]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/iwlegacy/4965-calib.c
iwlegacy: merge common header files
[mv-sheeva.git] / drivers / net / wireless / iwlegacy / 4965-calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65
66 #include "common.h"
67 #include "4965.h"
68
69 /*****************************************************************************
70  * INIT calibrations framework
71  *****************************************************************************/
72
73 struct stats_general_data {
74         u32 beacon_silence_rssi_a;
75         u32 beacon_silence_rssi_b;
76         u32 beacon_silence_rssi_c;
77         u32 beacon_energy_a;
78         u32 beacon_energy_b;
79         u32 beacon_energy_c;
80 };
81
82 void il4965_calib_free_results(struct il_priv *il)
83 {
84         int i;
85
86         for (i = 0; i < IL_CALIB_MAX; i++) {
87                 kfree(il->calib_results[i].buf);
88                 il->calib_results[i].buf = NULL;
89                 il->calib_results[i].buf_len = 0;
90         }
91 }
92
93 /*****************************************************************************
94  * RUNTIME calibrations framework
95  *****************************************************************************/
96
97 /* "false alarms" are signals that our DSP tries to lock onto,
98  *   but then determines that they are either noise, or transmissions
99  *   from a distant wireless network (also "noise", really) that get
100  *   "stepped on" by stronger transmissions within our own network.
101  * This algorithm attempts to set a sensitivity level that is high
102  *   enough to receive all of our own network traffic, but not so
103  *   high that our DSP gets too busy trying to lock onto non-network
104  *   activity/noise. */
105 static int il4965_sens_energy_cck(struct il_priv *il,
106                                    u32 norm_fa,
107                                    u32 rx_enable_time,
108                                    struct stats_general_data *rx_info)
109 {
110         u32 max_nrg_cck = 0;
111         int i = 0;
112         u8 max_silence_rssi = 0;
113         u32 silence_ref = 0;
114         u8 silence_rssi_a = 0;
115         u8 silence_rssi_b = 0;
116         u8 silence_rssi_c = 0;
117         u32 val;
118
119         /* "false_alarms" values below are cross-multiplications to assess the
120          *   numbers of false alarms within the measured period of actual Rx
121          *   (Rx is off when we're txing), vs the min/max expected false alarms
122          *   (some should be expected if rx is sensitive enough) in a
123          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
124          *
125          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
126          *
127          * */
128         u32 false_alarms = norm_fa * 200 * 1024;
129         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
130         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
131         struct il_sensitivity_data *data = NULL;
132         const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
133
134         data = &(il->sensitivity_data);
135
136         data->nrg_auto_corr_silence_diff = 0;
137
138         /* Find max silence rssi among all 3 receivers.
139          * This is background noise, which may include transmissions from other
140          *    networks, measured during silence before our network's beacon */
141         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
142                             ALL_BAND_FILTER) >> 8);
143         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
144                             ALL_BAND_FILTER) >> 8);
145         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
146                             ALL_BAND_FILTER) >> 8);
147
148         val = max(silence_rssi_b, silence_rssi_c);
149         max_silence_rssi = max(silence_rssi_a, (u8) val);
150
151         /* Store silence rssi in 20-beacon history table */
152         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
153         data->nrg_silence_idx++;
154         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
155                 data->nrg_silence_idx = 0;
156
157         /* Find max silence rssi across 20 beacon history */
158         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
159                 val = data->nrg_silence_rssi[i];
160                 silence_ref = max(silence_ref, val);
161         }
162         D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
163                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
164                         silence_ref);
165
166         /* Find max rx energy (min value!) among all 3 receivers,
167          *   measured during beacon frame.
168          * Save it in 10-beacon history table. */
169         i = data->nrg_energy_idx;
170         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
171         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
172
173         data->nrg_energy_idx++;
174         if (data->nrg_energy_idx >= 10)
175                 data->nrg_energy_idx = 0;
176
177         /* Find min rx energy (max value) across 10 beacon history.
178          * This is the minimum signal level that we want to receive well.
179          * Add backoff (margin so we don't miss slightly lower energy frames).
180          * This establishes an upper bound (min value) for energy threshold. */
181         max_nrg_cck = data->nrg_value[0];
182         for (i = 1; i < 10; i++)
183                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
184         max_nrg_cck += 6;
185
186         D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
187                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
188                         rx_info->beacon_energy_c, max_nrg_cck - 6);
189
190         /* Count number of consecutive beacons with fewer-than-desired
191          *   false alarms. */
192         if (false_alarms < min_false_alarms)
193                 data->num_in_cck_no_fa++;
194         else
195                 data->num_in_cck_no_fa = 0;
196         D_CALIB("consecutive bcns with few false alarms = %u\n",
197                         data->num_in_cck_no_fa);
198
199         /* If we got too many false alarms this time, reduce sensitivity */
200         if (false_alarms > max_false_alarms &&
201             data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
202                 D_CALIB("norm FA %u > max FA %u\n",
203                      false_alarms, max_false_alarms);
204                 D_CALIB("... reducing sensitivity\n");
205                 data->nrg_curr_state = IL_FA_TOO_MANY;
206                 /* Store for "fewer than desired" on later beacon */
207                 data->nrg_silence_ref = silence_ref;
208
209                 /* increase energy threshold (reduce nrg value)
210                  *   to decrease sensitivity */
211                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
212         /* Else if we got fewer than desired, increase sensitivity */
213         } else if (false_alarms < min_false_alarms) {
214                 data->nrg_curr_state = IL_FA_TOO_FEW;
215
216                 /* Compare silence level with silence level for most recent
217                  *   healthy number or too many false alarms */
218                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
219                                                    (s32)silence_ref;
220
221                 D_CALIB(
222                          "norm FA %u < min FA %u, silence diff %d\n",
223                          false_alarms, min_false_alarms,
224                          data->nrg_auto_corr_silence_diff);
225
226                 /* Increase value to increase sensitivity, but only if:
227                  * 1a) previous beacon did *not* have *too many* false alarms
228                  * 1b) AND there's a significant difference in Rx levels
229                  *      from a previous beacon with too many, or healthy # FAs
230                  * OR 2) We've seen a lot of beacons (100) with too few
231                  *       false alarms */
232                 if (data->nrg_prev_state != IL_FA_TOO_MANY &&
233                     (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
234                      data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
235
236                         D_CALIB("... increasing sensitivity\n");
237                         /* Increase nrg value to increase sensitivity */
238                         val = data->nrg_th_cck + NRG_STEP_CCK;
239                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
240                 } else {
241                         D_CALIB(
242                                          "... but not changing sensitivity\n");
243                 }
244
245         /* Else we got a healthy number of false alarms, keep status quo */
246         } else {
247                 D_CALIB(" FA in safe zone\n");
248                 data->nrg_curr_state = IL_FA_GOOD_RANGE;
249
250                 /* Store for use in "fewer than desired" with later beacon */
251                 data->nrg_silence_ref = silence_ref;
252
253                 /* If previous beacon had too many false alarms,
254                  *   give it some extra margin by reducing sensitivity again
255                  *   (but don't go below measured energy of desired Rx) */
256                 if (IL_FA_TOO_MANY == data->nrg_prev_state) {
257                         D_CALIB("... increasing margin\n");
258                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
259                                 data->nrg_th_cck -= NRG_MARGIN;
260                         else
261                                 data->nrg_th_cck = max_nrg_cck;
262                 }
263         }
264
265         /* Make sure the energy threshold does not go above the measured
266          * energy of the desired Rx signals (reduced by backoff margin),
267          * or else we might start missing Rx frames.
268          * Lower value is higher energy, so we use max()!
269          */
270         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
271         D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
272
273         data->nrg_prev_state = data->nrg_curr_state;
274
275         /* Auto-correlation CCK algorithm */
276         if (false_alarms > min_false_alarms) {
277
278                 /* increase auto_corr values to decrease sensitivity
279                  * so the DSP won't be disturbed by the noise
280                  */
281                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
282                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
283                 else {
284                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
285                         data->auto_corr_cck =
286                                 min((u32)ranges->auto_corr_max_cck, val);
287                 }
288                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
289                 data->auto_corr_cck_mrc =
290                         min((u32)ranges->auto_corr_max_cck_mrc, val);
291         } else if (false_alarms < min_false_alarms &&
292                    (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
293                     data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
294
295                 /* Decrease auto_corr values to increase sensitivity */
296                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
297                 data->auto_corr_cck =
298                         max((u32)ranges->auto_corr_min_cck, val);
299                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
300                 data->auto_corr_cck_mrc =
301                         max((u32)ranges->auto_corr_min_cck_mrc, val);
302         }
303
304         return 0;
305 }
306
307
308 static int il4965_sens_auto_corr_ofdm(struct il_priv *il,
309                                        u32 norm_fa,
310                                        u32 rx_enable_time)
311 {
312         u32 val;
313         u32 false_alarms = norm_fa * 200 * 1024;
314         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
315         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
316         struct il_sensitivity_data *data = NULL;
317         const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
318
319         data = &(il->sensitivity_data);
320
321         /* If we got too many false alarms this time, reduce sensitivity */
322         if (false_alarms > max_false_alarms) {
323
324                 D_CALIB("norm FA %u > max FA %u)\n",
325                              false_alarms, max_false_alarms);
326
327                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
328                 data->auto_corr_ofdm =
329                         min((u32)ranges->auto_corr_max_ofdm, val);
330
331                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
332                 data->auto_corr_ofdm_mrc =
333                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
334
335                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
336                 data->auto_corr_ofdm_x1 =
337                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
338
339                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
340                 data->auto_corr_ofdm_mrc_x1 =
341                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
342         }
343
344         /* Else if we got fewer than desired, increase sensitivity */
345         else if (false_alarms < min_false_alarms) {
346
347                 D_CALIB("norm FA %u < min FA %u\n",
348                              false_alarms, min_false_alarms);
349
350                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
351                 data->auto_corr_ofdm =
352                         max((u32)ranges->auto_corr_min_ofdm, val);
353
354                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
355                 data->auto_corr_ofdm_mrc =
356                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
357
358                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
359                 data->auto_corr_ofdm_x1 =
360                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
361
362                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
363                 data->auto_corr_ofdm_mrc_x1 =
364                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
365         } else {
366                 D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
367                          min_false_alarms, false_alarms, max_false_alarms);
368         }
369         return 0;
370 }
371
372 static void il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
373                                 struct il_sensitivity_data *data,
374                                 __le16 *tbl)
375 {
376         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
377                                 cpu_to_le16((u16)data->auto_corr_ofdm);
378         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
379                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
380         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
381                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
382         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
383                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
384
385         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
386                                 cpu_to_le16((u16)data->auto_corr_cck);
387         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
388                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
389
390         tbl[HD_MIN_ENERGY_CCK_DET_IDX] =
391                                 cpu_to_le16((u16)data->nrg_th_cck);
392         tbl[HD_MIN_ENERGY_OFDM_DET_IDX] =
393                                 cpu_to_le16((u16)data->nrg_th_ofdm);
394
395         tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
396                                 cpu_to_le16(data->barker_corr_th_min);
397         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
398                                 cpu_to_le16(data->barker_corr_th_min_mrc);
399         tbl[HD_OFDM_ENERGY_TH_IN_IDX] =
400                                 cpu_to_le16(data->nrg_th_cca);
401
402         D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
403                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
404                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
405                         data->nrg_th_ofdm);
406
407         D_CALIB("cck: ac %u mrc %u thresh %u\n",
408                         data->auto_corr_cck, data->auto_corr_cck_mrc,
409                         data->nrg_th_cck);
410 }
411
412 /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
413 static int il4965_sensitivity_write(struct il_priv *il)
414 {
415         struct il_sensitivity_cmd cmd;
416         struct il_sensitivity_data *data = NULL;
417         struct il_host_cmd cmd_out = {
418                 .id = C_SENSITIVITY,
419                 .len = sizeof(struct il_sensitivity_cmd),
420                 .flags = CMD_ASYNC,
421                 .data = &cmd,
422         };
423
424         data = &(il->sensitivity_data);
425
426         memset(&cmd, 0, sizeof(cmd));
427
428         il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
429
430         /* Update uCode's "work" table, and copy it to DSP */
431         cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;
432
433         /* Don't send command to uCode if nothing has changed */
434         if (!memcmp(&cmd.table[0], &(il->sensitivity_tbl[0]),
435                     sizeof(u16)*HD_TBL_SIZE)) {
436                 D_CALIB("No change in C_SENSITIVITY\n");
437                 return 0;
438         }
439
440         /* Copy table for comparison next time */
441         memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
442                sizeof(u16)*HD_TBL_SIZE);
443
444         return il_send_cmd(il, &cmd_out);
445 }
446
447 void il4965_init_sensitivity(struct il_priv *il)
448 {
449         int ret = 0;
450         int i;
451         struct il_sensitivity_data *data = NULL;
452         const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
453
454         if (il->disable_sens_cal)
455                 return;
456
457         D_CALIB("Start il4965_init_sensitivity\n");
458
459         /* Clear driver's sensitivity algo data */
460         data = &(il->sensitivity_data);
461
462         if (ranges == NULL)
463                 return;
464
465         memset(data, 0, sizeof(struct il_sensitivity_data));
466
467         data->num_in_cck_no_fa = 0;
468         data->nrg_curr_state = IL_FA_TOO_MANY;
469         data->nrg_prev_state = IL_FA_TOO_MANY;
470         data->nrg_silence_ref = 0;
471         data->nrg_silence_idx = 0;
472         data->nrg_energy_idx = 0;
473
474         for (i = 0; i < 10; i++)
475                 data->nrg_value[i] = 0;
476
477         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
478                 data->nrg_silence_rssi[i] = 0;
479
480         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
481         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
482         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
483         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
484         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
485         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
486         data->nrg_th_cck = ranges->nrg_th_cck;
487         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
488         data->barker_corr_th_min = ranges->barker_corr_th_min;
489         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
490         data->nrg_th_cca = ranges->nrg_th_cca;
491
492         data->last_bad_plcp_cnt_ofdm = 0;
493         data->last_fa_cnt_ofdm = 0;
494         data->last_bad_plcp_cnt_cck = 0;
495         data->last_fa_cnt_cck = 0;
496
497         ret |= il4965_sensitivity_write(il);
498         D_CALIB("<<return 0x%X\n", ret);
499 }
500
501 void il4965_sensitivity_calibration(struct il_priv *il, void *resp)
502 {
503         u32 rx_enable_time;
504         u32 fa_cck;
505         u32 fa_ofdm;
506         u32 bad_plcp_cck;
507         u32 bad_plcp_ofdm;
508         u32 norm_fa_ofdm;
509         u32 norm_fa_cck;
510         struct il_sensitivity_data *data = NULL;
511         struct stats_rx_non_phy *rx_info;
512         struct stats_rx_phy *ofdm, *cck;
513         unsigned long flags;
514         struct stats_general_data statis;
515
516         if (il->disable_sens_cal)
517                 return;
518
519         data = &(il->sensitivity_data);
520
521         if (!il_is_any_associated(il)) {
522                 D_CALIB("<< - not associated\n");
523                 return;
524         }
525
526         spin_lock_irqsave(&il->lock, flags);
527
528         rx_info = &(((struct il_notif_stats *)resp)->rx.general);
529         ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
530         cck = &(((struct il_notif_stats *)resp)->rx.cck);
531
532         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
533                 D_CALIB("<< invalid data.\n");
534                 spin_unlock_irqrestore(&il->lock, flags);
535                 return;
536         }
537
538         /* Extract Statistics: */
539         rx_enable_time = le32_to_cpu(rx_info->channel_load);
540         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
541         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
542         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
543         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
544
545         statis.beacon_silence_rssi_a =
546                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
547         statis.beacon_silence_rssi_b =
548                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
549         statis.beacon_silence_rssi_c =
550                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
551         statis.beacon_energy_a =
552                         le32_to_cpu(rx_info->beacon_energy_a);
553         statis.beacon_energy_b =
554                         le32_to_cpu(rx_info->beacon_energy_b);
555         statis.beacon_energy_c =
556                         le32_to_cpu(rx_info->beacon_energy_c);
557
558         spin_unlock_irqrestore(&il->lock, flags);
559
560         D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
561
562         if (!rx_enable_time) {
563                 D_CALIB("<< RX Enable Time == 0!\n");
564                 return;
565         }
566
567         /* These stats increase monotonically, and do not reset
568          *   at each beacon.  Calculate difference from last value, or just
569          *   use the new stats value if it has reset or wrapped around. */
570         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
571                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
572         else {
573                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
574                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
575         }
576
577         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
578                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
579         else {
580                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
581                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
582         }
583
584         if (data->last_fa_cnt_ofdm > fa_ofdm)
585                 data->last_fa_cnt_ofdm = fa_ofdm;
586         else {
587                 fa_ofdm -= data->last_fa_cnt_ofdm;
588                 data->last_fa_cnt_ofdm += fa_ofdm;
589         }
590
591         if (data->last_fa_cnt_cck > fa_cck)
592                 data->last_fa_cnt_cck = fa_cck;
593         else {
594                 fa_cck -= data->last_fa_cnt_cck;
595                 data->last_fa_cnt_cck += fa_cck;
596         }
597
598         /* Total aborted signal locks */
599         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
600         norm_fa_cck = fa_cck + bad_plcp_cck;
601
602         D_CALIB(
603                          "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
604                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
605
606         il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
607         il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
608
609         il4965_sensitivity_write(il);
610 }
611
612 static inline u8 il4965_find_first_chain(u8 mask)
613 {
614         if (mask & ANT_A)
615                 return CHAIN_A;
616         if (mask & ANT_B)
617                 return CHAIN_B;
618         return CHAIN_C;
619 }
620
621 /**
622  * Run disconnected antenna algorithm to find out which antennas are
623  * disconnected.
624  */
625 static void
626 il4965_find_disconn_antenna(struct il_priv *il, u32* average_sig,
627                                      struct il_chain_noise_data *data)
628 {
629         u32 active_chains = 0;
630         u32 max_average_sig;
631         u16 max_average_sig_antenna_i;
632         u8 num_tx_chains;
633         u8 first_chain;
634         u16 i = 0;
635
636         average_sig[0] = data->chain_signal_a /
637                          il->cfg->base_params->chain_noise_num_beacons;
638         average_sig[1] = data->chain_signal_b /
639                          il->cfg->base_params->chain_noise_num_beacons;
640         average_sig[2] = data->chain_signal_c /
641                          il->cfg->base_params->chain_noise_num_beacons;
642
643         if (average_sig[0] >= average_sig[1]) {
644                 max_average_sig = average_sig[0];
645                 max_average_sig_antenna_i = 0;
646                 active_chains = (1 << max_average_sig_antenna_i);
647         } else {
648                 max_average_sig = average_sig[1];
649                 max_average_sig_antenna_i = 1;
650                 active_chains = (1 << max_average_sig_antenna_i);
651         }
652
653         if (average_sig[2] >= max_average_sig) {
654                 max_average_sig = average_sig[2];
655                 max_average_sig_antenna_i = 2;
656                 active_chains = (1 << max_average_sig_antenna_i);
657         }
658
659         D_CALIB("average_sig: a %d b %d c %d\n",
660                      average_sig[0], average_sig[1], average_sig[2]);
661         D_CALIB("max_average_sig = %d, antenna %d\n",
662                      max_average_sig, max_average_sig_antenna_i);
663
664         /* Compare signal strengths for all 3 receivers. */
665         for (i = 0; i < NUM_RX_CHAINS; i++) {
666                 if (i != max_average_sig_antenna_i) {
667                         s32 rssi_delta = (max_average_sig - average_sig[i]);
668
669                         /* If signal is very weak, compared with
670                          * strongest, mark it as disconnected. */
671                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
672                                 data->disconn_array[i] = 1;
673                         else
674                                 active_chains |= (1 << i);
675                         D_CALIB("i = %d  rssiDelta = %d  "
676                              "disconn_array[i] = %d\n",
677                              i, rssi_delta, data->disconn_array[i]);
678                 }
679         }
680
681         /*
682          * The above algorithm sometimes fails when the ucode
683          * reports 0 for all chains. It's not clear why that
684          * happens to start with, but it is then causing trouble
685          * because this can make us enable more chains than the
686          * hardware really has.
687          *
688          * To be safe, simply mask out any chains that we know
689          * are not on the device.
690          */
691         active_chains &= il->hw_params.valid_rx_ant;
692
693         num_tx_chains = 0;
694         for (i = 0; i < NUM_RX_CHAINS; i++) {
695                 /* loops on all the bits of
696                  * il->hw_setting.valid_tx_ant */
697                 u8 ant_msk = (1 << i);
698                 if (!(il->hw_params.valid_tx_ant & ant_msk))
699                         continue;
700
701                 num_tx_chains++;
702                 if (data->disconn_array[i] == 0)
703                         /* there is a Tx antenna connected */
704                         break;
705                 if (num_tx_chains == il->hw_params.tx_chains_num &&
706                     data->disconn_array[i]) {
707                         /*
708                          * If all chains are disconnected
709                          * connect the first valid tx chain
710                          */
711                         first_chain =
712                         il4965_find_first_chain(il->cfg->valid_tx_ant);
713                         data->disconn_array[first_chain] = 0;
714                         active_chains |= BIT(first_chain);
715                         D_CALIB(
716                                         "All Tx chains are disconnected W/A - declare %d as connected\n",
717                                         first_chain);
718                         break;
719                 }
720         }
721
722         if (active_chains != il->hw_params.valid_rx_ant &&
723             active_chains != il->chain_noise_data.active_chains)
724                 D_CALIB(
725                                 "Detected that not all antennas are connected! "
726                                 "Connected: %#x, valid: %#x.\n",
727                                 active_chains, il->hw_params.valid_rx_ant);
728
729         /* Save for use within RXON, TX, SCAN commands, etc. */
730         data->active_chains = active_chains;
731         D_CALIB("active_chains (bitwise) = 0x%x\n",
732                         active_chains);
733 }
734
735 static void il4965_gain_computation(struct il_priv *il,
736                 u32 *average_noise,
737                 u16 min_average_noise_antenna_i,
738                 u32 min_average_noise,
739                 u8 default_chain)
740 {
741         int i, ret;
742         struct il_chain_noise_data *data = &il->chain_noise_data;
743
744         data->delta_gain_code[min_average_noise_antenna_i] = 0;
745
746         for (i = default_chain; i < NUM_RX_CHAINS; i++) {
747                 s32 delta_g = 0;
748
749                 if (!data->disconn_array[i] &&
750                     data->delta_gain_code[i] == CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
751                         delta_g = average_noise[i] - min_average_noise;
752                         data->delta_gain_code[i] = (u8)((delta_g * 10) / 15);
753                         data->delta_gain_code[i] =
754                                 min(data->delta_gain_code[i],
755                                 (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
756
757                         data->delta_gain_code[i] =
758                                 (data->delta_gain_code[i] | (1 << 2));
759                 } else {
760                         data->delta_gain_code[i] = 0;
761                 }
762         }
763         D_CALIB("delta_gain_codes: a %d b %d c %d\n",
764                      data->delta_gain_code[0],
765                      data->delta_gain_code[1],
766                      data->delta_gain_code[2]);
767
768         /* Differential gain gets sent to uCode only once */
769         if (!data->radio_write) {
770                 struct il_calib_diff_gain_cmd cmd;
771                 data->radio_write = 1;
772
773                 memset(&cmd, 0, sizeof(cmd));
774                 cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
775                 cmd.diff_gain_a = data->delta_gain_code[0];
776                 cmd.diff_gain_b = data->delta_gain_code[1];
777                 cmd.diff_gain_c = data->delta_gain_code[2];
778                 ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION,
779                                       sizeof(cmd), &cmd);
780                 if (ret)
781                         D_CALIB("fail sending cmd "
782                                      "C_PHY_CALIBRATION\n");
783
784                 /* TODO we might want recalculate
785                  * rx_chain in rxon cmd */
786
787                 /* Mark so we run this algo only once! */
788                 data->state = IL_CHAIN_NOISE_CALIBRATED;
789         }
790 }
791
792
793
794 /*
795  * Accumulate 16 beacons of signal and noise stats for each of
796  *   3 receivers/antennas/rx-chains, then figure out:
797  * 1)  Which antennas are connected.
798  * 2)  Differential rx gain settings to balance the 3 receivers.
799  */
800 void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
801 {
802         struct il_chain_noise_data *data = NULL;
803
804         u32 chain_noise_a;
805         u32 chain_noise_b;
806         u32 chain_noise_c;
807         u32 chain_sig_a;
808         u32 chain_sig_b;
809         u32 chain_sig_c;
810         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
811         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
812         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
813         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
814         u16 i = 0;
815         u16 rxon_chnum = INITIALIZATION_VALUE;
816         u16 stat_chnum = INITIALIZATION_VALUE;
817         u8 rxon_band24;
818         u8 stat_band24;
819         unsigned long flags;
820         struct stats_rx_non_phy *rx_info;
821
822         struct il_rxon_context *ctx = &il->ctx;
823
824         if (il->disable_chain_noise_cal)
825                 return;
826
827         data = &(il->chain_noise_data);
828
829         /*
830          * Accumulate just the first "chain_noise_num_beacons" after
831          * the first association, then we're done forever.
832          */
833         if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
834                 if (data->state == IL_CHAIN_NOISE_ALIVE)
835                         D_CALIB("Wait for noise calib reset\n");
836                 return;
837         }
838
839         spin_lock_irqsave(&il->lock, flags);
840
841         rx_info = &(((struct il_notif_stats *)stat_resp)->
842                       rx.general);
843
844         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
845                 D_CALIB(" << Interference data unavailable\n");
846                 spin_unlock_irqrestore(&il->lock, flags);
847                 return;
848         }
849
850         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
851         rxon_chnum = le16_to_cpu(ctx->staging.channel);
852
853         stat_band24 = !!(((struct il_notif_stats *)
854                          stat_resp)->flag &
855                          STATS_REPLY_FLG_BAND_24G_MSK);
856         stat_chnum = le32_to_cpu(((struct il_notif_stats *)
857                                  stat_resp)->flag) >> 16;
858
859         /* Make sure we accumulate data for just the associated channel
860          *   (even if scanning). */
861         if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
862                 D_CALIB("Stats not from chan=%d, band24=%d\n",
863                                 rxon_chnum, rxon_band24);
864                 spin_unlock_irqrestore(&il->lock, flags);
865                 return;
866         }
867
868         /*
869          *  Accumulate beacon stats values across
870          * "chain_noise_num_beacons"
871          */
872         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
873                                 IN_BAND_FILTER;
874         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
875                                 IN_BAND_FILTER;
876         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
877                                 IN_BAND_FILTER;
878
879         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
880         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
881         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
882
883         spin_unlock_irqrestore(&il->lock, flags);
884
885         data->beacon_count++;
886
887         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
888         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
889         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
890
891         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
892         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
893         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
894
895         D_CALIB("chan=%d, band24=%d, beacon=%d\n",
896                         rxon_chnum, rxon_band24, data->beacon_count);
897         D_CALIB("chain_sig: a %d b %d c %d\n",
898                         chain_sig_a, chain_sig_b, chain_sig_c);
899         D_CALIB("chain_noise: a %d b %d c %d\n",
900                         chain_noise_a, chain_noise_b, chain_noise_c);
901
902         /* If this is the "chain_noise_num_beacons", determine:
903          * 1)  Disconnected antennas (using signal strengths)
904          * 2)  Differential gain (using silence noise) to balance receivers */
905         if (data->beacon_count !=
906                 il->cfg->base_params->chain_noise_num_beacons)
907                 return;
908
909         /* Analyze signal for disconnected antenna */
910         il4965_find_disconn_antenna(il, average_sig, data);
911
912         /* Analyze noise for rx balance */
913         average_noise[0] = data->chain_noise_a /
914                            il->cfg->base_params->chain_noise_num_beacons;
915         average_noise[1] = data->chain_noise_b /
916                            il->cfg->base_params->chain_noise_num_beacons;
917         average_noise[2] = data->chain_noise_c /
918                            il->cfg->base_params->chain_noise_num_beacons;
919
920         for (i = 0; i < NUM_RX_CHAINS; i++) {
921                 if (!data->disconn_array[i] &&
922                     average_noise[i] <= min_average_noise) {
923                         /* This means that chain i is active and has
924                          * lower noise values so far: */
925                         min_average_noise = average_noise[i];
926                         min_average_noise_antenna_i = i;
927                 }
928         }
929
930         D_CALIB("average_noise: a %d b %d c %d\n",
931                         average_noise[0], average_noise[1],
932                         average_noise[2]);
933
934         D_CALIB("min_average_noise = %d, antenna %d\n",
935                         min_average_noise, min_average_noise_antenna_i);
936
937         il4965_gain_computation(il, average_noise,
938                         min_average_noise_antenna_i, min_average_noise,
939                         il4965_find_first_chain(il->cfg->valid_rx_ant));
940
941         /* Some power changes may have been made during the calibration.
942          * Update and commit the RXON
943          */
944         if (il->cfg->ops->lib->update_chain_flags)
945                 il->cfg->ops->lib->update_chain_flags(il);
946
947         data->state = IL_CHAIN_NOISE_DONE;
948         il_power_update_mode(il, false);
949 }
950
951 void il4965_reset_run_time_calib(struct il_priv *il)
952 {
953         int i;
954         memset(&(il->sensitivity_data), 0,
955                sizeof(struct il_sensitivity_data));
956         memset(&(il->chain_noise_data), 0,
957                sizeof(struct il_chain_noise_data));
958         for (i = 0; i < NUM_RX_CHAINS; i++)
959                 il->chain_noise_data.delta_gain_code[i] =
960                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
961
962         /* Ask for stats now, the uCode will send notification
963          * periodically after association */
964         il_send_stats_request(il, CMD_ASYNC, true);
965 }