3097  */
3098 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3099 {
3100         struct list_head *element;
3101         struct ipw2100_tx_packet *packet;
3102         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3103         struct ipw2100_bd *tbd;
3104         int next = txq->next;
3105         int i = 0;
3106         struct ipw2100_data_header *ipw_hdr;
3107         struct libipw_hdr_3addr *hdr;
3108
3109         while (!list_empty(&priv->tx_pend_list)) {
3110                 /* if there isn't enough space in TBD queue, then
3111                  * don't stuff a new one in.
3112                  * NOTE: 4 are needed as a data will take two,
3113                  *       and there is a minimum of 2 that must be
3114                  *       maintained between the r and w indexes
3115                  */
3116                 element = priv->tx_pend_list.next;
3117                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3118
3119                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3120                              IPW_MAX_BDS)) {
3121                         /* TODO: Support merging buffers if more than
3122                          * IPW_MAX_BDS are used */
3123                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3124                                        "Increase fragmentation level.\n",
3125                                        priv->net_dev->name);
3126                 }
3127
3128                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3129                         IPW_DEBUG_TX("no room in tx_queue\n");
3130                         break;
3131                 }
3132
3133                 list_del(element);
3134                 DEC_STAT(&priv->tx_pend_stat);
3135
3136                 tbd = &txq->drv[txq->next];
3137
3138                 packet->index = txq->next;
3139
3140                 ipw_hdr = packet->info.d_struct.data;
3141                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3142                     fragments[0]->data;
3143
3144                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3145                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3146                            Addr3 = DA */
3147                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3148                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3149                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3150                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3151                            Addr3 = BSSID */
3152                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3153                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3154                 }
3155
3156                 ipw_hdr->host_command_reg = SEND;
3157                 ipw_hdr->host_command_reg1 = 0;
3158
3159                 /* For now we only support host based encryption */
3160                 ipw_hdr->needs_encryption = 0;
3161                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3162                 if (packet->info.d_struct.txb->nr_frags > 1)
3163                         ipw_hdr->fragment_size =
3164                             packet->info.d_struct.txb->frag_size -
3165                             LIBIPW_3ADDR_LEN;
3166                 else
3167                         ipw_hdr->fragment_size = 0;
3168
3169                 tbd->host_addr = packet->info.d_struct.data_phys;
3170                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3171                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3172                 tbd->status.info.field =
3173                     IPW_BD_STATUS_TX_FRAME_802_3 |
3174                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175                 txq->next++;
3176                 txq->next %= txq->entries;
3177
3178                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3179                              packet->index, tbd->host_addr, tbd->buf_length);
3180 #ifdef CONFIG_IPW2100_DEBUG
3181                 if (packet->info.d_struct.txb->nr_frags > 1)
3182                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3183                                        packet->info.d_struct.txb->nr_frags);
3184 #endif
3185
3186                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3187                         tbd = &txq->drv[txq->next];
3188                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3189                                 tbd->status.info.field =
3190                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3191                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3192                         else
3193                                 tbd->status.info.field =
3194                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3195                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3196
3197                         tbd->buf_length = packet->info.d_struct.txb->
3198                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3199
3200                         tbd->host_addr = pci_map_single(priv->pci_dev,
3201                                                         packet->info.d_struct.
3202                                                         txb->fragments[i]->
3203                                                         data +
3204                                                         LIBIPW_3ADDR_LEN,
3205                                                         tbd->buf_length,
3206                                                         PCI_DMA_TODEVICE);
3207
3208                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3209                                      txq->next, tbd->host_addr,
3210                                      tbd->buf_length);
3211
3212                         pci_dma_sync_single_for_device(priv->pci_dev,
3213                                                        tbd->host_addr,
3214                                                        tbd->buf_length,
3215                                                        PCI_DMA_TODEVICE);
3216
3217                         txq->next++;
3218                         txq->next %= txq->entries;
3219                 }
3220
3221                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3222                 SET_STAT(&priv->txq_stat, txq->available);
3223
3224                 list_add_tail(element, &priv->fw_pend_list);
3225                 INC_STAT(&priv->fw_pend_stat);
3226         }
3227
3228         if (txq->next != next) {
3229                 /* kick off the DMA by notifying firmware the
3230                  * write index has moved; make sure TBD stores are sync'd */
3231                 write_register(priv->net_dev,
3232                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3233                                txq->next);
3234         }
3235 }
3236
3237 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3238 {
3239         struct net_device *dev = priv->net_dev;
3240         unsigned long flags;
3241         u32 inta, tmp;
3242
3243         spin_lock_irqsave(&priv->low_lock, flags);
3244         ipw2100_disable_interrupts(priv);
3245
3246         read_register(dev, IPW_REG_INTA, &inta);
3247
3248         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3249                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3250
3251         priv->in_isr++;
3252         priv->interrupts++;
3253
3254         /* We do not loop and keep polling for more interrupts as this
3255          * is frowned upon and doesn't play nicely with other potentially
3256          * chained IRQs */
3257         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3258                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3259
3260         if (inta & IPW2100_INTA_FATAL_ERROR) {
3261                 printk(KERN_WARNING DRV_NAME
3262                        ": Fatal interrupt. Scheduling firmware restart.\n");
3263                 priv->inta_other++;
3264                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3265
3266                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3267                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3268                                priv->net_dev->name, priv->fatal_error);
3269
3270                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3271                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3272                                priv->net_dev->name, tmp);
3273
3274                 /* Wake up any sleeping jobs */
3275                 schedule_reset(priv);
3276         }
3277
3278         if (inta & IPW2100_INTA_PARITY_ERROR) {
3279                 printk(KERN_ERR DRV_NAME
3280                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3281                 priv->inta_other++;
3282                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3283         }
3284
3285         if (inta & IPW2100_INTA_RX_TRANSFER) {
3286                 IPW_DEBUG_ISR("RX interrupt\n");
3287
3288                 priv->rx_interrupts++;
3289
3290                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3291
3292                 __ipw2100_rx_process(priv);
3293                 __ipw2100_tx_complete(priv);
3294         }
3295
3296         if (inta & IPW2100_INTA_TX_TRANSFER) {
3297                 IPW_DEBUG_ISR("TX interrupt\n");
3298
3299                 priv->tx_interrupts++;
3300
3301                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3302
3303                 __ipw2100_tx_complete(priv);
3304                 ipw2100_tx_send_commands(priv);
3305                 ipw2100_tx_send_data(priv);
3306         }
3307
3308         if (inta & IPW2100_INTA_TX_COMPLETE) {
3309                 IPW_DEBUG_ISR("TX complete\n");
3310                 priv->inta_other++;
3311                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3312
3313                 __ipw2100_tx_complete(priv);
3314         }
3315
3316         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3317                 /* ipw2100_handle_event(dev); */
3318                 priv->inta_other++;
3319                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3320         }
3321
3322         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3323                 IPW_DEBUG_ISR("FW init done interrupt\n");
3324                 priv->inta_other++;
3325
3326                 read_register(dev, IPW_REG_INTA, &tmp);
3327                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3328                            IPW2100_INTA_PARITY_ERROR)) {
3329                         write_register(dev, IPW_REG_INTA,
3330                                        IPW2100_INTA_FATAL_ERROR |
3331                                        IPW2100_INTA_PARITY_ERROR);
3332                 }
3333
3334                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3335         }
3336
3337         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3338                 IPW_DEBUG_ISR("Status change interrupt\n");
3339                 priv->inta_other++;
3340                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3341         }
3342
3343         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3344                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3345                 priv->inta_other++;
3346                 write_register(dev, IPW_REG_INTA,
3347                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3348         }
3349
3350         priv->in_isr--;
3351         ipw2100_enable_interrupts(priv);
3352
3353         spin_unlock_irqrestore(&priv->low_lock, flags);
3354
3355         IPW_DEBUG_ISR("exit\n");
3356 }
3357
3358 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3359 {
3360         struct ipw2100_priv *priv = data;
3361         u32 inta, inta_mask;
3362
3363         if (!data)
3364                 return IRQ_NONE;
3365
3366         spin_lock(&priv->low_lock);
3367
3368         /* We check to see if we should be ignoring interrupts before
3369          * we touch the hardware.  During ucode load if we try and handle
3370          * an interrupt we can cause keyboard problems as well as cause
3371          * the ucode to fail to initialize */
3372         if (!(priv->status & STATUS_INT_ENABLED)) {
3373                 /* Shared IRQ */
3374                 goto none;
3375         }
3376
3377         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3378         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3379
3380         if (inta == 0xFFFFFFFF) {
3381                 /* Hardware disappeared */
3382                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3383                 goto none;
3384         }
3385
3386         inta &= IPW_INTERRUPT_MASK;
3387
3388         if (!(inta & inta_mask)) {
3389                 /* Shared interrupt */
3390                 goto none;
3391         }
3392
3393         /* We disable the hardware interrupt here just to prevent unneeded
3394          * calls to be made.  We disable this again within the actual
3395          * work tasklet, so if another part of the code re-enables the
3396          * interrupt, that is fine */
3397         ipw2100_disable_interrupts(priv);
3398
3399         tasklet_schedule(&priv->irq_tasklet);
3400         spin_unlock(&priv->low_lock);
3401
3402         return IRQ_HANDLED;
3403       none:
3404         spin_unlock(&priv->low_lock);
3405         return IRQ_NONE;
3406 }
3407
3408 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3409                               struct net_device *dev, int pri)
3410 {
3411         struct ipw2100_priv *priv = libipw_priv(dev);
3412         struct list_head *element;
3413         struct ipw2100_tx_packet *packet;
3414         unsigned long flags;
3415
3416         spin_lock_irqsave(&priv->low_lock, flags);
3417
3418         if (!(priv->status & STATUS_ASSOCIATED)) {
3419                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3420                 priv->net_dev->stats.tx_carrier_errors++;
3421                 netif_stop_queue(dev);
3422                 goto fail_unlock;
3423         }
3424
3425         if (list_empty(&priv->tx_free_list))
3426                 goto fail_unlock;
3427
3428         element = priv->tx_free_list.next;
3429         packet = list_entry(element, struct ipw2100_tx_packet, list);
3430
3431         packet->info.d_struct.txb = txb;
3432
3433         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3434         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3435
3436         packet->jiffy_start = jiffies;
3437
3438         list_del(element);
3439         DEC_STAT(&priv->tx_free_stat);
3440
3441         list_add_tail(element, &priv->tx_pend_list);
3442         INC_STAT(&priv->tx_pend_stat);
3443
3444         ipw2100_tx_send_data(priv);
3445
3446         spin_unlock_irqrestore(&priv->low_lock, flags);
3447         return NETDEV_TX_OK;
3448
3449 fail_unlock:
3450         netif_stop_queue(dev);
3451         spin_unlock_irqrestore(&priv->low_lock, flags);
3452         return NETDEV_TX_BUSY;
3453 }
3454
3455 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3456 {
3457         int i, j, err = -EINVAL;
3458         void *v;
3459         dma_addr_t p;
3460
3461         priv->msg_buffers =
3462             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3463                     GFP_KERNEL);
3464         if (!priv->msg_buffers)
3465                 return -ENOMEM;
3466
3467         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3468                 v = pci_alloc_consistent(priv->pci_dev,
3469                                          sizeof(struct ipw2100_cmd_header), &p);
3470                 if (!v) {
3471                         printk(KERN_ERR DRV_NAME ": "
3472                                "%s: PCI alloc failed for msg "
3473                                "buffers.\n", priv->net_dev->name);
3474                         err = -ENOMEM;
3475                         break;
3476                 }
3477
3478                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3479
3480                 priv->msg_buffers[i].type = COMMAND;
3481                 priv->msg_buffers[i].info.c_struct.cmd =
3482                     (struct ipw2100_cmd_header *)v;
3483                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3484         }
3485
3486         if (i == IPW_COMMAND_POOL_SIZE)
3487                 return 0;
3488
3489         for (j = 0; j < i; j++) {
3490                 pci_free_consistent(priv->pci_dev,
3491                                     sizeof(struct ipw2100_cmd_header),
3492                                     priv->msg_buffers[j].info.c_struct.cmd,
3493                                     priv->msg_buffers[j].info.c_struct.
3494                                     cmd_phys);
3495         }
3496
3497         kfree(priv->msg_buffers);
3498         priv->msg_buffers = NULL;
3499
3500         return err;
3501 }
3502
3503 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3504 {
3505         int i;
3506
3507         INIT_LIST_HEAD(&priv->msg_free_list);
3508         INIT_LIST_HEAD(&priv->msg_pend_list);
3509
3510         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3511                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3512         SET_STAT(&priv->msg_free_stat, i);
3513
3514         return 0;
3515 }
3516
3517 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3518 {
3519         int i;
3520
3521         if (!priv->msg_buffers)
3522                 return;
3523
3524         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3525                 pci_free_consistent(priv->pci_dev,
3526                                     sizeof(struct ipw2100_cmd_header),
3527                                     priv->msg_buffers[i].info.c_struct.cmd,
3528                                     priv->msg_buffers[i].info.c_struct.
3529                                     cmd_phys);
3530         }
3531
3532         kfree(priv->msg_buffers);
3533         priv->msg_buffers = NULL;
3534 }
3535
3536 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3537                         char *buf)
3538 {
3539         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3540         char *out = buf;
3541         int i, j;
3542         u32 val;
3543
3544         for (i = 0; i < 16; i++) {
3545                 out += sprintf(out, "[%08X] ", i * 16);
3546                 for (j = 0; j < 16; j += 4) {
3547                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3548                         out += sprintf(out, "%08X ", val);
3549                 }
3550                 out += sprintf(out, "\n");
3551         }
3552
3553         return out - buf;
3554 }
3555
3556 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3557
3558 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3559                         char *buf)
3560 {
3561         struct ipw2100_priv *p = dev_get_drvdata(d);
3562         return sprintf(buf, "0x%08x\n", (int)p->config);
3563 }
3564
3565 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3566
3567 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3568                            char *buf)
3569 {
3570         struct ipw2100_priv *p = dev_get_drvdata(d);
3571         return sprintf(buf, "0x%08x\n", (int)p->status);
3572 }
3573
3574 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3575
3576 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3577                                char *buf)
3578 {
3579         struct ipw2100_priv *p = dev_get_drvdata(d);
3580         return sprintf(buf, "0x%08x\n", (int)p->capability);
3581 }
3582
3583 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3584
3585 #define IPW2100_REG(x) { IPW_ ##x, #x }
3586 static const struct {
3587         u32 addr;
3588         const char *name;
3589 } hw_data[] = {
3590 IPW2100_REG(REG_GP_CNTRL),
3591             IPW2100_REG(REG_GPIO),
3592             IPW2100_REG(REG_INTA),
3593             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3594 #define IPW2100_NIC(x, s) { x, #x, s }
3595 static const struct {
3596         u32 addr;
3597         const char *name;
3598         size_t size;
3599 } nic_data[] = {
3600 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3601             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3602 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3603 static const struct {
3604         u8 index;
3605         const char *name;
3606         const char *desc;
3607 } ord_data[] = {
3608 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3609             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3610                                 "successful Host Tx's (MSDU)"),
3611             IPW2100_ORD(STAT_TX_DIR_DATA,
3612                                 "successful Directed Tx's (MSDU)"),
3613             IPW2100_ORD(STAT_TX_DIR_DATA1,
3614                                 "successful Directed Tx's (MSDU) @ 1MB"),
3615             IPW2100_ORD(STAT_TX_DIR_DATA2,
3616                                 "successful Directed Tx's (MSDU) @ 2MB"),
3617             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3618                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3619             IPW2100_ORD(STAT_TX_DIR_DATA11,
3620                                 "successful Directed Tx's (MSDU) @ 11MB"),
3621             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3622                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3623             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3624                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3625             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3626                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3627             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3628                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3629             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3630             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3631             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3632             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3633             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3634             IPW2100_ORD(STAT_TX_ASSN_RESP,
3635                                 "successful Association response Tx's"),
3636             IPW2100_ORD(STAT_TX_REASSN,
3637                                 "successful Reassociation Tx's"),
3638             IPW2100_ORD(STAT_TX_REASSN_RESP,
3639                                 "successful Reassociation response Tx's"),
3640             IPW2100_ORD(STAT_TX_PROBE,
3641                                 "probes successfully transmitted"),
3642             IPW2100_ORD(STAT_TX_PROBE_RESP,
3643                                 "probe responses successfully transmitted"),
3644             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3645             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3646             IPW2100_ORD(STAT_TX_DISASSN,
3647                                 "successful Disassociation TX"),
3648             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3649             IPW2100_ORD(STAT_TX_DEAUTH,
3650                                 "successful Deauthentication TX"),
3651             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3652                                 "Total successful Tx data bytes"),
3653             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3654             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3655             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3656             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3657             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3658             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3659             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3660                                 "times max tries in a hop failed"),
3661             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3662                                 "times disassociation failed"),
3663             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3664             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3665             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3666             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3667             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3668             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3669             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3670                                 "directed packets at 5.5MB"),
3671             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3672             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3673             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3674                                 "nondirected packets at 1MB"),
3675             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3676                                 "nondirected packets at 2MB"),
3677             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3678                                 "nondirected packets at 5.5MB"),
3679             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3680                                 "nondirected packets at 11MB"),
3681             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3682             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3683                                                                     "Rx CTS"),
3684             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3685             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3686             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3687             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3688             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3689             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3690             IPW2100_ORD(STAT_RX_REASSN_RESP,
3691                                 "Reassociation response Rx's"),
3692             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3693             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3694             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3695             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3696             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3697             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3698             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3699             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3700                                 "Total rx data bytes received"),
3701             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3702             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3703             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3704             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3705             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3706             IPW2100_ORD(STAT_RX_DUPLICATE1,
3707                                 "duplicate rx packets at 1MB"),
3708             IPW2100_ORD(STAT_RX_DUPLICATE2,
3709                                 "duplicate rx packets at 2MB"),
3710             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3711                                 "duplicate rx packets at 5.5MB"),
3712             IPW2100_ORD(STAT_RX_DUPLICATE11,
3713                                 "duplicate rx packets at 11MB"),
3714             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3715             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3716             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3717             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3718             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3719                                 "rx frames with invalid protocol"),
3720             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3721             IPW2100_ORD(STAT_RX_NO_BUFFER,
3722                                 "rx frames rejected due to no buffer"),
3723             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3724                                 "rx frames dropped due to missing fragment"),
3725             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3726                                 "rx frames dropped due to non-sequential fragment"),
3727             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3728                                 "rx frames dropped due to unmatched 1st frame"),
3729             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3730                                 "rx frames dropped due to uncompleted frame"),
3731             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3732                                 "ICV errors during decryption"),
3733             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3734             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3735             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3736                                 "poll response timeouts"),
3737             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3738                                 "timeouts waiting for last {broad,multi}cast pkt"),
3739             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3740             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3741             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3742             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3743             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3744                                 "current calculation of % missed beacons"),
3745             IPW2100_ORD(STAT_PERCENT_RETRIES,
3746                                 "current calculation of % missed tx retries"),
3747             IPW2100_ORD(ASSOCIATED_AP_PTR,
3748                                 "0 if not associated, else pointer to AP table entry"),
3749             IPW2100_ORD(AVAILABLE_AP_CNT,
3750                                 "AP's decsribed in the AP table"),
3751             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3752             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3753             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3754             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3755                                 "failures due to response fail"),
3756             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3757             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3758             IPW2100_ORD(STAT_ROAM_INHIBIT,
3759                                 "times roaming was inhibited due to activity"),
3760             IPW2100_ORD(RSSI_AT_ASSN,
3761                                 "RSSI of associated AP at time of association"),
3762             IPW2100_ORD(STAT_ASSN_CAUSE1,
3763                                 "reassociation: no probe response or TX on hop"),
3764             IPW2100_ORD(STAT_ASSN_CAUSE2,
3765                                 "reassociation: poor tx/rx quality"),
3766             IPW2100_ORD(STAT_ASSN_CAUSE3,
3767                                 "reassociation: tx/rx quality (excessive AP load"),
3768             IPW2100_ORD(STAT_ASSN_CAUSE4,
3769                                 "reassociation: AP RSSI level"),
3770             IPW2100_ORD(STAT_ASSN_CAUSE5,
3771                                 "reassociations due to load leveling"),
3772             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3773             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3774                                 "times authentication response failed"),
3775             IPW2100_ORD(STATION_TABLE_CNT,
3776                                 "entries in association table"),
3777             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3778             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3779             IPW2100_ORD(COUNTRY_CODE,
3780                                 "IEEE country code as recv'd from beacon"),
3781             IPW2100_ORD(COUNTRY_CHANNELS,
3782                                 "channels supported by country"),
3783             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3784             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3785             IPW2100_ORD(ANTENNA_DIVERSITY,
3786                                 "TRUE if antenna diversity is disabled"),
3787             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3788             IPW2100_ORD(OUR_FREQ,
3789                                 "current radio freq lower digits - channel ID"),
3790             IPW2100_ORD(RTC_TIME, "current RTC time"),
3791             IPW2100_ORD(PORT_TYPE, "operating mode"),
3792             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3793             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3794             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3795             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3796             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3797             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3798             IPW2100_ORD(CAPABILITIES,
3799                                 "Management frame capability field"),
3800             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3801             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3802             IPW2100_ORD(RTS_THRESHOLD,
3803                                 "Min packet length for RTS handshaking"),
3804             IPW2100_ORD(INT_MODE, "International mode"),
3805             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3806                                 "protocol frag threshold"),
3807             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3808                                 "EEPROM offset in SRAM"),
3809             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3810                                 "EEPROM size in SRAM"),
3811             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3812             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3813                                 "EEPROM IBSS 11b channel set"),
3814             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3815             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3816             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3817             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3818             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3819
3820 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3821                               char *buf)
3822 {
3823         int i;
3824         struct ipw2100_priv *priv = dev_get_drvdata(d);
3825         struct net_device *dev = priv->net_dev;
3826         char *out = buf;
3827         u32 val = 0;
3828
3829         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3830
3831         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3832                 read_register(dev, hw_data[i].addr, &val);
3833                 out += sprintf(out, "%30s [%08X] : %08X\n",
3834                                hw_data[i].name, hw_data[i].addr, val);
3835         }
3836
3837         return out - buf;
3838 }
3839
3840 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3841
3842 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3843                              char *buf)
3844 {
3845         struct ipw2100_priv *priv = dev_get_drvdata(d);
3846         struct net_device *dev = priv->net_dev;
3847         char *out = buf;
3848         int i;
3849
3850         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3851
3852         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3853                 u8 tmp8;
3854                 u16 tmp16;
3855                 u32 tmp32;
3856
3857                 switch (nic_data[i].size) {
3858                 case 1:
3859                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3860                         out += sprintf(out, "%30s [%08X] : %02X\n",
3861                                        nic_data[i].name, nic_data[i].addr,
3862                                        tmp8);
3863                         break;
3864                 case 2:
3865                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3866                         out += sprintf(out, "%30s [%08X] : %04X\n",
3867                                        nic_data[i].name, nic_data[i].addr,
3868                                        tmp16);
3869                         break;
3870                 case 4:
3871                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3872                         out += sprintf(out, "%30s [%08X] : %08X\n",
3873                                        nic_data[i].name, nic_data[i].addr,
3874                                        tmp32);
3875                         break;
3876                 }
3877         }
3878         return out - buf;
3879 }
3880
3881 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3882
3883 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3884                            char *buf)
3885 {
3886         struct ipw2100_priv *priv = dev_get_drvdata(d);
3887         struct net_device *dev = priv->net_dev;
3888         static unsigned long loop = 0;
3889         int len = 0;
3890         u32 buffer[4];
3891         int i;
3892         char line[81];
3893
3894         if (loop >= 0x30000)
3895                 loop = 0;
3896
3897         /* sysfs provides us PAGE_SIZE buffer */
3898         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3899
3900                 if (priv->snapshot[0])
3901                         for (i = 0; i < 4; i++)
3902                                 buffer[i] =
3903                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3904                 else
3905                         for (i = 0; i < 4; i++)
3906                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3907
3908                 if (priv->dump_raw)
3909                         len += sprintf(buf + len,
3910                                        "%c%c%c%c"
3911                                        "%c%c%c%c"
3912                                        "%c%c%c%c"
3913                                        "%c%c%c%c",
3914                                        ((u8 *) buffer)[0x0],
3915                                        ((u8 *) buffer)[0x1],
3916                                        ((u8 *) buffer)[0x2],
3917                                        ((u8 *) buffer)[0x3],
3918                                        ((u8 *) buffer)[0x4],
3919                                        ((u8 *) buffer)[0x5],
3920                                        ((u8 *) buffer)[0x6],
3921                                        ((u8 *) buffer)[0x7],
3922                                        ((u8 *) buffer)[0x8],
3923                                        ((u8 *) buffer)[0x9],
3924                                        ((u8 *) buffer)[0xa],
3925                                        ((u8 *) buffer)[0xb],
3926                                        ((u8 *) buffer)[0xc],
3927                                        ((u8 *) buffer)[0xd],
3928                                        ((u8 *) buffer)[0xe],
3929                                        ((u8 *) buffer)[0xf]);
3930                 else
3931                         len += sprintf(buf + len, "%s\n",
3932                                        snprint_line(line, sizeof(line),
3933                                                     (u8 *) buffer, 16, loop));
3934                 loop += 16;
3935         }
3936
3937         return len;
3938 }
3939
3940 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3941                             const char *buf, size_t count)
3942 {
3943         struct ipw2100_priv *priv = dev_get_drvdata(d);
3944         struct net_device *dev = priv->net_dev;
3945         const char *p = buf;
3946
3947         (void)dev;              /* kill unused-var warning for debug-only code */
3948
3949         if (count < 1)
3950                 return count;
3951
3952         if (p[0] == '1' ||
3953             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3954                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3955                                dev->name);
3956                 priv->dump_raw = 1;
3957
3958         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3959                                    tolower(p[1]) == 'f')) {
3960                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3961                                dev->name);
3962                 priv->dump_raw = 0;
3963
3964         } else if (tolower(p[0]) == 'r') {
3965                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3966                 ipw2100_snapshot_free(priv);
3967
3968         } else
3969                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3970                                "reset = clear memory snapshot\n", dev->name);
3971
3972         return count;
3973 }
3974
3975 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3976
3977 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3978                              char *buf)
3979 {
3980         struct ipw2100_priv *priv = dev_get_drvdata(d);
3981         u32 val = 0;
3982         int len = 0;
3983         u32 val_len;
3984         static int loop = 0;
3985
3986         if (priv->status & STATUS_RF_KILL_MASK)
3987                 return 0;
3988
3989         if (loop >= ARRAY_SIZE(ord_data))
3990                 loop = 0;
3991
3992         /* sysfs provides us PAGE_SIZE buffer */
3993         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3994                 val_len = sizeof(u32);
3995
3996                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3997                                         &val_len))
3998                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3999                                        ord_data[loop].index,
4000                                        ord_data[loop].desc);
4001                 else
4002                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4003                                        ord_data[loop].index, val,
4004                                        ord_data[loop].desc);
4005                 loop++;
4006         }
4007
4008         return len;
4009 }
4010
4011 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4012
4013 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4014                           char *buf)
4015 {
4016         struct ipw2100_priv *priv = dev_get_drvdata(d);
4017         char *out = buf;
4018
4019         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4020                        priv->interrupts, priv->tx_interrupts,
4021                        priv->rx_interrupts, priv->inta_other);
4022         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4023         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4024 #ifdef CONFIG_IPW2100_DEBUG
4025         out += sprintf(out, "packet mismatch image: %s\n",
4026                        priv->snapshot[0] ? "YES" : "NO");
4027 #endif
4028
4029         return out - buf;
4030 }
4031
4032 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4033
4034 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4035 {
4036         int err;
4037
4038         if (mode == priv->ieee->iw_mode)
4039                 return 0;
4040
4041         err = ipw2100_disable_adapter(priv);
4042         if (err) {
4043                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4044                        priv->net_dev->name, err);
4045                 return err;
4046         }
4047
4048         switch (mode) {
4049         case IW_MODE_INFRA:
4050                 priv->net_dev->type = ARPHRD_ETHER;
4051                 break;
4052         case IW_MODE_ADHOC:
4053                 priv->net_dev->type = ARPHRD_ETHER;
4054                 break;
4055 #ifdef CONFIG_IPW2100_MONITOR
4056         case IW_MODE_MONITOR:
4057                 priv->last_mode = priv->ieee->iw_mode;
4058                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4059                 break;
4060 #endif                          /* CONFIG_IPW2100_MONITOR */
4061         }
4062
4063         priv->ieee->iw_mode = mode;
4064
4065 #ifdef CONFIG_PM
4066         /* Indicate ipw2100_download_firmware download firmware
4067          * from disk instead of memory. */
4068         ipw2100_firmware.version = 0;
4069 #endif
4070
4071         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4072         priv->reset_backoff = 0;
4073         schedule_reset(priv);
4074
4075         return 0;
4076 }
4077
4078 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4079                               char *buf)
4080 {
4081         struct ipw2100_priv *priv = dev_get_drvdata(d);
4082         int len = 0;
4083
4084 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4085
4086         if (priv->status & STATUS_ASSOCIATED)
4087                 len += sprintf(buf + len, "connected: %lu\n",
4088                                get_seconds() - priv->connect_start);
4089         else
4090                 len += sprintf(buf + len, "not connected\n");
4091
4092         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4093         DUMP_VAR(status, "08lx");
4094         DUMP_VAR(config, "08lx");
4095         DUMP_VAR(capability, "08lx");
4096
4097         len +=
4098             sprintf(buf + len, "last_rtc: %lu\n",
4099                     (unsigned long)priv->last_rtc);
4100
4101         DUMP_VAR(fatal_error, "d");
4102         DUMP_VAR(stop_hang_check, "d");
4103         DUMP_VAR(stop_rf_kill, "d");
4104         DUMP_VAR(messages_sent, "d");
4105
4106         DUMP_VAR(tx_pend_stat.value, "d");
4107         DUMP_VAR(tx_pend_stat.hi, "d");
4108
4109         DUMP_VAR(tx_free_stat.value, "d");
4110         DUMP_VAR(tx_free_stat.lo, "d");
4111
4112         DUMP_VAR(msg_free_stat.value, "d");
4113         DUMP_VAR(msg_free_stat.lo, "d");
4114
4115         DUMP_VAR(msg_pend_stat.value, "d");
4116         DUMP_VAR(msg_pend_stat.hi, "d");
4117
4118         DUMP_VAR(fw_pend_stat.value, "d");
4119         DUMP_VAR(fw_pend_stat.hi, "d");
4120
4121         DUMP_VAR(txq_stat.value, "d");
4122         DUMP_VAR(txq_stat.lo, "d");
4123
4124         DUMP_VAR(ieee->scans, "d");
4125         DUMP_VAR(reset_backoff, "d");
4126
4127         return len;
4128 }
4129
4130 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4131
4132 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4133                             char *buf)
4134 {
4135         struct ipw2100_priv *priv = dev_get_drvdata(d);
4136         char essid[IW_ESSID_MAX_SIZE + 1];
4137         u8 bssid[ETH_ALEN];
4138         u32 chan = 0;
4139         char *out = buf;
4140         unsigned int length;
4141         int ret;
4142
4143         if (priv->status & STATUS_RF_KILL_MASK)
4144                 return 0;
4145
4146         memset(essid, 0, sizeof(essid));
4147         memset(bssid, 0, sizeof(bssid));
4148
4149         length = IW_ESSID_MAX_SIZE;
4150         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4151         if (ret)
4152                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4153                                __LINE__);
4154
4155         length = sizeof(bssid);
4156         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4157                                   bssid, &length);
4158         if (ret)
4159                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4160                                __LINE__);
4161
4162         length = sizeof(u32);
4163         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4164         if (ret)
4165                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166                                __LINE__);
4167
4168         out += sprintf(out, "ESSID: %s\n", essid);
4169         out += sprintf(out, "BSSID:   %pM\n", bssid);
4170         out += sprintf(out, "Channel: %d\n", chan);
4171
4172         return out - buf;
4173 }
4174
4175 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4176
4177 #ifdef CONFIG_IPW2100_DEBUG
4178 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4179 {
4180         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4181 }
4182
4183 static ssize_t store_debug_level(struct device_driver *d,
4184                                  const char *buf, size_t count)
4185 {
4186         char *p = (char *)buf;
4187         u32 val;
4188
4189         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4190                 p++;
4191                 if (p[0] == 'x' || p[0] == 'X')
4192                         p++;
4193                 val = simple_strtoul(p, &p, 16);
4194         } else
4195                 val = simple_strtoul(p, &p, 10);
4196         if (p == buf)
4197                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4198         else
4199                 ipw2100_debug_level = val;
4200
4201         return strnlen(buf, count);
4202 }
4203
4204 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4205                    store_debug_level);
4206 #endif                          /* CONFIG_IPW2100_DEBUG */
4207
4208 static ssize_t show_fatal_error(struct device *d,
4209                                 struct device_attribute *attr, char *buf)
4210 {
4211         struct ipw2100_priv *priv = dev_get_drvdata(d);
4212         char *out = buf;
4213         int i;
4214
4215         if (priv->fatal_error)
4216                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4217         else
4218                 out += sprintf(out, "0\n");
4219
4220         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4221                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4222                                         IPW2100_ERROR_QUEUE])
4223                         continue;
4224
4225                 out += sprintf(out, "%d. 0x%08X\n", i,
4226                                priv->fatal_errors[(priv->fatal_index - i) %
4227                                                   IPW2100_ERROR_QUEUE]);
4228         }
4229
4230         return out - buf;
4231 }
4232
4233 static ssize_t store_fatal_error(struct device *d,
4234                                  struct device_attribute *attr, const char *buf,
4235                                  size_t count)
4236 {
4237         struct ipw2100_priv *priv = dev_get_drvdata(d);
4238         schedule_reset(priv);
4239         return count;
4240 }
4241
4242 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4243                    store_fatal_error);
4244
4245 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4246                              char *buf)
4247 {
4248         struct ipw2100_priv *priv = dev_get_drvdata(d);
4249         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4250 }
4251
4252 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4253                               const char *buf, size_t count)
4254 {
4255         struct ipw2100_priv *priv = dev_get_drvdata(d);
4256         struct net_device *dev = priv->net_dev;
4257         char buffer[] = "00000000";
4258         unsigned long len =
4259             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4260         unsigned long val;
4261         char *p = buffer;
4262
4263         (void)dev;              /* kill unused-var warning for debug-only code */
4264
4265         IPW_DEBUG_INFO("enter\n");
4266
4267         strncpy(buffer, buf, len);
4268         buffer[len] = 0;
4269
4270         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4271                 p++;
4272                 if (p[0] == 'x' || p[0] == 'X')
4273                         p++;
4274                 val = simple_strtoul(p, &p, 16);
4275         } else
4276                 val = simple_strtoul(p, &p, 10);
4277         if (p == buffer) {
4278                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4279         } else {
4280                 priv->ieee->scan_age = val;
4281                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4282         }
4283
4284         IPW_DEBUG_INFO("exit\n");
4285         return len;
4286 }
4287
4288 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4289
4290 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4291                             char *buf)
4292 {
4293         /* 0 - RF kill not enabled
4294            1 - SW based RF kill active (sysfs)
4295            2 - HW based RF kill active
4296            3 - Both HW and SW baed RF kill active */
4297         struct ipw2100_priv *priv = dev_get_drvdata(d);
4298         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4299             (rf_kill_active(priv) ? 0x2 : 0x0);
4300         return sprintf(buf, "%i\n", val);
4301 }
4302
4303 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4304 {
4305         if ((disable_radio ? 1 : 0) ==
4306             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4307                 return 0;
4308
4309         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4310                           disable_radio ? "OFF" : "ON");
4311
4312         mutex_lock(&priv->action_mutex);
4313
4314         if (disable_radio) {
4315                 priv->status |= STATUS_RF_KILL_SW;
4316                 ipw2100_down(priv);
4317         } else {
4318                 priv->status &= ~STATUS_RF_KILL_SW;
4319                 if (rf_kill_active(priv)) {
4320                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4321                                           "disabled by HW switch\n");
4322                         /* Make sure the RF_KILL check timer is running */
4323                         priv->stop_rf_kill = 0;
4324                         mod_delayed_work(system_wq, &priv->rf_kill,
4325                                          round_jiffies_relative(HZ));
4326                 } else
4327                         schedule_reset(priv);
4328         }
4329
4330         mutex_unlock(&priv->action_mutex);
4331         return 1;
4332 }
4333
4334 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4335                              const char *buf, size_t count)
4336 {
4337         struct ipw2100_priv *priv = dev_get_drvdata(d);
4338         ipw_radio_kill_sw(priv, buf[0] == '1');
4339         return count;
4340 }
4341
4342 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4343
4344 static struct attribute *ipw2100_sysfs_entries[] = {
4345         &dev_attr_hardware.attr,
4346         &dev_attr_registers.attr,
4347         &dev_attr_ordinals.attr,
4348         &dev_attr_pci.attr,
4349         &dev_attr_stats.attr,
4350         &dev_attr_internals.attr,
4351         &dev_attr_bssinfo.attr,
4352         &dev_attr_memory.attr,
4353         &dev_attr_scan_age.attr,
4354         &dev_attr_fatal_error.attr,
4355         &dev_attr_rf_kill.attr,
4356         &dev_attr_cfg.attr,
4357         &dev_attr_status.attr,
4358         &dev_attr_capability.attr,
4359         NULL,
4360 };
4361
4362 static struct attribute_group ipw2100_attribute_group = {
4363         .attrs = ipw2100_sysfs_entries,
4364 };
4365
4366 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4367 {
4368         struct ipw2100_status_queue *q = &priv->status_queue;
4369
4370         IPW_DEBUG_INFO("enter\n");
4371
4372         q->size = entries * sizeof(struct ipw2100_status);
4373         q->drv =
4374             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4375                                                           q->size, &q->nic);
4376         if (!q->drv) {
4377                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4378                 return -ENOMEM;
4379         }
4380
4381         memset(q->drv, 0, q->size);
4382
4383         IPW_DEBUG_INFO("exit\n");
4384
4385         return 0;
4386 }
4387
4388 static void status_queue_free(struct ipw2100_priv *priv)
4389 {
4390         IPW_DEBUG_INFO("enter\n");
4391
4392         if (priv->status_queue.drv) {
4393                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4394                                     priv->status_queue.drv,
4395                                     priv->status_queue.nic);
4396                 priv->status_queue.drv = NULL;
4397         }
4398
4399         IPW_DEBUG_INFO("exit\n");
4400 }
4401
4402 static int bd_queue_allocate(struct ipw2100_priv *priv,
4403                              struct ipw2100_bd_queue *q, int entries)
4404 {
4405         IPW_DEBUG_INFO("enter\n");
4406
4407         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4408
4409         q->entries = entries;
4410         q->size = entries * sizeof(struct ipw2100_bd);
4411         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4412         if (!q->drv) {
4413                 IPW_DEBUG_INFO
4414                     ("can't allocate shared memory for buffer descriptors\n");
4415                 return -ENOMEM;
4416         }
4417         memset(q->drv, 0, q->size);
4418
4419         IPW_DEBUG_INFO("exit\n");
4420
4421         return 0;
4422 }
4423
4424 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4425 {
4426         IPW_DEBUG_INFO("enter\n");
4427
4428         if (!q)
4429                 return;
4430
4431         if (q->drv) {
4432                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4433                 q->drv = NULL;
4434         }
4435
4436         IPW_DEBUG_INFO("exit\n");
4437 }
4438
4439 static void bd_queue_initialize(struct ipw2100_priv *priv,
4440                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4441                                 u32 r, u32 w)
4442 {
4443         IPW_DEBUG_INFO("enter\n");
4444
4445         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4446                        (u32) q->nic);
4447
4448         write_register(priv->net_dev, base, q->nic);
4449         write_register(priv->net_dev, size, q->entries);
4450         write_register(priv->net_dev, r, q->oldest);
4451         write_register(priv->net_dev, w, q->next);
4452
4453         IPW_DEBUG_INFO("exit\n");
4454 }
4455
4456 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4457 {
4458         priv->stop_rf_kill = 1;
4459         priv->stop_hang_check = 1;
4460         cancel_delayed_work_sync(&priv->reset_work);
4461         cancel_delayed_work_sync(&priv->security_work);
4462         cancel_delayed_work_sync(&priv->wx_event_work);
4463         cancel_delayed_work_sync(&priv->hang_check);
4464         cancel_delayed_work_sync(&priv->rf_kill);
4465         cancel_work_sync(&priv->scan_event_now);
4466         cancel_delayed_work_sync(&priv->scan_event_later);
4467 }
4468
4469 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4470 {
4471         int i, j, err = -EINVAL;
4472         void *v;
4473         dma_addr_t p;
4474
4475         IPW_DEBUG_INFO("enter\n");
4476
4477         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4478         if (err) {
4479                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4480                                 priv->net_dev->name);
4481                 return err;
4482         }
4483
4484         priv->tx_buffers =
4485             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4486                     GFP_ATOMIC);
4487         if (!priv->tx_buffers) {
4488                 printk(KERN_ERR DRV_NAME
4489                        ": %s: alloc failed form tx buffers.\n",
4490                        priv->net_dev->name);
4491                 bd_queue_free(priv, &priv->tx_queue);
4492                 return -ENOMEM;
4493         }
4494
4495         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4496                 v = pci_alloc_consistent(priv->pci_dev,
4497                                          sizeof(struct ipw2100_data_header),
4498                                          &p);
4499                 if (!v) {
4500                         printk(KERN_ERR DRV_NAME
4501                                ": %s: PCI alloc failed for tx " "buffers.\n",
4502                                priv->net_dev->name);
4503                         err = -ENOMEM;
4504                         break;
4505                 }
4506
4507                 priv->tx_buffers[i].type = DATA;
4508                 priv->tx_buffers[i].info.d_struct.data =
4509                     (struct ipw2100_data_header *)v;
4510                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4511                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4512         }
4513
4514         if (i == TX_PENDED_QUEUE_LENGTH)
4515                 return 0;
4516
4517         for (j = 0; j < i; j++) {
4518                 pci_free_consistent(priv->pci_dev,
4519                                     sizeof(struct ipw2100_data_header),
4520                                     priv->tx_buffers[j].info.d_struct.data,
4521                                     priv->tx_buffers[j].info.d_struct.
4522                                     data_phys);
4523         }
4524
4525         kfree(priv->tx_buffers);
4526         priv->tx_buffers = NULL;
4527
4528         return err;
4529 }
4530
4531 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4532 {
4533         int i;
4534
4535         IPW_DEBUG_INFO("enter\n");
4536
4537         /*
4538          * reinitialize packet info lists
4539          */
4540         INIT_LIST_HEAD(&priv->fw_pend_list);
4541         INIT_STAT(&priv->fw_pend_stat);
4542
4543         /*
4544          * reinitialize lists
4545          */
4546         INIT_LIST_HEAD(&priv->tx_pend_list);
4547         INIT_LIST_HEAD(&priv->tx_free_list);
4548         INIT_STAT(&priv->tx_pend_stat);
4549         INIT_STAT(&priv->tx_free_stat);
4550
4551         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4552                 /* We simply drop any SKBs that have been queued for
4553                  * transmit */
4554                 if (priv->tx_buffers[i].info.d_struct.txb) {
4555                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4556                                            txb);
4557                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4558                 }
4559
4560                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4561         }
4562
4563         SET_STAT(&priv->tx_free_stat, i);
4564
4565         priv->tx_queue.oldest = 0;
4566         priv->tx_queue.available = priv->tx_queue.entries;
4567         priv->tx_queue.next = 0;
4568         INIT_STAT(&priv->txq_stat);
4569         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4570
4571         bd_queue_initialize(priv, &priv->tx_queue,
4572                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4573                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4574                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4575                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4576
4577         IPW_DEBUG_INFO("exit\n");
4578
4579 }
4580
4581 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4582 {
4583         int i;
4584
4585         IPW_DEBUG_INFO("enter\n");
4586
4587         bd_queue_free(priv, &priv->tx_queue);
4588
4589         if (!priv->tx_buffers)
4590                 return;
4591
4592         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4593                 if (priv->tx_buffers[i].info.d_struct.txb) {
4594                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4595                                            txb);
4596                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4597                 }
4598                 if (priv->tx_buffers[i].info.d_struct.data)
4599                         pci_free_consistent(priv->pci_dev,
4600                                             sizeof(struct ipw2100_data_header),
4601                                             priv->tx_buffers[i].info.d_struct.
4602                                             data,
4603                                             priv->tx_buffers[i].info.d_struct.
4604                                             data_phys);
4605         }
4606
4607         kfree(priv->tx_buffers);
4608         priv->tx_buffers = NULL;
4609
4610         IPW_DEBUG_INFO("exit\n");
4611 }
4612
4613 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4614 {
4615         int i, j, err = -EINVAL;
4616
4617         IPW_DEBUG_INFO("enter\n");
4618
4619         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4620         if (err) {
4621                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4622                 return err;
4623         }
4624
4625         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4626         if (err) {
4627                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4628                 bd_queue_free(priv, &priv->rx_queue);
4629                 return err;
4630         }
4631
4632         /*
4633          * allocate packets
4634          */
4635         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4636                                    sizeof(struct ipw2100_rx_packet),
4637                                    GFP_KERNEL);
4638         if (!priv->rx_buffers) {
4639                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4640
4641                 bd_queue_free(priv, &priv->rx_queue);
4642
4643                 status_queue_free(priv);
4644
4645                 return -ENOMEM;
4646         }
4647
4648         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4649                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4650
4651                 err = ipw2100_alloc_skb(priv, packet);
4652                 if (unlikely(err)) {
4653                         err = -ENOMEM;
4654                         break;
4655                 }
4656
4657                 /* The BD holds the cache aligned address */
4658                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4659                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4660                 priv->status_queue.drv[i].status_fields = 0;
4661         }
4662
4663         if (i == RX_QUEUE_LENGTH)
4664                 return 0;
4665
4666         for (j = 0; j < i; j++) {
4667                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4668                                  sizeof(struct ipw2100_rx_packet),
4669                                  PCI_DMA_FROMDEVICE);
4670                 dev_kfree_skb(priv->rx_buffers[j].skb);
4671         }
4672
4673         kfree(priv->rx_buffers);
4674         priv->rx_buffers = NULL;
4675
4676         bd_queue_free(priv, &priv->rx_queue);
4677
4678         status_queue_free(priv);
4679
4680         return err;
4681 }
4682
4683 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4684 {
4685         IPW_DEBUG_INFO("enter\n");
4686
4687         priv->rx_queue.oldest = 0;
4688         priv->rx_queue.available = priv->rx_queue.entries - 1;
4689         priv->rx_queue.next = priv->rx_queue.entries - 1;
4690
4691         INIT_STAT(&priv->rxq_stat);
4692         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4693
4694         bd_queue_initialize(priv, &priv->rx_queue,
4695                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4696                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4697                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4698                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4699
4700         /* set up the status queue */
4701         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4702                        priv->status_queue.nic);
4703
4704         IPW_DEBUG_INFO("exit\n");
4705 }
4706
4707 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4708 {
4709         int i;
4710
4711         IPW_DEBUG_INFO("enter\n");
4712
4713         bd_queue_free(priv, &priv->rx_queue);
4714         status_queue_free(priv);
4715
4716         if (!priv->rx_buffers)
4717                 return;
4718
4719         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4720                 if (priv->rx_buffers[i].rxp) {
4721                         pci_unmap_single(priv->pci_dev,
4722                                          priv->rx_buffers[i].dma_addr,
4723                                          sizeof(struct ipw2100_rx),
4724                                          PCI_DMA_FROMDEVICE);
4725                         dev_kfree_skb(priv->rx_buffers[i].skb);
4726                 }
4727         }
4728
4729         kfree(priv->rx_buffers);
4730         priv->rx_buffers = NULL;
4731
4732         IPW_DEBUG_INFO("exit\n");
4733 }
4734
4735 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4736 {
4737         u32 length = ETH_ALEN;
4738         u8 addr[ETH_ALEN];
4739
4740         int err;
4741
4742         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4743         if (err) {
4744                 IPW_DEBUG_INFO("MAC address read failed\n");
4745                 return -EIO;
4746         }
4747
4748         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4749         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4750
4751         return 0;
4752 }
4753
4754 /********************************************************************
4755  *
4756  * Firmware Commands
4757  *
4758  ********************************************************************/
4759
4760 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4761 {
4762         struct host_command cmd = {
4763                 .host_command = ADAPTER_ADDRESS,
4764                 .host_command_sequence = 0,
4765                 .host_command_length = ETH_ALEN
4766         };
4767         int err;
4768
4769         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4770
4771         IPW_DEBUG_INFO("enter\n");
4772
4773         if (priv->config & CFG_CUSTOM_MAC) {
4774                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4775                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4776         } else
4777                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4778                        ETH_ALEN);
4779
4780         err = ipw2100_hw_send_command(priv, &cmd);
4781
4782         IPW_DEBUG_INFO("exit\n");
4783         return err;
4784 }
4785
4786 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4787                                  int batch_mode)
4788 {
4789         struct host_command cmd = {
4790                 .host_command = PORT_TYPE,
4791                 .host_command_sequence = 0,
4792                 .host_command_length = sizeof(u32)
4793         };
4794         int err;
4795
4796         switch (port_type) {
4797         case IW_MODE_INFRA:
4798                 cmd.host_command_parameters[0] = IPW_BSS;
4799                 break;
4800         case IW_MODE_ADHOC:
4801                 cmd.host_command_parameters[0] = IPW_IBSS;
4802                 break;
4803         }
4804
4805         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4806                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4807
4808         if (!batch_mode) {
4809                 err = ipw2100_disable_adapter(priv);
4810                 if (err) {
4811                         printk(KERN_ERR DRV_NAME
4812                                ": %s: Could not disable adapter %d\n",
4813                                priv->net_dev->name, err);
4814                         return err;
4815                 }
4816         }
4817
4818         /* send cmd to firmware */
4819         err = ipw2100_hw_send_command(priv, &cmd);
4820
4821         if (!batch_mode)
4822                 ipw2100_enable_adapter(priv);
4823
4824         return err;
4825 }
4826
4827 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4828                                int batch_mode)
4829 {
4830         struct host_command cmd = {
4831                 .host_command = CHANNEL,
4832                 .host_command_sequence = 0,
4833                 .host_command_length = sizeof(u32)
4834         };
4835         int err;
4836
4837         cmd.host_command_parameters[0] = channel;
4838
4839         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4840
4841         /* If BSS then we don't support channel selection */
4842         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4843                 return 0;
4844
4845         if ((channel != 0) &&
4846             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4847                 return -EINVAL;
4848
4849         if (!batch_mode) {
4850                 err = ipw2100_disable_adapter(priv);
4851                 if (err)
4852                         return err;
4853         }
4854
4855         err = ipw2100_hw_send_command(priv, &cmd);
4856         if (err) {
4857                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4858                 return err;
4859         }
4860
4861         if (channel)
4862                 priv->config |= CFG_STATIC_CHANNEL;
4863         else
4864                 priv->config &= ~CFG_STATIC_CHANNEL;
4865
4866         priv->channel = channel;
4867
4868         if (!batch_mode) {
4869                 err = ipw2100_enable_adapter(priv);
4870                 if (err)
4871                         return err;
4872         }
4873
4874         return 0;
4875 }
4876
4877 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4878 {
4879         struct host_command cmd = {
4880                 .host_command = SYSTEM_CONFIG,
4881                 .host_command_sequence = 0,
4882                 .host_command_length = 12,
4883         };
4884         u32 ibss_mask, len = sizeof(u32);
4885         int err;
4886
4887         /* Set system configuration */
4888
4889         if (!batch_mode) {
4890                 err = ipw2100_disable_adapter(priv);
4891                 if (err)
4892                         return err;
4893         }
4894
4895         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4896                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4897
4898         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4899             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4900
4901         if (!(priv->config & CFG_LONG_PREAMBLE))
4902                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4903
4904         err = ipw2100_get_ordinal(priv,
4905                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4906                                   &ibss_mask, &len);
4907         if (err)
4908                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4909
4910         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4911         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4912
4913         /* 11b only */
4914         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4915
4916         err = ipw2100_hw_send_command(priv, &cmd);
4917         if (err)
4918                 return err;
4919
4920 /* If IPv6 is configured in the kernel then we don't want to filter out all
4921  * of the multicast packets as IPv6 needs some. */
4922 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4923         cmd.host_command = ADD_MULTICAST;
4924         cmd.host_command_sequence = 0;
4925         cmd.host_command_length = 0;
4926
4927         ipw2100_hw_send_command(priv, &cmd);
4928 #endif
4929         if (!batch_mode) {
4930                 err = ipw2100_enable_adapter(priv);
4931                 if (err)
4932                         return err;
4933         }
4934
4935         return 0;
4936 }
4937
4938 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4939                                 int batch_mode)
4940 {
4941         struct host_command cmd = {
4942                 .host_command = BASIC_TX_RATES,
4943                 .host_command_sequence = 0,
4944                 .host_command_length = 4
4945         };
4946         int err;
4947
4948         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4949
4950         if (!batch_mode) {
4951                 err = ipw2100_disable_adapter(priv);
4952                 if (err)
4953                         return err;
4954         }
4955
4956         /* Set BASIC TX Rate first */
4957         ipw2100_hw_send_command(priv, &cmd);
4958
4959         /* Set TX Rate */
4960         cmd.host_command = TX_RATES;
4961         ipw2100_hw_send_command(priv, &cmd);
4962
4963         /* Set MSDU TX Rate */
4964         cmd.host_command = MSDU_TX_RATES;
4965         ipw2100_hw_send_command(priv, &cmd);
4966
4967         if (!batch_mode) {
4968                 err = ipw2100_enable_adapter(priv);
4969                 if (err)
4970                         return err;
4971         }
4972
4973         priv->tx_rates = rate;
4974
4975         return 0;
4976 }
4977
4978 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4979 {
4980         struct host_command cmd = {
4981                 .host_command = POWER_MODE,
4982                 .host_command_sequence = 0,
4983                 .host_command_length = 4
4984         };
4985         int err;
4986
4987         cmd.host_command_parameters[0] = power_level;
4988
4989         err = ipw2100_hw_send_command(priv, &cmd);
4990         if (err)
4991                 return err;
4992
4993         if (power_level == IPW_POWER_MODE_CAM)
4994                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4995         else
4996                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4997
4998 #ifdef IPW2100_TX_POWER
4999         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5000                 /* Set beacon interval */
5001                 cmd.host_command = TX_POWER_INDEX;
5002                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5003
5004                 err = ipw2100_hw_send_command(priv, &cmd);
5005                 if (err)
5006                         return err;
5007         }
5008 #endif
5009
5010         return 0;
5011 }
5012
5013 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5014 {
5015         struct host_command cmd = {
5016                 .host_command = RTS_THRESHOLD,
5017                 .host_command_sequence = 0,
5018                 .host_command_length = 4
5019         };
5020         int err;
5021
5022         if (threshold & RTS_DISABLED)
5023                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5024         else
5025                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5026
5027         err = ipw2100_hw_send_command(priv, &cmd);
5028         if (err)
5029                 return err;
5030
5031         priv->rts_threshold = threshold;
5032
5033         return 0;
5034 }
5035
5036 #if 0
5037 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5038                                         u32 threshold, int batch_mode)
5039 {
5040         struct host_command cmd = {
5041                 .host_command = FRAG_THRESHOLD,
5042                 .host_command_sequence = 0,
5043                 .host_command_length = 4,
5044                 .host_command_parameters[0] = 0,
5045         };
5046         int err;
5047
5048         if (!batch_mode) {
5049                 err = ipw2100_disable_adapter(priv);
5050                 if (err)
5051                         return err;
5052         }
5053
5054         if (threshold == 0)
5055                 threshold = DEFAULT_FRAG_THRESHOLD;
5056         else {
5057                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5058                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5059         }
5060
5061         cmd.host_command_parameters[0] = threshold;
5062
5063         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5064
5065         err = ipw2100_hw_send_command(priv, &cmd);
5066
5067         if (!batch_mode)
5068                 ipw2100_enable_adapter(priv);
5069
5070         if (!err)
5071                 priv->frag_threshold = threshold;
5072
5073         return err;
5074 }
5075 #endif
5076
5077 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5078 {
5079         struct host_command cmd = {
5080                 .host_command = SHORT_RETRY_LIMIT,
5081                 .host_command_sequence = 0,
5082                 .host_command_length = 4
5083         };
5084         int err;
5085
5086         cmd.host_command_parameters[0] = retry;
5087
5088         err = ipw2100_hw_send_command(priv, &cmd);
5089         if (err)
5090                 return err;
5091
5092         priv->short_retry_limit = retry;
5093
5094         return 0;
5095 }
5096
5097 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5098 {
5099         struct host_command cmd = {
5100                 .host_command = LONG_RETRY_LIMIT,
5101                 .host_command_sequence = 0,
5102                 .host_command_length = 4
5103         };
5104         int err;
5105
5106         cmd.host_command_parameters[0] = retry;
5107
5108         err = ipw2100_hw_send_command(priv, &cmd);
5109         if (err)
5110                 return err;
5111
5112         priv->long_retry_limit = retry;
5113
5114         return 0;
5115 }
5116
5117 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5118                                        int batch_mode)
5119 {
5120         struct host_command cmd = {
5121                 .host_command = MANDATORY_BSSID,
5122                 .host_command_sequence = 0,
5123                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5124         };
5125         int err;
5126
5127 #ifdef CONFIG_IPW2100_DEBUG
5128         if (bssid != NULL)
5129                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5130         else
5131                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5132 #endif
5133         /* if BSSID is empty then we disable mandatory bssid mode */
5134         if (bssid != NULL)
5135                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5136
5137         if (!batch_mode) {
5138                 err = ipw2100_disable_adapter(priv);
5139                 if (err)
5140                         return err;
5141         }
5142
5143         err = ipw2100_hw_send_command(priv, &cmd);
5144
5145         if (!batch_mode)
5146                 ipw2100_enable_adapter(priv);
5147
5148         return err;
5149 }
5150
5151 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5152 {
5153         struct host_command cmd = {
5154                 .host_command = DISASSOCIATION_BSSID,
5155                 .host_command_sequence = 0,
5156                 .host_command_length = ETH_ALEN
5157         };
5158         int err;
5159         int len;
5160
5161         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5162
5163         len = ETH_ALEN;
5164         /* The Firmware currently ignores the BSSID and just disassociates from
5165          * the currently associated AP -- but in the off chance that a future
5166          * firmware does use the BSSID provided here, we go ahead and try and
5167          * set it to the currently associated AP's BSSID */
5168         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5169
5170         err = ipw2100_hw_send_command(priv, &cmd);
5171
5172         return err;
5173 }
5174
5175 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5176                               struct ipw2100_wpa_assoc_frame *, int)
5177     __attribute__ ((unused));
5178
5179 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5180                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5181                               int batch_mode)
5182 {
5183         struct host_command cmd = {
5184                 .host_command = SET_WPA_IE,
5185                 .host_command_sequence = 0,
5186                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5187         };
5188         int err;
5189
5190         IPW_DEBUG_HC("SET_WPA_IE\n");
5191
5192         if (!batch_mode) {
5193                 err = ipw2100_disable_adapter(priv);
5194                 if (err)
5195                         return err;
5196         }
5197
5198         memcpy(cmd.host_command_parameters, wpa_frame,
5199                sizeof(struct ipw2100_wpa_assoc_frame));
5200
5201         err = ipw2100_hw_send_command(priv, &cmd);
5202
5203         if (!batch_mode) {
5204                 if (ipw2100_enable_adapter(priv))
5205                         err = -EIO;
5206         }
5207
5208         return err;
5209 }
5210
5211 struct security_info_params {
5212         u32 allowed_ciphers;
5213         u16 version;
5214         u8 auth_mode;
5215         u8 replay_counters_number;
5216         u8 unicast_using_group;
5217 } __packed;
5218
5219 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5220                                             int auth_mode,
5221                                             int security_level,
5222                                             int unicast_using_group,
5223                                             int batch_mode)
5224 {
5225         struct host_command cmd = {
5226                 .host_command = SET_SECURITY_INFORMATION,
5227                 .host_command_sequence = 0,
5228                 .host_command_length = sizeof(struct security_info_params)
5229         };
5230         struct security_info_params *security =
5231             (struct security_info_params *)&cmd.host_command_parameters;
5232         int err;
5233         memset(security, 0, sizeof(*security));
5234
5235         /* If shared key AP authentication is turned on, then we need to
5236          * configure the firmware to try and use it.
5237          *
5238          * Actual data encryption/decryption is handled by the host. */
5239         security->auth_mode = auth_mode;
5240         security->unicast_using_group = unicast_using_group;
5241
5242         switch (security_level) {
5243         default:
5244         case SEC_LEVEL_0:
5245                 security->allowed_ciphers = IPW_NONE_CIPHER;
5246                 break;
5247         case SEC_LEVEL_1:
5248                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5249                     IPW_WEP104_CIPHER;
5250                 break;
5251         case SEC_LEVEL_2:
5252                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5253                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5254                 break;
5255         case SEC_LEVEL_2_CKIP:
5256                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5257                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5258                 break;
5259         case SEC_LEVEL_3:
5260                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5261                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5262                 break;
5263         }
5264
5265         IPW_DEBUG_HC
5266             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5267              security->auth_mode, security->allowed_ciphers, security_level);
5268
5269         security->replay_counters_number = 0;
5270
5271         if (!batch_mode) {
5272                 err = ipw2100_disable_adapter(priv);
5273                 if (err)
5274                         return err;
5275         }
5276
5277         err = ipw2100_hw_send_command(priv, &cmd);
5278
5279         if (!batch_mode)
5280                 ipw2100_enable_adapter(priv);
5281
5282         return err;
5283 }
5284
5285 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5286 {
5287         struct host_command cmd = {
5288                 .host_command = TX_POWER_INDEX,
5289                 .host_command_sequence = 0,
5290                 .host_command_length = 4
5291         };
5292         int err = 0;
5293         u32 tmp = tx_power;
5294
5295         if (tx_power != IPW_TX_POWER_DEFAULT)
5296                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5297                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5298
5299         cmd.host_command_parameters[0] = tmp;
5300
5301         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5302                 err = ipw2100_hw_send_command(priv, &cmd);
5303         if (!err)
5304                 priv->tx_power = tx_power;
5305
5306         return 0;
5307 }
5308
5309 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5310                                             u32 interval, int batch_mode)
5311 {
5312         struct host_command cmd = {
5313                 .host_command = BEACON_INTERVAL,
5314                 .host_command_sequence = 0,
5315                 .host_command_length = 4
5316         };
5317         int err;
5318
5319         cmd.host_command_parameters[0] = interval;
5320
5321         IPW_DEBUG_INFO("enter\n");
5322
5323         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5324                 if (!batch_mode) {
5325                         err = ipw2100_disable_adapter(priv);
5326                         if (err)
5327                                 return err;
5328                 }
5329
5330                 ipw2100_hw_send_command(priv, &cmd);
5331
5332                 if (!batch_mode) {
5333                         err = ipw2100_enable_adapter(priv);
5334                         if (err)
5335                                 return err;
5336                 }
5337         }
5338
5339         IPW_DEBUG_INFO("exit\n");
5340
5341         return 0;
5342 }
5343
5344 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5345 {
5346         ipw2100_tx_initialize(priv);
5347         ipw2100_rx_initialize(priv);
5348         ipw2100_msg_initialize(priv);
5349 }
5350
5351 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5352 {
5353         ipw2100_tx_free(priv);
5354         ipw2100_rx_free(priv);
5355         ipw2100_msg_free(priv);
5356 }
5357
5358 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5359 {
5360         if (ipw2100_tx_allocate(priv) ||
5361             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5362                 goto fail;
5363
5364         return 0;
5365
5366       fail:
5367         ipw2100_tx_free(priv);
5368         ipw2100_rx_free(priv);
5369         ipw2100_msg_free(priv);
5370         return -ENOMEM;
5371 }
5372
5373 #define IPW_PRIVACY_CAPABLE 0x0008
5374
5375 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5376                                  int batch_mode)
5377 {
5378         struct host_command cmd = {
5379                 .host_command = WEP_FLAGS,
5380                 .host_command_sequence = 0,
5381                 .host_command_length = 4
5382         };
5383         int err;
5384
5385         cmd.host_command_parameters[0] = flags;
5386
5387         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5388
5389         if (!batch_mode) {
5390                 err = ipw2100_disable_adapter(priv);
5391                 if (err) {
5392                         printk(KERN_ERR DRV_NAME
5393                                ": %s: Could not disable adapter %d\n",
5394                                priv->net_dev->name, err);
5395                         return err;
5396                 }
5397         }
5398
5399         /* send cmd to firmware */
5400         err = ipw2100_hw_send_command(priv, &cmd);
5401
5402         if (!batch_mode)
5403                 ipw2100_enable_adapter(priv);
5404
5405         return err;
5406 }
5407
5408 struct ipw2100_wep_key {
5409         u8 idx;
5410         u8 len;
5411         u8 key[13];
5412 };
5413
5414 /* Macros to ease up priting WEP keys */
5415 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5416 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5417 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5418 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5419
5420 /**
5421  * Set a the wep key
5422  *
5423  * @priv: struct to work on
5424  * @idx: index of the key we want to set
5425  * @key: ptr to the key data to set
5426  * @len: length of the buffer at @key
5427  * @batch_mode: FIXME perform the operation in batch mode, not
5428  *              disabling the device.
5429  *
5430  * @returns 0 if OK, < 0 errno code on error.
5431  *
5432  * Fill out a command structure with the new wep key, length an
5433  * index and send it down the wire.
5434  */
5435 static int ipw2100_set_key(struct ipw2100_priv *priv,
5436                            int idx, char *key, int len, int batch_mode)
5437 {
5438         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5439         struct host_command cmd = {
5440                 .host_command = WEP_KEY_INFO,
5441                 .host_command_sequence = 0,
5442                 .host_command_length = sizeof(struct ipw2100_wep_key),
5443         };
5444         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5445         int err;
5446
5447         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5448                      idx, keylen, len);
5449
5450         /* NOTE: We don't check cached values in case the firmware was reset
5451          * or some other problem is occurring.  If the user is setting the key,
5452          * then we push the change */
5453
5454         wep_key->idx = idx;
5455         wep_key->len = keylen;
5456
5457         if (keylen) {
5458                 memcpy(wep_key->key, key, len);
5459                 memset(wep_key->key + len, 0, keylen - len);
5460         }
5461
5462         /* Will be optimized out on debug not being configured in */
5463         if (keylen == 0)
5464                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5465                               priv->net_dev->name, wep_key->idx);
5466         else if (keylen == 5)
5467                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5468                               priv->net_dev->name, wep_key->idx, wep_key->len,
5469                               WEP_STR_64(wep_key->key));
5470         else
5471                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5472                               "\n",
5473                               priv->net_dev->name, wep_key->idx, wep_key->len,
5474                               WEP_STR_128(wep_key->key));
5475
5476         if (!batch_mode) {
5477                 err = ipw2100_disable_adapter(priv);
5478                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5479                 if (err) {
5480                         printk(KERN_ERR DRV_NAME
5481                                ": %s: Could not disable adapter %d\n",
5482                                priv->net_dev->name, err);
5483                         return err;
5484                 }
5485         }
5486
5487         /* send cmd to firmware */
5488         err = ipw2100_hw_send_command(priv, &cmd);
5489
5490         if (!batch_mode) {
5491                 int err2 = ipw2100_enable_adapter(priv);
5492                 if (err == 0)
5493                         err = err2;
5494         }
5495         return err;
5496 }
5497
5498 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5499                                  int idx, int batch_mode)
5500 {
5501         struct host_command cmd = {
5502                 .host_command = WEP_KEY_INDEX,
5503                 .host_command_sequence = 0,
5504                 .host_command_length = 4,
5505                 .host_command_parameters = {idx},
5506         };
5507         int err;
5508
5509         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5510
5511         if (idx < 0 || idx > 3)
5512                 return -EINVAL;
5513
5514         if (!batch_mode) {
5515                 err = ipw2100_disable_adapter(priv);
5516                 if (err) {
5517                         printk(KERN_ERR DRV_NAME
5518                                ": %s: Could not disable adapter %d\n",
5519                                priv->net_dev->name, err);
5520                         return err;
5521                 }
5522         }
5523
5524         /* send cmd to firmware */
5525         err = ipw2100_hw_send_command(priv, &cmd);
5526
5527         if (!batch_mode)
5528                 ipw2100_enable_adapter(priv);
5529
5530         return err;
5531 }
5532
5533 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5534 {
5535         int i, err, auth_mode, sec_level, use_group;
5536
5537         if (!(priv->status & STATUS_RUNNING))
5538                 return 0;
5539
5540         if (!batch_mode) {
5541                 err = ipw2100_disable_adapter(priv);
5542                 if (err)
5543                         return err;
5544         }
5545
5546         if (!priv->ieee->sec.enabled) {
5547                 err =
5548                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5549                                                      SEC_LEVEL_0, 0, 1);
5550         } else {
5551                 auth_mode = IPW_AUTH_OPEN;
5552                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5553                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5554                                 auth_mode = IPW_AUTH_SHARED;
5555                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5556                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5557                 }
5558
5559                 sec_level = SEC_LEVEL_0;
5560                 if (priv->ieee->sec.flags & SEC_LEVEL)
5561                         sec_level = priv->ieee->sec.level;
5562
5563                 use_group = 0;
5564                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5565                         use_group = priv->ieee->sec.unicast_uses_group;
5566
5567                 err =
5568                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5569                                                      use_group, 1);
5570         }
5571
5572         if (err)
5573                 goto exit;
5574
5575         if (priv->ieee->sec.enabled) {
5576                 for (i = 0; i < 4; i++) {
5577                         if (!(priv->ieee->sec.flags & (1 << i))) {
5578                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5579                                 priv->ieee->sec.key_sizes[i] = 0;
5580                         } else {
5581                                 err = ipw2100_set_key(priv, i,
5582                                                       priv->ieee->sec.keys[i],
5583                                                       priv->ieee->sec.
5584                                                       key_sizes[i], 1);
5585                                 if (err)
5586                                         goto exit;
5587                         }
5588                 }
5589
5590                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5591         }
5592
5593         /* Always enable privacy so the Host can filter WEP packets if
5594          * encrypted data is sent up */
5595         err =
5596             ipw2100_set_wep_flags(priv,
5597                                   priv->ieee->sec.
5598                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5599         if (err)
5600                 goto exit;
5601
5602         priv->status &= ~STATUS_SECURITY_UPDATED;
5603
5604       exit:
5605         if (!batch_mode)
5606                 ipw2100_enable_adapter(priv);
5607
5608         return err;
5609 }
5610
5611 static void ipw2100_security_work(struct work_struct *work)
5612 {
5613         struct ipw2100_priv *priv =
5614                 container_of(work, struct ipw2100_priv, security_work.work);
5615
5616         /* If we happen to have reconnected before we get a chance to
5617          * process this, then update the security settings--which causes
5618          * a disassociation to occur */
5619         if (!(priv->status & STATUS_ASSOCIATED) &&
5620             priv->status & STATUS_SECURITY_UPDATED)
5621                 ipw2100_configure_security(priv, 0);
5622 }
5623
5624 static void shim__set_security(struct net_device *dev,
5625                                struct libipw_security *sec)
5626 {
5627         struct ipw2100_priv *priv = libipw_priv(dev);
5628         int i, force_update = 0;
5629
5630         mutex_lock(&priv->action_mutex);
5631         if (!(priv->status & STATUS_INITIALIZED))
5632                 goto done;
5633
5634         for (i = 0; i < 4; i++) {
5635                 if (sec->flags & (1 << i)) {
5636                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5637                         if (sec->key_sizes[i] == 0)
5638                                 priv->ieee->sec.flags &= ~(1 << i);
5639                         else
5640                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5641                                        sec->key_sizes[i]);
5642                         if (sec->level == SEC_LEVEL_1) {
5643                                 priv->ieee->sec.flags |= (1 << i);
5644                                 priv->status |= STATUS_SECURITY_UPDATED;
5645                         } else
5646                                 priv->ieee->sec.flags &= ~(1 << i);
5647                 }
5648         }
5649
5650         if ((sec->flags & SEC_ACTIVE_KEY) &&
5651             priv->ieee->sec.active_key != sec->active_key) {
5652                 if (sec->active_key <= 3) {
5653                         priv->ieee->sec.active_key = sec->active_key;
5654                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5655                 } else
5656                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5657
5658                 priv->status |= STATUS_SECURITY_UPDATED;
5659         }
5660
5661         if ((sec->flags & SEC_AUTH_MODE) &&
5662             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5663                 priv->ieee->sec.auth_mode = sec->auth_mode;
5664                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5665                 priv->status |= STATUS_SECURITY_UPDATED;
5666         }
5667
5668         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5669                 priv->ieee->sec.flags |= SEC_ENABLED;
5670                 priv->ieee->sec.enabled = sec->enabled;
5671                 priv->status |= STATUS_SECURITY_UPDATED;
5672                 force_update = 1;
5673         }
5674
5675         if (sec->flags & SEC_ENCRYPT)
5676                 priv->ieee->sec.encrypt = sec->encrypt;
5677
5678         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5679                 priv->ieee->sec.level = sec->level;
5680                 priv->ieee->sec.flags |= SEC_LEVEL;
5681                 priv->status |= STATUS_SECURITY_UPDATED;
5682         }
5683
5684         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5685                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5686                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5687                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5688                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5689                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5690                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5691                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5692                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5693                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5694
5695 /* As a temporary work around to enable WPA until we figure out why
5696  * wpa_supplicant toggles the security capability of the driver, which
5697  * forces a disassocation with force_update...
5698  *
5699  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5700         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5701                 ipw2100_configure_security(priv, 0);
5702       done:
5703         mutex_unlock(&priv->action_mutex);
5704 }
5705
5706 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5707 {
5708         int err;
5709         int batch_mode = 1;
5710         u8 *bssid;
5711
5712         IPW_DEBUG_INFO("enter\n");
5713
5714         err = ipw2100_disable_adapter(priv);
5715         if (err)
5716                 return err;
5717 #ifdef CONFIG_IPW2100_MONITOR
5718         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5719                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5720                 if (err)
5721                         return err;
5722
5723                 IPW_DEBUG_INFO("exit\n");
5724
5725                 return 0;
5726         }
5727 #endif                          /* CONFIG_IPW2100_MONITOR */
5728
5729         err = ipw2100_read_mac_address(priv);
5730         if (err)
5731                 return -EIO;
5732
5733         err = ipw2100_set_mac_address(priv, batch_mode);
5734         if (err)
5735                 return err;
5736
5737         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5738         if (err)
5739                 return err;
5740
5741         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5742                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5743                 if (err)
5744                         return err;
5745         }
5746
5747         err = ipw2100_system_config(priv, batch_mode);
5748         if (err)
5749                 return err;
5750
5751         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5752         if (err)
5753                 return err;
5754
5755         /* Default to power mode OFF */
5756         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5757         if (err)
5758                 return err;
5759
5760         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5761         if (err)
5762                 return err;
5763
5764         if (priv->config & CFG_STATIC_BSSID)
5765                 bssid = priv->bssid;
5766         else
5767                 bssid = NULL;
5768         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5769         if (err)
5770                 return err;
5771
5772         if (priv->config & CFG_STATIC_ESSID)
5773                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5774                                         batch_mode);
5775         else
5776                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5777         if (err)
5778                 return err;
5779
5780         err = ipw2100_configure_security(priv, batch_mode);
5781         if (err)
5782                 return err;
5783
5784         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5785                 err =
5786                     ipw2100_set_ibss_beacon_interval(priv,
5787                                                      priv->beacon_interval,
5788                                                      batch_mode);
5789                 if (err)
5790                         return err;
5791
5792                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5793                 if (err)
5794                         return err;
5795         }
5796
5797         /*
5798            err = ipw2100_set_fragmentation_threshold(
5799            priv, priv->frag_threshold, batch_mode);
5800            if (err)
5801            return err;
5802          */
5803
5804         IPW_DEBUG_INFO("exit\n");
5805
5806         return 0;
5807 }
5808
5809 /*************************************************************************
5810  *
5811  * EXTERNALLY CALLED METHODS
5812  *
5813  *************************************************************************/
5814
5815 /* This method is called by the network layer -- not to be confused with
5816  * ipw2100_set_mac_address() declared above called by this driver (and this
5817  * method as well) to talk to the firmware */
5818 static int ipw2100_set_address(struct net_device *dev, void *p)
5819 {
5820         struct ipw2100_priv *priv = libipw_priv(dev);
5821         struct sockaddr *addr = p;
5822         int err = 0;
5823
5824         if (!is_valid_ether_addr(addr->sa_data))
5825                 return -EADDRNOTAVAIL;
5826
5827         mutex_lock(&priv->action_mutex);
5828
5829         priv->config |= CFG_CUSTOM_MAC;
5830         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5831
5832         err = ipw2100_set_mac_address(priv, 0);
5833         if (err)
5834                 goto done;
5835
5836         priv->reset_backoff = 0;
5837         mutex_unlock(&priv->action_mutex);
5838         ipw2100_reset_adapter(&priv->reset_work.work);
5839         return 0;
5840
5841       done:
5842         mutex_unlock(&priv->action_mutex);
5843         return err;
5844 }
5845
5846 static int ipw2100_open(struct net_device *dev)
5847 {
5848         struct ipw2100_priv *priv = libipw_priv(dev);
5849         unsigned long flags;
5850         IPW_DEBUG_INFO("dev->open\n");
5851
5852         spin_lock_irqsave(&priv->low_lock, flags);
5853         if (priv->status & STATUS_ASSOCIATED) {
5854                 netif_carrier_on(dev);
5855                 netif_start_queue(dev);
5856         }
5857         spin_unlock_irqrestore(&priv->low_lock, flags);
5858
5859         return 0;
5860 }
5861
5862 static int ipw2100_close(struct net_device *dev)
5863 {
5864         struct ipw2100_priv *priv = libipw_priv(dev);
5865         unsigned long flags;
5866         struct list_head *element;
5867         struct ipw2100_tx_packet *packet;
5868
5869         IPW_DEBUG_INFO("enter\n");
5870
5871         spin_lock_irqsave(&priv->low_lock, flags);
5872
5873         if (priv->status & STATUS_ASSOCIATED)
5874                 netif_carrier_off(dev);
5875         netif_stop_queue(dev);
5876
5877         /* Flush the TX queue ... */
5878         while (!list_empty(&priv->tx_pend_list)) {
5879                 element = priv->tx_pend_list.next;
5880                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5881
5882                 list_del(element);
5883                 DEC_STAT(&priv->tx_pend_stat);
5884
5885                 libipw_txb_free(packet->info.d_struct.txb);
5886                 packet->info.d_struct.txb = NULL;
5887
5888                 list_add_tail(element, &priv->tx_free_list);
5889                 INC_STAT(&priv->tx_free_stat);
5890         }
5891         spin_unlock_irqrestore(&priv->low_lock, flags);
5892
5893         IPW_DEBUG_INFO("exit\n");
5894
5895         return 0;
5896 }
5897
5898 /*
5899  * TODO:  Fix this function... its just wrong
5900  */
5901 static void ipw2100_tx_timeout(struct net_device *dev)
5902 {
5903         struct ipw2100_priv *priv = libipw_priv(dev);
5904
5905         dev->stats.tx_errors++;
5906
5907 #ifdef CONFIG_IPW2100_MONITOR
5908         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5909                 return;
5910 #endif
5911
5912         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5913                        dev->name);
5914         schedule_reset(priv);
5915 }
5916
5917 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5918 {
5919         /* This is called when wpa_supplicant loads and closes the driver
5920          * interface. */
5921         priv->ieee->wpa_enabled = value;
5922         return 0;
5923 }
5924
5925 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5926 {
5927
5928         struct libipw_device *ieee = priv->ieee;
5929         struct libipw_security sec = {
5930                 .flags = SEC_AUTH_MODE,
5931         };
5932         int ret = 0;
5933
5934         if (value & IW_AUTH_ALG_SHARED_KEY) {
5935                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5936                 ieee->open_wep = 0;
5937         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5938                 sec.auth_mode = WLAN_AUTH_OPEN;
5939                 ieee->open_wep = 1;
5940         } else if (value & IW_AUTH_ALG_LEAP) {
5941                 sec.auth_mode = WLAN_AUTH_LEAP;
5942                 ieee->open_wep = 1;
5943         } else
5944                 return -EINVAL;
5945
5946         if (ieee->set_security)
5947                 ieee->set_security(ieee->dev, &sec);
5948         else
5949                 ret = -EOPNOTSUPP;
5950
5951         return ret;
5952 }
5953
5954 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5955                                     char *wpa_ie, int wpa_ie_len)
5956 {
5957
5958         struct ipw2100_wpa_assoc_frame frame;
5959
5960         frame.fixed_ie_mask = 0;
5961
5962         /* copy WPA IE */
5963         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5964         frame.var_ie_len = wpa_ie_len;
5965
5966         /* make sure WPA is enabled */
5967         ipw2100_wpa_enable(priv, 1);
5968         ipw2100_set_wpa_ie(priv, &frame, 0);
5969 }
5970
5971 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5972                                     struct ethtool_drvinfo *info)
5973 {
5974         struct ipw2100_priv *priv = libipw_priv(dev);
5975         char fw_ver[64], ucode_ver[64];
5976
5977         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5978         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5979
5980         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5981         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5982
5983         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5984                  fw_ver, priv->eeprom_version, ucode_ver);
5985
5986         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5987                 sizeof(info->bus_info));
5988 }
5989
5990 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5991 {
5992         struct ipw2100_priv *priv = libipw_priv(dev);
5993         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5994 }
5995
5996 static const struct ethtool_ops ipw2100_ethtool_ops = {
5997         .get_link = ipw2100_ethtool_get_link,
5998         .get_drvinfo = ipw_ethtool_get_drvinfo,
5999 };
6000
6001 static void ipw2100_hang_check(struct work_struct *work)
6002 {
6003         struct ipw2100_priv *priv =
6004                 container_of(work, struct ipw2100_priv, hang_check.work);
6005         unsigned long flags;
6006         u32 rtc = 0xa5a5a5a5;
6007         u32 len = sizeof(rtc);
6008         int restart = 0;
6009
6010         spin_lock_irqsave(&priv->low_lock, flags);
6011
6012         if (priv->fatal_error != 0) {
6013                 /* If fatal_error is set then we need to restart */
6014                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6015                                priv->net_dev->name);
6016
6017                 restart = 1;
6018         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6019                    (rtc == priv->last_rtc)) {
6020                 /* Check if firmware is hung */
6021                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6022                                priv->net_dev->name);
6023
6024                 restart = 1;
6025         }
6026
6027         if (restart) {
6028                 /* Kill timer */
6029                 priv->stop_hang_check = 1;
6030                 priv->hangs++;
6031
6032                 /* Restart the NIC */
6033                 schedule_reset(priv);
6034         }
6035
6036         priv->last_rtc = rtc;
6037
6038         if (!priv->stop_hang_check)
6039                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6040
6041         spin_unlock_irqrestore(&priv->low_lock, flags);
6042 }
6043
6044 static void ipw2100_rf_kill(struct work_struct *work)
6045 {
6046         struct ipw2100_priv *priv =
6047                 container_of(work, struct ipw2100_priv, rf_kill.work);
6048         unsigned long flags;
6049
6050         spin_lock_irqsave(&priv->low_lock, flags);
6051
6052         if (rf_kill_active(priv)) {
6053                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6054                 if (!priv->stop_rf_kill)
6055                         schedule_delayed_work(&priv->rf_kill,
6056                                               round_jiffies_relative(HZ));
6057                 goto exit_unlock;
6058         }
6059
6060         /* RF Kill is now disabled, so bring the device back up */
6061
6062         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6063                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6064                                   "device\n");
6065                 schedule_reset(priv);
6066         } else
6067                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6068                                   "enabled\n");
6069
6070       exit_unlock:
6071         spin_unlock_irqrestore(&priv->low_lock, flags);
6072 }
6073
6074 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6075
6076 static const struct net_device_ops ipw2100_netdev_ops = {
6077         .ndo_open               = ipw2100_open,
6078         .ndo_stop               = ipw2100_close,
6079         .ndo_start_xmit         = libipw_xmit,
6080         .ndo_change_mtu         = libipw_change_mtu,
6081         .ndo_tx_timeout         = ipw2100_tx_timeout,
6082         .ndo_set_mac_address    = ipw2100_set_address,
6083         .ndo_validate_addr      = eth_validate_addr,
6084 };
6085
6086 /* Look into using netdev destructor to shutdown libipw? */
6087
6088 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6089                                                void __iomem * ioaddr)
6090 {
6091         struct ipw2100_priv *priv;
6092         struct net_device *dev;
6093
6094         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6095         if (!dev)
6096                 return NULL;
6097         priv = libipw_priv(dev);
6098         priv->ieee = netdev_priv(dev);
6099         priv->pci_dev = pci_dev;
6100         priv->net_dev = dev;
6101         priv->ioaddr = ioaddr;
6102
6103         priv->ieee->hard_start_xmit = ipw2100_tx;
6104         priv->ieee->set_security = shim__set_security;
6105
6106         priv->ieee->perfect_rssi = -20;
6107         priv->ieee->worst_rssi = -85;
6108
6109         dev->netdev_ops = &ipw2100_netdev_ops;
6110         dev->ethtool_ops = &ipw2100_ethtool_ops;
6111         dev->wireless_handlers = &ipw2100_wx_handler_def;
6112         priv->wireless_data.libipw = priv->ieee;
6113         dev->wireless_data = &priv->wireless_data;
6114         dev->watchdog_timeo = 3 * HZ;
6115         dev->irq = 0;
6116
6117         /* NOTE: We don't use the wireless_handlers hook
6118          * in dev as the system will start throwing WX requests
6119          * to us before we're actually initialized and it just
6120          * ends up causing problems.  So, we just handle
6121          * the WX extensions through the ipw2100_ioctl interface */
6122
6123         /* memset() puts everything to 0, so we only have explicitly set
6124          * those values that need to be something else */
6125
6126         /* If power management is turned on, default to AUTO mode */
6127         priv->power_mode = IPW_POWER_AUTO;
6128
6129 #ifdef CONFIG_IPW2100_MONITOR
6130         priv->config |= CFG_CRC_CHECK;
6131 #endif
6132         priv->ieee->wpa_enabled = 0;
6133         priv->ieee->drop_unencrypted = 0;
6134         priv->ieee->privacy_invoked = 0;
6135         priv->ieee->ieee802_1x = 1;
6136
6137         /* Set module parameters */
6138         switch (network_mode) {
6139         case 1:
6140                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6141                 break;
6142 #ifdef CONFIG_IPW2100_MONITOR
6143         case 2:
6144                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6145                 break;
6146 #endif
6147         default:
6148         case 0:
6149                 priv->ieee->iw_mode = IW_MODE_INFRA;
6150                 break;
6151         }
6152
6153         if (disable == 1)
6154                 priv->status |= STATUS_RF_KILL_SW;
6155
6156         if (channel != 0 &&
6157             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6158                 priv->config |= CFG_STATIC_CHANNEL;
6159                 priv->channel = channel;
6160         }
6161
6162         if (associate)
6163                 priv->config |= CFG_ASSOCIATE;
6164
6165         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6166         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6167         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6168         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6169         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6170         priv->tx_power = IPW_TX_POWER_DEFAULT;
6171         priv->tx_rates = DEFAULT_TX_RATES;
6172
6173         strcpy(priv->nick, "ipw2100");
6174
6175         spin_lock_init(&priv->low_lock);
6176         mutex_init(&priv->action_mutex);
6177         mutex_init(&priv->adapter_mutex);
6178
6179         init_waitqueue_head(&priv->wait_command_queue);
6180
6181         netif_carrier_off(dev);
6182
6183         INIT_LIST_HEAD(&priv->msg_free_list);
6184         INIT_LIST_HEAD(&priv->msg_pend_list);
6185         INIT_STAT(&priv->msg_free_stat);
6186         INIT_STAT(&priv->msg_pend_stat);
6187
6188         INIT_LIST_HEAD(&priv->tx_free_list);
6189         INIT_LIST_HEAD(&priv->tx_pend_list);
6190         INIT_STAT(&priv->tx_free_stat);
6191         INIT_STAT(&priv->tx_pend_stat);
6192
6193         INIT_LIST_HEAD(&priv->fw_pend_list);
6194         INIT_STAT(&priv->fw_pend_stat);
6195
6196         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6197         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6198         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6199         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6200         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6201         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6202         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6203
6204         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6205                      ipw2100_irq_tasklet, (unsigned long)priv);
6206
6207         /* NOTE:  We do not start the deferred work for status checks yet */
6208         priv->stop_rf_kill = 1;
6209         priv->stop_hang_check = 1;
6210
6211         return dev;
6212 }
6213
6214 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6215                                 const struct pci_device_id *ent)
6216 {
6217         void __iomem *ioaddr;
6218         struct net_device *dev = NULL;
6219         struct ipw2100_priv *priv = NULL;
6220         int err = 0;
6221         int registered = 0;
6222         u32 val;
6223
6224         IPW_DEBUG_INFO("enter\n");
6225
6226         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6227                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6228                 err = -ENODEV;
6229                 goto out;
6230         }
6231
6232         ioaddr = pci_iomap(pci_dev, 0, 0);
6233         if (!ioaddr) {
6234                 printk(KERN_WARNING DRV_NAME
6235                        "Error calling ioremap_nocache.\n");
6236                 err = -EIO;
6237                 goto fail;
6238         }
6239
6240         /* allocate and initialize our net_device */
6241         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6242         if (!dev) {
6243                 printk(KERN_WARNING DRV_NAME
6244                        "Error calling ipw2100_alloc_device.\n");
6245                 err = -ENOMEM;
6246                 goto fail;
6247         }
6248
6249         /* set up PCI mappings for device */
6250         err = pci_enable_device(pci_dev);
6251         if (err) {
6252                 printk(KERN_WARNING DRV_NAME
6253                        "Error calling pci_enable_device.\n");
6254                 return err;
6255         }
6256
6257         priv = libipw_priv(dev);
6258
6259         pci_set_master(pci_dev);
6260         pci_set_drvdata(pci_dev, priv);
6261
6262         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6263         if (err) {
6264                 printk(KERN_WARNING DRV_NAME
6265                        "Error calling pci_set_dma_mask.\n");
6266                 pci_disable_device(pci_dev);
6267                 return err;
6268         }
6269
6270         err = pci_request_regions(pci_dev, DRV_NAME);
6271         if (err) {
6272                 printk(KERN_WARNING DRV_NAME
6273                        "Error calling pci_request_regions.\n");
6274                 pci_disable_device(pci_dev);
6275                 return err;
6276         }
6277
6278         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6279          * PCI Tx retries from interfering with C3 CPU state */
6280         pci_read_config_dword(pci_dev, 0x40, &val);
6281         if ((val & 0x0000ff00) != 0)
6282                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6283
6284         pci_set_power_state(pci_dev, PCI_D0);
6285
6286         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6287                 printk(KERN_WARNING DRV_NAME
6288                        "Device not found via register read.\n");
6289                 err = -ENODEV;
6290                 goto fail;
6291         }
6292
6293         SET_NETDEV_DEV(dev, &pci_dev->dev);
6294
6295         /* Force interrupts to be shut off on the device */
6296         priv->status |= STATUS_INT_ENABLED;
6297         ipw2100_disable_interrupts(priv);
6298
6299         /* Allocate and initialize the Tx/Rx queues and lists */
6300         if (ipw2100_queues_allocate(priv)) {
6301                 printk(KERN_WARNING DRV_NAME
6302                        "Error calling ipw2100_queues_allocate.\n");
6303                 err = -ENOMEM;
6304                 goto fail;
6305         }
6306         ipw2100_queues_initialize(priv);
6307
6308         err = request_irq(pci_dev->irq,
6309                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6310         if (err) {
6311                 printk(KERN_WARNING DRV_NAME
6312                        "Error calling request_irq: %d.\n", pci_dev->irq);
6313                 goto fail;
6314         }
6315         dev->irq = pci_dev->irq;
6316
6317         IPW_DEBUG_INFO("Attempting to register device...\n");
6318
6319         printk(KERN_INFO DRV_NAME
6320                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6321
6322         err = ipw2100_up(priv, 1);
6323         if (err)
6324                 goto fail;
6325
6326         err = ipw2100_wdev_init(dev);
6327         if (err)
6328                 goto fail;
6329         registered = 1;
6330
6331         /* Bring up the interface.  Pre 0.46, after we registered the
6332          * network device we would call ipw2100_up.  This introduced a race
6333          * condition with newer hotplug configurations (network was coming
6334          * up and making calls before the device was initialized).
6335          */
6336         err = register_netdev(dev);
6337         if (err) {
6338                 printk(KERN_WARNING DRV_NAME
6339                        "Error calling register_netdev.\n");
6340                 goto fail;
6341         }
6342         registered = 2;
6343
6344         mutex_lock(&priv->action_mutex);
6345
6346         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6347
6348         /* perform this after register_netdev so that dev->name is set */
6349         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6350         if (err)
6351                 goto fail_unlock;
6352
6353         /* If the RF Kill switch is disabled, go ahead and complete the
6354          * startup sequence */
6355         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6356                 /* Enable the adapter - sends HOST_COMPLETE */
6357                 if (ipw2100_enable_adapter(priv)) {
6358                         printk(KERN_WARNING DRV_NAME
6359                                ": %s: failed in call to enable adapter.\n",
6360                                priv->net_dev->name);
6361                         ipw2100_hw_stop_adapter(priv);
6362                         err = -EIO;
6363                         goto fail_unlock;
6364                 }
6365
6366                 /* Start a scan . . . */
6367                 ipw2100_set_scan_options(priv);
6368                 ipw2100_start_scan(priv);
6369         }
6370
6371         IPW_DEBUG_INFO("exit\n");
6372
6373         priv->status |= STATUS_INITIALIZED;
6374
6375         mutex_unlock(&priv->action_mutex);
6376 out:
6377         return err;
6378
6379       fail_unlock:
6380         mutex_unlock(&priv->action_mutex);
6381       fail:
6382         if (dev) {
6383                 if (registered >= 2)
6384                         unregister_netdev(dev);
6385
6386                 if (registered) {
6387                         wiphy_unregister(priv->ieee->wdev.wiphy);
6388                         kfree(priv->ieee->bg_band.channels);
6389                 }
6390
6391                 ipw2100_hw_stop_adapter(priv);
6392
6393                 ipw2100_disable_interrupts(priv);
6394
6395                 if (dev->irq)
6396                         free_irq(dev->irq, priv);
6397
6398                 ipw2100_kill_works(priv);
6399
6400                 /* These are safe to call even if they weren't allocated */
6401                 ipw2100_queues_free(priv);
6402                 sysfs_remove_group(&pci_dev->dev.kobj,
6403                                    &ipw2100_attribute_group);
6404
6405                 free_libipw(dev, 0);
6406                 pci_set_drvdata(pci_dev, NULL);
6407         }
6408
6409         pci_iounmap(pci_dev, ioaddr);
6410
6411         pci_release_regions(pci_dev);
6412         pci_disable_device(pci_dev);
6413         goto out;
6414 }
6415
6416 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6417 {
6418         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6419         struct net_device *dev = priv->net_dev;
6420
6421         mutex_lock(&priv->action_mutex);
6422
6423         priv->status &= ~STATUS_INITIALIZED;
6424
6425         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6426
6427 #ifdef CONFIG_PM
6428         if (ipw2100_firmware.version)
6429                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6430 #endif
6431         /* Take down the hardware */
6432         ipw2100_down(priv);
6433
6434         /* Release the mutex so that the network subsystem can
6435          * complete any needed calls into the driver... */
6436         mutex_unlock(&priv->action_mutex);
6437
6438         /* Unregister the device first - this results in close()
6439          * being called if the device is open.  If we free storage
6440          * first, then close() will crash.
6441          * FIXME: remove the comment above. */
6442         unregister_netdev(dev);
6443
6444         ipw2100_kill_works(priv);
6445
6446         ipw2100_queues_free(priv);
6447
6448         /* Free potential debugging firmware snapshot */
6449         ipw2100_snapshot_free(priv);
6450
6451         free_irq(dev->irq, priv);
6452
6453         pci_iounmap(pci_dev, priv->ioaddr);
6454
6455         /* wiphy_unregister needs to be here, before free_libipw */
6456         wiphy_unregister(priv->ieee->wdev.wiphy);
6457         kfree(priv->ieee->bg_band.channels);
6458         free_libipw(dev, 0);
6459
6460         pci_release_regions(pci_dev);
6461         pci_disable_device(pci_dev);
6462
6463         IPW_DEBUG_INFO("exit\n");
6464 }
6465
6466 #ifdef CONFIG_PM
6467 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6468 {
6469         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6470         struct net_device *dev = priv->net_dev;
6471
6472         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6473
6474         mutex_lock(&priv->action_mutex);
6475         if (priv->status & STATUS_INITIALIZED) {
6476                 /* Take down the device; powers it off, etc. */
6477                 ipw2100_down(priv);
6478         }
6479
6480         /* Remove the PRESENT state of the device */
6481         netif_device_detach(dev);
6482
6483         pci_save_state(pci_dev);
6484         pci_disable_device(pci_dev);
6485         pci_set_power_state(pci_dev, PCI_D3hot);
6486
6487         priv->suspend_at = get_seconds();
6488
6489         mutex_unlock(&priv->action_mutex);
6490
6491         return 0;
6492 }
6493
6494 static int ipw2100_resume(struct pci_dev *pci_dev)
6495 {
6496         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6497         struct net_device *dev = priv->net_dev;
6498         int err;
6499         u32 val;
6500
6501         if (IPW2100_PM_DISABLED)
6502                 return 0;
6503
6504         mutex_lock(&priv->action_mutex);
6505
6506         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6507
6508         pci_set_power_state(pci_dev, PCI_D0);
6509         err = pci_enable_device(pci_dev);
6510         if (err) {
6511                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6512                        dev->name);
6513                 mutex_unlock(&priv->action_mutex);
6514                 return err;
6515         }
6516         pci_restore_state(pci_dev);
6517
6518         /*
6519          * Suspend/Resume resets the PCI configuration space, so we have to
6520          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6521          * from interfering with C3 CPU state. pci_restore_state won't help
6522          * here since it only restores the first 64 bytes pci config header.
6523          */
6524         pci_read_config_dword(pci_dev, 0x40, &val);
6525         if ((val & 0x0000ff00) != 0)
6526                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6527
6528         /* Set the device back into the PRESENT state; this will also wake
6529          * the queue of needed */
6530         netif_device_attach(dev);
6531
6532         priv->suspend_time = get_seconds() - priv->suspend_at;
6533
6534         /* Bring the device back up */
6535         if (!(priv->status & STATUS_RF_KILL_SW))
6536                 ipw2100_up(priv, 0);
6537
6538         mutex_unlock(&priv->action_mutex);
6539
6540         return 0;
6541 }
6542 #endif
6543
6544 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6545 {
6546         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6547
6548         /* Take down the device; powers it off, etc. */
6549         ipw2100_down(priv);
6550
6551         pci_disable_device(pci_dev);
6552 }
6553
6554 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6555
6556 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6557         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6558         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6559         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6560         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6561         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6562         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6563         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6564         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6565         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6566         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6567         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6568         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6569         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6570
6571         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6572         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6573         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6574         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6575         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6576
6577         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6578         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6579         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6580         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6581         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6582         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6583         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6584
6585         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6586
6587         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6588         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6589         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6590         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6591         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6592         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6593         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6594
6595         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6596         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6597         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6598         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6599         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6600         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6601
6602         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6603         {0,},
6604 };
6605
6606 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6607
6608 static struct pci_driver ipw2100_pci_driver = {
6609         .name = DRV_NAME,
6610         .id_table = ipw2100_pci_id_table,
6611         .probe = ipw2100_pci_init_one,
6612         .remove = __devexit_p(ipw2100_pci_remove_one),
6613 #ifdef CONFIG_PM
6614         .suspend = ipw2100_suspend,
6615         .resume = ipw2100_resume,
6616 #endif
6617         .shutdown = ipw2100_shutdown,
6618 };
6619
6620 /**
6621  * Initialize the ipw2100 driver/module
6622  *
6623  * @returns 0 if ok, < 0 errno node con error.
6624  *
6625  * Note: we cannot init the /proc stuff until the PCI driver is there,
6626  * or we risk an unlikely race condition on someone accessing
6627  * uninitialized data in the PCI dev struct through /proc.
6628  */
6629 static int __init ipw2100_init(void)
6630 {
6631         int ret;
6632
6633         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6634         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6635
6636         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6637                            PM_QOS_DEFAULT_VALUE);
6638
6639         ret = pci_register_driver(&ipw2100_pci_driver);
6640         if (ret)
6641                 goto out;
6642
6643 #ifdef CONFIG_IPW2100_DEBUG
6644         ipw2100_debug_level = debug;
6645         ret = driver_create_file(&ipw2100_pci_driver.driver,
6646                                  &driver_attr_debug_level);
6647 #endif
6648
6649 out:
6650         return ret;
6651 }
6652
6653 /**
6654  * Cleanup ipw2100 driver registration
6655  */
6656 static void __exit ipw2100_exit(void)
6657 {
6658         /* FIXME: IPG: check that we have no instances of the devices open */
6659 #ifdef CONFIG_IPW2100_DEBUG
6660         driver_remove_file(&ipw2100_pci_driver.driver,
6661                            &driver_attr_debug_level);
6662 #endif
6663         pci_unregister_driver(&ipw2100_pci_driver);
6664         pm_qos_remove_request(&ipw2100_pm_qos_req);
6665 }
6666
6667 module_init(ipw2100_init);
6668 module_exit(ipw2100_exit);
6669
6670 static int ipw2100_wx_get_name(struct net_device *dev,
6671                                struct iw_request_info *info,
6672                                union iwreq_data *wrqu, char *extra)
6673 {
6674         /*
6675          * This can be called at any time.  No action lock required
6676          */
6677
6678         struct ipw2100_priv *priv = libipw_priv(dev);
6679         if (!(priv->status & STATUS_ASSOCIATED))
6680                 strcpy(wrqu->name, "unassociated");
6681         else
6682                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6683
6684         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6685         return 0;
6686 }
6687
6688 static int ipw2100_wx_set_freq(struct net_device *dev,
6689                                struct iw_request_info *info,
6690                                union iwreq_data *wrqu, char *extra)
6691 {
6692         struct ipw2100_priv *priv = libipw_priv(dev);
6693         struct iw_freq *fwrq = &wrqu->freq;
6694         int err = 0;
6695
6696         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6697                 return -EOPNOTSUPP;
6698
6699         mutex_lock(&priv->action_mutex);
6700         if (!(priv->status & STATUS_INITIALIZED)) {
6701                 err = -EIO;
6702                 goto done;
6703         }
6704
6705         /* if setting by freq convert to channel */
6706         if (fwrq->e == 1) {
6707                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6708                         int f = fwrq->m / 100000;
6709                         int c = 0;
6710
6711                         while ((c < REG_MAX_CHANNEL) &&
6712                                (f != ipw2100_frequencies[c]))
6713                                 c++;
6714
6715                         /* hack to fall through */
6716                         fwrq->e = 0;
6717                         fwrq->m = c + 1;
6718                 }
6719         }
6720
6721         if (fwrq->e > 0 || fwrq->m > 1000) {
6722                 err = -EOPNOTSUPP;
6723                 goto done;
6724         } else {                /* Set the channel */
6725                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6726                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6727         }
6728
6729       done:
6730         mutex_unlock(&priv->action_mutex);
6731         return err;
6732 }
6733
6734 static int ipw2100_wx_get_freq(struct net_device *dev,
6735                                struct iw_request_info *info,
6736                                union iwreq_data *wrqu, char *extra)
6737 {
6738         /*
6739          * This can be called at any time.  No action lock required
6740          */
6741
6742         struct ipw2100_priv *priv = libipw_priv(dev);
6743
6744         wrqu->freq.e = 0;
6745
6746         /* If we are associated, trying to associate, or have a statically
6747          * configured CHANNEL then return that; otherwise return ANY */
6748         if (priv->config & CFG_STATIC_CHANNEL ||
6749             priv->status & STATUS_ASSOCIATED)
6750                 wrqu->freq.m = priv->channel;
6751         else
6752                 wrqu->freq.m = 0;
6753
6754         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6755         return 0;
6756
6757 }
6758
6759 static int ipw2100_wx_set_mode(struct net_device *dev,
6760                                struct iw_request_info *info,
6761                                union iwreq_data *wrqu, char *extra)
6762 {
6763         struct ipw2100_priv *priv = libipw_priv(dev);
6764         int err = 0;
6765
6766         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6767
6768         if (wrqu->mode == priv->ieee->iw_mode)
6769                 return 0;
6770
6771         mutex_lock(&priv->action_mutex);
6772         if (!(priv->status & STATUS_INITIALIZED)) {
6773                 err = -EIO;
6774                 goto done;
6775         }
6776
6777         switch (wrqu->mode) {
6778 #ifdef CONFIG_IPW2100_MONITOR
6779         case IW_MODE_MONITOR:
6780                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6781                 break;
6782 #endif                          /* CONFIG_IPW2100_MONITOR */
6783         case IW_MODE_ADHOC:
6784                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6785                 break;
6786         case IW_MODE_INFRA:
6787         case IW_MODE_AUTO:
6788         default:
6789                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6790                 break;
6791         }
6792
6793       done:
6794         mutex_unlock(&priv->action_mutex);
6795         return err;
6796 }
6797
6798 static int ipw2100_wx_get_mode(struct net_device *dev,
6799                                struct iw_request_info *info,
6800                                union iwreq_data *wrqu, char *extra)
6801 {
6802         /*
6803          * This can be called at any time.  No action lock required
6804          */
6805
6806         struct ipw2100_priv *priv = libipw_priv(dev);
6807
6808         wrqu->mode = priv->ieee->iw_mode;
6809         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6810
6811         return 0;
6812 }
6813
6814 #define POWER_MODES 5
6815
6816 /* Values are in microsecond */
6817 static const s32 timeout_duration[POWER_MODES] = {
6818         350000,
6819         250000,
6820         75000,
6821         37000,
6822         25000,
6823 };
6824
6825 static const s32 period_duration[POWER_MODES] = {
6826         400000,
6827         700000,
6828         1000000,
6829         1000000,
6830         1000000
6831 };
6832
6833 static int ipw2100_wx_get_range(struct net_device *dev,
6834                                 struct iw_request_info *info,
6835                                 union iwreq_data *wrqu, char *extra)
6836 {
6837         /*
6838          * This can be called at any time.  No action lock required
6839          */
6840
6841         struct ipw2100_priv *priv = libipw_priv(dev);
6842         struct iw_range *range = (struct iw_range *)extra;
6843         u16 val;
6844         int i, level;
6845
6846         wrqu->data.length = sizeof(*range);
6847         memset(range, 0, sizeof(*range));
6848
6849         /* Let's try to keep this struct in the same order as in
6850          * linux/include/wireless.h
6851          */
6852
6853         /* TODO: See what values we can set, and remove the ones we can't
6854          * set, or fill them with some default data.
6855          */
6856
6857         /* ~5 Mb/s real (802.11b) */
6858         range->throughput = 5 * 1000 * 1000;
6859
6860 //      range->sensitivity;     /* signal level threshold range */
6861
6862         range->max_qual.qual = 100;
6863         /* TODO: Find real max RSSI and stick here */
6864         range->max_qual.level = 0;
6865         range->max_qual.noise = 0;
6866         range->max_qual.updated = 7;    /* Updated all three */
6867
6868         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6869         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6870         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6871         range->avg_qual.noise = 0;
6872         range->avg_qual.updated = 7;    /* Updated all three */
6873
6874         range->num_bitrates = RATE_COUNT;
6875
6876         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6877                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6878         }
6879
6880         range->min_rts = MIN_RTS_THRESHOLD;
6881         range->max_rts = MAX_RTS_THRESHOLD;
6882         range->min_frag = MIN_FRAG_THRESHOLD;
6883         range->max_frag = MAX_FRAG_THRESHOLD;
6884
6885         range->min_pmp = period_duration[0];    /* Minimal PM period */
6886         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6887         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6888         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6889
6890         /* How to decode max/min PM period */
6891         range->pmp_flags = IW_POWER_PERIOD;
6892         /* How to decode max/min PM period */
6893         range->pmt_flags = IW_POWER_TIMEOUT;
6894         /* What PM options are supported */
6895         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6896
6897         range->encoding_size[0] = 5;
6898         range->encoding_size[1] = 13;   /* Different token sizes */
6899         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6900         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6901 //      range->encoding_login_index;            /* token index for login token */
6902
6903         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6904                 range->txpower_capa = IW_TXPOW_DBM;
6905                 range->num_txpower = IW_MAX_TXPOWER;
6906                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6907                      i < IW_MAX_TXPOWER;
6908                      i++, level -=
6909                      ((IPW_TX_POWER_MAX_DBM -
6910                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6911                         range->txpower[i] = level / 16;
6912         } else {
6913                 range->txpower_capa = 0;
6914                 range->num_txpower = 0;
6915         }
6916
6917         /* Set the Wireless Extension versions */
6918         range->we_version_compiled = WIRELESS_EXT;
6919         range->we_version_source = 18;
6920
6921 //      range->retry_capa;      /* What retry options are supported */
6922 //      range->retry_flags;     /* How to decode max/min retry limit */
6923 //      range->r_time_flags;    /* How to decode max/min retry life */
6924 //      range->min_retry;       /* Minimal number of retries */
6925 //      range->max_retry;       /* Maximal number of retries */
6926 //      range->min_r_time;      /* Minimal retry lifetime */
6927 //      range->max_r_time;      /* Maximal retry lifetime */
6928
6929         range->num_channels = FREQ_COUNT;
6930
6931         val = 0;
6932         for (i = 0; i < FREQ_COUNT; i++) {
6933                 // TODO: Include only legal frequencies for some countries
6934 //              if (local->channel_mask & (1 << i)) {
6935                 range->freq[val].i = i + 1;
6936                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6937                 range->freq[val].e = 1;
6938                 val++;
6939 //              }
6940                 if (val == IW_MAX_FREQUENCIES)
6941                         break;
6942         }
6943         range->num_frequency = val;
6944
6945         /* Event capability (kernel + driver) */
6946         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6947                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6948         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6949
6950         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6951                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6952
6953         IPW_DEBUG_WX("GET Range\n");
6954
6955         return 0;
6956 }
6957
6958 static int ipw2100_wx_set_wap(struct net_device *dev,
6959                               struct iw_request_info *info,
6960                               union iwreq_data *wrqu, char *extra)
6961 {
6962         struct ipw2100_priv *priv = libipw_priv(dev);
6963         int err = 0;
6964
6965         // sanity checks
6966         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6967                 return -EINVAL;
6968
6969         mutex_lock(&priv->action_mutex);
6970         if (!(priv->status & STATUS_INITIALIZED)) {
6971                 err = -EIO;
6972                 goto done;
6973         }
6974
6975         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6976             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6977                 /* we disable mandatory BSSID association */
6978                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6979                 priv->config &= ~CFG_STATIC_BSSID;
6980                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6981                 goto done;
6982         }
6983
6984         priv->config |= CFG_STATIC_BSSID;
6985         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6986
6987         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6988
6989         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6990
6991       done:
6992         mutex_unlock(&priv->action_mutex);
6993         return err;
6994 }
6995
6996 static int ipw2100_wx_get_wap(struct net_device *dev,
6997                               struct iw_request_info *info,
6998                               union iwreq_data *wrqu, char *extra)
6999 {
7000         /*
7001          * This can be called at any time.  No action lock required
7002          */
7003
7004         struct ipw2100_priv *priv = libipw_priv(dev);
7005
7006         /* If we are associated, trying to associate, or have a statically
7007          * configured BSSID then return that; otherwise return ANY */
7008         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7009                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7010                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7011         } else
7012                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7013
7014         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7015         return 0;
7016 }
7017
7018 static int ipw2100_wx_set_essid(struct net_device *dev,
7019                                 struct iw_request_info *info,
7020                                 union iwreq_data *wrqu, char *extra)
7021 {
7022         struct ipw2100_priv *priv = libipw_priv(dev);
7023         char *essid = "";       /* ANY */
7024         int length = 0;
7025         int err = 0;
7026         DECLARE_SSID_BUF(ssid);
7027
7028         mutex_lock(&priv->action_mutex);
7029         if (!(priv->status & STATUS_INITIALIZED)) {
7030                 err = -EIO;
7031                 goto done;
7032         }
7033
7034         if (wrqu->essid.flags && wrqu->essid.length) {
7035                 length = wrqu->essid.length;
7036                 essid = extra;
7037         }
7038
7039         if (length == 0) {
7040                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7041                 priv->config &= ~CFG_STATIC_ESSID;
7042                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7043                 goto done;
7044         }
7045
7046         length = min(length, IW_ESSID_MAX_SIZE);
7047
7048         priv->config |= CFG_STATIC_ESSID;
7049
7050         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7051                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7052                 err = 0;
7053                 goto done;
7054         }
7055
7056         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7057                      print_ssid(ssid, essid, length), length);
7058
7059         priv->essid_len = length;
7060         memcpy(priv->essid, essid, priv->essid_len);
7061
7062         err = ipw2100_set_essid(priv, essid, length, 0);
7063
7064       done:
7065         mutex_unlock(&priv->action_mutex);
7066         return err;
7067 }
7068
7069 static int ipw2100_wx_get_essid(struct net_device *dev,
7070                                 struct iw_request_info *info,
7071                                 union iwreq_data *wrqu, char *extra)
7072 {
7073         /*
7074          * This can be called at any time.  No action lock required
7075          */
7076
7077         struct ipw2100_priv *priv = libipw_priv(dev);
7078         DECLARE_SSID_BUF(ssid);
7079
7080         /* If we are associated, trying to associate, or have a statically
7081          * configured ESSID then return that; otherwise return ANY */
7082         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7083                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7084                              print_ssid(ssid, priv->essid, priv->essid_len));
7085                 memcpy(extra, priv->essid, priv->essid_len);
7086                 wrqu->essid.length = priv->essid_len;
7087                 wrqu->essid.flags = 1;  /* active */
7088         } else {
7089                 IPW_DEBUG_WX("Getting essid: ANY\n");
7090                 wrqu->essid.length = 0;
7091                 wrqu->essid.flags = 0;  /* active */
7092         }
7093
7094         return 0;
7095 }
7096
7097 static int ipw2100_wx_set_nick(struct net_device *dev,
7098                                struct iw_request_info *info,
7099                                union iwreq_data *wrqu, char *extra)
7100 {
7101         /*
7102          * This can be called at any time.  No action lock required
7103          */
7104
7105         struct ipw2100_priv *priv = libipw_priv(dev);
7106
7107         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7108                 return -E2BIG;
7109
7110         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7111         memset(priv->nick, 0, sizeof(priv->nick));
7112         memcpy(priv->nick, extra, wrqu->data.length);
7113
7114         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7115
7116         return 0;
7117 }
7118
7119 static int ipw2100_wx_get_nick(struct net_device *dev,
7120                                struct iw_request_info *info,
7121                                union iwreq_data *wrqu, char *extra)
7122 {
7123         /*
7124          * This can be called at any time.  No action lock required
7125          */
7126
7127         struct ipw2100_priv *priv = libipw_priv(dev);
7128
7129         wrqu->data.length = strlen(priv->nick);
7130         memcpy(extra, priv->nick, wrqu->data.length);
7131         wrqu->data.flags = 1;   /* active */
7132
7133         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7134
7135         return 0;
7136 }
7137
7138 static int ipw2100_wx_set_rate(struct net_device *dev,
7139                                struct iw_request_info *info,
7140                                union iwreq_data *wrqu, char *extra)
7141 {
7142         struct ipw2100_priv *priv = libipw_priv(dev);
7143         u32 target_rate = wrqu->bitrate.value;
7144         u32 rate;
7145         int err = 0;
7146
7147         mutex_lock(&priv->action_mutex);
7148         if (!(priv->status & STATUS_INITIALIZED)) {
7149                 err = -EIO;
7150                 goto done;
7151         }
7152
7153         rate = 0;
7154
7155         if (target_rate == 1000000 ||
7156             (!wrqu->bitrate.fixed && target_rate > 1000000))
7157                 rate |= TX_RATE_1_MBIT;
7158         if (target_rate == 2000000 ||
7159             (!wrqu->bitrate.fixed && target_rate > 2000000))
7160                 rate |= TX_RATE_2_MBIT;
7161         if (target_rate == 5500000 ||
7162             (!wrqu->bitrate.fixed && target_rate > 5500000))
7163                 rate |= TX_RATE_5_5_MBIT;
7164         if (target_rate == 11000000 ||
7165             (!wrqu->bitrate.fixed && target_rate > 11000000))
7166                 rate |= TX_RATE_11_MBIT;
7167         if (rate == 0)
7168                 rate = DEFAULT_TX_RATES;
7169
7170         err = ipw2100_set_tx_rates(priv, rate, 0);
7171
7172         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7173       done:
7174         mutex_unlock(&priv->action_mutex);
7175         return err;
7176 }
7177
7178 static int ipw2100_wx_get_rate(struct net_device *dev,
7179                                struct iw_request_info *info,
7180                                union iwreq_data *wrqu, char *extra)
7181 {
7182         struct ipw2100_priv *priv = libipw_priv(dev);
7183         int val;
7184         unsigned int len = sizeof(val);
7185         int err = 0;
7186
7187         if (!(priv->status & STATUS_ENABLED) ||
7188             priv->status & STATUS_RF_KILL_MASK ||
7189             !(priv->status & STATUS_ASSOCIATED)) {
7190                 wrqu->bitrate.value = 0;
7191                 return 0;
7192         }
7193
7194         mutex_lock(&priv->action_mutex);
7195         if (!(priv->status & STATUS_INITIALIZED)) {
7196                 err = -EIO;
7197                 goto done;
7198         }
7199
7200         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7201         if (err) {
7202                 IPW_DEBUG_WX("failed querying ordinals.\n");
7203                 goto done;
7204         }
7205
7206         switch (val & TX_RATE_MASK) {
7207         case TX_RATE_1_MBIT:
7208                 wrqu->bitrate.value = 1000000;
7209                 break;
7210         case TX_RATE_2_MBIT:
7211                 wrqu->bitrate.value = 2000000;
7212                 break;
7213         case TX_RATE_5_5_MBIT:
7214                 wrqu->bitrate.value = 5500000;
7215                 break;
7216         case TX_RATE_11_MBIT:
7217                 wrqu->bitrate.value = 11000000;
7218                 break;
7219         default:
7220                 wrqu->bitrate.value = 0;
7221         }
7222
7223         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7224
7225       done:
7226         mutex_unlock(&priv->action_mutex);
7227         return err;
7228 }
7229
7230 static int ipw2100_wx_set_rts(struct net_device *dev,
7231                               struct iw_request_info *info,
7232                               union iwreq_data *wrqu, char *extra)
7233 {
7234         struct ipw2100_priv *priv = libipw_priv(dev);
7235         int value, err;
7236
7237         /* Auto RTS not yet supported */
7238         if (wrqu->rts.fixed == 0)
7239                 return -EINVAL;
7240
7241         mutex_lock(&priv->action_mutex);
7242         if (!(priv->status & STATUS_INITIALIZED)) {
7243                 err = -EIO;
7244                 goto done;
7245         }
7246
7247         if (wrqu->rts.disabled)
7248                 value = priv->rts_threshold | RTS_DISABLED;
7249         else {
7250                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7251                         err = -EINVAL;
7252                         goto done;
7253                 }
7254                 value = wrqu->rts.value;
7255         }
7256
7257         err = ipw2100_set_rts_threshold(priv, value);
7258
7259         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7260       done:
7261         mutex_unlock(&priv->action_mutex);
7262         return err;
7263 }
7264
7265 static int ipw2100_wx_get_rts(struct net_device *dev,
7266                               struct iw_request_info *info,
7267                               union iwreq_data *wrqu, char *extra)
7268 {
7269         /*
7270          * This can be called at any time.  No action lock required
7271          */
7272
7273         struct ipw2100_priv *priv = libipw_priv(dev);
7274
7275         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7276         wrqu->rts.fixed = 1;    /* no auto select */
7277
7278         /* If RTS is set to the default value, then it is disabled */
7279         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7280
7281         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7282
7283         return 0;
7284 }
7285
7286 static int ipw2100_wx_set_txpow(struct net_device *dev,
7287                                 struct iw_request_info *info,
7288                                 union iwreq_data *wrqu, char *extra)
7289 {
7290         struct ipw2100_priv *priv = libipw_priv(dev);
7291         int err = 0, value;
7292         
7293         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7294                 return -EINPROGRESS;
7295
7296         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7297                 return 0;
7298
7299         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7300                 return -EINVAL;
7301
7302         if (wrqu->txpower.fixed == 0)
7303                 value = IPW_TX_POWER_DEFAULT;
7304         else {
7305                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7306                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7307                         return -EINVAL;
7308
7309                 value = wrqu->txpower.value;
7310         }
7311
7312         mutex_lock(&priv->action_mutex);
7313         if (!(priv->status & STATUS_INITIALIZED)) {
7314                 err = -EIO;
7315                 goto done;
7316         }
7317
7318         err = ipw2100_set_tx_power(priv, value);
7319
7320         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7321
7322       done:
7323         mutex_unlock(&priv->action_mutex);
7324         return err;
7325 }
7326
7327 static int ipw2100_wx_get_txpow(struct net_device *dev,
7328                                 struct iw_request_info *info,
7329                                 union iwreq_data *wrqu, char *extra)
7330 {
7331         /*
7332          * This can be called at any time.  No action lock required
7333          */
7334
7335         struct ipw2100_priv *priv = libipw_priv(dev);
7336
7337         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7338
7339         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7340                 wrqu->txpower.fixed = 0;
7341                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7342         } else {
7343                 wrqu->txpower.fixed = 1;
7344                 wrqu->txpower.value = priv->tx_power;
7345         }
7346
7347         wrqu->txpower.flags = IW_TXPOW_DBM;
7348
7349         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7350
7351         return 0;
7352 }
7353
7354 static int ipw2100_wx_set_frag(struct net_device *dev,
7355                                struct iw_request_info *info,
7356                                union iwreq_data *wrqu, char *extra)
7357 {
7358         /*
7359          * This can be called at any time.  No action lock required
7360          */
7361
7362         struct ipw2100_priv *priv = libipw_priv(dev);
7363
7364         if (!wrqu->frag.fixed)
7365                 return -EINVAL;
7366
7367         if (wrqu->frag.disabled) {
7368                 priv->frag_threshold |= FRAG_DISABLED;
7369                 priv->ieee->fts = DEFAULT_FTS;
7370         } else {
7371                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7372                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7373                         return -EINVAL;
7374
7375                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7376                 priv->frag_threshold = priv->ieee->fts;
7377         }
7378
7379         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7380
7381         return 0;
7382 }
7383
7384 static int ipw2100_wx_get_frag(struct net_device *dev,
7385                                struct iw_request_info *info,
7386                                union iwreq_data *wrqu, char *extra)
7387 {
7388         /*
7389          * This can be called at any time.  No action lock required
7390          */
7391
7392         struct ipw2100_priv *priv = libipw_priv(dev);
7393         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7394         wrqu->frag.fixed = 0;   /* no auto select */
7395         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7396
7397         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7398
7399         return 0;
7400 }
7401
7402 static int ipw2100_wx_set_retry(struct net_device *dev,
7403                                 struct iw_request_info *info,
7404                                 union iwreq_data *wrqu, char *extra)
7405 {
7406         struct ipw2100_priv *priv = libipw_priv(dev);
7407         int err = 0;
7408
7409         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7410                 return -EINVAL;
7411
7412         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7413                 return 0;
7414
7415         mutex_lock(&priv->action_mutex);
7416         if (!(priv->status & STATUS_INITIALIZED)) {
7417                 err = -EIO;
7418                 goto done;
7419         }
7420
7421         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7422                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7423                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7424                              wrqu->retry.value);
7425                 goto done;
7426         }
7427
7428         if (wrqu->retry.flags & IW_RETRY_LONG) {
7429                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7430                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7431                              wrqu->retry.value);
7432                 goto done;
7433         }
7434
7435         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7436         if (!err)
7437                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7438
7439         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7440
7441       done:
7442         mutex_unlock(&priv->action_mutex);
7443         return err;
7444 }
7445
7446 static int ipw2100_wx_get_retry(struct net_device *dev,
7447                                 struct iw_request_info *info,
7448                                 union iwreq_data *wrqu, char *extra)
7449 {
7450         /*
7451          * This can be called at any time.  No action lock required
7452          */
7453
7454         struct ipw2100_priv *priv = libipw_priv(dev);
7455
7456         wrqu->retry.disabled = 0;       /* can't be disabled */
7457
7458         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7459                 return -EINVAL;
7460
7461         if (wrqu->retry.flags & IW_RETRY_LONG) {
7462                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7463                 wrqu->retry.value = priv->long_retry_limit;
7464         } else {
7465                 wrqu->retry.flags =
7466                     (priv->short_retry_limit !=
7467                      priv->long_retry_limit) ?
7468                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7469
7470                 wrqu->retry.value = priv->short_retry_limit;
7471         }
7472
7473         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7474
7475         return 0;
7476 }
7477
7478 static int ipw2100_wx_set_scan(struct net_device *dev,
7479                                struct iw_request_info *info,
7480                                union iwreq_data *wrqu, char *extra)
7481 {
7482         struct ipw2100_priv *priv = libipw_priv(dev);
7483         int err = 0;
7484
7485         mutex_lock(&priv->action_mutex);
7486         if (!(priv->status & STATUS_INITIALIZED)) {
7487                 err = -EIO;
7488                 goto done;
7489         }
7490
7491         IPW_DEBUG_WX("Initiating scan...\n");
7492
7493         priv->user_requested_scan = 1;
7494         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7495                 IPW_DEBUG_WX("Start scan failed.\n");
7496
7497                 /* TODO: Mark a scan as pending so when hardware initialized
7498                  *       a scan starts */
7499         }
7500
7501       done:
7502         mutex_unlock(&priv->action_mutex);
7503         return err;
7504 }
7505
7506 static int ipw2100_wx_get_scan(struct net_device *dev,
7507                                struct iw_request_info *info,
7508                                union iwreq_data *wrqu, char *extra)
7509 {
7510         /*
7511          * This can be called at any time.  No action lock required
7512          */
7513
7514         struct ipw2100_priv *priv = libipw_priv(dev);
7515         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7516 }
7517
7518 /*
7519  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7520  */
7521 static int ipw2100_wx_set_encode(struct net_device *dev,
7522                                  struct iw_request_info *info,
7523                                  union iwreq_data *wrqu, char *key)
7524 {
7525         /*
7526          * No check of STATUS_INITIALIZED required
7527          */
7528
7529         struct ipw2100_priv *priv = libipw_priv(dev);
7530         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7531 }
7532
7533 static int ipw2100_wx_get_encode(struct net_device *dev,
7534                                  struct iw_request_info *info,
7535                                  union iwreq_data *wrqu, char *key)
7536 {
7537         /*
7538          * This can be called at any time.  No action lock required
7539          */
7540
7541         struct ipw2100_priv *priv = libipw_priv(dev);
7542         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7543 }
7544
7545 static int ipw2100_wx_set_power(struct net_device *dev,
7546                                 struct iw_request_info *info,
7547                                 union iwreq_data *wrqu, char *extra)
7548 {
7549         struct ipw2100_priv *priv = libipw_priv(dev);
7550         int err = 0;
7551
7552         mutex_lock(&priv->action_mutex);
7553         if (!(priv->status & STATUS_INITIALIZED)) {
7554                 err = -EIO;
7555                 goto done;
7556         }
7557
7558         if (wrqu->power.disabled) {
7559                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7560                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7561                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7562                 goto done;
7563         }
7564
7565         switch (wrqu->power.flags & IW_POWER_MODE) {
7566         case IW_POWER_ON:       /* If not specified */
7567         case IW_POWER_MODE:     /* If set all mask */
7568         case IW_POWER_ALL_R:    /* If explicitly state all */
7569                 break;
7570         default:                /* Otherwise we don't support it */
7571                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7572                              wrqu->power.flags);
7573                 err = -EOPNOTSUPP;
7574                 goto done;
7575         }
7576
7577         /* If the user hasn't specified a power management mode yet, default
7578          * to BATTERY */
7579         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7580         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7581
7582         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7583
7584       done:
7585         mutex_unlock(&priv->action_mutex);
7586         return err;
7587
7588 }
7589
7590 static int ipw2100_wx_get_power(struct net_device *dev,
7591                                 struct iw_request_info *info,
7592                                 union iwreq_data *wrqu, char *extra)
7593 {
7594         /*
7595          * This can be called at any time.  No action lock required
7596          */
7597
7598         struct ipw2100_priv *priv = libipw_priv(dev);
7599
7600         if (!(priv->power_mode & IPW_POWER_ENABLED))
7601                 wrqu->power.disabled = 1;
7602         else {
7603                 wrqu->power.disabled = 0;
7604                 wrqu->power.flags = 0;
7605         }
7606
7607         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7608
7609         return 0;
7610 }
7611
7612 /*
7613  * WE-18 WPA support
7614  */
7615
7616 /* SIOCSIWGENIE */
7617 static int ipw2100_wx_set_genie(struct net_device *dev,
7618                                 struct iw_request_info *info,
7619                                 union iwreq_data *wrqu, char *extra)
7620 {
7621
7622         struct ipw2100_priv *priv = libipw_priv(dev);
7623         struct libipw_device *ieee = priv->ieee;
7624         u8 *buf;
7625
7626         if (!ieee->wpa_enabled)
7627                 return -EOPNOTSUPP;
7628
7629         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7630             (wrqu->data.length && extra == NULL))
7631                 return -EINVAL;
7632
7633         if (wrqu->data.length) {
7634                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7635                 if (buf == NULL)
7636                         return -ENOMEM;
7637
7638                 kfree(ieee->wpa_ie);
7639                 ieee->wpa_ie = buf;
7640                 ieee->wpa_ie_len = wrqu->data.length;
7641         } else {
7642                 kfree(ieee->wpa_ie);
7643                 ieee->wpa_ie = NULL;
7644                 ieee->wpa_ie_len = 0;
7645         }
7646
7647         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7648
7649         return 0;
7650 }
7651
7652 /* SIOCGIWGENIE */
7653 static int ipw2100_wx_get_genie(struct net_device *dev,
7654                                 struct iw_request_info *info,
7655                                 union iwreq_data *wrqu, char *extra)
7656 {
7657         struct ipw2100_priv *priv = libipw_priv(dev);
7658         struct libipw_device *ieee = priv->ieee;
7659
7660         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7661                 wrqu->data.length = 0;
7662                 return 0;
7663         }
7664
7665         if (wrqu->data.length < ieee->wpa_ie_len)
7666                 return -E2BIG;
7667
7668         wrqu->data.length = ieee->wpa_ie_len;
7669         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7670
7671         return 0;
7672 }
7673
7674 /* SIOCSIWAUTH */
7675 static int ipw2100_wx_set_auth(struct net_device *dev,
7676                                struct iw_request_info *info,
7677                                union iwreq_data *wrqu, char *extra)
7678 {
7679         struct ipw2100_priv *priv = libipw_priv(dev);
7680         struct libipw_device *ieee = priv->ieee;
7681         struct iw_param *param = &wrqu->param;
7682         struct lib80211_crypt_data *crypt;
7683         unsigned long flags;
7684         int ret = 0;
7685
7686         switch (param->flags & IW_AUTH_INDEX) {
7687         case IW_AUTH_WPA_VERSION:
7688         case IW_AUTH_CIPHER_PAIRWISE:
7689         case IW_AUTH_CIPHER_GROUP:
7690         case IW_AUTH_KEY_MGMT:
7691                 /*
7692                  * ipw2200 does not use these parameters
7693                  */
7694                 break;
7695
7696         case IW_AUTH_TKIP_COUNTERMEASURES:
7697                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7698                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7699                         break;
7700
7701                 flags = crypt->ops->get_flags(crypt->priv);
7702
7703                 if (param->value)
7704                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7705                 else
7706                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7707
7708                 crypt->ops->set_flags(flags, crypt->priv);
7709
7710                 break;
7711
7712         case IW_AUTH_DROP_UNENCRYPTED:{
7713                         /* HACK:
7714                          *
7715                          * wpa_supplicant calls set_wpa_enabled when the driver
7716                          * is loaded and unloaded, regardless of if WPA is being
7717                          * used.  No other calls are made which can be used to
7718                          * determine if encryption will be used or not prior to
7719                          * association being expected.  If encryption is not being
7720                          * used, drop_unencrypted is set to false, else true -- we
7721                          * can use this to determine if the CAP_PRIVACY_ON bit should
7722                          * be set.
7723                          */
7724                         struct libipw_security sec = {
7725                                 .flags = SEC_ENABLED,
7726                                 .enabled = param->value,
7727                         };
7728                         priv->ieee->drop_unencrypted = param->value;
7729                         /* We only change SEC_LEVEL for open mode. Others
7730                          * are set by ipw_wpa_set_encryption.
7731                          */
7732                         if (!param->value) {
7733                                 sec.flags |= SEC_LEVEL;
7734                                 sec.level = SEC_LEVEL_0;
7735                         } else {
7736                                 sec.flags |= SEC_LEVEL;
7737                                 sec.level = SEC_LEVEL_1;
7738                         }
7739                         if (priv->ieee->set_security)
7740                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7741                         break;
7742                 }
7743
7744         case IW_AUTH_80211_AUTH_ALG:
7745                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7746                 break;
7747
7748         case IW_AUTH_WPA_ENABLED:
7749                 ret = ipw2100_wpa_enable(priv, param->value);
7750                 break;
7751
7752         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7753                 ieee->ieee802_1x = param->value;
7754                 break;
7755
7756                 //case IW_AUTH_ROAMING_CONTROL:
7757         case IW_AUTH_PRIVACY_INVOKED:
7758                 ieee->privacy_invoked = param->value;
7759                 break;
7760
7761         default:
7762                 return -EOPNOTSUPP;
7763         }
7764         return ret;
7765 }
7766
7767 /* SIOCGIWAUTH */
7768 static int ipw2100_wx_get_auth(struct net_device *dev,
7769                                struct iw_request_info *info,
7770                                union iwreq_data *wrqu, char *extra)
7771 {
7772         struct ipw2100_priv *priv = libipw_priv(dev);
7773         struct libipw_device *ieee = priv->ieee;
7774         struct lib80211_crypt_data *crypt;
7775         struct iw_param *param = &wrqu->param;
7776         int ret = 0;
7777
7778         switch (param->flags & IW_AUTH_INDEX) {
7779         case IW_AUTH_WPA_VERSION:
7780         case IW_AUTH_CIPHER_PAIRWISE:
7781         case IW_AUTH_CIPHER_GROUP:
7782         case IW_AUTH_KEY_MGMT:
7783                 /*
7784                  * wpa_supplicant will control these internally
7785                  */
7786                 ret = -EOPNOTSUPP;
7787                 break;
7788
7789         case IW_AUTH_TKIP_COUNTERMEASURES:
7790                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7791                 if (!crypt || !crypt->ops->get_flags) {
7792                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7793                                           "crypt not set!\n");
7794                         break;
7795                 }
7796
7797                 param->value = (crypt->ops->get_flags(crypt->priv) &
7798                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7799
7800                 break;
7801
7802         case IW_AUTH_DROP_UNENCRYPTED:
7803                 param->value = ieee->drop_unencrypted;
7804                 break;
7805
7806         case IW_AUTH_80211_AUTH_ALG:
7807                 param->value = priv->ieee->sec.auth_mode;
7808                 break;
7809
7810         case IW_AUTH_WPA_ENABLED:
7811                 param->value = ieee->wpa_enabled;
7812                 break;
7813
7814         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7815                 param->value = ieee->ieee802_1x;
7816                 break;
7817
7818         case IW_AUTH_ROAMING_CONTROL:
7819         case IW_AUTH_PRIVACY_INVOKED:
7820                 param->value = ieee->privacy_invoked;
7821                 break;
7822
7823         default:
7824                 return -EOPNOTSUPP;
7825         }
7826         return 0;
7827 }
7828
7829 /* SIOCSIWENCODEEXT */
7830 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7831                                     struct iw_request_info *info,
7832                                     union iwreq_data *wrqu, char *extra)
7833 {
7834         struct ipw2100_priv *priv = libipw_priv(dev);
7835         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7836 }
7837
7838 /* SIOCGIWENCODEEXT */
7839 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7840                                     struct iw_request_info *info,
7841                                     union iwreq_data *wrqu, char *extra)
7842 {
7843         struct ipw2100_priv *priv = libipw_priv(dev);
7844         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7845 }
7846
7847 /* SIOCSIWMLME */
7848 static int ipw2100_wx_set_mlme(struct net_device *dev,
7849                                struct iw_request_info *info,
7850                                union iwreq_data *wrqu, char *extra)
7851 {
7852         struct ipw2100_priv *priv = libipw_priv(dev);
7853         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7854         __le16 reason;
7855
7856         reason = cpu_to_le16(mlme->reason_code);
7857
7858         switch (mlme->cmd) {
7859         case IW_MLME_DEAUTH:
7860                 // silently ignore
7861                 break;
7862
7863         case IW_MLME_DISASSOC:
7864                 ipw2100_disassociate_bssid(priv);
7865                 break;
7866
7867         default:
7868                 return -EOPNOTSUPP;
7869         }
7870         return 0;
7871 }
7872
7873 /*
7874  *
7875  * IWPRIV handlers
7876  *
7877  */
7878 #ifdef CONFIG_IPW2100_MONITOR
7879 static int ipw2100_wx_set_promisc(struct net_device *dev,
7880                                   struct iw_request_info *info,
7881                                   union iwreq_data *wrqu, char *extra)
7882 {
7883         struct ipw2100_priv *priv = libipw_priv(dev);
7884         int *parms = (int *)extra;
7885         int enable = (parms[0] > 0);
7886         int err = 0;
7887
7888         mutex_lock(&priv->action_mutex);
7889         if (!(priv->status & STATUS_INITIALIZED)) {
7890                 err = -EIO;
7891                 goto done;
7892         }
7893
7894         if (enable) {
7895                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7896                         err = ipw2100_set_channel(priv, parms[1], 0);
7897                         goto done;
7898                 }
7899                 priv->channel = parms[1];
7900                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7901         } else {
7902                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7903                         err = ipw2100_switch_mode(priv, priv->last_mode);
7904         }
7905       done:
7906         mutex_unlock(&priv->action_mutex);
7907         return err;
7908 }
7909
7910 static int ipw2100_wx_reset(struct net_device *dev,
7911                             struct iw_request_info *info,
7912                             union iwreq_data *wrqu, char *extra)
7913 {
7914         struct ipw2100_priv *priv = libipw_priv(dev);
7915         if (priv->status & STATUS_INITIALIZED)
7916                 schedule_reset(priv);
7917         return 0;
7918 }
7919
7920 #endif
7921
7922 static int ipw2100_wx_set_powermode(struct net_device *dev,
7923                                     struct iw_request_info *info,
7924                                     union iwreq_data *wrqu, char *extra)
7925 {
7926         struct ipw2100_priv *priv = libipw_priv(dev);
7927         int err = 0, mode = *(int *)extra;
7928
7929         mutex_lock(&priv->action_mutex);
7930         if (!(priv->status & STATUS_INITIALIZED)) {
7931                 err = -EIO;
7932                 goto done;
7933         }
7934
7935         if ((mode < 0) || (mode > POWER_MODES))
7936                 mode = IPW_POWER_AUTO;
7937
7938         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7939                 err = ipw2100_set_power_mode(priv, mode);
7940       done:
7941         mutex_unlock(&priv->action_mutex);
7942         return err;
7943 }
7944
7945 #define MAX_POWER_STRING 80
7946 static int ipw2100_wx_get_powermode(struct net_device *dev,
7947                                     struct iw_request_info *info,
7948                                     union iwreq_data *wrqu, char *extra)
7949 {
7950         /*
7951          * This can be called at any time.  No action lock required
7952          */
7953
7954         struct ipw2100_priv *priv = libipw_priv(dev);
7955         int level = IPW_POWER_LEVEL(priv->power_mode);
7956         s32 timeout, period;
7957
7958         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7959                 snprintf(extra, MAX_POWER_STRING,
7960                          "Power save level: %d (Off)", level);
7961         } else {
7962                 switch (level) {
7963                 case IPW_POWER_MODE_CAM:
7964                         snprintf(extra, MAX_POWER_STRING,
7965                                  "Power save level: %d (None)", level);
7966                         break;
7967                 case IPW_POWER_AUTO:
7968                         snprintf(extra, MAX_POWER_STRING,
7969                                  "Power save level: %d (Auto)", level);
7970                         break;
7971                 default:
7972                         timeout = timeout_duration[level - 1] / 1000;
7973                         period = period_duration[level - 1] / 1000;
7974                         snprintf(extra, MAX_POWER_STRING,
7975                                  "Power save level: %d "
7976                                  "(Timeout %dms, Period %dms)",
7977                                  level, timeout, period);
7978                 }
7979         }
7980
7981         wrqu->data.length = strlen(extra) + 1;
7982
7983         return 0;
7984 }
7985
7986 static int ipw2100_wx_set_preamble(struct net_device *dev,
7987                                    struct iw_request_info *info,
7988                                    union iwreq_data *wrqu, char *extra)
7989 {
7990         struct ipw2100_priv *priv = libipw_priv(dev);
7991         int err, mode = *(int *)extra;
7992
7993         mutex_lock(&priv->action_mutex);
7994         if (!(priv->status & STATUS_INITIALIZED)) {
7995                 err = -EIO;
7996                 goto done;
7997         }
7998
7999         if (mode == 1)
8000                 priv->config |= CFG_LONG_PREAMBLE;
8001         else if (mode == 0)
8002                 priv->config &= ~CFG_LONG_PREAMBLE;
8003         else {
8004                 err = -EINVAL;
8005                 goto done;
8006         }
8007
8008         err = ipw2100_system_config(priv, 0);
8009
8010       done:
8011         mutex_unlock(&priv->action_mutex);
8012         return err;
8013 }
8014
8015 static int ipw2100_wx_get_preamble(struct net_device *dev,
8016                                    struct iw_request_info *info,
8017                                    union iwreq_data *wrqu, char *extra)
8018 {
8019         /*
8020          * This can be called at any time.  No action lock required
8021          */
8022
8023         struct ipw2100_priv *priv = libipw_priv(dev);
8024
8025         if (priv->config & CFG_LONG_PREAMBLE)
8026                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8027         else
8028                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8029
8030         return 0;
8031 }
8032
8033 #ifdef CONFIG_IPW2100_MONITOR
8034 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8035                                     struct iw_request_info *info,
8036                                     union iwreq_data *wrqu, char *extra)
8037 {
8038         struct ipw2100_priv *priv = libipw_priv(dev);
8039         int err, mode = *(int *)extra;
8040
8041         mutex_lock(&priv->action_mutex);
8042         if (!(priv->status & STATUS_INITIALIZED)) {
8043                 err = -EIO;
8044                 goto done;
8045         }
8046
8047         if (mode == 1)
8048                 priv->config |= CFG_CRC_CHECK;
8049         else if (mode == 0)
8050                 priv->config &= ~CFG_CRC_CHECK;
8051         else {
8052                 err = -EINVAL;
8053                 goto done;
8054         }
8055         err = 0;
8056
8057       done:
8058         mutex_unlock(&priv->action_mutex);
8059         return err;
8060 }
8061
8062 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8063                                     struct iw_request_info *info,
8064                                     union iwreq_data *wrqu, char *extra)
8065 {
8066         /*
8067          * This can be called at any time.  No action lock required
8068          */
8069
8070         struct ipw2100_priv *priv = libipw_priv(dev);
8071
8072         if (priv->config & CFG_CRC_CHECK)
8073                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8074         else
8075                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8076
8077         return 0;
8078 }
8079 #endif                          /* CONFIG_IPW2100_MONITOR */
8080
8081 static iw_handler ipw2100_wx_handlers[] = {
8082         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8083         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8084         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8085         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8086         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8087         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8088         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8089         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8090         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8091         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8092         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8093         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8094         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8095         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8096         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8097         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8098         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8099         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8100         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8101         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8102         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8103         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8104         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8105         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8106         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8107         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8108         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8109         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8110         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8111         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8112         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8113         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8114         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8115         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8116         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8117 };
8118
8119 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8120 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8121 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8122 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8123 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8124 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8125 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8126 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8127
8128 static const struct iw_priv_args ipw2100_private_args[] = {
8129
8130 #ifdef CONFIG_IPW2100_MONITOR
8131         {
8132          IPW2100_PRIV_SET_MONITOR,
8133          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8134         {
8135          IPW2100_PRIV_RESET,
8136          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8137 #endif                          /* CONFIG_IPW2100_MONITOR */
8138
8139         {
8140          IPW2100_PRIV_SET_POWER,
8141          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8142         {
8143          IPW2100_PRIV_GET_POWER,
8144          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8145          "get_power"},
8146         {
8147          IPW2100_PRIV_SET_LONGPREAMBLE,
8148          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8149         {
8150          IPW2100_PRIV_GET_LONGPREAMBLE,
8151          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8152 #ifdef CONFIG_IPW2100_MONITOR
8153         {
8154          IPW2100_PRIV_SET_CRC_CHECK,
8155          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8156         {
8157          IPW2100_PRIV_GET_CRC_CHECK,
8158          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8159 #endif                          /* CONFIG_IPW2100_MONITOR */
8160 };
8161
8162 static iw_handler ipw2100_private_handler[] = {
8163 #ifdef CONFIG_IPW2100_MONITOR
8164         ipw2100_wx_set_promisc,
8165         ipw2100_wx_reset,
8166 #else                           /* CONFIG_IPW2100_MONITOR */
8167         NULL,
8168         NULL,
8169 #endif                          /* CONFIG_IPW2100_MONITOR */
8170         ipw2100_wx_set_powermode,
8171         ipw2100_wx_get_powermode,
8172         ipw2100_wx_set_preamble,
8173         ipw2100_wx_get_preamble,
8174 #ifdef CONFIG_IPW2100_MONITOR
8175         ipw2100_wx_set_crc_check,
8176         ipw2100_wx_get_crc_check,
8177 #else                           /* CONFIG_IPW2100_MONITOR */
8178         NULL,
8179         NULL,
8180 #endif                          /* CONFIG_IPW2100_MONITOR */
8181 };
8182
8183 /*
8184  * Get wireless statistics.
8185  * Called by /proc/net/wireless
8186  * Also called by SIOCGIWSTATS
8187  */
8188 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8189 {
8190         enum {
8191                 POOR = 30,
8192                 FAIR = 60,
8193                 GOOD = 80,
8194                 VERY_GOOD = 90,
8195                 EXCELLENT = 95,
8196                 PERFECT = 100
8197         };
8198         int rssi_qual;
8199         int tx_qual;
8200         int beacon_qual;
8201         int quality;
8202
8203         struct ipw2100_priv *priv = libipw_priv(dev);
8204         struct iw_statistics *wstats;
8205         u32 rssi, tx_retries, missed_beacons, tx_failures;
8206         u32 ord_len = sizeof(u32);
8207
8208         if (!priv)
8209                 return (struct iw_statistics *)NULL;
8210
8211         wstats = &priv->wstats;
8212
8213         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8214          * ipw2100_wx_wireless_stats seems to be called before fw is
8215          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8216          * and associated; if not associcated, the values are all meaningless
8217          * anyway, so set them all to NULL and INVALID */
8218         if (!(priv->status & STATUS_ASSOCIATED)) {
8219                 wstats->miss.beacon = 0;
8220                 wstats->discard.retries = 0;
8221                 wstats->qual.qual = 0;
8222                 wstats->qual.level = 0;
8223                 wstats->qual.noise = 0;
8224                 wstats->qual.updated = 7;
8225                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8226                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8227                 return wstats;
8228         }
8229
8230         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8231                                 &missed_beacons, &ord_len))
8232                 goto fail_get_ordinal;
8233
8234         /* If we don't have a connection the quality and level is 0 */
8235         if (!(priv->status & STATUS_ASSOCIATED)) {
8236                 wstats->qual.qual = 0;
8237                 wstats->qual.level = 0;
8238         } else {
8239                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8240                                         &rssi, &ord_len))
8241                         goto fail_get_ordinal;
8242                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8243                 if (rssi < 10)
8244                         rssi_qual = rssi * POOR / 10;
8245                 else if (rssi < 15)
8246                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8247                 else if (rssi < 20)
8248                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8249                 else if (rssi < 30)
8250                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8251                             10 + GOOD;
8252                 else
8253                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8254                             10 + VERY_GOOD;
8255
8256                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8257                                         &tx_retries, &ord_len))
8258                         goto fail_get_ordinal;
8259
8260                 if (tx_retries > 75)
8261                         tx_qual = (90 - tx_retries) * POOR / 15;
8262                 else if (tx_retries > 70)
8263                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8264                 else if (tx_retries > 65)
8265                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8266                 else if (tx_retries > 50)
8267                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8268                             15 + GOOD;
8269                 else
8270                         tx_qual = (50 - tx_retries) *
8271                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8272
8273                 if (missed_beacons > 50)
8274                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8275                 else if (missed_beacons > 40)
8276                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8277                             10 + POOR;
8278                 else if (missed_beacons > 32)
8279                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8280                             18 + FAIR;
8281                 else if (missed_beacons > 20)
8282                         beacon_qual = (32 - missed_beacons) *
8283                             (VERY_GOOD - GOOD) / 20 + GOOD;
8284                 else
8285                         beacon_qual = (20 - missed_beacons) *
8286                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8287
8288                 quality = min(tx_qual, rssi_qual);
8289                 quality = min(beacon_qual, quality);
8290
8291 #ifdef CONFIG_IPW2100_DEBUG
8292                 if (beacon_qual == quality)
8293                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8294                 else if (tx_qual == quality)
8295                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8296                 else if (quality != 100)
8297                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8298                 else
8299                         IPW_DEBUG_WX("Quality not clamped.\n");
8300 #endif
8301
8302                 wstats->qual.qual = quality;
8303                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8304         }
8305
8306         wstats->qual.noise = 0;
8307         wstats->qual.updated = 7;
8308         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8309
8310         /* FIXME: this is percent and not a # */
8311         wstats->miss.beacon = missed_beacons;
8312
8313         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8314                                 &tx_failures, &ord_len))
8315                 goto fail_get_ordinal;
8316         wstats->discard.retries = tx_failures;
8317
8318         return wstats;
8319
8320       fail_get_ordinal:
8321         IPW_DEBUG_WX("failed querying ordinals.\n");
8322
8323         return (struct iw_statistics *)NULL;
8324 }
8325
8326 static struct iw_handler_def ipw2100_wx_handler_def = {
8327         .standard = ipw2100_wx_handlers,
8328         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8329         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8330         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8331         .private = (iw_handler *) ipw2100_private_handler,
8332         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8333         .get_wireless_stats = ipw2100_wx_wireless_stats,
8334 };
8335
8336 static void ipw2100_wx_event_work(struct work_struct *work)
8337 {
8338         struct ipw2100_priv *priv =
8339                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8340         union iwreq_data wrqu;
8341         unsigned int len = ETH_ALEN;
8342
8343         if (priv->status & STATUS_STOPPING)
8344                 return;
8345
8346         mutex_lock(&priv->action_mutex);
8347
8348         IPW_DEBUG_WX("enter\n");
8349
8350         mutex_unlock(&priv->action_mutex);
8351
8352         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8353
8354         /* Fetch BSSID from the hardware */
8355         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8356             priv->status & STATUS_RF_KILL_MASK ||
8357             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8358                                 &priv->bssid, &len)) {
8359                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8360         } else {
8361                 /* We now have the BSSID, so can finish setting to the full
8362                  * associated state */
8363                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8364                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8365                 priv->status &= ~STATUS_ASSOCIATING;
8366                 priv->status |= STATUS_ASSOCIATED;
8367                 netif_carrier_on(priv->net_dev);
8368                 netif_wake_queue(priv->net_dev);
8369         }
8370
8371         if (!(priv->status & STATUS_ASSOCIATED)) {
8372                 IPW_DEBUG_WX("Configuring ESSID\n");
8373                 mutex_lock(&priv->action_mutex);
8374                 /* This is a disassociation event, so kick the firmware to
8375                  * look for another AP */
8376                 if (priv->config & CFG_STATIC_ESSID)
8377                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8378                                           0);
8379                 else
8380                         ipw2100_set_essid(priv, NULL, 0, 0);
8381                 mutex_unlock(&priv->action_mutex);
8382         }
8383
8384         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8385 }
8386
8387 #define IPW2100_FW_MAJOR_VERSION 1
8388 #define IPW2100_FW_MINOR_VERSION 3
8389
8390 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8391 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8392
8393 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8394                              IPW2100_FW_MAJOR_VERSION)
8395
8396 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8397 "." __stringify(IPW2100_FW_MINOR_VERSION)
8398
8399 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8400
8401 /*
8402
8403 BINARY FIRMWARE HEADER FORMAT
8404
8405 offset      length   desc
8406 0           2        version
8407 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8408 4           4        fw_len
8409 8           4        uc_len
8410 C           fw_len   firmware data
8411 12 + fw_len uc_len   microcode data
8412
8413 */
8414
8415 struct ipw2100_fw_header {
8416         short version;
8417         short mode;
8418         unsigned int fw_size;
8419         unsigned int uc_size;
8420 } __packed;
8421
8422 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8423 {
8424         struct ipw2100_fw_header *h =
8425             (struct ipw2100_fw_header *)fw->fw_entry->data;
8426
8427         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8428                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8429                        "(detected version id of %u). "
8430                        "See Documentation/networking/README.ipw2100\n",
8431                        h->version);
8432                 return 1;
8433         }
8434
8435         fw->version = h->version;
8436         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8437         fw->fw.size = h->fw_size;
8438         fw->uc.data = fw->fw.data + h->fw_size;
8439         fw->uc.size = h->uc_size;
8440
8441         return 0;
8442 }
8443
8444 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8445                                 struct ipw2100_fw *fw)
8446 {
8447         char *fw_name;
8448         int rc;
8449
8450         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8451                        priv->net_dev->name);
8452
8453         switch (priv->ieee->iw_mode) {
8454         case IW_MODE_ADHOC:
8455                 fw_name = IPW2100_FW_NAME("-i");
8456                 break;
8457 #ifdef CONFIG_IPW2100_MONITOR
8458         case IW_MODE_MONITOR:
8459                 fw_name = IPW2100_FW_NAME("-p");
8460                 break;
8461 #endif
8462         case IW_MODE_INFRA:
8463         default:
8464                 fw_name = IPW2100_FW_NAME("");
8465                 break;
8466         }
8467
8468         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8469
8470         if (rc < 0) {
8471                 printk(KERN_ERR DRV_NAME ": "
8472                        "%s: Firmware '%s' not available or load failed.\n",
8473                        priv->net_dev->name, fw_name);
8474                 return rc;
8475         }
8476         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8477                        fw->fw_entry->size);
8478
8479         ipw2100_mod_firmware_load(fw);
8480
8481         return 0;
8482 }
8483
8484 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8485 #ifdef CONFIG_IPW2100_MONITOR
8486 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8487 #endif
8488 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8489
8490 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8491                                      struct ipw2100_fw *fw)
8492 {
8493         fw->version = 0;
8494         release_firmware(fw->fw_entry);
8495         fw->fw_entry = NULL;
8496 }
8497
8498 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8499                                  size_t max)
8500 {
8501         char ver[MAX_FW_VERSION_LEN];
8502         u32 len = MAX_FW_VERSION_LEN;
8503         u32 tmp;
8504         int i;
8505         /* firmware version is an ascii string (max len of 14) */
8506         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8507                 return -EIO;
8508         tmp = max;
8509         if (len >= max)
8510                 len = max - 1;
8511         for (i = 0; i < len; i++)
8512                 buf[i] = ver[i];
8513         buf[i] = '\0';
8514         return tmp;
8515 }
8516
8517 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8518                                     size_t max)
8519 {
8520         u32 ver;
8521         u32 len = sizeof(ver);
8522         /* microcode version is a 32 bit integer */
8523         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8524                 return -EIO;
8525         return snprintf(buf, max, "%08X", ver);
8526 }
8527
8528 /*
8529  * On exit, the firmware will have been freed from the fw list
8530  */
8531 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8532 {
8533         /* firmware is constructed of N contiguous entries, each entry is
8534          * structured as:
8535          *
8536          * offset    sie         desc
8537          * 0         4           address to write to
8538          * 4         2           length of data run
8539          * 6         length      data
8540          */
8541         unsigned int addr;
8542         unsigned short len;
8543
8544         const unsigned char *firmware_data = fw->fw.data;
8545         unsigned int firmware_data_left = fw->fw.size;
8546
8547         while (firmware_data_left > 0) {
8548                 addr = *(u32 *) (firmware_data);
8549                 firmware_data += 4;
8550                 firmware_data_left -= 4;
8551
8552                 len = *(u16 *) (firmware_data);
8553                 firmware_data += 2;
8554                 firmware_data_left -= 2;
8555
8556                 if (len > 32) {
8557                         printk(KERN_ERR DRV_NAME ": "
8558                                "Invalid firmware run-length of %d bytes\n",
8559                                len);
8560                         return -EINVAL;
8561                 }
8562
8563                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8564                 firmware_data += len;
8565                 firmware_data_left -= len;
8566         }
8567
8568         return 0;
8569 }
8570
8571 struct symbol_alive_response {
8572         u8 cmd_id;
8573         u8 seq_num;
8574         u8 ucode_rev;
8575         u8 eeprom_valid;
8576         u16 valid_flags;
8577         u8 IEEE_addr[6];
8578         u16 flags;
8579         u16 pcb_rev;
8580         u16 clock_settle_time;  // 1us LSB
8581         u16 powerup_settle_time;        // 1us LSB
8582         u16 hop_settle_time;    // 1us LSB
8583         u8 date[3];             // month, day, year
8584         u8 time[2];             // hours, minutes
8585         u8 ucode_valid;
8586 };
8587
8588 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8589                                   struct ipw2100_fw *fw)
8590 {
8591         struct net_device *dev = priv->net_dev;
8592         const unsigned char *microcode_data = fw->uc.data;
8593         unsigned int microcode_data_left = fw->uc.size;
8594         void __iomem *reg = priv->ioaddr;
8595
8596         struct symbol_alive_response response;
8597         int i, j;
8598         u8 data;
8599
8600         /* Symbol control */
8601         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8602         readl(reg);
8603         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8604         readl(reg);
8605
8606         /* HW config */
8607         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8608         readl(reg);
8609         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8610         readl(reg);
8611
8612         /* EN_CS_ACCESS bit to reset control store pointer */
8613         write_nic_byte(dev, 0x210000, 0x40);
8614         readl(reg);
8615         write_nic_byte(dev, 0x210000, 0x0);
8616         readl(reg);
8617         write_nic_byte(dev, 0x210000, 0x40);
8618         readl(reg);
8619
8620         /* copy microcode from buffer into Symbol */
8621
8622         while (microcode_data_left > 0) {
8623                 write_nic_byte(dev, 0x210010, *microcode_data++);
8624                 write_nic_byte(dev, 0x210010, *microcode_data++);
8625                 microcode_data_left -= 2;
8626         }
8627
8628         /* EN_CS_ACCESS bit to reset the control store pointer */
8629         write_nic_byte(dev, 0x210000, 0x0);
8630         readl(reg);
8631
8632         /* Enable System (Reg 0)
8633          * first enable causes garbage in RX FIFO */
8634         write_nic_byte(dev, 0x210000, 0x0);
8635         readl(reg);
8636         write_nic_byte(dev, 0x210000, 0x80);
8637         readl(reg);
8638
8639         /* Reset External Baseband Reg */
8640         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8641         readl(reg);
8642         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8643         readl(reg);
8644
8645         /* HW Config (Reg 5) */
8646         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8647         readl(reg);
8648         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8649         readl(reg);
8650
8651         /* Enable System (Reg 0)
8652          * second enable should be OK */
8653         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8654         readl(reg);
8655         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8656
8657         /* check Symbol is enabled - upped this from 5 as it wasn't always
8658          * catching the update */
8659         for (i = 0; i < 10; i++) {
8660                 udelay(10);
8661
8662                 /* check Dino is enabled bit */
8663                 read_nic_byte(dev, 0x210000, &data);
8664                 if (data & 0x1)
8665                         break;
8666         }
8667
8668         if (i == 10) {
8669                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8670                        dev->name);
8671                 return -EIO;
8672         }
8673
8674         /* Get Symbol alive response */
8675         for (i = 0; i < 30; i++) {
8676                 /* Read alive response structure */
8677                 for (j = 0;
8678                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8679                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8680
8681                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8682                         break;
8683                 udelay(10);
8684         }
8685
8686         if (i == 30) {
8687                 printk(KERN_ERR DRV_NAME
8688                        ": %s: No response from Symbol - hw not alive\n",
8689                        dev->name);
8690                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8691                 return -EIO;
8692         }
8693
8694         return 0;
8695 }