]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/wireless/ipw2x00/ipw2100.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[linux-beck.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793                 return 0;
1794         }
1795         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797         lock = LOCK_NONE;
1798         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799                 printk(KERN_ERR DRV_NAME
1800                        ": %s: Failed to clear ordinal lock.\n",
1801                        priv->net_dev->name);
1802                 rc = 1;
1803                 goto exit;
1804         }
1805
1806         priv->status &= ~STATUS_SCANNING;
1807
1808         if (rf_kill_active(priv)) {
1809                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810                        priv->net_dev->name);
1811
1812                 if (priv->stop_rf_kill) {
1813                         priv->stop_rf_kill = 0;
1814                         schedule_delayed_work(&priv->rf_kill,
1815                                               round_jiffies_relative(HZ));
1816                 }
1817
1818                 deferred = 1;
1819         }
1820
1821         /* Turn on the interrupt so that commands can be processed */
1822         ipw2100_enable_interrupts(priv);
1823
1824         /* Send all of the commands that must be sent prior to
1825          * HOST_COMPLETE */
1826         if (ipw2100_adapter_setup(priv)) {
1827                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828                        priv->net_dev->name);
1829                 rc = 1;
1830                 goto exit;
1831         }
1832
1833         if (!deferred) {
1834                 /* Enable the adapter - sends HOST_COMPLETE */
1835                 if (ipw2100_enable_adapter(priv)) {
1836                         printk(KERN_ERR DRV_NAME ": "
1837                                "%s: failed in call to enable adapter.\n",
1838                                priv->net_dev->name);
1839                         ipw2100_hw_stop_adapter(priv);
1840                         rc = 1;
1841                         goto exit;
1842                 }
1843
1844                 /* Start a scan . . . */
1845                 ipw2100_set_scan_options(priv);
1846                 ipw2100_start_scan(priv);
1847         }
1848
1849       exit:
1850         return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855         unsigned long flags;
1856         union iwreq_data wrqu = {
1857                 .ap_addr = {
1858                             .sa_family = ARPHRD_ETHER}
1859         };
1860         int associated = priv->status & STATUS_ASSOCIATED;
1861
1862         /* Kill the RF switch timer */
1863         if (!priv->stop_rf_kill) {
1864                 priv->stop_rf_kill = 1;
1865                 cancel_delayed_work(&priv->rf_kill);
1866         }
1867
1868         /* Kill the firmware hang check timer */
1869         if (!priv->stop_hang_check) {
1870                 priv->stop_hang_check = 1;
1871                 cancel_delayed_work(&priv->hang_check);
1872         }
1873
1874         /* Kill any pending resets */
1875         if (priv->status & STATUS_RESET_PENDING)
1876                 cancel_delayed_work(&priv->reset_work);
1877
1878         /* Make sure the interrupt is on so that FW commands will be
1879          * processed correctly */
1880         spin_lock_irqsave(&priv->low_lock, flags);
1881         ipw2100_enable_interrupts(priv);
1882         spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884         if (ipw2100_hw_stop_adapter(priv))
1885                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886                        priv->net_dev->name);
1887
1888         /* Do not disable the interrupt until _after_ we disable
1889          * the adaptor.  Otherwise the CARD_DISABLE command will never
1890          * be ack'd by the firmware */
1891         spin_lock_irqsave(&priv->low_lock, flags);
1892         ipw2100_disable_interrupts(priv);
1893         spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897         /* We have to signal any supplicant if we are disassociating */
1898         if (associated)
1899                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902         netif_carrier_off(priv->net_dev);
1903         netif_stop_queue(priv->net_dev);
1904 }
1905
1906 static int ipw2100_wdev_init(struct net_device *dev)
1907 {
1908         struct ipw2100_priv *priv = libipw_priv(dev);
1909         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1910         struct wireless_dev *wdev = &priv->ieee->wdev;
1911         int i;
1912
1913         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1914
1915         /* fill-out priv->ieee->bg_band */
1916         if (geo->bg_channels) {
1917                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1918
1919                 bg_band->band = IEEE80211_BAND_2GHZ;
1920                 bg_band->n_channels = geo->bg_channels;
1921                 bg_band->channels = kcalloc(geo->bg_channels,
1922                                             sizeof(struct ieee80211_channel),
1923                                             GFP_KERNEL);
1924                 if (!bg_band->channels) {
1925                         ipw2100_down(priv);
1926                         return -ENOMEM;
1927                 }
1928                 /* translate geo->bg to bg_band.channels */
1929                 for (i = 0; i < geo->bg_channels; i++) {
1930                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1931                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1932                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1933                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1934                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_PASSIVE_SCAN;
1937                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_NO_IBSS;
1940                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1941                                 bg_band->channels[i].flags |=
1942                                         IEEE80211_CHAN_RADAR;
1943                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1944                            LIBIPW_CH_UNIFORM_SPREADING, or
1945                            LIBIPW_CH_B_ONLY... */
1946                 }
1947                 /* point at bitrate info */
1948                 bg_band->bitrates = ipw2100_bg_rates;
1949                 bg_band->n_bitrates = RATE_COUNT;
1950
1951                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1952         }
1953
1954         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1955         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1956
1957         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958         if (wiphy_register(wdev->wiphy))
1959                 return -EIO;
1960         return 0;
1961 }
1962
1963 static void ipw2100_reset_adapter(struct work_struct *work)
1964 {
1965         struct ipw2100_priv *priv =
1966                 container_of(work, struct ipw2100_priv, reset_work.work);
1967         unsigned long flags;
1968         union iwreq_data wrqu = {
1969                 .ap_addr = {
1970                             .sa_family = ARPHRD_ETHER}
1971         };
1972         int associated = priv->status & STATUS_ASSOCIATED;
1973
1974         spin_lock_irqsave(&priv->low_lock, flags);
1975         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1976         priv->resets++;
1977         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1978         priv->status |= STATUS_SECURITY_UPDATED;
1979
1980         /* Force a power cycle even if interface hasn't been opened
1981          * yet */
1982         cancel_delayed_work(&priv->reset_work);
1983         priv->status |= STATUS_RESET_PENDING;
1984         spin_unlock_irqrestore(&priv->low_lock, flags);
1985
1986         mutex_lock(&priv->action_mutex);
1987         /* stop timed checks so that they don't interfere with reset */
1988         priv->stop_hang_check = 1;
1989         cancel_delayed_work(&priv->hang_check);
1990
1991         /* We have to signal any supplicant if we are disassociating */
1992         if (associated)
1993                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1994
1995         ipw2100_up(priv, 0);
1996         mutex_unlock(&priv->action_mutex);
1997
1998 }
1999
2000 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2001 {
2002
2003 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2004         int ret;
2005         unsigned int len, essid_len;
2006         char essid[IW_ESSID_MAX_SIZE];
2007         u32 txrate;
2008         u32 chan;
2009         char *txratename;
2010         u8 bssid[ETH_ALEN];
2011         DECLARE_SSID_BUF(ssid);
2012
2013         /*
2014          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2015          *      an actual MAC of the AP. Seems like FW sets this
2016          *      address too late. Read it later and expose through
2017          *      /proc or schedule a later task to query and update
2018          */
2019
2020         essid_len = IW_ESSID_MAX_SIZE;
2021         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2022                                   essid, &essid_len);
2023         if (ret) {
2024                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2025                                __LINE__);
2026                 return;
2027         }
2028
2029         len = sizeof(u32);
2030         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2031         if (ret) {
2032                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033                                __LINE__);
2034                 return;
2035         }
2036
2037         len = sizeof(u32);
2038         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2039         if (ret) {
2040                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041                                __LINE__);
2042                 return;
2043         }
2044         len = ETH_ALEN;
2045         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2046                                   &len);
2047         if (ret) {
2048                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2049                                __LINE__);
2050                 return;
2051         }
2052         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2053
2054         switch (txrate) {
2055         case TX_RATE_1_MBIT:
2056                 txratename = "1Mbps";
2057                 break;
2058         case TX_RATE_2_MBIT:
2059                 txratename = "2Mbsp";
2060                 break;
2061         case TX_RATE_5_5_MBIT:
2062                 txratename = "5.5Mbps";
2063                 break;
2064         case TX_RATE_11_MBIT:
2065                 txratename = "11Mbps";
2066                 break;
2067         default:
2068                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2069                 txratename = "unknown rate";
2070                 break;
2071         }
2072
2073         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2074                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2075                        txratename, chan, bssid);
2076
2077         /* now we copy read ssid into dev */
2078         if (!(priv->config & CFG_STATIC_ESSID)) {
2079                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2080                 memcpy(priv->essid, essid, priv->essid_len);
2081         }
2082         priv->channel = chan;
2083         memcpy(priv->bssid, bssid, ETH_ALEN);
2084
2085         priv->status |= STATUS_ASSOCIATING;
2086         priv->connect_start = get_seconds();
2087
2088         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2089 }
2090
2091 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2092                              int length, int batch_mode)
2093 {
2094         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2095         struct host_command cmd = {
2096                 .host_command = SSID,
2097                 .host_command_sequence = 0,
2098                 .host_command_length = ssid_len
2099         };
2100         int err;
2101         DECLARE_SSID_BUF(ssid);
2102
2103         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2104
2105         if (ssid_len)
2106                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2107
2108         if (!batch_mode) {
2109                 err = ipw2100_disable_adapter(priv);
2110                 if (err)
2111                         return err;
2112         }
2113
2114         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2115          * disable auto association -- so we cheat by setting a bogus SSID */
2116         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2117                 int i;
2118                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2119                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2120                         bogus[i] = 0x18 + i;
2121                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2122         }
2123
2124         /* NOTE:  We always send the SSID command even if the provided ESSID is
2125          * the same as what we currently think is set. */
2126
2127         err = ipw2100_hw_send_command(priv, &cmd);
2128         if (!err) {
2129                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2130                 memcpy(priv->essid, essid, ssid_len);
2131                 priv->essid_len = ssid_len;
2132         }
2133
2134         if (!batch_mode) {
2135                 if (ipw2100_enable_adapter(priv))
2136                         err = -EIO;
2137         }
2138
2139         return err;
2140 }
2141
2142 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2143 {
2144         DECLARE_SSID_BUF(ssid);
2145
2146         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2147                   "disassociated: '%s' %pM\n",
2148                   print_ssid(ssid, priv->essid, priv->essid_len),
2149                   priv->bssid);
2150
2151         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2152
2153         if (priv->status & STATUS_STOPPING) {
2154                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2155                 return;
2156         }
2157
2158         memset(priv->bssid, 0, ETH_ALEN);
2159         memset(priv->ieee->bssid, 0, ETH_ALEN);
2160
2161         netif_carrier_off(priv->net_dev);
2162         netif_stop_queue(priv->net_dev);
2163
2164         if (!(priv->status & STATUS_RUNNING))
2165                 return;
2166
2167         if (priv->status & STATUS_SECURITY_UPDATED)
2168                 schedule_delayed_work(&priv->security_work, 0);
2169
2170         schedule_delayed_work(&priv->wx_event_work, 0);
2171 }
2172
2173 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2174 {
2175         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2176                        priv->net_dev->name);
2177
2178         /* RF_KILL is now enabled (else we wouldn't be here) */
2179         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2180         priv->status |= STATUS_RF_KILL_HW;
2181
2182         /* Make sure the RF Kill check timer is running */
2183         priv->stop_rf_kill = 0;
2184         cancel_delayed_work(&priv->rf_kill);
2185         schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2186 }
2187
2188 static void send_scan_event(void *data)
2189 {
2190         struct ipw2100_priv *priv = data;
2191         union iwreq_data wrqu;
2192
2193         wrqu.data.length = 0;
2194         wrqu.data.flags = 0;
2195         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2196 }
2197
2198 static void ipw2100_scan_event_later(struct work_struct *work)
2199 {
2200         send_scan_event(container_of(work, struct ipw2100_priv,
2201                                         scan_event_later.work));
2202 }
2203
2204 static void ipw2100_scan_event_now(struct work_struct *work)
2205 {
2206         send_scan_event(container_of(work, struct ipw2100_priv,
2207                                         scan_event_now));
2208 }
2209
2210 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2211 {
2212         IPW_DEBUG_SCAN("scan complete\n");
2213         /* Age the scan results... */
2214         priv->ieee->scans++;
2215         priv->status &= ~STATUS_SCANNING;
2216
2217         /* Only userspace-requested scan completion events go out immediately */
2218         if (!priv->user_requested_scan) {
2219                 if (!delayed_work_pending(&priv->scan_event_later))
2220                         schedule_delayed_work(&priv->scan_event_later,
2221                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2222         } else {
2223                 priv->user_requested_scan = 0;
2224                 cancel_delayed_work(&priv->scan_event_later);
2225                 schedule_work(&priv->scan_event_now);
2226         }
2227 }
2228
2229 #ifdef CONFIG_IPW2100_DEBUG
2230 #define IPW2100_HANDLER(v, f) { v, f, # v }
2231 struct ipw2100_status_indicator {
2232         int status;
2233         void (*cb) (struct ipw2100_priv * priv, u32 status);
2234         char *name;
2235 };
2236 #else
2237 #define IPW2100_HANDLER(v, f) { v, f }
2238 struct ipw2100_status_indicator {
2239         int status;
2240         void (*cb) (struct ipw2100_priv * priv, u32 status);
2241 };
2242 #endif                          /* CONFIG_IPW2100_DEBUG */
2243
2244 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2245 {
2246         IPW_DEBUG_SCAN("Scanning...\n");
2247         priv->status |= STATUS_SCANNING;
2248 }
2249
2250 static const struct ipw2100_status_indicator status_handlers[] = {
2251         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2252         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2253         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2254         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2255         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2256         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2257         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2258         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2259         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2260         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2261         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2262         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2263         IPW2100_HANDLER(-1, NULL)
2264 };
2265
2266 static void isr_status_change(struct ipw2100_priv *priv, int status)
2267 {
2268         int i;
2269
2270         if (status == IPW_STATE_SCANNING &&
2271             priv->status & STATUS_ASSOCIATED &&
2272             !(priv->status & STATUS_SCANNING)) {
2273                 IPW_DEBUG_INFO("Scan detected while associated, with "
2274                                "no scan request.  Restarting firmware.\n");
2275
2276                 /* Wake up any sleeping jobs */
2277                 schedule_reset(priv);
2278         }
2279
2280         for (i = 0; status_handlers[i].status != -1; i++) {
2281                 if (status == status_handlers[i].status) {
2282                         IPW_DEBUG_NOTIF("Status change: %s\n",
2283                                         status_handlers[i].name);
2284                         if (status_handlers[i].cb)
2285                                 status_handlers[i].cb(priv, status);
2286                         priv->wstats.status = status;
2287                         return;
2288                 }
2289         }
2290
2291         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2292 }
2293
2294 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2295                                     struct ipw2100_cmd_header *cmd)
2296 {
2297 #ifdef CONFIG_IPW2100_DEBUG
2298         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2299                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2300                              command_types[cmd->host_command_reg],
2301                              cmd->host_command_reg);
2302         }
2303 #endif
2304         if (cmd->host_command_reg == HOST_COMPLETE)
2305                 priv->status |= STATUS_ENABLED;
2306
2307         if (cmd->host_command_reg == CARD_DISABLE)
2308                 priv->status &= ~STATUS_ENABLED;
2309
2310         priv->status &= ~STATUS_CMD_ACTIVE;
2311
2312         wake_up_interruptible(&priv->wait_command_queue);
2313 }
2314
2315 #ifdef CONFIG_IPW2100_DEBUG
2316 static const char *frame_types[] = {
2317         "COMMAND_STATUS_VAL",
2318         "STATUS_CHANGE_VAL",
2319         "P80211_DATA_VAL",
2320         "P8023_DATA_VAL",
2321         "HOST_NOTIFICATION_VAL"
2322 };
2323 #endif
2324
2325 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2326                                     struct ipw2100_rx_packet *packet)
2327 {
2328         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2329         if (!packet->skb)
2330                 return -ENOMEM;
2331
2332         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2333         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2334                                           sizeof(struct ipw2100_rx),
2335                                           PCI_DMA_FROMDEVICE);
2336         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2337          *       dma_addr */
2338
2339         return 0;
2340 }
2341
2342 #define SEARCH_ERROR   0xffffffff
2343 #define SEARCH_FAIL    0xfffffffe
2344 #define SEARCH_SUCCESS 0xfffffff0
2345 #define SEARCH_DISCARD 0
2346 #define SEARCH_SNAPSHOT 1
2347
2348 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2349 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2350 {
2351         int i;
2352         if (!priv->snapshot[0])
2353                 return;
2354         for (i = 0; i < 0x30; i++)
2355                 kfree(priv->snapshot[i]);
2356         priv->snapshot[0] = NULL;
2357 }
2358
2359 #ifdef IPW2100_DEBUG_C3
2360 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2361 {
2362         int i;
2363         if (priv->snapshot[0])
2364                 return 1;
2365         for (i = 0; i < 0x30; i++) {
2366                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2367                 if (!priv->snapshot[i]) {
2368                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2369                                        "buffer %d\n", priv->net_dev->name, i);
2370                         while (i > 0)
2371                                 kfree(priv->snapshot[--i]);
2372                         priv->snapshot[0] = NULL;
2373                         return 0;
2374                 }
2375         }
2376
2377         return 1;
2378 }
2379
2380 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2381                                     size_t len, int mode)
2382 {
2383         u32 i, j;
2384         u32 tmp;
2385         u8 *s, *d;
2386         u32 ret;
2387
2388         s = in_buf;
2389         if (mode == SEARCH_SNAPSHOT) {
2390                 if (!ipw2100_snapshot_alloc(priv))
2391                         mode = SEARCH_DISCARD;
2392         }
2393
2394         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2395                 read_nic_dword(priv->net_dev, i, &tmp);
2396                 if (mode == SEARCH_SNAPSHOT)
2397                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2398                 if (ret == SEARCH_FAIL) {
2399                         d = (u8 *) & tmp;
2400                         for (j = 0; j < 4; j++) {
2401                                 if (*s != *d) {
2402                                         s = in_buf;
2403                                         continue;
2404                                 }
2405
2406                                 s++;
2407                                 d++;
2408
2409                                 if ((s - in_buf) == len)
2410                                         ret = (i + j) - len + 1;
2411                         }
2412                 } else if (mode == SEARCH_DISCARD)
2413                         return ret;
2414         }
2415
2416         return ret;
2417 }
2418 #endif
2419
2420 /*
2421  *
2422  * 0) Disconnect the SKB from the firmware (just unmap)
2423  * 1) Pack the ETH header into the SKB
2424  * 2) Pass the SKB to the network stack
2425  *
2426  * When packet is provided by the firmware, it contains the following:
2427  *
2428  * .  libipw_hdr
2429  * .  libipw_snap_hdr
2430  *
2431  * The size of the constructed ethernet
2432  *
2433  */
2434 #ifdef IPW2100_RX_DEBUG
2435 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2436 #endif
2437
2438 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2439 {
2440 #ifdef IPW2100_DEBUG_C3
2441         struct ipw2100_status *status = &priv->status_queue.drv[i];
2442         u32 match, reg;
2443         int j;
2444 #endif
2445
2446         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2447                        i * sizeof(struct ipw2100_status));
2448
2449 #ifdef IPW2100_DEBUG_C3
2450         /* Halt the firmware so we can get a good image */
2451         write_register(priv->net_dev, IPW_REG_RESET_REG,
2452                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2453         j = 5;
2454         do {
2455                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2456                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2457
2458                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2459                         break;
2460         } while (j--);
2461
2462         match = ipw2100_match_buf(priv, (u8 *) status,
2463                                   sizeof(struct ipw2100_status),
2464                                   SEARCH_SNAPSHOT);
2465         if (match < SEARCH_SUCCESS)
2466                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2467                                "offset 0x%06X, length %d:\n",
2468                                priv->net_dev->name, match,
2469                                sizeof(struct ipw2100_status));
2470         else
2471                 IPW_DEBUG_INFO("%s: No DMA status match in "
2472                                "Firmware.\n", priv->net_dev->name);
2473
2474         printk_buf((u8 *) priv->status_queue.drv,
2475                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2476 #endif
2477
2478         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2479         priv->net_dev->stats.rx_errors++;
2480         schedule_reset(priv);
2481 }
2482
2483 static void isr_rx(struct ipw2100_priv *priv, int i,
2484                           struct libipw_rx_stats *stats)
2485 {
2486         struct net_device *dev = priv->net_dev;
2487         struct ipw2100_status *status = &priv->status_queue.drv[i];
2488         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2489
2490         IPW_DEBUG_RX("Handler...\n");
2491
2492         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2493                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2494                                "  Dropping.\n",
2495                                dev->name,
2496                                status->frame_size, skb_tailroom(packet->skb));
2497                 dev->stats.rx_errors++;
2498                 return;
2499         }
2500
2501         if (unlikely(!netif_running(dev))) {
2502                 dev->stats.rx_errors++;
2503                 priv->wstats.discard.misc++;
2504                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2505                 return;
2506         }
2507
2508         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2509                      !(priv->status & STATUS_ASSOCIATED))) {
2510                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2511                 priv->wstats.discard.misc++;
2512                 return;
2513         }
2514
2515         pci_unmap_single(priv->pci_dev,
2516                          packet->dma_addr,
2517                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2518
2519         skb_put(packet->skb, status->frame_size);
2520
2521 #ifdef IPW2100_RX_DEBUG
2522         /* Make a copy of the frame so we can dump it to the logs if
2523          * libipw_rx fails */
2524         skb_copy_from_linear_data(packet->skb, packet_data,
2525                                   min_t(u32, status->frame_size,
2526                                              IPW_RX_NIC_BUFFER_LENGTH));
2527 #endif
2528
2529         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2530 #ifdef IPW2100_RX_DEBUG
2531                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2532                                dev->name);
2533                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2534 #endif
2535                 dev->stats.rx_errors++;
2536
2537                 /* libipw_rx failed, so it didn't free the SKB */
2538                 dev_kfree_skb_any(packet->skb);
2539                 packet->skb = NULL;
2540         }
2541
2542         /* We need to allocate a new SKB and attach it to the RDB. */
2543         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2544                 printk(KERN_WARNING DRV_NAME ": "
2545                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2546                        "adapter.\n", dev->name);
2547                 /* TODO: schedule adapter shutdown */
2548                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2549         }
2550
2551         /* Update the RDB entry */
2552         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2553 }
2554
2555 #ifdef CONFIG_IPW2100_MONITOR
2556
2557 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2558                    struct libipw_rx_stats *stats)
2559 {
2560         struct net_device *dev = priv->net_dev;
2561         struct ipw2100_status *status = &priv->status_queue.drv[i];
2562         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2563
2564         /* Magic struct that slots into the radiotap header -- no reason
2565          * to build this manually element by element, we can write it much
2566          * more efficiently than we can parse it. ORDER MATTERS HERE */
2567         struct ipw_rt_hdr {
2568                 struct ieee80211_radiotap_header rt_hdr;
2569                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2570         } *ipw_rt;
2571
2572         IPW_DEBUG_RX("Handler...\n");
2573
2574         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2575                                 sizeof(struct ipw_rt_hdr))) {
2576                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2577                                "  Dropping.\n",
2578                                dev->name,
2579                                status->frame_size,
2580                                skb_tailroom(packet->skb));
2581                 dev->stats.rx_errors++;
2582                 return;
2583         }
2584
2585         if (unlikely(!netif_running(dev))) {
2586                 dev->stats.rx_errors++;
2587                 priv->wstats.discard.misc++;
2588                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2589                 return;
2590         }
2591
2592         if (unlikely(priv->config & CFG_CRC_CHECK &&
2593                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2594                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2595                 dev->stats.rx_errors++;
2596                 return;
2597         }
2598
2599         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2600                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2601         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2602                 packet->skb->data, status->frame_size);
2603
2604         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2605
2606         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2607         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2608         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2609
2610         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2611
2612         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2613
2614         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2615
2616         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2617                 dev->stats.rx_errors++;
2618
2619                 /* libipw_rx failed, so it didn't free the SKB */
2620                 dev_kfree_skb_any(packet->skb);
2621                 packet->skb = NULL;
2622         }
2623
2624         /* We need to allocate a new SKB and attach it to the RDB. */
2625         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2626                 IPW_DEBUG_WARNING(
2627                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2628                         "adapter.\n", dev->name);
2629                 /* TODO: schedule adapter shutdown */
2630                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2631         }
2632
2633         /* Update the RDB entry */
2634         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2635 }
2636
2637 #endif
2638
2639 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2640 {
2641         struct ipw2100_status *status = &priv->status_queue.drv[i];
2642         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2643         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2644
2645         switch (frame_type) {
2646         case COMMAND_STATUS_VAL:
2647                 return (status->frame_size != sizeof(u->rx_data.command));
2648         case STATUS_CHANGE_VAL:
2649                 return (status->frame_size != sizeof(u->rx_data.status));
2650         case HOST_NOTIFICATION_VAL:
2651                 return (status->frame_size < sizeof(u->rx_data.notification));
2652         case P80211_DATA_VAL:
2653         case P8023_DATA_VAL:
2654 #ifdef CONFIG_IPW2100_MONITOR
2655                 return 0;
2656 #else
2657                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2658                 case IEEE80211_FTYPE_MGMT:
2659                 case IEEE80211_FTYPE_CTL:
2660                         return 0;
2661                 case IEEE80211_FTYPE_DATA:
2662                         return (status->frame_size >
2663                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2664                 }
2665 #endif
2666         }
2667
2668         return 1;
2669 }
2670
2671 /*
2672  * ipw2100 interrupts are disabled at this point, and the ISR
2673  * is the only code that calls this method.  So, we do not need
2674  * to play with any locks.
2675  *
2676  * RX Queue works as follows:
2677  *
2678  * Read index - firmware places packet in entry identified by the
2679  *              Read index and advances Read index.  In this manner,
2680  *              Read index will always point to the next packet to
2681  *              be filled--but not yet valid.
2682  *
2683  * Write index - driver fills this entry with an unused RBD entry.
2684  *               This entry has not filled by the firmware yet.
2685  *
2686  * In between the W and R indexes are the RBDs that have been received
2687  * but not yet processed.
2688  *
2689  * The process of handling packets will start at WRITE + 1 and advance
2690  * until it reaches the READ index.
2691  *
2692  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2693  *
2694  */
2695 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2696 {
2697         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2698         struct ipw2100_status_queue *sq = &priv->status_queue;
2699         struct ipw2100_rx_packet *packet;
2700         u16 frame_type;
2701         u32 r, w, i, s;
2702         struct ipw2100_rx *u;
2703         struct libipw_rx_stats stats = {
2704                 .mac_time = jiffies,
2705         };
2706
2707         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2708         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2709
2710         if (r >= rxq->entries) {
2711                 IPW_DEBUG_RX("exit - bad read index\n");
2712                 return;
2713         }
2714
2715         i = (rxq->next + 1) % rxq->entries;
2716         s = i;
2717         while (i != r) {
2718                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2719                    r, rxq->next, i); */
2720
2721                 packet = &priv->rx_buffers[i];
2722
2723                 /* Sync the DMA for the RX buffer so CPU is sure to get
2724                  * the correct values */
2725                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2726                                             sizeof(struct ipw2100_rx),
2727                                             PCI_DMA_FROMDEVICE);
2728
2729                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2730                         ipw2100_corruption_detected(priv, i);
2731                         goto increment;
2732                 }
2733
2734                 u = packet->rxp;
2735                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2736                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2737                 stats.len = sq->drv[i].frame_size;
2738
2739                 stats.mask = 0;
2740                 if (stats.rssi != 0)
2741                         stats.mask |= LIBIPW_STATMASK_RSSI;
2742                 stats.freq = LIBIPW_24GHZ_BAND;
2743
2744                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2745                              priv->net_dev->name, frame_types[frame_type],
2746                              stats.len);
2747
2748                 switch (frame_type) {
2749                 case COMMAND_STATUS_VAL:
2750                         /* Reset Rx watchdog */
2751                         isr_rx_complete_command(priv, &u->rx_data.command);
2752                         break;
2753
2754                 case STATUS_CHANGE_VAL:
2755                         isr_status_change(priv, u->rx_data.status);
2756                         break;
2757
2758                 case P80211_DATA_VAL:
2759                 case P8023_DATA_VAL:
2760 #ifdef CONFIG_IPW2100_MONITOR
2761                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2762                                 isr_rx_monitor(priv, i, &stats);
2763                                 break;
2764                         }
2765 #endif
2766                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2767                                 break;
2768                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2769                         case IEEE80211_FTYPE_MGMT:
2770                                 libipw_rx_mgt(priv->ieee,
2771                                                  &u->rx_data.header, &stats);
2772                                 break;
2773
2774                         case IEEE80211_FTYPE_CTL:
2775                                 break;
2776
2777                         case IEEE80211_FTYPE_DATA:
2778                                 isr_rx(priv, i, &stats);
2779                                 break;
2780
2781                         }
2782                         break;
2783                 }
2784
2785               increment:
2786                 /* clear status field associated with this RBD */
2787                 rxq->drv[i].status.info.field = 0;
2788
2789                 i = (i + 1) % rxq->entries;
2790         }
2791
2792         if (i != s) {
2793                 /* backtrack one entry, wrapping to end if at 0 */
2794                 rxq->next = (i ? i : rxq->entries) - 1;
2795
2796                 write_register(priv->net_dev,
2797                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2798         }
2799 }
2800
2801 /*
2802  * __ipw2100_tx_process
2803  *
2804  * This routine will determine whether the next packet on
2805  * the fw_pend_list has been processed by the firmware yet.
2806  *
2807  * If not, then it does nothing and returns.
2808  *
2809  * If so, then it removes the item from the fw_pend_list, frees
2810  * any associated storage, and places the item back on the
2811  * free list of its source (either msg_free_list or tx_free_list)
2812  *
2813  * TX Queue works as follows:
2814  *
2815  * Read index - points to the next TBD that the firmware will
2816  *              process.  The firmware will read the data, and once
2817  *              done processing, it will advance the Read index.
2818  *
2819  * Write index - driver fills this entry with an constructed TBD
2820  *               entry.  The Write index is not advanced until the
2821  *               packet has been configured.
2822  *
2823  * In between the W and R indexes are the TBDs that have NOT been
2824  * processed.  Lagging behind the R index are packets that have
2825  * been processed but have not been freed by the driver.
2826  *
2827  * In order to free old storage, an internal index will be maintained
2828  * that points to the next packet to be freed.  When all used
2829  * packets have been freed, the oldest index will be the same as the
2830  * firmware's read index.
2831  *
2832  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2833  *
2834  * Because the TBD structure can not contain arbitrary data, the
2835  * driver must keep an internal queue of cached allocations such that
2836  * it can put that data back into the tx_free_list and msg_free_list
2837  * for use by future command and data packets.
2838  *
2839  */
2840 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2841 {
2842         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2843         struct ipw2100_bd *tbd;
2844         struct list_head *element;
2845         struct ipw2100_tx_packet *packet;
2846         int descriptors_used;
2847         int e, i;
2848         u32 r, w, frag_num = 0;
2849
2850         if (list_empty(&priv->fw_pend_list))
2851                 return 0;
2852
2853         element = priv->fw_pend_list.next;
2854
2855         packet = list_entry(element, struct ipw2100_tx_packet, list);
2856         tbd = &txq->drv[packet->index];
2857
2858         /* Determine how many TBD entries must be finished... */
2859         switch (packet->type) {
2860         case COMMAND:
2861                 /* COMMAND uses only one slot; don't advance */
2862                 descriptors_used = 1;
2863                 e = txq->oldest;
2864                 break;
2865
2866         case DATA:
2867                 /* DATA uses two slots; advance and loop position. */
2868                 descriptors_used = tbd->num_fragments;
2869                 frag_num = tbd->num_fragments - 1;
2870                 e = txq->oldest + frag_num;
2871                 e %= txq->entries;
2872                 break;
2873
2874         default:
2875                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2876                        priv->net_dev->name);
2877                 return 0;
2878         }
2879
2880         /* if the last TBD is not done by NIC yet, then packet is
2881          * not ready to be released.
2882          *
2883          */
2884         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2885                       &r);
2886         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2887                       &w);
2888         if (w != txq->next)
2889                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2890                        priv->net_dev->name);
2891
2892         /*
2893          * txq->next is the index of the last packet written txq->oldest is
2894          * the index of the r is the index of the next packet to be read by
2895          * firmware
2896          */
2897
2898         /*
2899          * Quick graphic to help you visualize the following
2900          * if / else statement
2901          *
2902          * ===>|                     s---->|===============
2903          *                               e>|
2904          * | a | b | c | d | e | f | g | h | i | j | k | l
2905          *       r---->|
2906          *               w
2907          *
2908          * w - updated by driver
2909          * r - updated by firmware
2910          * s - start of oldest BD entry (txq->oldest)
2911          * e - end of oldest BD entry
2912          *
2913          */
2914         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2915                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2916                 return 0;
2917         }
2918
2919         list_del(element);
2920         DEC_STAT(&priv->fw_pend_stat);
2921
2922 #ifdef CONFIG_IPW2100_DEBUG
2923         {
2924                 i = txq->oldest;
2925                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2926                              &txq->drv[i],
2927                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2928                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2929
2930                 if (packet->type == DATA) {
2931                         i = (i + 1) % txq->entries;
2932
2933                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2934                                      &txq->drv[i],
2935                                      (u32) (txq->nic + i *
2936                                             sizeof(struct ipw2100_bd)),
2937                                      (u32) txq->drv[i].host_addr,
2938                                      txq->drv[i].buf_length);
2939                 }
2940         }
2941 #endif
2942
2943         switch (packet->type) {
2944         case DATA:
2945                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2946                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2947                                "Expecting DATA TBD but pulled "
2948                                "something else: ids %d=%d.\n",
2949                                priv->net_dev->name, txq->oldest, packet->index);
2950
2951                 /* DATA packet; we have to unmap and free the SKB */
2952                 for (i = 0; i < frag_num; i++) {
2953                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2954
2955                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2956                                      (packet->index + 1 + i) % txq->entries,
2957                                      tbd->host_addr, tbd->buf_length);
2958
2959                         pci_unmap_single(priv->pci_dev,
2960                                          tbd->host_addr,
2961                                          tbd->buf_length, PCI_DMA_TODEVICE);
2962                 }
2963
2964                 libipw_txb_free(packet->info.d_struct.txb);
2965                 packet->info.d_struct.txb = NULL;
2966
2967                 list_add_tail(element, &priv->tx_free_list);
2968                 INC_STAT(&priv->tx_free_stat);
2969
2970                 /* We have a free slot in the Tx queue, so wake up the
2971                  * transmit layer if it is stopped. */
2972                 if (priv->status & STATUS_ASSOCIATED)
2973                         netif_wake_queue(priv->net_dev);
2974
2975                 /* A packet was processed by the hardware, so update the
2976                  * watchdog */
2977                 priv->net_dev->trans_start = jiffies;
2978
2979                 break;
2980
2981         case COMMAND:
2982                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2983                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2984                                "Expecting COMMAND TBD but pulled "
2985                                "something else: ids %d=%d.\n",
2986                                priv->net_dev->name, txq->oldest, packet->index);
2987
2988 #ifdef CONFIG_IPW2100_DEBUG
2989                 if (packet->info.c_struct.cmd->host_command_reg <
2990                     ARRAY_SIZE(command_types))
2991                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2992                                      command_types[packet->info.c_struct.cmd->
2993                                                    host_command_reg],
2994                                      packet->info.c_struct.cmd->
2995                                      host_command_reg,
2996                                      packet->info.c_struct.cmd->cmd_status_reg);
2997 #endif
2998
2999                 list_add_tail(element, &priv->msg_free_list);
3000                 INC_STAT(&priv->msg_free_stat);
3001                 break;
3002         }
3003
3004         /* advance oldest used TBD pointer to start of next entry */
3005         txq->oldest = (e + 1) % txq->entries;
3006         /* increase available TBDs number */
3007         txq->available += descriptors_used;
3008         SET_STAT(&priv->txq_stat, txq->available);
3009
3010         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3011                      jiffies - packet->jiffy_start);
3012
3013         return (!list_empty(&priv->fw_pend_list));
3014 }
3015
3016 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3017 {
3018         int i = 0;
3019
3020         while (__ipw2100_tx_process(priv) && i < 200)
3021                 i++;
3022
3023         if (i == 200) {
3024                 printk(KERN_WARNING DRV_NAME ": "
3025                        "%s: Driver is running slow (%d iters).\n",
3026                        priv->net_dev->name, i);
3027         }
3028 }
3029
3030 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3031 {
3032         struct list_head *element;
3033         struct ipw2100_tx_packet *packet;
3034         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3035         struct ipw2100_bd *tbd;
3036         int next = txq->next;
3037
3038         while (!list_empty(&priv->msg_pend_list)) {
3039                 /* if there isn't enough space in TBD queue, then
3040                  * don't stuff a new one in.
3041                  * NOTE: 3 are needed as a command will take one,
3042                  *       and there is a minimum of 2 that must be
3043                  *       maintained between the r and w indexes
3044                  */
3045                 if (txq->available <= 3) {
3046                         IPW_DEBUG_TX("no room in tx_queue\n");
3047                         break;
3048                 }
3049
3050                 element = priv->msg_pend_list.next;
3051                 list_del(element);
3052                 DEC_STAT(&priv->msg_pend_stat);
3053
3054                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3055
3056                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3057                              &txq->drv[txq->next],
3058                              (u32) (txq->nic + txq->next *
3059                                       sizeof(struct ipw2100_bd)));
3060
3061                 packet->index = txq->next;
3062
3063                 tbd = &txq->drv[txq->next];
3064
3065                 /* initialize TBD */
3066                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3067                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3068                 /* not marking number of fragments causes problems
3069                  * with f/w debug version */
3070                 tbd->num_fragments = 1;
3071                 tbd->status.info.field =
3072                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3073                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3074
3075                 /* update TBD queue counters */
3076                 txq->next++;
3077                 txq->next %= txq->entries;
3078                 txq->available--;
3079                 DEC_STAT(&priv->txq_stat);
3080
3081                 list_add_tail(element, &priv->fw_pend_list);
3082                 INC_STAT(&priv->fw_pend_stat);
3083         }
3084
3085         if (txq->next != next) {
3086                 /* kick off the DMA by notifying firmware the
3087                  * write index has moved; make sure TBD stores are sync'd */
3088                 wmb();
3089                 write_register(priv->net_dev,
3090                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3091                                txq->next);
3092         }
3093 }
3094
3095 /*
3096  * ipw2100_tx_send_data
3097  *
3098  */
3099 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3100 {
3101         struct list_head *element;
3102         struct ipw2100_tx_packet *packet;
3103         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3104         struct ipw2100_bd *tbd;
3105         int next = txq->next;
3106         int i = 0;
3107         struct ipw2100_data_header *ipw_hdr;
3108         struct libipw_hdr_3addr *hdr;
3109
3110         while (!list_empty(&priv->tx_pend_list)) {
3111                 /* if there isn't enough space in TBD queue, then
3112                  * don't stuff a new one in.
3113                  * NOTE: 4 are needed as a data will take two,
3114                  *       and there is a minimum of 2 that must be
3115                  *       maintained between the r and w indexes
3116                  */
3117                 element = priv->tx_pend_list.next;
3118                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3119
3120                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3121                              IPW_MAX_BDS)) {
3122                         /* TODO: Support merging buffers if more than
3123                          * IPW_MAX_BDS are used */
3124                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3125                                        "Increase fragmentation level.\n",
3126                                        priv->net_dev->name);
3127                 }
3128
3129                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3130                         IPW_DEBUG_TX("no room in tx_queue\n");
3131                         break;
3132                 }
3133
3134                 list_del(element);
3135                 DEC_STAT(&priv->tx_pend_stat);
3136
3137                 tbd = &txq->drv[txq->next];
3138
3139                 packet->index = txq->next;
3140
3141                 ipw_hdr = packet->info.d_struct.data;
3142                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3143                     fragments[0]->data;
3144
3145                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3146                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3147                            Addr3 = DA */
3148                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3149                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3150                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3151                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3152                            Addr3 = BSSID */
3153                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3154                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3155                 }
3156
3157                 ipw_hdr->host_command_reg = SEND;
3158                 ipw_hdr->host_command_reg1 = 0;
3159
3160                 /* For now we only support host based encryption */
3161                 ipw_hdr->needs_encryption = 0;
3162                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3163                 if (packet->info.d_struct.txb->nr_frags > 1)
3164                         ipw_hdr->fragment_size =
3165                             packet->info.d_struct.txb->frag_size -
3166                             LIBIPW_3ADDR_LEN;
3167                 else
3168                         ipw_hdr->fragment_size = 0;
3169
3170                 tbd->host_addr = packet->info.d_struct.data_phys;
3171                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3172                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3173                 tbd->status.info.field =
3174                     IPW_BD_STATUS_TX_FRAME_802_3 |
3175                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3176                 txq->next++;
3177                 txq->next %= txq->entries;
3178
3179                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3180                              packet->index, tbd->host_addr, tbd->buf_length);
3181 #ifdef CONFIG_IPW2100_DEBUG
3182                 if (packet->info.d_struct.txb->nr_frags > 1)
3183                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3184                                        packet->info.d_struct.txb->nr_frags);
3185 #endif
3186
3187                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3188                         tbd = &txq->drv[txq->next];
3189                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3190                                 tbd->status.info.field =
3191                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3192                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3193                         else
3194                                 tbd->status.info.field =
3195                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3196                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3197
3198                         tbd->buf_length = packet->info.d_struct.txb->
3199                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3200
3201                         tbd->host_addr = pci_map_single(priv->pci_dev,
3202                                                         packet->info.d_struct.
3203                                                         txb->fragments[i]->
3204                                                         data +
3205                                                         LIBIPW_3ADDR_LEN,
3206                                                         tbd->buf_length,
3207                                                         PCI_DMA_TODEVICE);
3208
3209                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3210                                      txq->next, tbd->host_addr,
3211                                      tbd->buf_length);
3212
3213                         pci_dma_sync_single_for_device(priv->pci_dev,
3214                                                        tbd->host_addr,
3215                                                        tbd->buf_length,
3216                                                        PCI_DMA_TODEVICE);
3217
3218                         txq->next++;
3219                         txq->next %= txq->entries;
3220                 }
3221
3222                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3223                 SET_STAT(&priv->txq_stat, txq->available);
3224
3225                 list_add_tail(element, &priv->fw_pend_list);
3226                 INC_STAT(&priv->fw_pend_stat);
3227         }
3228
3229         if (txq->next != next) {
3230                 /* kick off the DMA by notifying firmware the
3231                  * write index has moved; make sure TBD stores are sync'd */
3232                 write_register(priv->net_dev,
3233                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3234                                txq->next);
3235         }
3236 }
3237
3238 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3239 {
3240         struct net_device *dev = priv->net_dev;
3241         unsigned long flags;
3242         u32 inta, tmp;
3243
3244         spin_lock_irqsave(&priv->low_lock, flags);
3245         ipw2100_disable_interrupts(priv);
3246
3247         read_register(dev, IPW_REG_INTA, &inta);
3248
3249         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3250                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3251
3252         priv->in_isr++;
3253         priv->interrupts++;
3254
3255         /* We do not loop and keep polling for more interrupts as this
3256          * is frowned upon and doesn't play nicely with other potentially
3257          * chained IRQs */
3258         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3259                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3260
3261         if (inta & IPW2100_INTA_FATAL_ERROR) {
3262                 printk(KERN_WARNING DRV_NAME
3263                        ": Fatal interrupt. Scheduling firmware restart.\n");
3264                 priv->inta_other++;
3265                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3266
3267                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3268                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3269                                priv->net_dev->name, priv->fatal_error);
3270
3271                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3272                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3273                                priv->net_dev->name, tmp);
3274
3275                 /* Wake up any sleeping jobs */
3276                 schedule_reset(priv);
3277         }
3278
3279         if (inta & IPW2100_INTA_PARITY_ERROR) {
3280                 printk(KERN_ERR DRV_NAME
3281                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3282                 priv->inta_other++;
3283                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3284         }
3285
3286         if (inta & IPW2100_INTA_RX_TRANSFER) {
3287                 IPW_DEBUG_ISR("RX interrupt\n");
3288
3289                 priv->rx_interrupts++;
3290
3291                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3292
3293                 __ipw2100_rx_process(priv);
3294                 __ipw2100_tx_complete(priv);
3295         }
3296
3297         if (inta & IPW2100_INTA_TX_TRANSFER) {
3298                 IPW_DEBUG_ISR("TX interrupt\n");
3299
3300                 priv->tx_interrupts++;
3301
3302                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3303
3304                 __ipw2100_tx_complete(priv);
3305                 ipw2100_tx_send_commands(priv);
3306                 ipw2100_tx_send_data(priv);
3307         }
3308
3309         if (inta & IPW2100_INTA_TX_COMPLETE) {
3310                 IPW_DEBUG_ISR("TX complete\n");
3311                 priv->inta_other++;
3312                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3313
3314                 __ipw2100_tx_complete(priv);
3315         }
3316
3317         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3318                 /* ipw2100_handle_event(dev); */
3319                 priv->inta_other++;
3320                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3321         }
3322
3323         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3324                 IPW_DEBUG_ISR("FW init done interrupt\n");
3325                 priv->inta_other++;
3326
3327                 read_register(dev, IPW_REG_INTA, &tmp);
3328                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3329                            IPW2100_INTA_PARITY_ERROR)) {
3330                         write_register(dev, IPW_REG_INTA,
3331                                        IPW2100_INTA_FATAL_ERROR |
3332                                        IPW2100_INTA_PARITY_ERROR);
3333                 }
3334
3335                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3336         }
3337
3338         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3339                 IPW_DEBUG_ISR("Status change interrupt\n");
3340                 priv->inta_other++;
3341                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3342         }
3343
3344         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3345                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3346                 priv->inta_other++;
3347                 write_register(dev, IPW_REG_INTA,
3348                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3349         }
3350
3351         priv->in_isr--;
3352         ipw2100_enable_interrupts(priv);
3353
3354         spin_unlock_irqrestore(&priv->low_lock, flags);
3355
3356         IPW_DEBUG_ISR("exit\n");
3357 }
3358
3359 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3360 {
3361         struct ipw2100_priv *priv = data;
3362         u32 inta, inta_mask;
3363
3364         if (!data)
3365                 return IRQ_NONE;
3366
3367         spin_lock(&priv->low_lock);
3368
3369         /* We check to see if we should be ignoring interrupts before
3370          * we touch the hardware.  During ucode load if we try and handle
3371          * an interrupt we can cause keyboard problems as well as cause
3372          * the ucode to fail to initialize */
3373         if (!(priv->status & STATUS_INT_ENABLED)) {
3374                 /* Shared IRQ */
3375                 goto none;
3376         }
3377
3378         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3379         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3380
3381         if (inta == 0xFFFFFFFF) {
3382                 /* Hardware disappeared */
3383                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3384                 goto none;
3385         }
3386
3387         inta &= IPW_INTERRUPT_MASK;
3388
3389         if (!(inta & inta_mask)) {
3390                 /* Shared interrupt */
3391                 goto none;
3392         }
3393
3394         /* We disable the hardware interrupt here just to prevent unneeded
3395          * calls to be made.  We disable this again within the actual
3396          * work tasklet, so if another part of the code re-enables the
3397          * interrupt, that is fine */
3398         ipw2100_disable_interrupts(priv);
3399
3400         tasklet_schedule(&priv->irq_tasklet);
3401         spin_unlock(&priv->low_lock);
3402
3403         return IRQ_HANDLED;
3404       none:
3405         spin_unlock(&priv->low_lock);
3406         return IRQ_NONE;
3407 }
3408
3409 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3410                               struct net_device *dev, int pri)
3411 {
3412         struct ipw2100_priv *priv = libipw_priv(dev);
3413         struct list_head *element;
3414         struct ipw2100_tx_packet *packet;
3415         unsigned long flags;
3416
3417         spin_lock_irqsave(&priv->low_lock, flags);
3418
3419         if (!(priv->status & STATUS_ASSOCIATED)) {
3420                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3421                 priv->net_dev->stats.tx_carrier_errors++;
3422                 netif_stop_queue(dev);
3423                 goto fail_unlock;
3424         }
3425
3426         if (list_empty(&priv->tx_free_list))
3427                 goto fail_unlock;
3428
3429         element = priv->tx_free_list.next;
3430         packet = list_entry(element, struct ipw2100_tx_packet, list);
3431
3432         packet->info.d_struct.txb = txb;
3433
3434         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3435         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3436
3437         packet->jiffy_start = jiffies;
3438
3439         list_del(element);
3440         DEC_STAT(&priv->tx_free_stat);
3441
3442         list_add_tail(element, &priv->tx_pend_list);
3443         INC_STAT(&priv->tx_pend_stat);
3444
3445         ipw2100_tx_send_data(priv);
3446
3447         spin_unlock_irqrestore(&priv->low_lock, flags);
3448         return NETDEV_TX_OK;
3449
3450 fail_unlock:
3451         netif_stop_queue(dev);
3452         spin_unlock_irqrestore(&priv->low_lock, flags);
3453         return NETDEV_TX_BUSY;
3454 }
3455
3456 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3457 {
3458         int i, j, err = -EINVAL;
3459         void *v;
3460         dma_addr_t p;
3461
3462         priv->msg_buffers =
3463             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3464                     GFP_KERNEL);
3465         if (!priv->msg_buffers)
3466                 return -ENOMEM;
3467
3468         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3469                 v = pci_alloc_consistent(priv->pci_dev,
3470                                          sizeof(struct ipw2100_cmd_header), &p);
3471                 if (!v) {
3472                         printk(KERN_ERR DRV_NAME ": "
3473                                "%s: PCI alloc failed for msg "
3474                                "buffers.\n", priv->net_dev->name);
3475                         err = -ENOMEM;
3476                         break;
3477                 }
3478
3479                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3480
3481                 priv->msg_buffers[i].type = COMMAND;
3482                 priv->msg_buffers[i].info.c_struct.cmd =
3483                     (struct ipw2100_cmd_header *)v;
3484                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3485         }
3486
3487         if (i == IPW_COMMAND_POOL_SIZE)
3488                 return 0;
3489
3490         for (j = 0; j < i; j++) {
3491                 pci_free_consistent(priv->pci_dev,
3492                                     sizeof(struct ipw2100_cmd_header),
3493                                     priv->msg_buffers[j].info.c_struct.cmd,
3494                                     priv->msg_buffers[j].info.c_struct.
3495                                     cmd_phys);
3496         }
3497
3498         kfree(priv->msg_buffers);
3499         priv->msg_buffers = NULL;
3500
3501         return err;
3502 }
3503
3504 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3505 {
3506         int i;
3507
3508         INIT_LIST_HEAD(&priv->msg_free_list);
3509         INIT_LIST_HEAD(&priv->msg_pend_list);
3510
3511         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3512                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3513         SET_STAT(&priv->msg_free_stat, i);
3514
3515         return 0;
3516 }
3517
3518 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3519 {
3520         int i;
3521
3522         if (!priv->msg_buffers)
3523                 return;
3524
3525         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3526                 pci_free_consistent(priv->pci_dev,
3527                                     sizeof(struct ipw2100_cmd_header),
3528                                     priv->msg_buffers[i].info.c_struct.cmd,
3529                                     priv->msg_buffers[i].info.c_struct.
3530                                     cmd_phys);
3531         }
3532
3533         kfree(priv->msg_buffers);
3534         priv->msg_buffers = NULL;
3535 }
3536
3537 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3538                         char *buf)
3539 {
3540         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3541         char *out = buf;
3542         int i, j;
3543         u32 val;
3544
3545         for (i = 0; i < 16; i++) {
3546                 out += sprintf(out, "[%08X] ", i * 16);
3547                 for (j = 0; j < 16; j += 4) {
3548                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3549                         out += sprintf(out, "%08X ", val);
3550                 }
3551                 out += sprintf(out, "\n");
3552         }
3553
3554         return out - buf;
3555 }
3556
3557 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3558
3559 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3560                         char *buf)
3561 {
3562         struct ipw2100_priv *p = dev_get_drvdata(d);
3563         return sprintf(buf, "0x%08x\n", (int)p->config);
3564 }
3565
3566 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3567
3568 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3569                            char *buf)
3570 {
3571         struct ipw2100_priv *p = dev_get_drvdata(d);
3572         return sprintf(buf, "0x%08x\n", (int)p->status);
3573 }
3574
3575 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3576
3577 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3578                                char *buf)
3579 {
3580         struct ipw2100_priv *p = dev_get_drvdata(d);
3581         return sprintf(buf, "0x%08x\n", (int)p->capability);
3582 }
3583
3584 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3585
3586 #define IPW2100_REG(x) { IPW_ ##x, #x }
3587 static const struct {
3588         u32 addr;
3589         const char *name;
3590 } hw_data[] = {
3591 IPW2100_REG(REG_GP_CNTRL),
3592             IPW2100_REG(REG_GPIO),
3593             IPW2100_REG(REG_INTA),
3594             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3595 #define IPW2100_NIC(x, s) { x, #x, s }
3596 static const struct {
3597         u32 addr;
3598         const char *name;
3599         size_t size;
3600 } nic_data[] = {
3601 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3602             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3603 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3604 static const struct {
3605         u8 index;
3606         const char *name;
3607         const char *desc;
3608 } ord_data[] = {
3609 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3610             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3611                                 "successful Host Tx's (MSDU)"),
3612             IPW2100_ORD(STAT_TX_DIR_DATA,
3613                                 "successful Directed Tx's (MSDU)"),
3614             IPW2100_ORD(STAT_TX_DIR_DATA1,
3615                                 "successful Directed Tx's (MSDU) @ 1MB"),
3616             IPW2100_ORD(STAT_TX_DIR_DATA2,
3617                                 "successful Directed Tx's (MSDU) @ 2MB"),
3618             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3619                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3620             IPW2100_ORD(STAT_TX_DIR_DATA11,
3621                                 "successful Directed Tx's (MSDU) @ 11MB"),
3622             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3623                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3624             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3625                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3626             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3627                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3628             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3629                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3630             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3631             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3632             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3633             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3634             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3635             IPW2100_ORD(STAT_TX_ASSN_RESP,
3636                                 "successful Association response Tx's"),
3637             IPW2100_ORD(STAT_TX_REASSN,
3638                                 "successful Reassociation Tx's"),
3639             IPW2100_ORD(STAT_TX_REASSN_RESP,
3640                                 "successful Reassociation response Tx's"),
3641             IPW2100_ORD(STAT_TX_PROBE,
3642                                 "probes successfully transmitted"),
3643             IPW2100_ORD(STAT_TX_PROBE_RESP,
3644                                 "probe responses successfully transmitted"),
3645             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3646             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3647             IPW2100_ORD(STAT_TX_DISASSN,
3648                                 "successful Disassociation TX"),
3649             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3650             IPW2100_ORD(STAT_TX_DEAUTH,
3651                                 "successful Deauthentication TX"),
3652             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3653                                 "Total successful Tx data bytes"),
3654             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3655             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3656             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3657             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3658             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3659             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3660             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3661                                 "times max tries in a hop failed"),
3662             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3663                                 "times disassociation failed"),
3664             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3665             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3666             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3667             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3668             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3669             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3670             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3671                                 "directed packets at 5.5MB"),
3672             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3673             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3674             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3675                                 "nondirected packets at 1MB"),
3676             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3677                                 "nondirected packets at 2MB"),
3678             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3679                                 "nondirected packets at 5.5MB"),
3680             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3681                                 "nondirected packets at 11MB"),
3682             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3683             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3684                                                                     "Rx CTS"),
3685             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3686             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3687             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3688             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3689             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3690             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3691             IPW2100_ORD(STAT_RX_REASSN_RESP,
3692                                 "Reassociation response Rx's"),
3693             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3694             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3695             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3696             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3697             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3698             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3699             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3700             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3701                                 "Total rx data bytes received"),
3702             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3703             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3704             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3705             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3706             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3707             IPW2100_ORD(STAT_RX_DUPLICATE1,
3708                                 "duplicate rx packets at 1MB"),
3709             IPW2100_ORD(STAT_RX_DUPLICATE2,
3710                                 "duplicate rx packets at 2MB"),
3711             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3712                                 "duplicate rx packets at 5.5MB"),
3713             IPW2100_ORD(STAT_RX_DUPLICATE11,
3714                                 "duplicate rx packets at 11MB"),
3715             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3716             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3717             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3718             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3719             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3720                                 "rx frames with invalid protocol"),
3721             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3722             IPW2100_ORD(STAT_RX_NO_BUFFER,
3723                                 "rx frames rejected due to no buffer"),
3724             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3725                                 "rx frames dropped due to missing fragment"),
3726             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3727                                 "rx frames dropped due to non-sequential fragment"),
3728             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3729                                 "rx frames dropped due to unmatched 1st frame"),
3730             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3731                                 "rx frames dropped due to uncompleted frame"),
3732             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3733                                 "ICV errors during decryption"),
3734             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3735             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3736             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3737                                 "poll response timeouts"),
3738             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3739                                 "timeouts waiting for last {broad,multi}cast pkt"),
3740             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3741             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3742             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3743             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3744             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3745                                 "current calculation of % missed beacons"),
3746             IPW2100_ORD(STAT_PERCENT_RETRIES,
3747                                 "current calculation of % missed tx retries"),
3748             IPW2100_ORD(ASSOCIATED_AP_PTR,
3749                                 "0 if not associated, else pointer to AP table entry"),
3750             IPW2100_ORD(AVAILABLE_AP_CNT,
3751                                 "AP's decsribed in the AP table"),
3752             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3753             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3754             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3755             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3756                                 "failures due to response fail"),
3757             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3758             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3759             IPW2100_ORD(STAT_ROAM_INHIBIT,
3760                                 "times roaming was inhibited due to activity"),
3761             IPW2100_ORD(RSSI_AT_ASSN,
3762                                 "RSSI of associated AP at time of association"),
3763             IPW2100_ORD(STAT_ASSN_CAUSE1,
3764                                 "reassociation: no probe response or TX on hop"),
3765             IPW2100_ORD(STAT_ASSN_CAUSE2,
3766                                 "reassociation: poor tx/rx quality"),
3767             IPW2100_ORD(STAT_ASSN_CAUSE3,
3768                                 "reassociation: tx/rx quality (excessive AP load"),
3769             IPW2100_ORD(STAT_ASSN_CAUSE4,
3770                                 "reassociation: AP RSSI level"),
3771             IPW2100_ORD(STAT_ASSN_CAUSE5,
3772                                 "reassociations due to load leveling"),
3773             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3774             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3775                                 "times authentication response failed"),
3776             IPW2100_ORD(STATION_TABLE_CNT,
3777                                 "entries in association table"),
3778             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3779             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3780             IPW2100_ORD(COUNTRY_CODE,
3781                                 "IEEE country code as recv'd from beacon"),
3782             IPW2100_ORD(COUNTRY_CHANNELS,
3783                                 "channels supported by country"),
3784             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3785             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3786             IPW2100_ORD(ANTENNA_DIVERSITY,
3787                                 "TRUE if antenna diversity is disabled"),
3788             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3789             IPW2100_ORD(OUR_FREQ,
3790                                 "current radio freq lower digits - channel ID"),
3791             IPW2100_ORD(RTC_TIME, "current RTC time"),
3792             IPW2100_ORD(PORT_TYPE, "operating mode"),
3793             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3794             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3795             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3796             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3797             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3798             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3799             IPW2100_ORD(CAPABILITIES,
3800                                 "Management frame capability field"),
3801             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3802             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3803             IPW2100_ORD(RTS_THRESHOLD,
3804                                 "Min packet length for RTS handshaking"),
3805             IPW2100_ORD(INT_MODE, "International mode"),
3806             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3807                                 "protocol frag threshold"),
3808             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3809                                 "EEPROM offset in SRAM"),
3810             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3811                                 "EEPROM size in SRAM"),
3812             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3813             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3814                                 "EEPROM IBSS 11b channel set"),
3815             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3816             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3817             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3818             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3819             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3820
3821 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3822                               char *buf)
3823 {
3824         int i;
3825         struct ipw2100_priv *priv = dev_get_drvdata(d);
3826         struct net_device *dev = priv->net_dev;
3827         char *out = buf;
3828         u32 val = 0;
3829
3830         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3831
3832         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3833                 read_register(dev, hw_data[i].addr, &val);
3834                 out += sprintf(out, "%30s [%08X] : %08X\n",
3835                                hw_data[i].name, hw_data[i].addr, val);
3836         }
3837
3838         return out - buf;
3839 }
3840
3841 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3842
3843 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3844                              char *buf)
3845 {
3846         struct ipw2100_priv *priv = dev_get_drvdata(d);
3847         struct net_device *dev = priv->net_dev;
3848         char *out = buf;
3849         int i;
3850
3851         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3852
3853         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3854                 u8 tmp8;
3855                 u16 tmp16;
3856                 u32 tmp32;
3857
3858                 switch (nic_data[i].size) {
3859                 case 1:
3860                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3861                         out += sprintf(out, "%30s [%08X] : %02X\n",
3862                                        nic_data[i].name, nic_data[i].addr,
3863                                        tmp8);
3864                         break;
3865                 case 2:
3866                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3867                         out += sprintf(out, "%30s [%08X] : %04X\n",
3868                                        nic_data[i].name, nic_data[i].addr,
3869                                        tmp16);
3870                         break;
3871                 case 4:
3872                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3873                         out += sprintf(out, "%30s [%08X] : %08X\n",
3874                                        nic_data[i].name, nic_data[i].addr,
3875                                        tmp32);
3876                         break;
3877                 }
3878         }
3879         return out - buf;
3880 }
3881
3882 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3883
3884 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3885                            char *buf)
3886 {
3887         struct ipw2100_priv *priv = dev_get_drvdata(d);
3888         struct net_device *dev = priv->net_dev;
3889         static unsigned long loop = 0;
3890         int len = 0;
3891         u32 buffer[4];
3892         int i;
3893         char line[81];
3894
3895         if (loop >= 0x30000)
3896                 loop = 0;
3897
3898         /* sysfs provides us PAGE_SIZE buffer */
3899         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3900
3901                 if (priv->snapshot[0])
3902                         for (i = 0; i < 4; i++)
3903                                 buffer[i] =
3904                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3905                 else
3906                         for (i = 0; i < 4; i++)
3907                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3908
3909                 if (priv->dump_raw)
3910                         len += sprintf(buf + len,
3911                                        "%c%c%c%c"
3912                                        "%c%c%c%c"
3913                                        "%c%c%c%c"
3914                                        "%c%c%c%c",
3915                                        ((u8 *) buffer)[0x0],
3916                                        ((u8 *) buffer)[0x1],
3917                                        ((u8 *) buffer)[0x2],
3918                                        ((u8 *) buffer)[0x3],
3919                                        ((u8 *) buffer)[0x4],
3920                                        ((u8 *) buffer)[0x5],
3921                                        ((u8 *) buffer)[0x6],
3922                                        ((u8 *) buffer)[0x7],
3923                                        ((u8 *) buffer)[0x8],
3924                                        ((u8 *) buffer)[0x9],
3925                                        ((u8 *) buffer)[0xa],
3926                                        ((u8 *) buffer)[0xb],
3927                                        ((u8 *) buffer)[0xc],
3928                                        ((u8 *) buffer)[0xd],
3929                                        ((u8 *) buffer)[0xe],
3930                                        ((u8 *) buffer)[0xf]);
3931                 else
3932                         len += sprintf(buf + len, "%s\n",
3933                                        snprint_line(line, sizeof(line),
3934                                                     (u8 *) buffer, 16, loop));
3935                 loop += 16;
3936         }
3937
3938         return len;
3939 }
3940
3941 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3942                             const char *buf, size_t count)
3943 {
3944         struct ipw2100_priv *priv = dev_get_drvdata(d);
3945         struct net_device *dev = priv->net_dev;
3946         const char *p = buf;
3947
3948         (void)dev;              /* kill unused-var warning for debug-only code */
3949
3950         if (count < 1)
3951                 return count;
3952
3953         if (p[0] == '1' ||
3954             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3955                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3956                                dev->name);
3957                 priv->dump_raw = 1;
3958
3959         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3960                                    tolower(p[1]) == 'f')) {
3961                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3962                                dev->name);
3963                 priv->dump_raw = 0;
3964
3965         } else if (tolower(p[0]) == 'r') {
3966                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3967                 ipw2100_snapshot_free(priv);
3968
3969         } else
3970                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3971                                "reset = clear memory snapshot\n", dev->name);
3972
3973         return count;
3974 }
3975
3976 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3977
3978 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3979                              char *buf)
3980 {
3981         struct ipw2100_priv *priv = dev_get_drvdata(d);
3982         u32 val = 0;
3983         int len = 0;
3984         u32 val_len;
3985         static int loop = 0;
3986
3987         if (priv->status & STATUS_RF_KILL_MASK)
3988                 return 0;
3989
3990         if (loop >= ARRAY_SIZE(ord_data))
3991                 loop = 0;
3992
3993         /* sysfs provides us PAGE_SIZE buffer */
3994         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3995                 val_len = sizeof(u32);
3996
3997                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3998                                         &val_len))
3999                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4000                                        ord_data[loop].index,
4001                                        ord_data[loop].desc);
4002                 else
4003                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4004                                        ord_data[loop].index, val,
4005                                        ord_data[loop].desc);
4006                 loop++;
4007         }
4008
4009         return len;
4010 }
4011
4012 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4013
4014 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4015                           char *buf)
4016 {
4017         struct ipw2100_priv *priv = dev_get_drvdata(d);
4018         char *out = buf;
4019
4020         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4021                        priv->interrupts, priv->tx_interrupts,
4022                        priv->rx_interrupts, priv->inta_other);
4023         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4024         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4025 #ifdef CONFIG_IPW2100_DEBUG
4026         out += sprintf(out, "packet mismatch image: %s\n",
4027                        priv->snapshot[0] ? "YES" : "NO");
4028 #endif
4029
4030         return out - buf;
4031 }
4032
4033 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4034
4035 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4036 {
4037         int err;
4038
4039         if (mode == priv->ieee->iw_mode)
4040                 return 0;
4041
4042         err = ipw2100_disable_adapter(priv);
4043         if (err) {
4044                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4045                        priv->net_dev->name, err);
4046                 return err;
4047         }
4048
4049         switch (mode) {
4050         case IW_MODE_INFRA:
4051                 priv->net_dev->type = ARPHRD_ETHER;
4052                 break;
4053         case IW_MODE_ADHOC:
4054                 priv->net_dev->type = ARPHRD_ETHER;
4055                 break;
4056 #ifdef CONFIG_IPW2100_MONITOR
4057         case IW_MODE_MONITOR:
4058                 priv->last_mode = priv->ieee->iw_mode;
4059                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4060                 break;
4061 #endif                          /* CONFIG_IPW2100_MONITOR */
4062         }
4063
4064         priv->ieee->iw_mode = mode;
4065
4066 #ifdef CONFIG_PM
4067         /* Indicate ipw2100_download_firmware download firmware
4068          * from disk instead of memory. */
4069         ipw2100_firmware.version = 0;
4070 #endif
4071
4072         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4073         priv->reset_backoff = 0;
4074         schedule_reset(priv);
4075
4076         return 0;
4077 }
4078
4079 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4080                               char *buf)
4081 {
4082         struct ipw2100_priv *priv = dev_get_drvdata(d);
4083         int len = 0;
4084
4085 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4086
4087         if (priv->status & STATUS_ASSOCIATED)
4088                 len += sprintf(buf + len, "connected: %lu\n",
4089                                get_seconds() - priv->connect_start);
4090         else
4091                 len += sprintf(buf + len, "not connected\n");
4092
4093         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4094         DUMP_VAR(status, "08lx");
4095         DUMP_VAR(config, "08lx");
4096         DUMP_VAR(capability, "08lx");
4097
4098         len +=
4099             sprintf(buf + len, "last_rtc: %lu\n",
4100                     (unsigned long)priv->last_rtc);
4101
4102         DUMP_VAR(fatal_error, "d");
4103         DUMP_VAR(stop_hang_check, "d");
4104         DUMP_VAR(stop_rf_kill, "d");
4105         DUMP_VAR(messages_sent, "d");
4106
4107         DUMP_VAR(tx_pend_stat.value, "d");
4108         DUMP_VAR(tx_pend_stat.hi, "d");
4109
4110         DUMP_VAR(tx_free_stat.value, "d");
4111         DUMP_VAR(tx_free_stat.lo, "d");
4112
4113         DUMP_VAR(msg_free_stat.value, "d");
4114         DUMP_VAR(msg_free_stat.lo, "d");
4115
4116         DUMP_VAR(msg_pend_stat.value, "d");
4117         DUMP_VAR(msg_pend_stat.hi, "d");
4118
4119         DUMP_VAR(fw_pend_stat.value, "d");
4120         DUMP_VAR(fw_pend_stat.hi, "d");
4121
4122         DUMP_VAR(txq_stat.value, "d");
4123         DUMP_VAR(txq_stat.lo, "d");
4124
4125         DUMP_VAR(ieee->scans, "d");
4126         DUMP_VAR(reset_backoff, "d");
4127
4128         return len;
4129 }
4130
4131 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4132
4133 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4134                             char *buf)
4135 {
4136         struct ipw2100_priv *priv = dev_get_drvdata(d);
4137         char essid[IW_ESSID_MAX_SIZE + 1];
4138         u8 bssid[ETH_ALEN];
4139         u32 chan = 0;
4140         char *out = buf;
4141         unsigned int length;
4142         int ret;
4143
4144         if (priv->status & STATUS_RF_KILL_MASK)
4145                 return 0;
4146
4147         memset(essid, 0, sizeof(essid));
4148         memset(bssid, 0, sizeof(bssid));
4149
4150         length = IW_ESSID_MAX_SIZE;
4151         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4152         if (ret)
4153                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4154                                __LINE__);
4155
4156         length = sizeof(bssid);
4157         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4158                                   bssid, &length);
4159         if (ret)
4160                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4161                                __LINE__);
4162
4163         length = sizeof(u32);
4164         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4165         if (ret)
4166                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4167                                __LINE__);
4168
4169         out += sprintf(out, "ESSID: %s\n", essid);
4170         out += sprintf(out, "BSSID:   %pM\n", bssid);
4171         out += sprintf(out, "Channel: %d\n", chan);
4172
4173         return out - buf;
4174 }
4175
4176 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4177
4178 #ifdef CONFIG_IPW2100_DEBUG
4179 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4180 {
4181         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4182 }
4183
4184 static ssize_t store_debug_level(struct device_driver *d,
4185                                  const char *buf, size_t count)
4186 {
4187         char *p = (char *)buf;
4188         u32 val;
4189
4190         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4191                 p++;
4192                 if (p[0] == 'x' || p[0] == 'X')
4193                         p++;
4194                 val = simple_strtoul(p, &p, 16);
4195         } else
4196                 val = simple_strtoul(p, &p, 10);
4197         if (p == buf)
4198                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4199         else
4200                 ipw2100_debug_level = val;
4201
4202         return strnlen(buf, count);
4203 }
4204
4205 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4206                    store_debug_level);
4207 #endif                          /* CONFIG_IPW2100_DEBUG */
4208
4209 static ssize_t show_fatal_error(struct device *d,
4210                                 struct device_attribute *attr, char *buf)
4211 {
4212         struct ipw2100_priv *priv = dev_get_drvdata(d);
4213         char *out = buf;
4214         int i;
4215
4216         if (priv->fatal_error)
4217                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4218         else
4219                 out += sprintf(out, "0\n");
4220
4221         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4222                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4223                                         IPW2100_ERROR_QUEUE])
4224                         continue;
4225
4226                 out += sprintf(out, "%d. 0x%08X\n", i,
4227                                priv->fatal_errors[(priv->fatal_index - i) %
4228                                                   IPW2100_ERROR_QUEUE]);
4229         }
4230
4231         return out - buf;
4232 }
4233
4234 static ssize_t store_fatal_error(struct device *d,
4235                                  struct device_attribute *attr, const char *buf,
4236                                  size_t count)
4237 {
4238         struct ipw2100_priv *priv = dev_get_drvdata(d);
4239         schedule_reset(priv);
4240         return count;
4241 }
4242
4243 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4244                    store_fatal_error);
4245
4246 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4247                              char *buf)
4248 {
4249         struct ipw2100_priv *priv = dev_get_drvdata(d);
4250         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4251 }
4252
4253 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4254                               const char *buf, size_t count)
4255 {
4256         struct ipw2100_priv *priv = dev_get_drvdata(d);
4257         struct net_device *dev = priv->net_dev;
4258         char buffer[] = "00000000";
4259         unsigned long len =
4260             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4261         unsigned long val;
4262         char *p = buffer;
4263
4264         (void)dev;              /* kill unused-var warning for debug-only code */
4265
4266         IPW_DEBUG_INFO("enter\n");
4267
4268         strncpy(buffer, buf, len);
4269         buffer[len] = 0;
4270
4271         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4272                 p++;
4273                 if (p[0] == 'x' || p[0] == 'X')
4274                         p++;
4275                 val = simple_strtoul(p, &p, 16);
4276         } else
4277                 val = simple_strtoul(p, &p, 10);
4278         if (p == buffer) {
4279                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4280         } else {
4281                 priv->ieee->scan_age = val;
4282                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4283         }
4284
4285         IPW_DEBUG_INFO("exit\n");
4286         return len;
4287 }
4288
4289 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4290
4291 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4292                             char *buf)
4293 {
4294         /* 0 - RF kill not enabled
4295            1 - SW based RF kill active (sysfs)
4296            2 - HW based RF kill active
4297            3 - Both HW and SW baed RF kill active */
4298         struct ipw2100_priv *priv = dev_get_drvdata(d);
4299         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4300             (rf_kill_active(priv) ? 0x2 : 0x0);
4301         return sprintf(buf, "%i\n", val);
4302 }
4303
4304 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4305 {
4306         if ((disable_radio ? 1 : 0) ==
4307             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4308                 return 0;
4309
4310         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4311                           disable_radio ? "OFF" : "ON");
4312
4313         mutex_lock(&priv->action_mutex);
4314
4315         if (disable_radio) {
4316                 priv->status |= STATUS_RF_KILL_SW;
4317                 ipw2100_down(priv);
4318         } else {
4319                 priv->status &= ~STATUS_RF_KILL_SW;
4320                 if (rf_kill_active(priv)) {
4321                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4322                                           "disabled by HW switch\n");
4323                         /* Make sure the RF_KILL check timer is running */
4324                         priv->stop_rf_kill = 0;
4325                         cancel_delayed_work(&priv->rf_kill);
4326                         schedule_delayed_work(&priv->rf_kill,
4327                                               round_jiffies_relative(HZ));
4328                 } else
4329                         schedule_reset(priv);
4330         }
4331
4332         mutex_unlock(&priv->action_mutex);
4333         return 1;
4334 }
4335
4336 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4337                              const char *buf, size_t count)
4338 {
4339         struct ipw2100_priv *priv = dev_get_drvdata(d);
4340         ipw_radio_kill_sw(priv, buf[0] == '1');
4341         return count;
4342 }
4343
4344 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4345
4346 static struct attribute *ipw2100_sysfs_entries[] = {
4347         &dev_attr_hardware.attr,
4348         &dev_attr_registers.attr,
4349         &dev_attr_ordinals.attr,
4350         &dev_attr_pci.attr,
4351         &dev_attr_stats.attr,
4352         &dev_attr_internals.attr,
4353         &dev_attr_bssinfo.attr,
4354         &dev_attr_memory.attr,
4355         &dev_attr_scan_age.attr,
4356         &dev_attr_fatal_error.attr,
4357         &dev_attr_rf_kill.attr,
4358         &dev_attr_cfg.attr,
4359         &dev_attr_status.attr,
4360         &dev_attr_capability.attr,
4361         NULL,
4362 };
4363
4364 static struct attribute_group ipw2100_attribute_group = {
4365         .attrs = ipw2100_sysfs_entries,
4366 };
4367
4368 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4369 {
4370         struct ipw2100_status_queue *q = &priv->status_queue;
4371
4372         IPW_DEBUG_INFO("enter\n");
4373
4374         q->size = entries * sizeof(struct ipw2100_status);
4375         q->drv =
4376             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4377                                                           q->size, &q->nic);
4378         if (!q->drv) {
4379                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4380                 return -ENOMEM;
4381         }
4382
4383         memset(q->drv, 0, q->size);
4384
4385         IPW_DEBUG_INFO("exit\n");
4386
4387         return 0;
4388 }
4389
4390 static void status_queue_free(struct ipw2100_priv *priv)
4391 {
4392         IPW_DEBUG_INFO("enter\n");
4393
4394         if (priv->status_queue.drv) {
4395                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4396                                     priv->status_queue.drv,
4397                                     priv->status_queue.nic);
4398                 priv->status_queue.drv = NULL;
4399         }
4400
4401         IPW_DEBUG_INFO("exit\n");
4402 }
4403
4404 static int bd_queue_allocate(struct ipw2100_priv *priv,
4405                              struct ipw2100_bd_queue *q, int entries)
4406 {
4407         IPW_DEBUG_INFO("enter\n");
4408
4409         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4410
4411         q->entries = entries;
4412         q->size = entries * sizeof(struct ipw2100_bd);
4413         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4414         if (!q->drv) {
4415                 IPW_DEBUG_INFO
4416                     ("can't allocate shared memory for buffer descriptors\n");
4417                 return -ENOMEM;
4418         }
4419         memset(q->drv, 0, q->size);
4420
4421         IPW_DEBUG_INFO("exit\n");
4422
4423         return 0;
4424 }
4425
4426 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4427 {
4428         IPW_DEBUG_INFO("enter\n");
4429
4430         if (!q)
4431                 return;
4432
4433         if (q->drv) {
4434                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4435                 q->drv = NULL;
4436         }
4437
4438         IPW_DEBUG_INFO("exit\n");
4439 }
4440
4441 static void bd_queue_initialize(struct ipw2100_priv *priv,
4442                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4443                                 u32 r, u32 w)
4444 {
4445         IPW_DEBUG_INFO("enter\n");
4446
4447         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4448                        (u32) q->nic);
4449
4450         write_register(priv->net_dev, base, q->nic);
4451         write_register(priv->net_dev, size, q->entries);
4452         write_register(priv->net_dev, r, q->oldest);
4453         write_register(priv->net_dev, w, q->next);
4454
4455         IPW_DEBUG_INFO("exit\n");
4456 }
4457
4458 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4459 {
4460         priv->stop_rf_kill = 1;
4461         priv->stop_hang_check = 1;
4462         cancel_delayed_work_sync(&priv->reset_work);
4463         cancel_delayed_work_sync(&priv->security_work);
4464         cancel_delayed_work_sync(&priv->wx_event_work);
4465         cancel_delayed_work_sync(&priv->hang_check);
4466         cancel_delayed_work_sync(&priv->rf_kill);
4467         cancel_work_sync(&priv->scan_event_now);
4468         cancel_delayed_work_sync(&priv->scan_event_later);
4469 }
4470
4471 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4472 {
4473         int i, j, err = -EINVAL;
4474         void *v;
4475         dma_addr_t p;
4476
4477         IPW_DEBUG_INFO("enter\n");
4478
4479         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4480         if (err) {
4481                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4482                                 priv->net_dev->name);
4483                 return err;
4484         }
4485
4486         priv->tx_buffers =
4487             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4488                     GFP_ATOMIC);
4489         if (!priv->tx_buffers) {
4490                 printk(KERN_ERR DRV_NAME
4491                        ": %s: alloc failed form tx buffers.\n",
4492                        priv->net_dev->name);
4493                 bd_queue_free(priv, &priv->tx_queue);
4494                 return -ENOMEM;
4495         }
4496
4497         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4498                 v = pci_alloc_consistent(priv->pci_dev,
4499                                          sizeof(struct ipw2100_data_header),
4500                                          &p);
4501                 if (!v) {
4502                         printk(KERN_ERR DRV_NAME
4503                                ": %s: PCI alloc failed for tx " "buffers.\n",
4504                                priv->net_dev->name);
4505                         err = -ENOMEM;
4506                         break;
4507                 }
4508
4509                 priv->tx_buffers[i].type = DATA;
4510                 priv->tx_buffers[i].info.d_struct.data =
4511                     (struct ipw2100_data_header *)v;
4512                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4513                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4514         }
4515
4516         if (i == TX_PENDED_QUEUE_LENGTH)
4517                 return 0;
4518
4519         for (j = 0; j < i; j++) {
4520                 pci_free_consistent(priv->pci_dev,
4521                                     sizeof(struct ipw2100_data_header),
4522                                     priv->tx_buffers[j].info.d_struct.data,
4523                                     priv->tx_buffers[j].info.d_struct.
4524                                     data_phys);
4525         }
4526
4527         kfree(priv->tx_buffers);
4528         priv->tx_buffers = NULL;
4529
4530         return err;
4531 }
4532
4533 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4534 {
4535         int i;
4536
4537         IPW_DEBUG_INFO("enter\n");
4538
4539         /*
4540          * reinitialize packet info lists
4541          */
4542         INIT_LIST_HEAD(&priv->fw_pend_list);
4543         INIT_STAT(&priv->fw_pend_stat);
4544
4545         /*
4546          * reinitialize lists
4547          */
4548         INIT_LIST_HEAD(&priv->tx_pend_list);
4549         INIT_LIST_HEAD(&priv->tx_free_list);
4550         INIT_STAT(&priv->tx_pend_stat);
4551         INIT_STAT(&priv->tx_free_stat);
4552
4553         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4554                 /* We simply drop any SKBs that have been queued for
4555                  * transmit */
4556                 if (priv->tx_buffers[i].info.d_struct.txb) {
4557                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4558                                            txb);
4559                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4560                 }
4561
4562                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4563         }
4564
4565         SET_STAT(&priv->tx_free_stat, i);
4566
4567         priv->tx_queue.oldest = 0;
4568         priv->tx_queue.available = priv->tx_queue.entries;
4569         priv->tx_queue.next = 0;
4570         INIT_STAT(&priv->txq_stat);
4571         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4572
4573         bd_queue_initialize(priv, &priv->tx_queue,
4574                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4575                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4576                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4577                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4578
4579         IPW_DEBUG_INFO("exit\n");
4580
4581 }
4582
4583 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4584 {
4585         int i;
4586
4587         IPW_DEBUG_INFO("enter\n");
4588
4589         bd_queue_free(priv, &priv->tx_queue);
4590
4591         if (!priv->tx_buffers)
4592                 return;
4593
4594         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4595                 if (priv->tx_buffers[i].info.d_struct.txb) {
4596                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4597                                            txb);
4598                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4599                 }
4600                 if (priv->tx_buffers[i].info.d_struct.data)
4601                         pci_free_consistent(priv->pci_dev,
4602                                             sizeof(struct ipw2100_data_header),
4603                                             priv->tx_buffers[i].info.d_struct.
4604                                             data,
4605                                             priv->tx_buffers[i].info.d_struct.
4606                                             data_phys);
4607         }
4608
4609         kfree(priv->tx_buffers);
4610         priv->tx_buffers = NULL;
4611
4612         IPW_DEBUG_INFO("exit\n");
4613 }
4614
4615 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4616 {
4617         int i, j, err = -EINVAL;
4618
4619         IPW_DEBUG_INFO("enter\n");
4620
4621         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4622         if (err) {
4623                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4624                 return err;
4625         }
4626
4627         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4628         if (err) {
4629                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4630                 bd_queue_free(priv, &priv->rx_queue);
4631                 return err;
4632         }
4633
4634         /*
4635          * allocate packets
4636          */
4637         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4638                                    sizeof(struct ipw2100_rx_packet),
4639                                    GFP_KERNEL);
4640         if (!priv->rx_buffers) {
4641                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4642
4643                 bd_queue_free(priv, &priv->rx_queue);
4644
4645                 status_queue_free(priv);
4646
4647                 return -ENOMEM;
4648         }
4649
4650         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4651                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4652
4653                 err = ipw2100_alloc_skb(priv, packet);
4654                 if (unlikely(err)) {
4655                         err = -ENOMEM;
4656                         break;
4657                 }
4658
4659                 /* The BD holds the cache aligned address */
4660                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4661                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4662                 priv->status_queue.drv[i].status_fields = 0;
4663         }
4664
4665         if (i == RX_QUEUE_LENGTH)
4666                 return 0;
4667
4668         for (j = 0; j < i; j++) {
4669                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4670                                  sizeof(struct ipw2100_rx_packet),
4671                                  PCI_DMA_FROMDEVICE);
4672                 dev_kfree_skb(priv->rx_buffers[j].skb);
4673         }
4674
4675         kfree(priv->rx_buffers);
4676         priv->rx_buffers = NULL;
4677
4678         bd_queue_free(priv, &priv->rx_queue);
4679
4680         status_queue_free(priv);
4681
4682         return err;
4683 }
4684
4685 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4686 {
4687         IPW_DEBUG_INFO("enter\n");
4688
4689         priv->rx_queue.oldest = 0;
4690         priv->rx_queue.available = priv->rx_queue.entries - 1;
4691         priv->rx_queue.next = priv->rx_queue.entries - 1;
4692
4693         INIT_STAT(&priv->rxq_stat);
4694         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4695
4696         bd_queue_initialize(priv, &priv->rx_queue,
4697                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4698                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4699                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4700                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4701
4702         /* set up the status queue */
4703         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4704                        priv->status_queue.nic);
4705
4706         IPW_DEBUG_INFO("exit\n");
4707 }
4708
4709 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4710 {
4711         int i;
4712
4713         IPW_DEBUG_INFO("enter\n");
4714
4715         bd_queue_free(priv, &priv->rx_queue);
4716         status_queue_free(priv);
4717
4718         if (!priv->rx_buffers)
4719                 return;
4720
4721         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4722                 if (priv->rx_buffers[i].rxp) {
4723                         pci_unmap_single(priv->pci_dev,
4724                                          priv->rx_buffers[i].dma_addr,
4725                                          sizeof(struct ipw2100_rx),
4726                                          PCI_DMA_FROMDEVICE);
4727                         dev_kfree_skb(priv->rx_buffers[i].skb);
4728                 }
4729         }
4730
4731         kfree(priv->rx_buffers);
4732         priv->rx_buffers = NULL;
4733
4734         IPW_DEBUG_INFO("exit\n");
4735 }
4736
4737 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4738 {
4739         u32 length = ETH_ALEN;
4740         u8 addr[ETH_ALEN];
4741
4742         int err;
4743
4744         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4745         if (err) {
4746                 IPW_DEBUG_INFO("MAC address read failed\n");
4747                 return -EIO;
4748         }
4749
4750         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4751         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4752
4753         return 0;
4754 }
4755
4756 /********************************************************************
4757  *
4758  * Firmware Commands
4759  *
4760  ********************************************************************/
4761
4762 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4763 {
4764         struct host_command cmd = {
4765                 .host_command = ADAPTER_ADDRESS,
4766                 .host_command_sequence = 0,
4767                 .host_command_length = ETH_ALEN
4768         };
4769         int err;
4770
4771         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4772
4773         IPW_DEBUG_INFO("enter\n");
4774
4775         if (priv->config & CFG_CUSTOM_MAC) {
4776                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4777                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4778         } else
4779                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4780                        ETH_ALEN);
4781
4782         err = ipw2100_hw_send_command(priv, &cmd);
4783
4784         IPW_DEBUG_INFO("exit\n");
4785         return err;
4786 }
4787
4788 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4789                                  int batch_mode)
4790 {
4791         struct host_command cmd = {
4792                 .host_command = PORT_TYPE,
4793                 .host_command_sequence = 0,
4794                 .host_command_length = sizeof(u32)
4795         };
4796         int err;
4797
4798         switch (port_type) {
4799         case IW_MODE_INFRA:
4800                 cmd.host_command_parameters[0] = IPW_BSS;
4801                 break;
4802         case IW_MODE_ADHOC:
4803                 cmd.host_command_parameters[0] = IPW_IBSS;
4804                 break;
4805         }
4806
4807         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4808                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4809
4810         if (!batch_mode) {
4811                 err = ipw2100_disable_adapter(priv);
4812                 if (err) {
4813                         printk(KERN_ERR DRV_NAME
4814                                ": %s: Could not disable adapter %d\n",
4815                                priv->net_dev->name, err);
4816                         return err;
4817                 }
4818         }
4819
4820         /* send cmd to firmware */
4821         err = ipw2100_hw_send_command(priv, &cmd);
4822
4823         if (!batch_mode)
4824                 ipw2100_enable_adapter(priv);
4825
4826         return err;
4827 }
4828
4829 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4830                                int batch_mode)
4831 {
4832         struct host_command cmd = {
4833                 .host_command = CHANNEL,
4834                 .host_command_sequence = 0,
4835                 .host_command_length = sizeof(u32)
4836         };
4837         int err;
4838
4839         cmd.host_command_parameters[0] = channel;
4840
4841         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4842
4843         /* If BSS then we don't support channel selection */
4844         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4845                 return 0;
4846
4847         if ((channel != 0) &&
4848             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4849                 return -EINVAL;
4850
4851         if (!batch_mode) {
4852                 err = ipw2100_disable_adapter(priv);
4853                 if (err)
4854                         return err;
4855         }
4856
4857         err = ipw2100_hw_send_command(priv, &cmd);
4858         if (err) {
4859                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4860                 return err;
4861         }
4862
4863         if (channel)
4864                 priv->config |= CFG_STATIC_CHANNEL;
4865         else
4866                 priv->config &= ~CFG_STATIC_CHANNEL;
4867
4868         priv->channel = channel;
4869
4870         if (!batch_mode) {
4871                 err = ipw2100_enable_adapter(priv);
4872                 if (err)
4873                         return err;
4874         }
4875
4876         return 0;
4877 }
4878
4879 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4880 {
4881         struct host_command cmd = {
4882                 .host_command = SYSTEM_CONFIG,
4883                 .host_command_sequence = 0,
4884                 .host_command_length = 12,
4885         };
4886         u32 ibss_mask, len = sizeof(u32);
4887         int err;
4888
4889         /* Set system configuration */
4890
4891         if (!batch_mode) {
4892                 err = ipw2100_disable_adapter(priv);
4893                 if (err)
4894                         return err;
4895         }
4896
4897         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4898                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4899
4900         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4901             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4902
4903         if (!(priv->config & CFG_LONG_PREAMBLE))
4904                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4905
4906         err = ipw2100_get_ordinal(priv,
4907                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4908                                   &ibss_mask, &len);
4909         if (err)
4910                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4911
4912         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4913         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4914
4915         /* 11b only */
4916         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4917
4918         err = ipw2100_hw_send_command(priv, &cmd);
4919         if (err)
4920                 return err;
4921
4922 /* If IPv6 is configured in the kernel then we don't want to filter out all
4923  * of the multicast packets as IPv6 needs some. */
4924 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4925         cmd.host_command = ADD_MULTICAST;
4926         cmd.host_command_sequence = 0;
4927         cmd.host_command_length = 0;
4928
4929         ipw2100_hw_send_command(priv, &cmd);
4930 #endif
4931         if (!batch_mode) {
4932                 err = ipw2100_enable_adapter(priv);
4933                 if (err)
4934                         return err;
4935         }
4936
4937         return 0;
4938 }
4939
4940 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4941                                 int batch_mode)
4942 {
4943         struct host_command cmd = {
4944                 .host_command = BASIC_TX_RATES,
4945                 .host_command_sequence = 0,
4946                 .host_command_length = 4
4947         };
4948         int err;
4949
4950         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4951
4952         if (!batch_mode) {
4953                 err = ipw2100_disable_adapter(priv);
4954                 if (err)
4955                         return err;
4956         }
4957
4958         /* Set BASIC TX Rate first */
4959         ipw2100_hw_send_command(priv, &cmd);
4960
4961         /* Set TX Rate */
4962         cmd.host_command = TX_RATES;
4963         ipw2100_hw_send_command(priv, &cmd);
4964
4965         /* Set MSDU TX Rate */
4966         cmd.host_command = MSDU_TX_RATES;
4967         ipw2100_hw_send_command(priv, &cmd);
4968
4969         if (!batch_mode) {
4970                 err = ipw2100_enable_adapter(priv);
4971                 if (err)
4972                         return err;
4973         }
4974
4975         priv->tx_rates = rate;
4976
4977         return 0;
4978 }
4979
4980 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4981 {
4982         struct host_command cmd = {
4983                 .host_command = POWER_MODE,
4984                 .host_command_sequence = 0,
4985                 .host_command_length = 4
4986         };
4987         int err;
4988
4989         cmd.host_command_parameters[0] = power_level;
4990
4991         err = ipw2100_hw_send_command(priv, &cmd);
4992         if (err)
4993                 return err;
4994
4995         if (power_level == IPW_POWER_MODE_CAM)
4996                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4997         else
4998                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4999
5000 #ifdef IPW2100_TX_POWER
5001         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5002                 /* Set beacon interval */
5003                 cmd.host_command = TX_POWER_INDEX;
5004                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5005
5006                 err = ipw2100_hw_send_command(priv, &cmd);
5007                 if (err)
5008                         return err;
5009         }
5010 #endif
5011
5012         return 0;
5013 }
5014
5015 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5016 {
5017         struct host_command cmd = {
5018                 .host_command = RTS_THRESHOLD,
5019                 .host_command_sequence = 0,
5020                 .host_command_length = 4
5021         };
5022         int err;
5023
5024         if (threshold & RTS_DISABLED)
5025                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5026         else
5027                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5028
5029         err = ipw2100_hw_send_command(priv, &cmd);
5030         if (err)
5031                 return err;
5032
5033         priv->rts_threshold = threshold;
5034
5035         return 0;
5036 }
5037
5038 #if 0
5039 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5040                                         u32 threshold, int batch_mode)
5041 {
5042         struct host_command cmd = {
5043                 .host_command = FRAG_THRESHOLD,
5044                 .host_command_sequence = 0,
5045                 .host_command_length = 4,
5046                 .host_command_parameters[0] = 0,
5047         };
5048         int err;
5049
5050         if (!batch_mode) {
5051                 err = ipw2100_disable_adapter(priv);
5052                 if (err)
5053                         return err;
5054         }
5055
5056         if (threshold == 0)
5057                 threshold = DEFAULT_FRAG_THRESHOLD;
5058         else {
5059                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5060                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5061         }
5062
5063         cmd.host_command_parameters[0] = threshold;
5064
5065         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5066
5067         err = ipw2100_hw_send_command(priv, &cmd);
5068
5069         if (!batch_mode)
5070                 ipw2100_enable_adapter(priv);
5071
5072         if (!err)
5073                 priv->frag_threshold = threshold;
5074
5075         return err;
5076 }
5077 #endif
5078
5079 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5080 {
5081         struct host_command cmd = {
5082                 .host_command = SHORT_RETRY_LIMIT,
5083                 .host_command_sequence = 0,
5084                 .host_command_length = 4
5085         };
5086         int err;
5087
5088         cmd.host_command_parameters[0] = retry;
5089
5090         err = ipw2100_hw_send_command(priv, &cmd);
5091         if (err)
5092                 return err;
5093
5094         priv->short_retry_limit = retry;
5095
5096         return 0;
5097 }
5098
5099 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5100 {
5101         struct host_command cmd = {
5102                 .host_command = LONG_RETRY_LIMIT,
5103                 .host_command_sequence = 0,
5104                 .host_command_length = 4
5105         };
5106         int err;
5107
5108         cmd.host_command_parameters[0] = retry;
5109
5110         err = ipw2100_hw_send_command(priv, &cmd);
5111         if (err)
5112                 return err;
5113
5114         priv->long_retry_limit = retry;
5115
5116         return 0;
5117 }
5118
5119 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5120                                        int batch_mode)
5121 {
5122         struct host_command cmd = {
5123                 .host_command = MANDATORY_BSSID,
5124                 .host_command_sequence = 0,
5125                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5126         };
5127         int err;
5128
5129 #ifdef CONFIG_IPW2100_DEBUG
5130         if (bssid != NULL)
5131                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5132         else
5133                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5134 #endif
5135         /* if BSSID is empty then we disable mandatory bssid mode */
5136         if (bssid != NULL)
5137                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5138
5139         if (!batch_mode) {
5140                 err = ipw2100_disable_adapter(priv);
5141                 if (err)
5142                         return err;
5143         }
5144
5145         err = ipw2100_hw_send_command(priv, &cmd);
5146
5147         if (!batch_mode)
5148                 ipw2100_enable_adapter(priv);
5149
5150         return err;
5151 }
5152
5153 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5154 {
5155         struct host_command cmd = {
5156                 .host_command = DISASSOCIATION_BSSID,
5157                 .host_command_sequence = 0,
5158                 .host_command_length = ETH_ALEN
5159         };
5160         int err;
5161         int len;
5162
5163         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5164
5165         len = ETH_ALEN;
5166         /* The Firmware currently ignores the BSSID and just disassociates from
5167          * the currently associated AP -- but in the off chance that a future
5168          * firmware does use the BSSID provided here, we go ahead and try and
5169          * set it to the currently associated AP's BSSID */
5170         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5171
5172         err = ipw2100_hw_send_command(priv, &cmd);
5173
5174         return err;
5175 }
5176
5177 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5178                               struct ipw2100_wpa_assoc_frame *, int)
5179     __attribute__ ((unused));
5180
5181 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5182                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5183                               int batch_mode)
5184 {
5185         struct host_command cmd = {
5186                 .host_command = SET_WPA_IE,
5187                 .host_command_sequence = 0,
5188                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5189         };
5190         int err;
5191
5192         IPW_DEBUG_HC("SET_WPA_IE\n");
5193
5194         if (!batch_mode) {
5195                 err = ipw2100_disable_adapter(priv);
5196                 if (err)
5197                         return err;
5198         }
5199
5200         memcpy(cmd.host_command_parameters, wpa_frame,
5201                sizeof(struct ipw2100_wpa_assoc_frame));
5202
5203         err = ipw2100_hw_send_command(priv, &cmd);
5204
5205         if (!batch_mode) {
5206                 if (ipw2100_enable_adapter(priv))
5207                         err = -EIO;
5208         }
5209
5210         return err;
5211 }
5212
5213 struct security_info_params {
5214         u32 allowed_ciphers;
5215         u16 version;
5216         u8 auth_mode;
5217         u8 replay_counters_number;
5218         u8 unicast_using_group;
5219 } __packed;
5220
5221 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5222                                             int auth_mode,
5223                                             int security_level,
5224                                             int unicast_using_group,
5225                                             int batch_mode)
5226 {
5227         struct host_command cmd = {
5228                 .host_command = SET_SECURITY_INFORMATION,
5229                 .host_command_sequence = 0,
5230                 .host_command_length = sizeof(struct security_info_params)
5231         };
5232         struct security_info_params *security =
5233             (struct security_info_params *)&cmd.host_command_parameters;
5234         int err;
5235         memset(security, 0, sizeof(*security));
5236
5237         /* If shared key AP authentication is turned on, then we need to
5238          * configure the firmware to try and use it.
5239          *
5240          * Actual data encryption/decryption is handled by the host. */
5241         security->auth_mode = auth_mode;
5242         security->unicast_using_group = unicast_using_group;
5243
5244         switch (security_level) {
5245         default:
5246         case SEC_LEVEL_0:
5247                 security->allowed_ciphers = IPW_NONE_CIPHER;
5248                 break;
5249         case SEC_LEVEL_1:
5250                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5251                     IPW_WEP104_CIPHER;
5252                 break;
5253         case SEC_LEVEL_2:
5254                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5255                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5256                 break;
5257         case SEC_LEVEL_2_CKIP:
5258                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5259                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5260                 break;
5261         case SEC_LEVEL_3:
5262                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5263                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5264                 break;
5265         }
5266
5267         IPW_DEBUG_HC
5268             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5269              security->auth_mode, security->allowed_ciphers, security_level);
5270
5271         security->replay_counters_number = 0;
5272
5273         if (!batch_mode) {
5274                 err = ipw2100_disable_adapter(priv);
5275                 if (err)
5276                         return err;
5277         }
5278
5279         err = ipw2100_hw_send_command(priv, &cmd);
5280
5281         if (!batch_mode)
5282                 ipw2100_enable_adapter(priv);
5283
5284         return err;
5285 }
5286
5287 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5288 {
5289         struct host_command cmd = {
5290                 .host_command = TX_POWER_INDEX,
5291                 .host_command_sequence = 0,
5292                 .host_command_length = 4
5293         };
5294         int err = 0;
5295         u32 tmp = tx_power;
5296
5297         if (tx_power != IPW_TX_POWER_DEFAULT)
5298                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5299                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5300
5301         cmd.host_command_parameters[0] = tmp;
5302
5303         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5304                 err = ipw2100_hw_send_command(priv, &cmd);
5305         if (!err)
5306                 priv->tx_power = tx_power;
5307
5308         return 0;
5309 }
5310
5311 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5312                                             u32 interval, int batch_mode)
5313 {
5314         struct host_command cmd = {
5315                 .host_command = BEACON_INTERVAL,
5316                 .host_command_sequence = 0,
5317                 .host_command_length = 4
5318         };
5319         int err;
5320
5321         cmd.host_command_parameters[0] = interval;
5322
5323         IPW_DEBUG_INFO("enter\n");
5324
5325         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5326                 if (!batch_mode) {
5327                         err = ipw2100_disable_adapter(priv);
5328                         if (err)
5329                                 return err;
5330                 }
5331
5332                 ipw2100_hw_send_command(priv, &cmd);
5333
5334                 if (!batch_mode) {
5335                         err = ipw2100_enable_adapter(priv);
5336                         if (err)
5337                                 return err;
5338                 }
5339         }
5340
5341         IPW_DEBUG_INFO("exit\n");
5342
5343         return 0;
5344 }
5345
5346 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5347 {
5348         ipw2100_tx_initialize(priv);
5349         ipw2100_rx_initialize(priv);
5350         ipw2100_msg_initialize(priv);
5351 }
5352
5353 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5354 {
5355         ipw2100_tx_free(priv);
5356         ipw2100_rx_free(priv);
5357         ipw2100_msg_free(priv);
5358 }
5359
5360 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5361 {
5362         if (ipw2100_tx_allocate(priv) ||
5363             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5364                 goto fail;
5365
5366         return 0;
5367
5368       fail:
5369         ipw2100_tx_free(priv);
5370         ipw2100_rx_free(priv);
5371         ipw2100_msg_free(priv);
5372         return -ENOMEM;
5373 }
5374
5375 #define IPW_PRIVACY_CAPABLE 0x0008
5376
5377 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5378                                  int batch_mode)
5379 {
5380         struct host_command cmd = {
5381                 .host_command = WEP_FLAGS,
5382                 .host_command_sequence = 0,
5383                 .host_command_length = 4
5384         };
5385         int err;
5386
5387         cmd.host_command_parameters[0] = flags;
5388
5389         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5390
5391         if (!batch_mode) {
5392                 err = ipw2100_disable_adapter(priv);
5393                 if (err) {
5394                         printk(KERN_ERR DRV_NAME
5395                                ": %s: Could not disable adapter %d\n",
5396                                priv->net_dev->name, err);
5397                         return err;
5398                 }
5399         }
5400
5401         /* send cmd to firmware */
5402         err = ipw2100_hw_send_command(priv, &cmd);
5403
5404         if (!batch_mode)
5405                 ipw2100_enable_adapter(priv);
5406
5407         return err;
5408 }
5409
5410 struct ipw2100_wep_key {
5411         u8 idx;
5412         u8 len;
5413         u8 key[13];
5414 };
5415
5416 /* Macros to ease up priting WEP keys */
5417 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5418 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5419 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5420 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5421
5422 /**
5423  * Set a the wep key
5424  *
5425  * @priv: struct to work on
5426  * @idx: index of the key we want to set
5427  * @key: ptr to the key data to set
5428  * @len: length of the buffer at @key
5429  * @batch_mode: FIXME perform the operation in batch mode, not
5430  *              disabling the device.
5431  *
5432  * @returns 0 if OK, < 0 errno code on error.
5433  *
5434  * Fill out a command structure with the new wep key, length an
5435  * index and send it down the wire.
5436  */
5437 static int ipw2100_set_key(struct ipw2100_priv *priv,
5438                            int idx, char *key, int len, int batch_mode)
5439 {
5440         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5441         struct host_command cmd = {
5442                 .host_command = WEP_KEY_INFO,
5443                 .host_command_sequence = 0,
5444                 .host_command_length = sizeof(struct ipw2100_wep_key),
5445         };
5446         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5447         int err;
5448
5449         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5450                      idx, keylen, len);
5451
5452         /* NOTE: We don't check cached values in case the firmware was reset
5453          * or some other problem is occurring.  If the user is setting the key,
5454          * then we push the change */
5455
5456         wep_key->idx = idx;
5457         wep_key->len = keylen;
5458
5459         if (keylen) {
5460                 memcpy(wep_key->key, key, len);
5461                 memset(wep_key->key + len, 0, keylen - len);
5462         }
5463
5464         /* Will be optimized out on debug not being configured in */
5465         if (keylen == 0)
5466                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5467                               priv->net_dev->name, wep_key->idx);
5468         else if (keylen == 5)
5469                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5470                               priv->net_dev->name, wep_key->idx, wep_key->len,
5471                               WEP_STR_64(wep_key->key));
5472         else
5473                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5474                               "\n",
5475                               priv->net_dev->name, wep_key->idx, wep_key->len,
5476                               WEP_STR_128(wep_key->key));
5477
5478         if (!batch_mode) {
5479                 err = ipw2100_disable_adapter(priv);
5480                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5481                 if (err) {
5482                         printk(KERN_ERR DRV_NAME
5483                                ": %s: Could not disable adapter %d\n",
5484                                priv->net_dev->name, err);
5485                         return err;
5486                 }
5487         }
5488
5489         /* send cmd to firmware */
5490         err = ipw2100_hw_send_command(priv, &cmd);
5491
5492         if (!batch_mode) {
5493                 int err2 = ipw2100_enable_adapter(priv);
5494                 if (err == 0)
5495                         err = err2;
5496         }
5497         return err;
5498 }
5499
5500 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5501                                  int idx, int batch_mode)
5502 {
5503         struct host_command cmd = {
5504                 .host_command = WEP_KEY_INDEX,
5505                 .host_command_sequence = 0,
5506                 .host_command_length = 4,
5507                 .host_command_parameters = {idx},
5508         };
5509         int err;
5510
5511         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5512
5513         if (idx < 0 || idx > 3)
5514                 return -EINVAL;
5515
5516         if (!batch_mode) {
5517                 err = ipw2100_disable_adapter(priv);
5518                 if (err) {
5519                         printk(KERN_ERR DRV_NAME
5520                                ": %s: Could not disable adapter %d\n",
5521                                priv->net_dev->name, err);
5522                         return err;
5523                 }
5524         }
5525
5526         /* send cmd to firmware */
5527         err = ipw2100_hw_send_command(priv, &cmd);
5528
5529         if (!batch_mode)
5530                 ipw2100_enable_adapter(priv);
5531
5532         return err;
5533 }
5534
5535 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5536 {
5537         int i, err, auth_mode, sec_level, use_group;
5538
5539         if (!(priv->status & STATUS_RUNNING))
5540                 return 0;
5541
5542         if (!batch_mode) {
5543                 err = ipw2100_disable_adapter(priv);
5544                 if (err)
5545                         return err;
5546         }
5547
5548         if (!priv->ieee->sec.enabled) {
5549                 err =
5550                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5551                                                      SEC_LEVEL_0, 0, 1);
5552         } else {
5553                 auth_mode = IPW_AUTH_OPEN;
5554                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5555                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5556                                 auth_mode = IPW_AUTH_SHARED;
5557                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5558                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5559                 }
5560
5561                 sec_level = SEC_LEVEL_0;
5562                 if (priv->ieee->sec.flags & SEC_LEVEL)
5563                         sec_level = priv->ieee->sec.level;
5564
5565                 use_group = 0;
5566                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5567                         use_group = priv->ieee->sec.unicast_uses_group;
5568
5569                 err =
5570                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5571                                                      use_group, 1);
5572         }
5573
5574         if (err)
5575                 goto exit;
5576
5577         if (priv->ieee->sec.enabled) {
5578                 for (i = 0; i < 4; i++) {
5579                         if (!(priv->ieee->sec.flags & (1 << i))) {
5580                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5581                                 priv->ieee->sec.key_sizes[i] = 0;
5582                         } else {
5583                                 err = ipw2100_set_key(priv, i,
5584                                                       priv->ieee->sec.keys[i],
5585                                                       priv->ieee->sec.
5586                                                       key_sizes[i], 1);
5587                                 if (err)
5588                                         goto exit;
5589                         }
5590                 }
5591
5592                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5593         }
5594
5595         /* Always enable privacy so the Host can filter WEP packets if
5596          * encrypted data is sent up */
5597         err =
5598             ipw2100_set_wep_flags(priv,
5599                                   priv->ieee->sec.
5600                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5601         if (err)
5602                 goto exit;
5603
5604         priv->status &= ~STATUS_SECURITY_UPDATED;
5605
5606       exit:
5607         if (!batch_mode)
5608                 ipw2100_enable_adapter(priv);
5609
5610         return err;
5611 }
5612
5613 static void ipw2100_security_work(struct work_struct *work)
5614 {
5615         struct ipw2100_priv *priv =
5616                 container_of(work, struct ipw2100_priv, security_work.work);
5617
5618         /* If we happen to have reconnected before we get a chance to
5619          * process this, then update the security settings--which causes
5620          * a disassociation to occur */
5621         if (!(priv->status & STATUS_ASSOCIATED) &&
5622             priv->status & STATUS_SECURITY_UPDATED)
5623                 ipw2100_configure_security(priv, 0);
5624 }
5625
5626 static void shim__set_security(struct net_device *dev,
5627                                struct libipw_security *sec)
5628 {
5629         struct ipw2100_priv *priv = libipw_priv(dev);
5630         int i, force_update = 0;
5631
5632         mutex_lock(&priv->action_mutex);
5633         if (!(priv->status & STATUS_INITIALIZED))
5634                 goto done;
5635
5636         for (i = 0; i < 4; i++) {
5637                 if (sec->flags & (1 << i)) {
5638                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5639                         if (sec->key_sizes[i] == 0)
5640                                 priv->ieee->sec.flags &= ~(1 << i);
5641                         else
5642                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5643                                        sec->key_sizes[i]);
5644                         if (sec->level == SEC_LEVEL_1) {
5645                                 priv->ieee->sec.flags |= (1 << i);
5646                                 priv->status |= STATUS_SECURITY_UPDATED;
5647                         } else
5648                                 priv->ieee->sec.flags &= ~(1 << i);
5649                 }
5650         }
5651
5652         if ((sec->flags & SEC_ACTIVE_KEY) &&
5653             priv->ieee->sec.active_key != sec->active_key) {
5654                 if (sec->active_key <= 3) {
5655                         priv->ieee->sec.active_key = sec->active_key;
5656                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5657                 } else
5658                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5659
5660                 priv->status |= STATUS_SECURITY_UPDATED;
5661         }
5662
5663         if ((sec->flags & SEC_AUTH_MODE) &&
5664             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5665                 priv->ieee->sec.auth_mode = sec->auth_mode;
5666                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5667                 priv->status |= STATUS_SECURITY_UPDATED;
5668         }
5669
5670         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5671                 priv->ieee->sec.flags |= SEC_ENABLED;
5672                 priv->ieee->sec.enabled = sec->enabled;
5673                 priv->status |= STATUS_SECURITY_UPDATED;
5674                 force_update = 1;
5675         }
5676
5677         if (sec->flags & SEC_ENCRYPT)
5678                 priv->ieee->sec.encrypt = sec->encrypt;
5679
5680         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5681                 priv->ieee->sec.level = sec->level;
5682                 priv->ieee->sec.flags |= SEC_LEVEL;
5683                 priv->status |= STATUS_SECURITY_UPDATED;
5684         }
5685
5686         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5687                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5688                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5689                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5690                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5691                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5692                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5693                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5694                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5695                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5696
5697 /* As a temporary work around to enable WPA until we figure out why
5698  * wpa_supplicant toggles the security capability of the driver, which
5699  * forces a disassocation with force_update...
5700  *
5701  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5702         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5703                 ipw2100_configure_security(priv, 0);
5704       done:
5705         mutex_unlock(&priv->action_mutex);
5706 }
5707
5708 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5709 {
5710         int err;
5711         int batch_mode = 1;
5712         u8 *bssid;
5713
5714         IPW_DEBUG_INFO("enter\n");
5715
5716         err = ipw2100_disable_adapter(priv);
5717         if (err)
5718                 return err;
5719 #ifdef CONFIG_IPW2100_MONITOR
5720         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5721                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5722                 if (err)
5723                         return err;
5724
5725                 IPW_DEBUG_INFO("exit\n");
5726
5727                 return 0;
5728         }
5729 #endif                          /* CONFIG_IPW2100_MONITOR */
5730
5731         err = ipw2100_read_mac_address(priv);
5732         if (err)
5733                 return -EIO;
5734
5735         err = ipw2100_set_mac_address(priv, batch_mode);
5736         if (err)
5737                 return err;
5738
5739         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5740         if (err)
5741                 return err;
5742
5743         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5744                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5745                 if (err)
5746                         return err;
5747         }
5748
5749         err = ipw2100_system_config(priv, batch_mode);
5750         if (err)
5751                 return err;
5752
5753         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5754         if (err)
5755                 return err;
5756
5757         /* Default to power mode OFF */
5758         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5759         if (err)
5760                 return err;
5761
5762         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5763         if (err)
5764                 return err;
5765
5766         if (priv->config & CFG_STATIC_BSSID)
5767                 bssid = priv->bssid;
5768         else
5769                 bssid = NULL;
5770         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5771         if (err)
5772                 return err;
5773
5774         if (priv->config & CFG_STATIC_ESSID)
5775                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5776                                         batch_mode);
5777         else
5778                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5779         if (err)
5780                 return err;
5781
5782         err = ipw2100_configure_security(priv, batch_mode);
5783         if (err)
5784                 return err;
5785
5786         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5787                 err =
5788                     ipw2100_set_ibss_beacon_interval(priv,
5789                                                      priv->beacon_interval,
5790                                                      batch_mode);
5791                 if (err)
5792                         return err;
5793
5794                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5795                 if (err)
5796                         return err;
5797         }
5798
5799         /*
5800            err = ipw2100_set_fragmentation_threshold(
5801            priv, priv->frag_threshold, batch_mode);
5802            if (err)
5803            return err;
5804          */
5805
5806         IPW_DEBUG_INFO("exit\n");
5807
5808         return 0;
5809 }
5810
5811 /*************************************************************************
5812  *
5813  * EXTERNALLY CALLED METHODS
5814  *
5815  *************************************************************************/
5816
5817 /* This method is called by the network layer -- not to be confused with
5818  * ipw2100_set_mac_address() declared above called by this driver (and this
5819  * method as well) to talk to the firmware */
5820 static int ipw2100_set_address(struct net_device *dev, void *p)
5821 {
5822         struct ipw2100_priv *priv = libipw_priv(dev);
5823         struct sockaddr *addr = p;
5824         int err = 0;
5825
5826         if (!is_valid_ether_addr(addr->sa_data))
5827                 return -EADDRNOTAVAIL;
5828
5829         mutex_lock(&priv->action_mutex);
5830
5831         priv->config |= CFG_CUSTOM_MAC;
5832         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5833
5834         err = ipw2100_set_mac_address(priv, 0);
5835         if (err)
5836                 goto done;
5837
5838         priv->reset_backoff = 0;
5839         mutex_unlock(&priv->action_mutex);
5840         ipw2100_reset_adapter(&priv->reset_work.work);
5841         return 0;
5842
5843       done:
5844         mutex_unlock(&priv->action_mutex);
5845         return err;
5846 }
5847
5848 static int ipw2100_open(struct net_device *dev)
5849 {
5850         struct ipw2100_priv *priv = libipw_priv(dev);
5851         unsigned long flags;
5852         IPW_DEBUG_INFO("dev->open\n");
5853
5854         spin_lock_irqsave(&priv->low_lock, flags);
5855         if (priv->status & STATUS_ASSOCIATED) {
5856                 netif_carrier_on(dev);
5857                 netif_start_queue(dev);
5858         }
5859         spin_unlock_irqrestore(&priv->low_lock, flags);
5860
5861         return 0;
5862 }
5863
5864 static int ipw2100_close(struct net_device *dev)
5865 {
5866         struct ipw2100_priv *priv = libipw_priv(dev);
5867         unsigned long flags;
5868         struct list_head *element;
5869         struct ipw2100_tx_packet *packet;
5870
5871         IPW_DEBUG_INFO("enter\n");
5872
5873         spin_lock_irqsave(&priv->low_lock, flags);
5874
5875         if (priv->status & STATUS_ASSOCIATED)
5876                 netif_carrier_off(dev);
5877         netif_stop_queue(dev);
5878
5879         /* Flush the TX queue ... */
5880         while (!list_empty(&priv->tx_pend_list)) {
5881                 element = priv->tx_pend_list.next;
5882                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5883
5884                 list_del(element);
5885                 DEC_STAT(&priv->tx_pend_stat);
5886
5887                 libipw_txb_free(packet->info.d_struct.txb);
5888                 packet->info.d_struct.txb = NULL;
5889
5890                 list_add_tail(element, &priv->tx_free_list);
5891                 INC_STAT(&priv->tx_free_stat);
5892         }
5893         spin_unlock_irqrestore(&priv->low_lock, flags);
5894
5895         IPW_DEBUG_INFO("exit\n");
5896
5897         return 0;
5898 }
5899
5900 /*
5901  * TODO:  Fix this function... its just wrong
5902  */
5903 static void ipw2100_tx_timeout(struct net_device *dev)
5904 {
5905         struct ipw2100_priv *priv = libipw_priv(dev);
5906
5907         dev->stats.tx_errors++;
5908
5909 #ifdef CONFIG_IPW2100_MONITOR
5910         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5911                 return;
5912 #endif
5913
5914         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5915                        dev->name);
5916         schedule_reset(priv);
5917 }
5918
5919 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5920 {
5921         /* This is called when wpa_supplicant loads and closes the driver
5922          * interface. */
5923         priv->ieee->wpa_enabled = value;
5924         return 0;
5925 }
5926
5927 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5928 {
5929
5930         struct libipw_device *ieee = priv->ieee;
5931         struct libipw_security sec = {
5932                 .flags = SEC_AUTH_MODE,
5933         };
5934         int ret = 0;
5935
5936         if (value & IW_AUTH_ALG_SHARED_KEY) {
5937                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5938                 ieee->open_wep = 0;
5939         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5940                 sec.auth_mode = WLAN_AUTH_OPEN;
5941                 ieee->open_wep = 1;
5942         } else if (value & IW_AUTH_ALG_LEAP) {
5943                 sec.auth_mode = WLAN_AUTH_LEAP;
5944                 ieee->open_wep = 1;
5945         } else
5946                 return -EINVAL;
5947
5948         if (ieee->set_security)
5949                 ieee->set_security(ieee->dev, &sec);
5950         else
5951                 ret = -EOPNOTSUPP;
5952
5953         return ret;
5954 }
5955
5956 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5957                                     char *wpa_ie, int wpa_ie_len)
5958 {
5959
5960         struct ipw2100_wpa_assoc_frame frame;
5961
5962         frame.fixed_ie_mask = 0;
5963
5964         /* copy WPA IE */
5965         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5966         frame.var_ie_len = wpa_ie_len;
5967
5968         /* make sure WPA is enabled */
5969         ipw2100_wpa_enable(priv, 1);
5970         ipw2100_set_wpa_ie(priv, &frame, 0);
5971 }
5972
5973 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5974                                     struct ethtool_drvinfo *info)
5975 {
5976         struct ipw2100_priv *priv = libipw_priv(dev);
5977         char fw_ver[64], ucode_ver[64];
5978
5979         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5980         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5981
5982         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5983         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5984
5985         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5986                  fw_ver, priv->eeprom_version, ucode_ver);
5987
5988         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5989                 sizeof(info->bus_info));
5990 }
5991
5992 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5993 {
5994         struct ipw2100_priv *priv = libipw_priv(dev);
5995         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5996 }
5997
5998 static const struct ethtool_ops ipw2100_ethtool_ops = {
5999         .get_link = ipw2100_ethtool_get_link,
6000         .get_drvinfo = ipw_ethtool_get_drvinfo,
6001 };
6002
6003 static void ipw2100_hang_check(struct work_struct *work)
6004 {
6005         struct ipw2100_priv *priv =
6006                 container_of(work, struct ipw2100_priv, hang_check.work);
6007         unsigned long flags;
6008         u32 rtc = 0xa5a5a5a5;
6009         u32 len = sizeof(rtc);
6010         int restart = 0;
6011
6012         spin_lock_irqsave(&priv->low_lock, flags);
6013
6014         if (priv->fatal_error != 0) {
6015                 /* If fatal_error is set then we need to restart */
6016                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6017                                priv->net_dev->name);
6018
6019                 restart = 1;
6020         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6021                    (rtc == priv->last_rtc)) {
6022                 /* Check if firmware is hung */
6023                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6024                                priv->net_dev->name);
6025
6026                 restart = 1;
6027         }
6028
6029         if (restart) {
6030                 /* Kill timer */
6031                 priv->stop_hang_check = 1;
6032                 priv->hangs++;
6033
6034                 /* Restart the NIC */
6035                 schedule_reset(priv);
6036         }
6037
6038         priv->last_rtc = rtc;
6039
6040         if (!priv->stop_hang_check)
6041                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6042
6043         spin_unlock_irqrestore(&priv->low_lock, flags);
6044 }
6045
6046 static void ipw2100_rf_kill(struct work_struct *work)
6047 {
6048         struct ipw2100_priv *priv =
6049                 container_of(work, struct ipw2100_priv, rf_kill.work);
6050         unsigned long flags;
6051
6052         spin_lock_irqsave(&priv->low_lock, flags);
6053
6054         if (rf_kill_active(priv)) {
6055                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6056                 if (!priv->stop_rf_kill)
6057                         schedule_delayed_work(&priv->rf_kill,
6058                                               round_jiffies_relative(HZ));
6059                 goto exit_unlock;
6060         }
6061
6062         /* RF Kill is now disabled, so bring the device back up */
6063
6064         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6065                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6066                                   "device\n");
6067                 schedule_reset(priv);
6068         } else
6069                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6070                                   "enabled\n");
6071
6072       exit_unlock:
6073         spin_unlock_irqrestore(&priv->low_lock, flags);
6074 }
6075
6076 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6077
6078 static const struct net_device_ops ipw2100_netdev_ops = {
6079         .ndo_open               = ipw2100_open,
6080         .ndo_stop               = ipw2100_close,
6081         .ndo_start_xmit         = libipw_xmit,
6082         .ndo_change_mtu         = libipw_change_mtu,
6083         .ndo_tx_timeout         = ipw2100_tx_timeout,
6084         .ndo_set_mac_address    = ipw2100_set_address,
6085         .ndo_validate_addr      = eth_validate_addr,
6086 };
6087
6088 /* Look into using netdev destructor to shutdown libipw? */
6089
6090 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6091                                                void __iomem * ioaddr)
6092 {
6093         struct ipw2100_priv *priv;
6094         struct net_device *dev;
6095
6096         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6097         if (!dev)
6098                 return NULL;
6099         priv = libipw_priv(dev);
6100         priv->ieee = netdev_priv(dev);
6101         priv->pci_dev = pci_dev;
6102         priv->net_dev = dev;
6103         priv->ioaddr = ioaddr;
6104
6105         priv->ieee->hard_start_xmit = ipw2100_tx;
6106         priv->ieee->set_security = shim__set_security;
6107
6108         priv->ieee->perfect_rssi = -20;
6109         priv->ieee->worst_rssi = -85;
6110
6111         dev->netdev_ops = &ipw2100_netdev_ops;
6112         dev->ethtool_ops = &ipw2100_ethtool_ops;
6113         dev->wireless_handlers = &ipw2100_wx_handler_def;
6114         priv->wireless_data.libipw = priv->ieee;
6115         dev->wireless_data = &priv->wireless_data;
6116         dev->watchdog_timeo = 3 * HZ;
6117         dev->irq = 0;
6118
6119         /* NOTE: We don't use the wireless_handlers hook
6120          * in dev as the system will start throwing WX requests
6121          * to us before we're actually initialized and it just
6122          * ends up causing problems.  So, we just handle
6123          * the WX extensions through the ipw2100_ioctl interface */
6124
6125         /* memset() puts everything to 0, so we only have explicitly set
6126          * those values that need to be something else */
6127
6128         /* If power management is turned on, default to AUTO mode */
6129         priv->power_mode = IPW_POWER_AUTO;
6130
6131 #ifdef CONFIG_IPW2100_MONITOR
6132         priv->config |= CFG_CRC_CHECK;
6133 #endif
6134         priv->ieee->wpa_enabled = 0;
6135         priv->ieee->drop_unencrypted = 0;
6136         priv->ieee->privacy_invoked = 0;
6137         priv->ieee->ieee802_1x = 1;
6138
6139         /* Set module parameters */
6140         switch (network_mode) {
6141         case 1:
6142                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6143                 break;
6144 #ifdef CONFIG_IPW2100_MONITOR
6145         case 2:
6146                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6147                 break;
6148 #endif
6149         default:
6150         case 0:
6151                 priv->ieee->iw_mode = IW_MODE_INFRA;
6152                 break;
6153         }
6154
6155         if (disable == 1)
6156                 priv->status |= STATUS_RF_KILL_SW;
6157
6158         if (channel != 0 &&
6159             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6160                 priv->config |= CFG_STATIC_CHANNEL;
6161                 priv->channel = channel;
6162         }
6163
6164         if (associate)
6165                 priv->config |= CFG_ASSOCIATE;
6166
6167         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6168         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6169         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6170         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6171         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6172         priv->tx_power = IPW_TX_POWER_DEFAULT;
6173         priv->tx_rates = DEFAULT_TX_RATES;
6174
6175         strcpy(priv->nick, "ipw2100");
6176
6177         spin_lock_init(&priv->low_lock);
6178         mutex_init(&priv->action_mutex);
6179         mutex_init(&priv->adapter_mutex);
6180
6181         init_waitqueue_head(&priv->wait_command_queue);
6182
6183         netif_carrier_off(dev);
6184
6185         INIT_LIST_HEAD(&priv->msg_free_list);
6186         INIT_LIST_HEAD(&priv->msg_pend_list);
6187         INIT_STAT(&priv->msg_free_stat);
6188         INIT_STAT(&priv->msg_pend_stat);
6189
6190         INIT_LIST_HEAD(&priv->tx_free_list);
6191         INIT_LIST_HEAD(&priv->tx_pend_list);
6192         INIT_STAT(&priv->tx_free_stat);
6193         INIT_STAT(&priv->tx_pend_stat);
6194
6195         INIT_LIST_HEAD(&priv->fw_pend_list);
6196         INIT_STAT(&priv->fw_pend_stat);
6197
6198         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6199         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6200         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6201         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6202         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6203         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6204         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6205
6206         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6207                      ipw2100_irq_tasklet, (unsigned long)priv);
6208
6209         /* NOTE:  We do not start the deferred work for status checks yet */
6210         priv->stop_rf_kill = 1;
6211         priv->stop_hang_check = 1;
6212
6213         return dev;
6214 }
6215
6216 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6217                                 const struct pci_device_id *ent)
6218 {
6219         void __iomem *ioaddr;
6220         struct net_device *dev = NULL;
6221         struct ipw2100_priv *priv = NULL;
6222         int err = 0;
6223         int registered = 0;
6224         u32 val;
6225
6226         IPW_DEBUG_INFO("enter\n");
6227
6228         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6229                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6230                 err = -ENODEV;
6231                 goto out;
6232         }
6233
6234         ioaddr = pci_iomap(pci_dev, 0, 0);
6235         if (!ioaddr) {
6236                 printk(KERN_WARNING DRV_NAME
6237                        "Error calling ioremap_nocache.\n");
6238                 err = -EIO;
6239                 goto fail;
6240         }
6241
6242         /* allocate and initialize our net_device */
6243         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6244         if (!dev) {
6245                 printk(KERN_WARNING DRV_NAME
6246                        "Error calling ipw2100_alloc_device.\n");
6247                 err = -ENOMEM;
6248                 goto fail;
6249         }
6250
6251         /* set up PCI mappings for device */
6252         err = pci_enable_device(pci_dev);
6253         if (err) {
6254                 printk(KERN_WARNING DRV_NAME
6255                        "Error calling pci_enable_device.\n");
6256                 return err;
6257         }
6258
6259         priv = libipw_priv(dev);
6260
6261         pci_set_master(pci_dev);
6262         pci_set_drvdata(pci_dev, priv);
6263
6264         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6265         if (err) {
6266                 printk(KERN_WARNING DRV_NAME
6267                        "Error calling pci_set_dma_mask.\n");
6268                 pci_disable_device(pci_dev);
6269                 return err;
6270         }
6271
6272         err = pci_request_regions(pci_dev, DRV_NAME);
6273         if (err) {
6274                 printk(KERN_WARNING DRV_NAME
6275                        "Error calling pci_request_regions.\n");
6276                 pci_disable_device(pci_dev);
6277                 return err;
6278         }
6279
6280         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6281          * PCI Tx retries from interfering with C3 CPU state */
6282         pci_read_config_dword(pci_dev, 0x40, &val);
6283         if ((val & 0x0000ff00) != 0)
6284                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6285
6286         pci_set_power_state(pci_dev, PCI_D0);
6287
6288         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6289                 printk(KERN_WARNING DRV_NAME
6290                        "Device not found via register read.\n");
6291                 err = -ENODEV;
6292                 goto fail;
6293         }
6294
6295         SET_NETDEV_DEV(dev, &pci_dev->dev);
6296
6297         /* Force interrupts to be shut off on the device */
6298         priv->status |= STATUS_INT_ENABLED;
6299         ipw2100_disable_interrupts(priv);
6300
6301         /* Allocate and initialize the Tx/Rx queues and lists */
6302         if (ipw2100_queues_allocate(priv)) {
6303                 printk(KERN_WARNING DRV_NAME
6304                        "Error calling ipw2100_queues_allocate.\n");
6305                 err = -ENOMEM;
6306                 goto fail;
6307         }
6308         ipw2100_queues_initialize(priv);
6309
6310         err = request_irq(pci_dev->irq,
6311                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6312         if (err) {
6313                 printk(KERN_WARNING DRV_NAME
6314                        "Error calling request_irq: %d.\n", pci_dev->irq);
6315                 goto fail;
6316         }
6317         dev->irq = pci_dev->irq;
6318
6319         IPW_DEBUG_INFO("Attempting to register device...\n");
6320
6321         printk(KERN_INFO DRV_NAME
6322                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6323
6324         err = ipw2100_up(priv, 1);
6325         if (err)
6326                 goto fail;
6327
6328         err = ipw2100_wdev_init(dev);
6329         if (err)
6330                 goto fail;
6331         registered = 1;
6332
6333         /* Bring up the interface.  Pre 0.46, after we registered the
6334          * network device we would call ipw2100_up.  This introduced a race
6335          * condition with newer hotplug configurations (network was coming
6336          * up and making calls before the device was initialized).
6337          */
6338         err = register_netdev(dev);
6339         if (err) {
6340                 printk(KERN_WARNING DRV_NAME
6341                        "Error calling register_netdev.\n");
6342                 goto fail;
6343         }
6344         registered = 2;
6345
6346         mutex_lock(&priv->action_mutex);
6347
6348         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6349
6350         /* perform this after register_netdev so that dev->name is set */
6351         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6352         if (err)
6353                 goto fail_unlock;
6354
6355         /* If the RF Kill switch is disabled, go ahead and complete the
6356          * startup sequence */
6357         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6358                 /* Enable the adapter - sends HOST_COMPLETE */
6359                 if (ipw2100_enable_adapter(priv)) {
6360                         printk(KERN_WARNING DRV_NAME
6361                                ": %s: failed in call to enable adapter.\n",
6362                                priv->net_dev->name);
6363                         ipw2100_hw_stop_adapter(priv);
6364                         err = -EIO;
6365                         goto fail_unlock;
6366                 }
6367
6368                 /* Start a scan . . . */
6369                 ipw2100_set_scan_options(priv);
6370                 ipw2100_start_scan(priv);
6371         }
6372
6373         IPW_DEBUG_INFO("exit\n");
6374
6375         priv->status |= STATUS_INITIALIZED;
6376
6377         mutex_unlock(&priv->action_mutex);
6378 out:
6379         return err;
6380
6381       fail_unlock:
6382         mutex_unlock(&priv->action_mutex);
6383       fail:
6384         if (dev) {
6385                 if (registered >= 2)
6386                         unregister_netdev(dev);
6387
6388                 if (registered) {
6389                         wiphy_unregister(priv->ieee->wdev.wiphy);
6390                         kfree(priv->ieee->bg_band.channels);
6391                 }
6392
6393                 ipw2100_hw_stop_adapter(priv);
6394
6395                 ipw2100_disable_interrupts(priv);
6396
6397                 if (dev->irq)
6398                         free_irq(dev->irq, priv);
6399
6400                 ipw2100_kill_works(priv);
6401
6402                 /* These are safe to call even if they weren't allocated */
6403                 ipw2100_queues_free(priv);
6404                 sysfs_remove_group(&pci_dev->dev.kobj,
6405                                    &ipw2100_attribute_group);
6406
6407                 free_libipw(dev, 0);
6408                 pci_set_drvdata(pci_dev, NULL);
6409         }
6410
6411         pci_iounmap(pci_dev, ioaddr);
6412
6413         pci_release_regions(pci_dev);
6414         pci_disable_device(pci_dev);
6415         goto out;
6416 }
6417
6418 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6419 {
6420         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6421         struct net_device *dev = priv->net_dev;
6422
6423         mutex_lock(&priv->action_mutex);
6424
6425         priv->status &= ~STATUS_INITIALIZED;
6426
6427         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6428
6429 #ifdef CONFIG_PM
6430         if (ipw2100_firmware.version)
6431                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6432 #endif
6433         /* Take down the hardware */
6434         ipw2100_down(priv);
6435
6436         /* Release the mutex so that the network subsystem can
6437          * complete any needed calls into the driver... */
6438         mutex_unlock(&priv->action_mutex);
6439
6440         /* Unregister the device first - this results in close()
6441          * being called if the device is open.  If we free storage
6442          * first, then close() will crash.
6443          * FIXME: remove the comment above. */
6444         unregister_netdev(dev);
6445
6446         ipw2100_kill_works(priv);
6447
6448         ipw2100_queues_free(priv);
6449
6450         /* Free potential debugging firmware snapshot */
6451         ipw2100_snapshot_free(priv);
6452
6453         free_irq(dev->irq, priv);
6454
6455         pci_iounmap(pci_dev, priv->ioaddr);
6456
6457         /* wiphy_unregister needs to be here, before free_libipw */
6458         wiphy_unregister(priv->ieee->wdev.wiphy);
6459         kfree(priv->ieee->bg_band.channels);
6460         free_libipw(dev, 0);
6461
6462         pci_release_regions(pci_dev);
6463         pci_disable_device(pci_dev);
6464
6465         IPW_DEBUG_INFO("exit\n");
6466 }
6467
6468 #ifdef CONFIG_PM
6469 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6470 {
6471         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6472         struct net_device *dev = priv->net_dev;
6473
6474         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6475
6476         mutex_lock(&priv->action_mutex);
6477         if (priv->status & STATUS_INITIALIZED) {
6478                 /* Take down the device; powers it off, etc. */
6479                 ipw2100_down(priv);
6480         }
6481
6482         /* Remove the PRESENT state of the device */
6483         netif_device_detach(dev);
6484
6485         pci_save_state(pci_dev);
6486         pci_disable_device(pci_dev);
6487         pci_set_power_state(pci_dev, PCI_D3hot);
6488
6489         priv->suspend_at = get_seconds();
6490
6491         mutex_unlock(&priv->action_mutex);
6492
6493         return 0;
6494 }
6495
6496 static int ipw2100_resume(struct pci_dev *pci_dev)
6497 {
6498         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6499         struct net_device *dev = priv->net_dev;
6500         int err;
6501         u32 val;
6502
6503         if (IPW2100_PM_DISABLED)
6504                 return 0;
6505
6506         mutex_lock(&priv->action_mutex);
6507
6508         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6509
6510         pci_set_power_state(pci_dev, PCI_D0);
6511         err = pci_enable_device(pci_dev);
6512         if (err) {
6513                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6514                        dev->name);
6515                 mutex_unlock(&priv->action_mutex);
6516                 return err;
6517         }
6518         pci_restore_state(pci_dev);
6519
6520         /*
6521          * Suspend/Resume resets the PCI configuration space, so we have to
6522          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6523          * from interfering with C3 CPU state. pci_restore_state won't help
6524          * here since it only restores the first 64 bytes pci config header.
6525          */
6526         pci_read_config_dword(pci_dev, 0x40, &val);
6527         if ((val & 0x0000ff00) != 0)
6528                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6529
6530         /* Set the device back into the PRESENT state; this will also wake
6531          * the queue of needed */
6532         netif_device_attach(dev);
6533
6534         priv->suspend_time = get_seconds() - priv->suspend_at;
6535
6536         /* Bring the device back up */
6537         if (!(priv->status & STATUS_RF_KILL_SW))
6538                 ipw2100_up(priv, 0);
6539
6540         mutex_unlock(&priv->action_mutex);
6541
6542         return 0;
6543 }
6544 #endif
6545
6546 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6547 {
6548         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6549
6550         /* Take down the device; powers it off, etc. */
6551         ipw2100_down(priv);
6552
6553         pci_disable_device(pci_dev);
6554 }
6555
6556 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6557
6558 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6559         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6560         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6561         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6562         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6563         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6564         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6565         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6566         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6567         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6568         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6569         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6570         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6571         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6572
6573         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6574         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6575         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6576         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6577         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6578
6579         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6580         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6581         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6582         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6583         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6584         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6585         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6586
6587         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6588
6589         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6590         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6591         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6592         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6593         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6594         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6595         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6596
6597         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6598         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6599         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6600         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6601         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6602         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6603
6604         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6605         {0,},
6606 };
6607
6608 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6609
6610 static struct pci_driver ipw2100_pci_driver = {
6611         .name = DRV_NAME,
6612         .id_table = ipw2100_pci_id_table,
6613         .probe = ipw2100_pci_init_one,
6614         .remove = __devexit_p(ipw2100_pci_remove_one),
6615 #ifdef CONFIG_PM
6616         .suspend = ipw2100_suspend,
6617         .resume = ipw2100_resume,
6618 #endif
6619         .shutdown = ipw2100_shutdown,
6620 };
6621
6622 /**
6623  * Initialize the ipw2100 driver/module
6624  *
6625  * @returns 0 if ok, < 0 errno node con error.
6626  *
6627  * Note: we cannot init the /proc stuff until the PCI driver is there,
6628  * or we risk an unlikely race condition on someone accessing
6629  * uninitialized data in the PCI dev struct through /proc.
6630  */
6631 static int __init ipw2100_init(void)
6632 {
6633         int ret;
6634
6635         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6636         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6637
6638         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6639                            PM_QOS_DEFAULT_VALUE);
6640
6641         ret = pci_register_driver(&ipw2100_pci_driver);
6642         if (ret)
6643                 goto out;
6644
6645 #ifdef CONFIG_IPW2100_DEBUG
6646         ipw2100_debug_level = debug;
6647         ret = driver_create_file(&ipw2100_pci_driver.driver,
6648                                  &driver_attr_debug_level);
6649 #endif
6650
6651 out:
6652         return ret;
6653 }
6654
6655 /**
6656  * Cleanup ipw2100 driver registration
6657  */
6658 static void __exit ipw2100_exit(void)
6659 {
6660         /* FIXME: IPG: check that we have no instances of the devices open */
6661 #ifdef CONFIG_IPW2100_DEBUG
6662         driver_remove_file(&ipw2100_pci_driver.driver,
6663                            &driver_attr_debug_level);
6664 #endif
6665         pci_unregister_driver(&ipw2100_pci_driver);
6666         pm_qos_remove_request(&ipw2100_pm_qos_req);
6667 }
6668
6669 module_init(ipw2100_init);
6670 module_exit(ipw2100_exit);
6671
6672 static int ipw2100_wx_get_name(struct net_device *dev,
6673                                struct iw_request_info *info,
6674                                union iwreq_data *wrqu, char *extra)
6675 {
6676         /*
6677          * This can be called at any time.  No action lock required
6678          */
6679
6680         struct ipw2100_priv *priv = libipw_priv(dev);
6681         if (!(priv->status & STATUS_ASSOCIATED))
6682                 strcpy(wrqu->name, "unassociated");
6683         else
6684                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6685
6686         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6687         return 0;
6688 }
6689
6690 static int ipw2100_wx_set_freq(struct net_device *dev,
6691                                struct iw_request_info *info,
6692                                union iwreq_data *wrqu, char *extra)
6693 {
6694         struct ipw2100_priv *priv = libipw_priv(dev);
6695         struct iw_freq *fwrq = &wrqu->freq;
6696         int err = 0;
6697
6698         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6699                 return -EOPNOTSUPP;
6700
6701         mutex_lock(&priv->action_mutex);
6702         if (!(priv->status & STATUS_INITIALIZED)) {
6703                 err = -EIO;
6704                 goto done;
6705         }
6706
6707         /* if setting by freq convert to channel */
6708         if (fwrq->e == 1) {
6709                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6710                         int f = fwrq->m / 100000;
6711                         int c = 0;
6712
6713                         while ((c < REG_MAX_CHANNEL) &&
6714                                (f != ipw2100_frequencies[c]))
6715                                 c++;
6716
6717                         /* hack to fall through */
6718                         fwrq->e = 0;
6719                         fwrq->m = c + 1;
6720                 }
6721         }
6722
6723         if (fwrq->e > 0 || fwrq->m > 1000) {
6724                 err = -EOPNOTSUPP;
6725                 goto done;
6726         } else {                /* Set the channel */
6727                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6728                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6729         }
6730
6731       done:
6732         mutex_unlock(&priv->action_mutex);
6733         return err;
6734 }
6735
6736 static int ipw2100_wx_get_freq(struct net_device *dev,
6737                                struct iw_request_info *info,
6738                                union iwreq_data *wrqu, char *extra)
6739 {
6740         /*
6741          * This can be called at any time.  No action lock required
6742          */
6743
6744         struct ipw2100_priv *priv = libipw_priv(dev);
6745
6746         wrqu->freq.e = 0;
6747
6748         /* If we are associated, trying to associate, or have a statically
6749          * configured CHANNEL then return that; otherwise return ANY */
6750         if (priv->config & CFG_STATIC_CHANNEL ||
6751             priv->status & STATUS_ASSOCIATED)
6752                 wrqu->freq.m = priv->channel;
6753         else
6754                 wrqu->freq.m = 0;
6755
6756         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6757         return 0;
6758
6759 }
6760
6761 static int ipw2100_wx_set_mode(struct net_device *dev,
6762                                struct iw_request_info *info,
6763                                union iwreq_data *wrqu, char *extra)
6764 {
6765         struct ipw2100_priv *priv = libipw_priv(dev);
6766         int err = 0;
6767
6768         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6769
6770         if (wrqu->mode == priv->ieee->iw_mode)
6771                 return 0;
6772
6773         mutex_lock(&priv->action_mutex);
6774         if (!(priv->status & STATUS_INITIALIZED)) {
6775                 err = -EIO;
6776                 goto done;
6777         }
6778
6779         switch (wrqu->mode) {
6780 #ifdef CONFIG_IPW2100_MONITOR
6781         case IW_MODE_MONITOR:
6782                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6783                 break;
6784 #endif                          /* CONFIG_IPW2100_MONITOR */
6785         case IW_MODE_ADHOC:
6786                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6787                 break;
6788         case IW_MODE_INFRA:
6789         case IW_MODE_AUTO:
6790         default:
6791                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6792                 break;
6793         }
6794
6795       done:
6796         mutex_unlock(&priv->action_mutex);
6797         return err;
6798 }
6799
6800 static int ipw2100_wx_get_mode(struct net_device *dev,
6801                                struct iw_request_info *info,
6802                                union iwreq_data *wrqu, char *extra)
6803 {
6804         /*
6805          * This can be called at any time.  No action lock required
6806          */
6807
6808         struct ipw2100_priv *priv = libipw_priv(dev);
6809
6810         wrqu->mode = priv->ieee->iw_mode;
6811         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6812
6813         return 0;
6814 }
6815
6816 #define POWER_MODES 5
6817
6818 /* Values are in microsecond */
6819 static const s32 timeout_duration[POWER_MODES] = {
6820         350000,
6821         250000,
6822         75000,
6823         37000,
6824         25000,
6825 };
6826
6827 static const s32 period_duration[POWER_MODES] = {
6828         400000,
6829         700000,
6830         1000000,
6831         1000000,
6832         1000000
6833 };
6834
6835 static int ipw2100_wx_get_range(struct net_device *dev,
6836                                 struct iw_request_info *info,
6837                                 union iwreq_data *wrqu, char *extra)
6838 {
6839         /*
6840          * This can be called at any time.  No action lock required
6841          */
6842
6843         struct ipw2100_priv *priv = libipw_priv(dev);
6844         struct iw_range *range = (struct iw_range *)extra;
6845         u16 val;
6846         int i, level;
6847
6848         wrqu->data.length = sizeof(*range);
6849         memset(range, 0, sizeof(*range));
6850
6851         /* Let's try to keep this struct in the same order as in
6852          * linux/include/wireless.h
6853          */
6854
6855         /* TODO: See what values we can set, and remove the ones we can't
6856          * set, or fill them with some default data.
6857          */
6858
6859         /* ~5 Mb/s real (802.11b) */
6860         range->throughput = 5 * 1000 * 1000;
6861
6862 //      range->sensitivity;     /* signal level threshold range */
6863
6864         range->max_qual.qual = 100;
6865         /* TODO: Find real max RSSI and stick here */
6866         range->max_qual.level = 0;
6867         range->max_qual.noise = 0;
6868         range->max_qual.updated = 7;    /* Updated all three */
6869
6870         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6871         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6872         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6873         range->avg_qual.noise = 0;
6874         range->avg_qual.updated = 7;    /* Updated all three */
6875
6876         range->num_bitrates = RATE_COUNT;
6877
6878         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6879                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6880         }
6881
6882         range->min_rts = MIN_RTS_THRESHOLD;
6883         range->max_rts = MAX_RTS_THRESHOLD;
6884         range->min_frag = MIN_FRAG_THRESHOLD;
6885         range->max_frag = MAX_FRAG_THRESHOLD;
6886
6887         range->min_pmp = period_duration[0];    /* Minimal PM period */
6888         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6889         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6890         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6891
6892         /* How to decode max/min PM period */
6893         range->pmp_flags = IW_POWER_PERIOD;
6894         /* How to decode max/min PM period */
6895         range->pmt_flags = IW_POWER_TIMEOUT;
6896         /* What PM options are supported */
6897         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6898
6899         range->encoding_size[0] = 5;
6900         range->encoding_size[1] = 13;   /* Different token sizes */
6901         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6902         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6903 //      range->encoding_login_index;            /* token index for login token */
6904
6905         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6906                 range->txpower_capa = IW_TXPOW_DBM;
6907                 range->num_txpower = IW_MAX_TXPOWER;
6908                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6909                      i < IW_MAX_TXPOWER;
6910                      i++, level -=
6911                      ((IPW_TX_POWER_MAX_DBM -
6912                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6913                         range->txpower[i] = level / 16;
6914         } else {
6915                 range->txpower_capa = 0;
6916                 range->num_txpower = 0;
6917         }
6918
6919         /* Set the Wireless Extension versions */
6920         range->we_version_compiled = WIRELESS_EXT;
6921         range->we_version_source = 18;
6922
6923 //      range->retry_capa;      /* What retry options are supported */
6924 //      range->retry_flags;     /* How to decode max/min retry limit */
6925 //      range->r_time_flags;    /* How to decode max/min retry life */
6926 //      range->min_retry;       /* Minimal number of retries */
6927 //      range->max_retry;       /* Maximal number of retries */
6928 //      range->min_r_time;      /* Minimal retry lifetime */
6929 //      range->max_r_time;      /* Maximal retry lifetime */
6930
6931         range->num_channels = FREQ_COUNT;
6932
6933         val = 0;
6934         for (i = 0; i < FREQ_COUNT; i++) {
6935                 // TODO: Include only legal frequencies for some countries
6936 //              if (local->channel_mask & (1 << i)) {
6937                 range->freq[val].i = i + 1;
6938                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6939                 range->freq[val].e = 1;
6940                 val++;
6941 //              }
6942                 if (val == IW_MAX_FREQUENCIES)
6943                         break;
6944         }
6945         range->num_frequency = val;
6946
6947         /* Event capability (kernel + driver) */
6948         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6949                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6950         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6951
6952         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6953                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6954
6955         IPW_DEBUG_WX("GET Range\n");
6956
6957         return 0;
6958 }
6959
6960 static int ipw2100_wx_set_wap(struct net_device *dev,
6961                               struct iw_request_info *info,
6962                               union iwreq_data *wrqu, char *extra)
6963 {
6964         struct ipw2100_priv *priv = libipw_priv(dev);
6965         int err = 0;
6966
6967         // sanity checks
6968         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6969                 return -EINVAL;
6970
6971         mutex_lock(&priv->action_mutex);
6972         if (!(priv->status & STATUS_INITIALIZED)) {
6973                 err = -EIO;
6974                 goto done;
6975         }
6976
6977         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6978             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6979                 /* we disable mandatory BSSID association */
6980                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6981                 priv->config &= ~CFG_STATIC_BSSID;
6982                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6983                 goto done;
6984         }
6985
6986         priv->config |= CFG_STATIC_BSSID;
6987         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6988
6989         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6990
6991         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6992
6993       done:
6994         mutex_unlock(&priv->action_mutex);
6995         return err;
6996 }
6997
6998 static int ipw2100_wx_get_wap(struct net_device *dev,
6999                               struct iw_request_info *info,
7000                               union iwreq_data *wrqu, char *extra)
7001 {
7002         /*
7003          * This can be called at any time.  No action lock required
7004          */
7005
7006         struct ipw2100_priv *priv = libipw_priv(dev);
7007
7008         /* If we are associated, trying to associate, or have a statically
7009          * configured BSSID then return that; otherwise return ANY */
7010         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7011                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7012                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7013         } else
7014                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7015
7016         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7017         return 0;
7018 }
7019
7020 static int ipw2100_wx_set_essid(struct net_device *dev,
7021                                 struct iw_request_info *info,
7022                                 union iwreq_data *wrqu, char *extra)
7023 {
7024         struct ipw2100_priv *priv = libipw_priv(dev);
7025         char *essid = "";       /* ANY */
7026         int length = 0;
7027         int err = 0;
7028         DECLARE_SSID_BUF(ssid);
7029
7030         mutex_lock(&priv->action_mutex);
7031         if (!(priv->status & STATUS_INITIALIZED)) {
7032                 err = -EIO;
7033                 goto done;
7034         }
7035
7036         if (wrqu->essid.flags && wrqu->essid.length) {
7037                 length = wrqu->essid.length;
7038                 essid = extra;
7039         }
7040
7041         if (length == 0) {
7042                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7043                 priv->config &= ~CFG_STATIC_ESSID;
7044                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7045                 goto done;
7046         }
7047
7048         length = min(length, IW_ESSID_MAX_SIZE);
7049
7050         priv->config |= CFG_STATIC_ESSID;
7051
7052         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7053                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7054                 err = 0;
7055                 goto done;
7056         }
7057
7058         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7059                      print_ssid(ssid, essid, length), length);
7060
7061         priv->essid_len = length;
7062         memcpy(priv->essid, essid, priv->essid_len);
7063
7064         err = ipw2100_set_essid(priv, essid, length, 0);
7065
7066       done:
7067         mutex_unlock(&priv->action_mutex);
7068         return err;
7069 }
7070
7071 static int ipw2100_wx_get_essid(struct net_device *dev,
7072                                 struct iw_request_info *info,
7073                                 union iwreq_data *wrqu, char *extra)
7074 {
7075         /*
7076          * This can be called at any time.  No action lock required
7077          */
7078
7079         struct ipw2100_priv *priv = libipw_priv(dev);
7080         DECLARE_SSID_BUF(ssid);
7081
7082         /* If we are associated, trying to associate, or have a statically
7083          * configured ESSID then return that; otherwise return ANY */
7084         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7085                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7086                              print_ssid(ssid, priv->essid, priv->essid_len));
7087                 memcpy(extra, priv->essid, priv->essid_len);
7088                 wrqu->essid.length = priv->essid_len;
7089                 wrqu->essid.flags = 1;  /* active */
7090         } else {
7091                 IPW_DEBUG_WX("Getting essid: ANY\n");
7092                 wrqu->essid.length = 0;
7093                 wrqu->essid.flags = 0;  /* active */
7094         }
7095
7096         return 0;
7097 }
7098
7099 static int ipw2100_wx_set_nick(struct net_device *dev,
7100                                struct iw_request_info *info,
7101                                union iwreq_data *wrqu, char *extra)
7102 {
7103         /*
7104          * This can be called at any time.  No action lock required
7105          */
7106
7107         struct ipw2100_priv *priv = libipw_priv(dev);
7108
7109         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7110                 return -E2BIG;
7111
7112         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7113         memset(priv->nick, 0, sizeof(priv->nick));
7114         memcpy(priv->nick, extra, wrqu->data.length);
7115
7116         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7117
7118         return 0;
7119 }
7120
7121 static int ipw2100_wx_get_nick(struct net_device *dev,
7122                                struct iw_request_info *info,
7123                                union iwreq_data *wrqu, char *extra)
7124 {
7125         /*
7126          * This can be called at any time.  No action lock required
7127          */
7128
7129         struct ipw2100_priv *priv = libipw_priv(dev);
7130
7131         wrqu->data.length = strlen(priv->nick);
7132         memcpy(extra, priv->nick, wrqu->data.length);
7133         wrqu->data.flags = 1;   /* active */
7134
7135         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7136
7137         return 0;
7138 }
7139
7140 static int ipw2100_wx_set_rate(struct net_device *dev,
7141                                struct iw_request_info *info,
7142                                union iwreq_data *wrqu, char *extra)
7143 {
7144         struct ipw2100_priv *priv = libipw_priv(dev);
7145         u32 target_rate = wrqu->bitrate.value;
7146         u32 rate;
7147         int err = 0;
7148
7149         mutex_lock(&priv->action_mutex);
7150         if (!(priv->status & STATUS_INITIALIZED)) {
7151                 err = -EIO;
7152                 goto done;
7153         }
7154
7155         rate = 0;
7156
7157         if (target_rate == 1000000 ||
7158             (!wrqu->bitrate.fixed && target_rate > 1000000))
7159                 rate |= TX_RATE_1_MBIT;
7160         if (target_rate == 2000000 ||
7161             (!wrqu->bitrate.fixed && target_rate > 2000000))
7162                 rate |= TX_RATE_2_MBIT;
7163         if (target_rate == 5500000 ||
7164             (!wrqu->bitrate.fixed && target_rate > 5500000))
7165                 rate |= TX_RATE_5_5_MBIT;
7166         if (target_rate == 11000000 ||
7167             (!wrqu->bitrate.fixed && target_rate > 11000000))
7168                 rate |= TX_RATE_11_MBIT;
7169         if (rate == 0)
7170                 rate = DEFAULT_TX_RATES;
7171
7172         err = ipw2100_set_tx_rates(priv, rate, 0);
7173
7174         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7175       done:
7176         mutex_unlock(&priv->action_mutex);
7177         return err;
7178 }
7179
7180 static int ipw2100_wx_get_rate(struct net_device *dev,
7181                                struct iw_request_info *info,
7182                                union iwreq_data *wrqu, char *extra)
7183 {
7184         struct ipw2100_priv *priv = libipw_priv(dev);
7185         int val;
7186         unsigned int len = sizeof(val);
7187         int err = 0;
7188
7189         if (!(priv->status & STATUS_ENABLED) ||
7190             priv->status & STATUS_RF_KILL_MASK ||
7191             !(priv->status & STATUS_ASSOCIATED)) {
7192                 wrqu->bitrate.value = 0;
7193                 return 0;
7194         }
7195
7196         mutex_lock(&priv->action_mutex);
7197         if (!(priv->status & STATUS_INITIALIZED)) {
7198                 err = -EIO;
7199                 goto done;
7200         }
7201
7202         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7203         if (err) {
7204                 IPW_DEBUG_WX("failed querying ordinals.\n");
7205                 goto done;
7206         }
7207
7208         switch (val & TX_RATE_MASK) {
7209         case TX_RATE_1_MBIT:
7210                 wrqu->bitrate.value = 1000000;
7211                 break;
7212         case TX_RATE_2_MBIT:
7213                 wrqu->bitrate.value = 2000000;
7214                 break;
7215         case TX_RATE_5_5_MBIT:
7216                 wrqu->bitrate.value = 5500000;
7217                 break;
7218         case TX_RATE_11_MBIT:
7219                 wrqu->bitrate.value = 11000000;
7220                 break;
7221         default:
7222                 wrqu->bitrate.value = 0;
7223         }
7224
7225         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7226
7227       done:
7228         mutex_unlock(&priv->action_mutex);
7229         return err;
7230 }
7231
7232 static int ipw2100_wx_set_rts(struct net_device *dev,
7233                               struct iw_request_info *info,
7234                               union iwreq_data *wrqu, char *extra)
7235 {
7236         struct ipw2100_priv *priv = libipw_priv(dev);
7237         int value, err;
7238
7239         /* Auto RTS not yet supported */
7240         if (wrqu->rts.fixed == 0)
7241                 return -EINVAL;
7242
7243         mutex_lock(&priv->action_mutex);
7244         if (!(priv->status & STATUS_INITIALIZED)) {
7245                 err = -EIO;
7246                 goto done;
7247         }
7248
7249         if (wrqu->rts.disabled)
7250                 value = priv->rts_threshold | RTS_DISABLED;
7251         else {
7252                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7253                         err = -EINVAL;
7254                         goto done;
7255                 }
7256                 value = wrqu->rts.value;
7257         }
7258
7259         err = ipw2100_set_rts_threshold(priv, value);
7260
7261         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7262       done:
7263         mutex_unlock(&priv->action_mutex);
7264         return err;
7265 }
7266
7267 static int ipw2100_wx_get_rts(struct net_device *dev,
7268                               struct iw_request_info *info,
7269                               union iwreq_data *wrqu, char *extra)
7270 {
7271         /*
7272          * This can be called at any time.  No action lock required
7273          */
7274
7275         struct ipw2100_priv *priv = libipw_priv(dev);
7276
7277         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7278         wrqu->rts.fixed = 1;    /* no auto select */
7279
7280         /* If RTS is set to the default value, then it is disabled */
7281         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7282
7283         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7284
7285         return 0;
7286 }
7287
7288 static int ipw2100_wx_set_txpow(struct net_device *dev,
7289                                 struct iw_request_info *info,
7290                                 union iwreq_data *wrqu, char *extra)
7291 {
7292         struct ipw2100_priv *priv = libipw_priv(dev);
7293         int err = 0, value;
7294         
7295         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7296                 return -EINPROGRESS;
7297
7298         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7299                 return 0;
7300
7301         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7302                 return -EINVAL;
7303
7304         if (wrqu->txpower.fixed == 0)
7305                 value = IPW_TX_POWER_DEFAULT;
7306         else {
7307                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7308                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7309                         return -EINVAL;
7310
7311                 value = wrqu->txpower.value;
7312         }
7313
7314         mutex_lock(&priv->action_mutex);
7315         if (!(priv->status & STATUS_INITIALIZED)) {
7316                 err = -EIO;
7317                 goto done;
7318         }
7319
7320         err = ipw2100_set_tx_power(priv, value);
7321
7322         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7323
7324       done:
7325         mutex_unlock(&priv->action_mutex);
7326         return err;
7327 }
7328
7329 static int ipw2100_wx_get_txpow(struct net_device *dev,
7330                                 struct iw_request_info *info,
7331                                 union iwreq_data *wrqu, char *extra)
7332 {
7333         /*
7334          * This can be called at any time.  No action lock required
7335          */
7336
7337         struct ipw2100_priv *priv = libipw_priv(dev);
7338
7339         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7340
7341         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7342                 wrqu->txpower.fixed = 0;
7343                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7344         } else {
7345                 wrqu->txpower.fixed = 1;
7346                 wrqu->txpower.value = priv->tx_power;
7347         }
7348
7349         wrqu->txpower.flags = IW_TXPOW_DBM;
7350
7351         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7352
7353         return 0;
7354 }
7355
7356 static int ipw2100_wx_set_frag(struct net_device *dev,
7357                                struct iw_request_info *info,
7358                                union iwreq_data *wrqu, char *extra)
7359 {
7360         /*
7361          * This can be called at any time.  No action lock required
7362          */
7363
7364         struct ipw2100_priv *priv = libipw_priv(dev);
7365
7366         if (!wrqu->frag.fixed)
7367                 return -EINVAL;
7368
7369         if (wrqu->frag.disabled) {
7370                 priv->frag_threshold |= FRAG_DISABLED;
7371                 priv->ieee->fts = DEFAULT_FTS;
7372         } else {
7373                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7374                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7375                         return -EINVAL;
7376
7377                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7378                 priv->frag_threshold = priv->ieee->fts;
7379         }
7380
7381         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7382
7383         return 0;
7384 }
7385
7386 static int ipw2100_wx_get_frag(struct net_device *dev,
7387                                struct iw_request_info *info,
7388                                union iwreq_data *wrqu, char *extra)
7389 {
7390         /*
7391          * This can be called at any time.  No action lock required
7392          */
7393
7394         struct ipw2100_priv *priv = libipw_priv(dev);
7395         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7396         wrqu->frag.fixed = 0;   /* no auto select */
7397         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7398
7399         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7400
7401         return 0;
7402 }
7403
7404 static int ipw2100_wx_set_retry(struct net_device *dev,
7405                                 struct iw_request_info *info,
7406                                 union iwreq_data *wrqu, char *extra)
7407 {
7408         struct ipw2100_priv *priv = libipw_priv(dev);
7409         int err = 0;
7410
7411         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7412                 return -EINVAL;
7413
7414         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7415                 return 0;
7416
7417         mutex_lock(&priv->action_mutex);
7418         if (!(priv->status & STATUS_INITIALIZED)) {
7419                 err = -EIO;
7420                 goto done;
7421         }
7422
7423         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7424                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7425                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7426                              wrqu->retry.value);
7427                 goto done;
7428         }
7429
7430         if (wrqu->retry.flags & IW_RETRY_LONG) {
7431                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7432                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7433                              wrqu->retry.value);
7434                 goto done;
7435         }
7436
7437         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7438         if (!err)
7439                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7440
7441         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7442
7443       done:
7444         mutex_unlock(&priv->action_mutex);
7445         return err;
7446 }
7447
7448 static int ipw2100_wx_get_retry(struct net_device *dev,
7449                                 struct iw_request_info *info,
7450                                 union iwreq_data *wrqu, char *extra)
7451 {
7452         /*
7453          * This can be called at any time.  No action lock required
7454          */
7455
7456         struct ipw2100_priv *priv = libipw_priv(dev);
7457
7458         wrqu->retry.disabled = 0;       /* can't be disabled */
7459
7460         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7461                 return -EINVAL;
7462
7463         if (wrqu->retry.flags & IW_RETRY_LONG) {
7464                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7465                 wrqu->retry.value = priv->long_retry_limit;
7466         } else {
7467                 wrqu->retry.flags =
7468                     (priv->short_retry_limit !=
7469                      priv->long_retry_limit) ?
7470                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7471
7472                 wrqu->retry.value = priv->short_retry_limit;
7473         }
7474
7475         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7476
7477         return 0;
7478 }
7479
7480 static int ipw2100_wx_set_scan(struct net_device *dev,
7481                                struct iw_request_info *info,
7482                                union iwreq_data *wrqu, char *extra)
7483 {
7484         struct ipw2100_priv *priv = libipw_priv(dev);
7485         int err = 0;
7486
7487         mutex_lock(&priv->action_mutex);
7488         if (!(priv->status & STATUS_INITIALIZED)) {
7489                 err = -EIO;
7490                 goto done;
7491         }
7492
7493         IPW_DEBUG_WX("Initiating scan...\n");
7494
7495         priv->user_requested_scan = 1;
7496         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7497                 IPW_DEBUG_WX("Start scan failed.\n");
7498
7499                 /* TODO: Mark a scan as pending so when hardware initialized
7500                  *       a scan starts */
7501         }
7502
7503       done:
7504         mutex_unlock(&priv->action_mutex);
7505         return err;
7506 }
7507
7508 static int ipw2100_wx_get_scan(struct net_device *dev,
7509                                struct iw_request_info *info,
7510                                union iwreq_data *wrqu, char *extra)
7511 {
7512         /*
7513          * This can be called at any time.  No action lock required
7514          */
7515
7516         struct ipw2100_priv *priv = libipw_priv(dev);
7517         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7518 }
7519
7520 /*
7521  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7522  */
7523 static int ipw2100_wx_set_encode(struct net_device *dev,
7524                                  struct iw_request_info *info,
7525                                  union iwreq_data *wrqu, char *key)
7526 {
7527         /*
7528          * No check of STATUS_INITIALIZED required
7529          */
7530
7531         struct ipw2100_priv *priv = libipw_priv(dev);
7532         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7533 }
7534
7535 static int ipw2100_wx_get_encode(struct net_device *dev,
7536                                  struct iw_request_info *info,
7537                                  union iwreq_data *wrqu, char *key)
7538 {
7539         /*
7540          * This can be called at any time.  No action lock required
7541          */
7542
7543         struct ipw2100_priv *priv = libipw_priv(dev);
7544         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7545 }
7546
7547 static int ipw2100_wx_set_power(struct net_device *dev,
7548                                 struct iw_request_info *info,
7549                                 union iwreq_data *wrqu, char *extra)
7550 {
7551         struct ipw2100_priv *priv = libipw_priv(dev);
7552         int err = 0;
7553
7554         mutex_lock(&priv->action_mutex);
7555         if (!(priv->status & STATUS_INITIALIZED)) {
7556                 err = -EIO;
7557                 goto done;
7558         }
7559
7560         if (wrqu->power.disabled) {
7561                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7562                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7563                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7564                 goto done;
7565         }
7566
7567         switch (wrqu->power.flags & IW_POWER_MODE) {
7568         case IW_POWER_ON:       /* If not specified */
7569         case IW_POWER_MODE:     /* If set all mask */
7570         case IW_POWER_ALL_R:    /* If explicitly state all */
7571                 break;
7572         default:                /* Otherwise we don't support it */
7573                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7574                              wrqu->power.flags);
7575                 err = -EOPNOTSUPP;
7576                 goto done;
7577         }
7578
7579         /* If the user hasn't specified a power management mode yet, default
7580          * to BATTERY */
7581         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7582         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7583
7584         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7585
7586       done:
7587         mutex_unlock(&priv->action_mutex);
7588         return err;
7589
7590 }
7591
7592 static int ipw2100_wx_get_power(struct net_device *dev,
7593                                 struct iw_request_info *info,
7594                                 union iwreq_data *wrqu, char *extra)
7595 {
7596         /*
7597          * This can be called at any time.  No action lock required
7598          */
7599
7600         struct ipw2100_priv *priv = libipw_priv(dev);
7601
7602         if (!(priv->power_mode & IPW_POWER_ENABLED))
7603                 wrqu->power.disabled = 1;
7604         else {
7605                 wrqu->power.disabled = 0;
7606                 wrqu->power.flags = 0;
7607         }
7608
7609         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7610
7611         return 0;
7612 }
7613
7614 /*
7615  * WE-18 WPA support
7616  */
7617
7618 /* SIOCSIWGENIE */
7619 static int ipw2100_wx_set_genie(struct net_device *dev,
7620                                 struct iw_request_info *info,
7621                                 union iwreq_data *wrqu, char *extra)
7622 {
7623
7624         struct ipw2100_priv *priv = libipw_priv(dev);
7625         struct libipw_device *ieee = priv->ieee;
7626         u8 *buf;
7627
7628         if (!ieee->wpa_enabled)
7629                 return -EOPNOTSUPP;
7630
7631         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7632             (wrqu->data.length && extra == NULL))
7633                 return -EINVAL;
7634
7635         if (wrqu->data.length) {
7636                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7637                 if (buf == NULL)
7638                         return -ENOMEM;
7639
7640                 kfree(ieee->wpa_ie);
7641                 ieee->wpa_ie = buf;
7642                 ieee->wpa_ie_len = wrqu->data.length;
7643         } else {
7644                 kfree(ieee->wpa_ie);
7645                 ieee->wpa_ie = NULL;
7646                 ieee->wpa_ie_len = 0;
7647         }
7648
7649         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7650
7651         return 0;
7652 }
7653
7654 /* SIOCGIWGENIE */
7655 static int ipw2100_wx_get_genie(struct net_device *dev,
7656                                 struct iw_request_info *info,
7657                                 union iwreq_data *wrqu, char *extra)
7658 {
7659         struct ipw2100_priv *priv = libipw_priv(dev);
7660         struct libipw_device *ieee = priv->ieee;
7661
7662         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7663                 wrqu->data.length = 0;
7664                 return 0;
7665         }
7666
7667         if (wrqu->data.length < ieee->wpa_ie_len)
7668                 return -E2BIG;
7669
7670         wrqu->data.length = ieee->wpa_ie_len;
7671         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7672
7673         return 0;
7674 }
7675
7676 /* SIOCSIWAUTH */
7677 static int ipw2100_wx_set_auth(struct net_device *dev,
7678                                struct iw_request_info *info,
7679                                union iwreq_data *wrqu, char *extra)
7680 {
7681         struct ipw2100_priv *priv = libipw_priv(dev);
7682         struct libipw_device *ieee = priv->ieee;
7683         struct iw_param *param = &wrqu->param;
7684         struct lib80211_crypt_data *crypt;
7685         unsigned long flags;
7686         int ret = 0;
7687
7688         switch (param->flags & IW_AUTH_INDEX) {
7689         case IW_AUTH_WPA_VERSION:
7690         case IW_AUTH_CIPHER_PAIRWISE:
7691         case IW_AUTH_CIPHER_GROUP:
7692         case IW_AUTH_KEY_MGMT:
7693                 /*
7694                  * ipw2200 does not use these parameters
7695                  */
7696                 break;
7697
7698         case IW_AUTH_TKIP_COUNTERMEASURES:
7699                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7700                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7701                         break;
7702
7703                 flags = crypt->ops->get_flags(crypt->priv);
7704
7705                 if (param->value)
7706                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7707                 else
7708                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7709
7710                 crypt->ops->set_flags(flags, crypt->priv);
7711
7712                 break;
7713
7714         case IW_AUTH_DROP_UNENCRYPTED:{
7715                         /* HACK:
7716                          *
7717                          * wpa_supplicant calls set_wpa_enabled when the driver
7718                          * is loaded and unloaded, regardless of if WPA is being
7719                          * used.  No other calls are made which can be used to
7720                          * determine if encryption will be used or not prior to
7721                          * association being expected.  If encryption is not being
7722                          * used, drop_unencrypted is set to false, else true -- we
7723                          * can use this to determine if the CAP_PRIVACY_ON bit should
7724                          * be set.
7725                          */
7726                         struct libipw_security sec = {
7727                                 .flags = SEC_ENABLED,
7728                                 .enabled = param->value,
7729                         };
7730                         priv->ieee->drop_unencrypted = param->value;
7731                         /* We only change SEC_LEVEL for open mode. Others
7732                          * are set by ipw_wpa_set_encryption.
7733                          */
7734                         if (!param->value) {
7735                                 sec.flags |= SEC_LEVEL;
7736                                 sec.level = SEC_LEVEL_0;
7737                         } else {
7738                                 sec.flags |= SEC_LEVEL;
7739                                 sec.level = SEC_LEVEL_1;
7740                         }
7741                         if (priv->ieee->set_security)
7742                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7743                         break;
7744                 }
7745
7746         case IW_AUTH_80211_AUTH_ALG:
7747                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7748                 break;
7749
7750         case IW_AUTH_WPA_ENABLED:
7751                 ret = ipw2100_wpa_enable(priv, param->value);
7752                 break;
7753
7754         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7755                 ieee->ieee802_1x = param->value;
7756                 break;
7757
7758                 //case IW_AUTH_ROAMING_CONTROL:
7759         case IW_AUTH_PRIVACY_INVOKED:
7760                 ieee->privacy_invoked = param->value;
7761                 break;
7762
7763         default:
7764                 return -EOPNOTSUPP;
7765         }
7766         return ret;
7767 }
7768
7769 /* SIOCGIWAUTH */
7770 static int ipw2100_wx_get_auth(struct net_device *dev,
7771                                struct iw_request_info *info,
7772                                union iwreq_data *wrqu, char *extra)
7773 {
7774         struct ipw2100_priv *priv = libipw_priv(dev);
7775         struct libipw_device *ieee = priv->ieee;
7776         struct lib80211_crypt_data *crypt;
7777         struct iw_param *param = &wrqu->param;
7778         int ret = 0;
7779
7780         switch (param->flags & IW_AUTH_INDEX) {
7781         case IW_AUTH_WPA_VERSION:
7782         case IW_AUTH_CIPHER_PAIRWISE:
7783         case IW_AUTH_CIPHER_GROUP:
7784         case IW_AUTH_KEY_MGMT:
7785                 /*
7786                  * wpa_supplicant will control these internally
7787                  */
7788                 ret = -EOPNOTSUPP;
7789                 break;
7790
7791         case IW_AUTH_TKIP_COUNTERMEASURES:
7792                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7793                 if (!crypt || !crypt->ops->get_flags) {
7794                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7795                                           "crypt not set!\n");
7796                         break;
7797                 }
7798
7799                 param->value = (crypt->ops->get_flags(crypt->priv) &
7800                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7801
7802                 break;
7803
7804         case IW_AUTH_DROP_UNENCRYPTED:
7805                 param->value = ieee->drop_unencrypted;
7806                 break;
7807
7808         case IW_AUTH_80211_AUTH_ALG:
7809                 param->value = priv->ieee->sec.auth_mode;
7810                 break;
7811
7812         case IW_AUTH_WPA_ENABLED:
7813                 param->value = ieee->wpa_enabled;
7814                 break;
7815
7816         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7817                 param->value = ieee->ieee802_1x;
7818                 break;
7819
7820         case IW_AUTH_ROAMING_CONTROL:
7821         case IW_AUTH_PRIVACY_INVOKED:
7822                 param->value = ieee->privacy_invoked;
7823                 break;
7824
7825         default:
7826                 return -EOPNOTSUPP;
7827         }
7828         return 0;
7829 }
7830
7831 /* SIOCSIWENCODEEXT */
7832 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7833                                     struct iw_request_info *info,
7834                                     union iwreq_data *wrqu, char *extra)
7835 {
7836         struct ipw2100_priv *priv = libipw_priv(dev);
7837         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7838 }
7839
7840 /* SIOCGIWENCODEEXT */
7841 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7842                                     struct iw_request_info *info,
7843                                     union iwreq_data *wrqu, char *extra)
7844 {
7845         struct ipw2100_priv *priv = libipw_priv(dev);
7846         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7847 }
7848
7849 /* SIOCSIWMLME */
7850 static int ipw2100_wx_set_mlme(struct net_device *dev,
7851                                struct iw_request_info *info,
7852                                union iwreq_data *wrqu, char *extra)
7853 {
7854         struct ipw2100_priv *priv = libipw_priv(dev);
7855         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7856         __le16 reason;
7857
7858         reason = cpu_to_le16(mlme->reason_code);
7859
7860         switch (mlme->cmd) {
7861         case IW_MLME_DEAUTH:
7862                 // silently ignore
7863                 break;
7864
7865         case IW_MLME_DISASSOC:
7866                 ipw2100_disassociate_bssid(priv);
7867                 break;
7868
7869         default:
7870                 return -EOPNOTSUPP;
7871         }
7872         return 0;
7873 }
7874
7875 /*
7876  *
7877  * IWPRIV handlers
7878  *
7879  */
7880 #ifdef CONFIG_IPW2100_MONITOR
7881 static int ipw2100_wx_set_promisc(struct net_device *dev,
7882                                   struct iw_request_info *info,
7883                                   union iwreq_data *wrqu, char *extra)
7884 {
7885         struct ipw2100_priv *priv = libipw_priv(dev);
7886         int *parms = (int *)extra;
7887         int enable = (parms[0] > 0);
7888         int err = 0;
7889
7890         mutex_lock(&priv->action_mutex);
7891         if (!(priv->status & STATUS_INITIALIZED)) {
7892                 err = -EIO;
7893                 goto done;
7894         }
7895
7896         if (enable) {
7897                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7898                         err = ipw2100_set_channel(priv, parms[1], 0);
7899                         goto done;
7900                 }
7901                 priv->channel = parms[1];
7902                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7903         } else {
7904                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7905                         err = ipw2100_switch_mode(priv, priv->last_mode);
7906         }
7907       done:
7908         mutex_unlock(&priv->action_mutex);
7909         return err;
7910 }
7911
7912 static int ipw2100_wx_reset(struct net_device *dev,
7913                             struct iw_request_info *info,
7914                             union iwreq_data *wrqu, char *extra)
7915 {
7916         struct ipw2100_priv *priv = libipw_priv(dev);
7917         if (priv->status & STATUS_INITIALIZED)
7918                 schedule_reset(priv);
7919         return 0;
7920 }
7921
7922 #endif
7923
7924 static int ipw2100_wx_set_powermode(struct net_device *dev,
7925                                     struct iw_request_info *info,
7926                                     union iwreq_data *wrqu, char *extra)
7927 {
7928         struct ipw2100_priv *priv = libipw_priv(dev);
7929         int err = 0, mode = *(int *)extra;
7930
7931         mutex_lock(&priv->action_mutex);
7932         if (!(priv->status & STATUS_INITIALIZED)) {
7933                 err = -EIO;
7934                 goto done;
7935         }
7936
7937         if ((mode < 0) || (mode > POWER_MODES))
7938                 mode = IPW_POWER_AUTO;
7939
7940         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7941                 err = ipw2100_set_power_mode(priv, mode);
7942       done:
7943         mutex_unlock(&priv->action_mutex);
7944         return err;
7945 }
7946
7947 #define MAX_POWER_STRING 80
7948 static int ipw2100_wx_get_powermode(struct net_device *dev,
7949                                     struct iw_request_info *info,
7950                                     union iwreq_data *wrqu, char *extra)
7951 {
7952         /*
7953          * This can be called at any time.  No action lock required
7954          */
7955
7956         struct ipw2100_priv *priv = libipw_priv(dev);
7957         int level = IPW_POWER_LEVEL(priv->power_mode);
7958         s32 timeout, period;
7959
7960         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7961                 snprintf(extra, MAX_POWER_STRING,
7962                          "Power save level: %d (Off)", level);
7963         } else {
7964                 switch (level) {
7965                 case IPW_POWER_MODE_CAM:
7966                         snprintf(extra, MAX_POWER_STRING,
7967                                  "Power save level: %d (None)", level);
7968                         break;
7969                 case IPW_POWER_AUTO:
7970                         snprintf(extra, MAX_POWER_STRING,
7971                                  "Power save level: %d (Auto)", level);
7972                         break;
7973                 default:
7974                         timeout = timeout_duration[level - 1] / 1000;
7975                         period = period_duration[level - 1] / 1000;
7976                         snprintf(extra, MAX_POWER_STRING,
7977                                  "Power save level: %d "
7978                                  "(Timeout %dms, Period %dms)",
7979                                  level, timeout, period);
7980                 }
7981         }
7982
7983         wrqu->data.length = strlen(extra) + 1;
7984
7985         return 0;
7986 }
7987
7988 static int ipw2100_wx_set_preamble(struct net_device *dev,
7989                                    struct iw_request_info *info,
7990                                    union iwreq_data *wrqu, char *extra)
7991 {
7992         struct ipw2100_priv *priv = libipw_priv(dev);
7993         int err, mode = *(int *)extra;
7994
7995         mutex_lock(&priv->action_mutex);
7996         if (!(priv->status & STATUS_INITIALIZED)) {
7997                 err = -EIO;
7998                 goto done;
7999         }
8000
8001         if (mode == 1)
8002                 priv->config |= CFG_LONG_PREAMBLE;
8003         else if (mode == 0)
8004                 priv->config &= ~CFG_LONG_PREAMBLE;
8005         else {
8006                 err = -EINVAL;
8007                 goto done;
8008         }
8009
8010         err = ipw2100_system_config(priv, 0);
8011
8012       done:
8013         mutex_unlock(&priv->action_mutex);
8014         return err;
8015 }
8016
8017 static int ipw2100_wx_get_preamble(struct net_device *dev,
8018                                    struct iw_request_info *info,
8019                                    union iwreq_data *wrqu, char *extra)
8020 {
8021         /*
8022          * This can be called at any time.  No action lock required
8023          */
8024
8025         struct ipw2100_priv *priv = libipw_priv(dev);
8026
8027         if (priv->config & CFG_LONG_PREAMBLE)
8028                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8029         else
8030                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8031
8032         return 0;
8033 }
8034
8035 #ifdef CONFIG_IPW2100_MONITOR
8036 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8037                                     struct iw_request_info *info,
8038                                     union iwreq_data *wrqu, char *extra)
8039 {
8040         struct ipw2100_priv *priv = libipw_priv(dev);
8041         int err, mode = *(int *)extra;
8042
8043         mutex_lock(&priv->action_mutex);
8044         if (!(priv->status & STATUS_INITIALIZED)) {
8045                 err = -EIO;
8046                 goto done;
8047         }
8048
8049         if (mode == 1)
8050                 priv->config |= CFG_CRC_CHECK;
8051         else if (mode == 0)
8052                 priv->config &= ~CFG_CRC_CHECK;
8053         else {
8054                 err = -EINVAL;
8055                 goto done;
8056         }
8057         err = 0;
8058
8059       done:
8060         mutex_unlock(&priv->action_mutex);
8061         return err;
8062 }
8063
8064 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8065                                     struct iw_request_info *info,
8066                                     union iwreq_data *wrqu, char *extra)
8067 {
8068         /*
8069          * This can be called at any time.  No action lock required
8070          */
8071
8072         struct ipw2100_priv *priv = libipw_priv(dev);
8073
8074         if (priv->config & CFG_CRC_CHECK)
8075                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8076         else
8077                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8078
8079         return 0;
8080 }
8081 #endif                          /* CONFIG_IPW2100_MONITOR */
8082
8083 static iw_handler ipw2100_wx_handlers[] = {
8084         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8085         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8086         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8087         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8088         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8089         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8090         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8091         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8092         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8093         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8094         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8095         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8096         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8097         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8098         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8099         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8100         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8101         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8102         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8103         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8104         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8105         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8106         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8107         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8108         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8109         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8110         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8111         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8112         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8113         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8114         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8115         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8116         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8117         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8118         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8119 };
8120
8121 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8122 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8123 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8124 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8125 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8126 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8127 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8128 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8129
8130 static const struct iw_priv_args ipw2100_private_args[] = {
8131
8132 #ifdef CONFIG_IPW2100_MONITOR
8133         {
8134          IPW2100_PRIV_SET_MONITOR,
8135          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8136         {
8137          IPW2100_PRIV_RESET,
8138          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8139 #endif                          /* CONFIG_IPW2100_MONITOR */
8140
8141         {
8142          IPW2100_PRIV_SET_POWER,
8143          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8144         {
8145          IPW2100_PRIV_GET_POWER,
8146          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8147          "get_power"},
8148         {
8149          IPW2100_PRIV_SET_LONGPREAMBLE,
8150          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8151         {
8152          IPW2100_PRIV_GET_LONGPREAMBLE,
8153          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8154 #ifdef CONFIG_IPW2100_MONITOR
8155         {
8156          IPW2100_PRIV_SET_CRC_CHECK,
8157          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8158         {
8159          IPW2100_PRIV_GET_CRC_CHECK,
8160          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8161 #endif                          /* CONFIG_IPW2100_MONITOR */
8162 };
8163
8164 static iw_handler ipw2100_private_handler[] = {
8165 #ifdef CONFIG_IPW2100_MONITOR
8166         ipw2100_wx_set_promisc,
8167         ipw2100_wx_reset,
8168 #else                           /* CONFIG_IPW2100_MONITOR */
8169         NULL,
8170         NULL,
8171 #endif                          /* CONFIG_IPW2100_MONITOR */
8172         ipw2100_wx_set_powermode,
8173         ipw2100_wx_get_powermode,
8174         ipw2100_wx_set_preamble,
8175         ipw2100_wx_get_preamble,
8176 #ifdef CONFIG_IPW2100_MONITOR
8177         ipw2100_wx_set_crc_check,
8178         ipw2100_wx_get_crc_check,
8179 #else                           /* CONFIG_IPW2100_MONITOR */
8180         NULL,
8181         NULL,
8182 #endif                          /* CONFIG_IPW2100_MONITOR */
8183 };
8184
8185 /*
8186  * Get wireless statistics.
8187  * Called by /proc/net/wireless
8188  * Also called by SIOCGIWSTATS
8189  */
8190 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8191 {
8192         enum {
8193                 POOR = 30,
8194                 FAIR = 60,
8195                 GOOD = 80,
8196                 VERY_GOOD = 90,
8197                 EXCELLENT = 95,
8198                 PERFECT = 100
8199         };
8200         int rssi_qual;
8201         int tx_qual;
8202         int beacon_qual;
8203         int quality;
8204
8205         struct ipw2100_priv *priv = libipw_priv(dev);
8206         struct iw_statistics *wstats;
8207         u32 rssi, tx_retries, missed_beacons, tx_failures;
8208         u32 ord_len = sizeof(u32);
8209
8210         if (!priv)
8211                 return (struct iw_statistics *)NULL;
8212
8213         wstats = &priv->wstats;
8214
8215         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8216          * ipw2100_wx_wireless_stats seems to be called before fw is
8217          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8218          * and associated; if not associcated, the values are all meaningless
8219          * anyway, so set them all to NULL and INVALID */
8220         if (!(priv->status & STATUS_ASSOCIATED)) {
8221                 wstats->miss.beacon = 0;
8222                 wstats->discard.retries = 0;
8223                 wstats->qual.qual = 0;
8224                 wstats->qual.level = 0;
8225                 wstats->qual.noise = 0;
8226                 wstats->qual.updated = 7;
8227                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8228                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8229                 return wstats;
8230         }
8231
8232         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8233                                 &missed_beacons, &ord_len))
8234                 goto fail_get_ordinal;
8235
8236         /* If we don't have a connection the quality and level is 0 */
8237         if (!(priv->status & STATUS_ASSOCIATED)) {
8238                 wstats->qual.qual = 0;
8239                 wstats->qual.level = 0;
8240         } else {
8241                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8242                                         &rssi, &ord_len))
8243                         goto fail_get_ordinal;
8244                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8245                 if (rssi < 10)
8246                         rssi_qual = rssi * POOR / 10;
8247                 else if (rssi < 15)
8248                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8249                 else if (rssi < 20)
8250                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8251                 else if (rssi < 30)
8252                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8253                             10 + GOOD;
8254                 else
8255                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8256                             10 + VERY_GOOD;
8257
8258                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8259                                         &tx_retries, &ord_len))
8260                         goto fail_get_ordinal;
8261
8262                 if (tx_retries > 75)
8263                         tx_qual = (90 - tx_retries) * POOR / 15;
8264                 else if (tx_retries > 70)
8265                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8266                 else if (tx_retries > 65)
8267                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8268                 else if (tx_retries > 50)
8269                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8270                             15 + GOOD;
8271                 else
8272                         tx_qual = (50 - tx_retries) *
8273                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8274
8275                 if (missed_beacons > 50)
8276                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8277                 else if (missed_beacons > 40)
8278                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8279                             10 + POOR;
8280                 else if (missed_beacons > 32)
8281                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8282                             18 + FAIR;
8283                 else if (missed_beacons > 20)
8284                         beacon_qual = (32 - missed_beacons) *
8285                             (VERY_GOOD - GOOD) / 20 + GOOD;
8286                 else
8287                         beacon_qual = (20 - missed_beacons) *
8288                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8289
8290                 quality = min(tx_qual, rssi_qual);
8291                 quality = min(beacon_qual, quality);
8292
8293 #ifdef CONFIG_IPW2100_DEBUG
8294                 if (beacon_qual == quality)
8295                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8296                 else if (tx_qual == quality)
8297                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8298                 else if (quality != 100)
8299                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8300                 else
8301                         IPW_DEBUG_WX("Quality not clamped.\n");
8302 #endif
8303
8304                 wstats->qual.qual = quality;
8305                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8306         }
8307
8308         wstats->qual.noise = 0;
8309         wstats->qual.updated = 7;
8310         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8311
8312         /* FIXME: this is percent and not a # */
8313         wstats->miss.beacon = missed_beacons;
8314
8315         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8316                                 &tx_failures, &ord_len))
8317                 goto fail_get_ordinal;
8318         wstats->discard.retries = tx_failures;
8319
8320         return wstats;
8321
8322       fail_get_ordinal:
8323         IPW_DEBUG_WX("failed querying ordinals.\n");
8324
8325         return (struct iw_statistics *)NULL;
8326 }
8327
8328 static struct iw_handler_def ipw2100_wx_handler_def = {
8329         .standard = ipw2100_wx_handlers,
8330         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8331         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8332         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8333         .private = (iw_handler *) ipw2100_private_handler,
8334         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8335         .get_wireless_stats = ipw2100_wx_wireless_stats,
8336 };
8337
8338 static void ipw2100_wx_event_work(struct work_struct *work)
8339 {
8340         struct ipw2100_priv *priv =
8341                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8342         union iwreq_data wrqu;
8343         unsigned int len = ETH_ALEN;
8344
8345         if (priv->status & STATUS_STOPPING)
8346                 return;
8347
8348         mutex_lock(&priv->action_mutex);
8349
8350         IPW_DEBUG_WX("enter\n");
8351
8352         mutex_unlock(&priv->action_mutex);
8353
8354         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8355
8356         /* Fetch BSSID from the hardware */
8357         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8358             priv->status & STATUS_RF_KILL_MASK ||
8359             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8360                                 &priv->bssid, &len)) {
8361                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8362         } else {
8363                 /* We now have the BSSID, so can finish setting to the full
8364                  * associated state */
8365                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8366                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8367                 priv->status &= ~STATUS_ASSOCIATING;
8368                 priv->status |= STATUS_ASSOCIATED;
8369                 netif_carrier_on(priv->net_dev);
8370                 netif_wake_queue(priv->net_dev);
8371         }
8372
8373         if (!(priv->status & STATUS_ASSOCIATED)) {
8374                 IPW_DEBUG_WX("Configuring ESSID\n");
8375                 mutex_lock(&priv->action_mutex);
8376                 /* This is a disassociation event, so kick the firmware to
8377                  * look for another AP */
8378                 if (priv->config & CFG_STATIC_ESSID)
8379                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8380                                           0);
8381                 else
8382                         ipw2100_set_essid(priv, NULL, 0, 0);
8383                 mutex_unlock(&priv->action_mutex);
8384         }
8385
8386         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8387 }
8388
8389 #define IPW2100_FW_MAJOR_VERSION 1
8390 #define IPW2100_FW_MINOR_VERSION 3
8391
8392 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8393 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8394
8395 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8396                              IPW2100_FW_MAJOR_VERSION)
8397
8398 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8399 "." __stringify(IPW2100_FW_MINOR_VERSION)
8400
8401 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8402
8403 /*
8404
8405 BINARY FIRMWARE HEADER FORMAT
8406
8407 offset      length   desc
8408 0           2        version
8409 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8410 4           4        fw_len
8411 8           4        uc_len
8412 C           fw_len   firmware data
8413 12 + fw_len uc_len   microcode data
8414
8415 */
8416
8417 struct ipw2100_fw_header {
8418         short version;
8419         short mode;
8420         unsigned int fw_size;
8421         unsigned int uc_size;
8422 } __packed;
8423
8424 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8425 {
8426         struct ipw2100_fw_header *h =
8427             (struct ipw2100_fw_header *)fw->fw_entry->data;
8428
8429         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8430                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8431                        "(detected version id of %u). "
8432                        "See Documentation/networking/README.ipw2100\n",
8433                        h->version);
8434                 return 1;
8435         }
8436
8437         fw->version = h->version;
8438         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8439         fw->fw.size = h->fw_size;
8440         fw->uc.data = fw->fw.data + h->fw_size;
8441         fw->uc.size = h->uc_size;
8442
8443         return 0;
8444 }
8445
8446 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8447                                 struct ipw2100_fw *fw)
8448 {
8449         char *fw_name;
8450         int rc;
8451
8452         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8453                        priv->net_dev->name);
8454
8455         switch (priv->ieee->iw_mode) {
8456         case IW_MODE_ADHOC:
8457                 fw_name = IPW2100_FW_NAME("-i");
8458                 break;
8459 #ifdef CONFIG_IPW2100_MONITOR
8460         case IW_MODE_MONITOR:
8461                 fw_name = IPW2100_FW_NAME("-p");
8462                 break;
8463 #endif
8464         case IW_MODE_INFRA:
8465         default:
8466                 fw_name = IPW2100_FW_NAME("");
8467                 break;
8468         }
8469
8470         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8471
8472         if (rc < 0) {
8473                 printk(KERN_ERR DRV_NAME ": "
8474                        "%s: Firmware '%s' not available or load failed.\n",
8475                        priv->net_dev->name, fw_name);
8476                 return rc;
8477         }
8478         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8479                        fw->fw_entry->size);
8480
8481         ipw2100_mod_firmware_load(fw);
8482
8483         return 0;
8484 }
8485
8486 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8487 #ifdef CONFIG_IPW2100_MONITOR
8488 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8489 #endif
8490 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8491
8492 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8493                                      struct ipw2100_fw *fw)
8494 {
8495         fw->version = 0;
8496         release_firmware(fw->fw_entry);
8497         fw->fw_entry = NULL;
8498 }
8499
8500 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8501                                  size_t max)
8502 {
8503         char ver[MAX_FW_VERSION_LEN];
8504         u32 len = MAX_FW_VERSION_LEN;
8505         u32 tmp;
8506         int i;
8507         /* firmware version is an ascii string (max len of 14) */
8508         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8509                 return -EIO;
8510         tmp = max;
8511         if (len >= max)
8512                 len = max - 1;
8513         for (i = 0; i < len; i++)
8514                 buf[i] = ver[i];
8515         buf[i] = '\0';
8516         return tmp;
8517 }
8518
8519 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8520                                     size_t max)
8521 {
8522         u32 ver;
8523         u32 len = sizeof(ver);
8524         /* microcode version is a 32 bit integer */
8525         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8526                 return -EIO;
8527         return snprintf(buf, max, "%08X", ver);
8528 }
8529
8530 /*
8531  * On exit, the firmware will have been freed from the fw list
8532  */
8533 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8534 {
8535         /* firmware is constructed of N contiguous entries, each entry is
8536          * structured as:
8537          *
8538          * offset    sie         desc
8539          * 0         4           address to write to
8540          * 4         2           length of data run
8541          * 6         length      data
8542          */
8543         unsigned int addr;
8544         unsigned short len;
8545
8546         const unsigned char *firmware_data = fw->fw.data;
8547         unsigned int firmware_data_left = fw->fw.size;
8548
8549         while (firmware_data_left > 0) {
8550                 addr = *(u32 *) (firmware_data);
8551                 firmware_data += 4;
8552                 firmware_data_left -= 4;
8553
8554                 len = *(u16 *) (firmware_data);
8555                 firmware_data += 2;
8556                 firmware_data_left -= 2;
8557
8558                 if (len > 32) {
8559                         printk(KERN_ERR DRV_NAME ": "
8560                                "Invalid firmware run-length of %d bytes\n",
8561                                len);
8562                         return -EINVAL;
8563                 }
8564
8565                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8566                 firmware_data += len;
8567                 firmware_data_left -= len;
8568         }
8569
8570         return 0;
8571 }
8572
8573 struct symbol_alive_response {
8574         u8 cmd_id;
8575         u8 seq_num;
8576         u8 ucode_rev;
8577         u8 eeprom_valid;
8578         u16 valid_flags;
8579         u8 IEEE_addr[6];
8580         u16 flags;
8581         u16 pcb_rev;
8582         u16 clock_settle_time;  // 1us LSB
8583         u16 powerup_settle_time;        // 1us LSB
8584         u16 hop_settle_time;    // 1us LSB
8585         u8 date[3];             // month, day, year
8586         u8 time[2];             // hours, minutes
8587         u8 ucode_valid;
8588 };
8589
8590 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8591                                   struct ipw2100_fw *fw)
8592 {
8593         struct net_device *dev = priv->net_dev;
8594         const unsigned char *microcode_data = fw->uc.data;
8595         unsigned int microcode_data_left = fw->uc.size;
8596         void __iomem *reg = priv->ioaddr;
8597
8598         struct symbol_alive_response response;
8599         int i, j;
8600         u8 data;
8601
8602         /* Symbol control */
8603         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8604         readl(reg);
8605         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8606         readl(reg);
8607
8608         /* HW config */
8609         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8610         readl(reg);
8611         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8612         readl(reg);
8613
8614         /* EN_CS_ACCESS bit to reset control store pointer */
8615         write_nic_byte(dev, 0x210000, 0x40);
8616         readl(reg);
8617         write_nic_byte(dev, 0x210000, 0x0);
8618         readl(reg);
8619         write_nic_byte(dev, 0x210000, 0x40);
8620         readl(reg);
8621
8622         /* copy microcode from buffer into Symbol */
8623
8624         while (microcode_data_left > 0) {
8625                 write_nic_byte(dev, 0x210010, *microcode_data++);
8626                 write_nic_byte(dev, 0x210010, *microcode_data++);
8627                 microcode_data_left -= 2;
8628         }
8629
8630         /* EN_CS_ACCESS bit to reset the control store pointer */
8631         write_nic_byte(dev, 0x210000, 0x0);
8632         readl(reg);
8633
8634         /* Enable System (Reg 0)
8635          * first enable causes garbage in RX FIFO */
8636         write_nic_byte(dev, 0x210000, 0x0);
8637         readl(reg);
8638         write_nic_byte(dev, 0x210000, 0x80);
8639         readl(reg);
8640
8641         /* Reset External Baseband Reg */
8642         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8643         readl(reg);
8644         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8645         readl(reg);
8646
8647         /* HW Config (Reg 5) */
8648         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8649         readl(reg);
8650         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8651         readl(reg);
8652
8653         /* Enable System (Reg 0)
8654          * second enable should be OK */
8655         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8656         readl(reg);
8657         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8658
8659         /* check Symbol is enabled - upped this from 5 as it wasn't always
8660          * catching the update */
8661         for (i = 0; i < 10; i++) {
8662                 udelay(10);
8663
8664                 /* check Dino is enabled bit */
8665                 read_nic_byte(dev, 0x210000, &data);
8666                 if (data & 0x1)
8667                         break;
8668         }
8669
8670         if (i == 10) {
8671                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8672                        dev->name);
8673                 return -EIO;
8674         }
8675
8676         /* Get Symbol alive response */
8677         for (i = 0; i < 30; i++) {
8678                 /* Read alive response structure */
8679                 for (j = 0;
8680                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8681                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8682
8683                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8684                         break;
8685                 udelay(10);
8686         }
8687
8688         if (i == 30) {
8689                 printk(KERN_ERR DRV_NAME
8690                        ": %s: No response from Symbol - hw not alive\n",
8691                        dev->name);
8692                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8693                 return -EIO;
8694         }
8695
8696         return 0;
8697 }