]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/iwlwifi/iwl-calib.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/xscaleiop
[karo-tx-linux.git] / drivers / net / wireless / iwlwifi / iwl-calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63 #include <net/mac80211.h>
64
65 #include "iwl-dev.h"
66 #include "iwl-core.h"
67 #include "iwl-calib.h"
68
69 /*****************************************************************************
70  * INIT calibrations framework
71  *****************************************************************************/
72
73 struct statistics_general_data {
74         u32 beacon_silence_rssi_a;
75         u32 beacon_silence_rssi_b;
76         u32 beacon_silence_rssi_c;
77         u32 beacon_energy_a;
78         u32 beacon_energy_b;
79         u32 beacon_energy_c;
80 };
81
82 int iwl_send_calib_results(struct iwl_priv *priv)
83 {
84         int ret = 0;
85         int i = 0;
86
87         struct iwl_host_cmd hcmd = {
88                 .id = REPLY_PHY_CALIBRATION_CMD,
89                 .flags = CMD_SIZE_HUGE,
90         };
91
92         for (i = 0; i < IWL_CALIB_MAX; i++) {
93                 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
94                     priv->calib_results[i].buf) {
95                         hcmd.len = priv->calib_results[i].buf_len;
96                         hcmd.data = priv->calib_results[i].buf;
97                         ret = iwl_send_cmd_sync(priv, &hcmd);
98                         if (ret)
99                                 goto err;
100                 }
101         }
102
103         return 0;
104 err:
105         IWL_ERR(priv, "Error %d iteration %d\n", ret, i);
106         return ret;
107 }
108 EXPORT_SYMBOL(iwl_send_calib_results);
109
110 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
111 {
112         if (res->buf_len != len) {
113                 kfree(res->buf);
114                 res->buf = kzalloc(len, GFP_ATOMIC);
115         }
116         if (unlikely(res->buf == NULL))
117                 return -ENOMEM;
118
119         res->buf_len = len;
120         memcpy(res->buf, buf, len);
121         return 0;
122 }
123 EXPORT_SYMBOL(iwl_calib_set);
124
125 void iwl_calib_free_results(struct iwl_priv *priv)
126 {
127         int i;
128
129         for (i = 0; i < IWL_CALIB_MAX; i++) {
130                 kfree(priv->calib_results[i].buf);
131                 priv->calib_results[i].buf = NULL;
132                 priv->calib_results[i].buf_len = 0;
133         }
134 }
135
136 /*****************************************************************************
137  * RUNTIME calibrations framework
138  *****************************************************************************/
139
140 /* "false alarms" are signals that our DSP tries to lock onto,
141  *   but then determines that they are either noise, or transmissions
142  *   from a distant wireless network (also "noise", really) that get
143  *   "stepped on" by stronger transmissions within our own network.
144  * This algorithm attempts to set a sensitivity level that is high
145  *   enough to receive all of our own network traffic, but not so
146  *   high that our DSP gets too busy trying to lock onto non-network
147  *   activity/noise. */
148 static int iwl_sens_energy_cck(struct iwl_priv *priv,
149                                    u32 norm_fa,
150                                    u32 rx_enable_time,
151                                    struct statistics_general_data *rx_info)
152 {
153         u32 max_nrg_cck = 0;
154         int i = 0;
155         u8 max_silence_rssi = 0;
156         u32 silence_ref = 0;
157         u8 silence_rssi_a = 0;
158         u8 silence_rssi_b = 0;
159         u8 silence_rssi_c = 0;
160         u32 val;
161
162         /* "false_alarms" values below are cross-multiplications to assess the
163          *   numbers of false alarms within the measured period of actual Rx
164          *   (Rx is off when we're txing), vs the min/max expected false alarms
165          *   (some should be expected if rx is sensitive enough) in a
166          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
167          *
168          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
169          *
170          * */
171         u32 false_alarms = norm_fa * 200 * 1024;
172         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
173         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
174         struct iwl_sensitivity_data *data = NULL;
175         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
176
177         data = &(priv->sensitivity_data);
178
179         data->nrg_auto_corr_silence_diff = 0;
180
181         /* Find max silence rssi among all 3 receivers.
182          * This is background noise, which may include transmissions from other
183          *    networks, measured during silence before our network's beacon */
184         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
185                             ALL_BAND_FILTER) >> 8);
186         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
187                             ALL_BAND_FILTER) >> 8);
188         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
189                             ALL_BAND_FILTER) >> 8);
190
191         val = max(silence_rssi_b, silence_rssi_c);
192         max_silence_rssi = max(silence_rssi_a, (u8) val);
193
194         /* Store silence rssi in 20-beacon history table */
195         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
196         data->nrg_silence_idx++;
197         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
198                 data->nrg_silence_idx = 0;
199
200         /* Find max silence rssi across 20 beacon history */
201         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
202                 val = data->nrg_silence_rssi[i];
203                 silence_ref = max(silence_ref, val);
204         }
205         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
206                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
207                         silence_ref);
208
209         /* Find max rx energy (min value!) among all 3 receivers,
210          *   measured during beacon frame.
211          * Save it in 10-beacon history table. */
212         i = data->nrg_energy_idx;
213         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
214         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
215
216         data->nrg_energy_idx++;
217         if (data->nrg_energy_idx >= 10)
218                 data->nrg_energy_idx = 0;
219
220         /* Find min rx energy (max value) across 10 beacon history.
221          * This is the minimum signal level that we want to receive well.
222          * Add backoff (margin so we don't miss slightly lower energy frames).
223          * This establishes an upper bound (min value) for energy threshold. */
224         max_nrg_cck = data->nrg_value[0];
225         for (i = 1; i < 10; i++)
226                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
227         max_nrg_cck += 6;
228
229         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
230                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
231                         rx_info->beacon_energy_c, max_nrg_cck - 6);
232
233         /* Count number of consecutive beacons with fewer-than-desired
234          *   false alarms. */
235         if (false_alarms < min_false_alarms)
236                 data->num_in_cck_no_fa++;
237         else
238                 data->num_in_cck_no_fa = 0;
239         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
240                         data->num_in_cck_no_fa);
241
242         /* If we got too many false alarms this time, reduce sensitivity */
243         if ((false_alarms > max_false_alarms) &&
244                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
245                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
246                      false_alarms, max_false_alarms);
247                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
248                 data->nrg_curr_state = IWL_FA_TOO_MANY;
249                 /* Store for "fewer than desired" on later beacon */
250                 data->nrg_silence_ref = silence_ref;
251
252                 /* increase energy threshold (reduce nrg value)
253                  *   to decrease sensitivity */
254                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
255         /* Else if we got fewer than desired, increase sensitivity */
256         } else if (false_alarms < min_false_alarms) {
257                 data->nrg_curr_state = IWL_FA_TOO_FEW;
258
259                 /* Compare silence level with silence level for most recent
260                  *   healthy number or too many false alarms */
261                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
262                                                    (s32)silence_ref;
263
264                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
265                          false_alarms, min_false_alarms,
266                          data->nrg_auto_corr_silence_diff);
267
268                 /* Increase value to increase sensitivity, but only if:
269                  * 1a) previous beacon did *not* have *too many* false alarms
270                  * 1b) AND there's a significant difference in Rx levels
271                  *      from a previous beacon with too many, or healthy # FAs
272                  * OR 2) We've seen a lot of beacons (100) with too few
273                  *       false alarms */
274                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
275                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
276                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
277
278                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
279                         /* Increase nrg value to increase sensitivity */
280                         val = data->nrg_th_cck + NRG_STEP_CCK;
281                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
282                 } else {
283                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
284                 }
285
286         /* Else we got a healthy number of false alarms, keep status quo */
287         } else {
288                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
289                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
290
291                 /* Store for use in "fewer than desired" with later beacon */
292                 data->nrg_silence_ref = silence_ref;
293
294                 /* If previous beacon had too many false alarms,
295                  *   give it some extra margin by reducing sensitivity again
296                  *   (but don't go below measured energy of desired Rx) */
297                 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
298                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
299                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
300                                 data->nrg_th_cck -= NRG_MARGIN;
301                         else
302                                 data->nrg_th_cck = max_nrg_cck;
303                 }
304         }
305
306         /* Make sure the energy threshold does not go above the measured
307          * energy of the desired Rx signals (reduced by backoff margin),
308          * or else we might start missing Rx frames.
309          * Lower value is higher energy, so we use max()!
310          */
311         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
312         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
313
314         data->nrg_prev_state = data->nrg_curr_state;
315
316         /* Auto-correlation CCK algorithm */
317         if (false_alarms > min_false_alarms) {
318
319                 /* increase auto_corr values to decrease sensitivity
320                  * so the DSP won't be disturbed by the noise
321                  */
322                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
323                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
324                 else {
325                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
326                         data->auto_corr_cck =
327                                 min((u32)ranges->auto_corr_max_cck, val);
328                 }
329                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
330                 data->auto_corr_cck_mrc =
331                         min((u32)ranges->auto_corr_max_cck_mrc, val);
332         } else if ((false_alarms < min_false_alarms) &&
333            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
334            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
335
336                 /* Decrease auto_corr values to increase sensitivity */
337                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
338                 data->auto_corr_cck =
339                         max((u32)ranges->auto_corr_min_cck, val);
340                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
341                 data->auto_corr_cck_mrc =
342                         max((u32)ranges->auto_corr_min_cck_mrc, val);
343         }
344
345         return 0;
346 }
347
348
349 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
350                                        u32 norm_fa,
351                                        u32 rx_enable_time)
352 {
353         u32 val;
354         u32 false_alarms = norm_fa * 200 * 1024;
355         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
356         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
357         struct iwl_sensitivity_data *data = NULL;
358         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
359
360         data = &(priv->sensitivity_data);
361
362         /* If we got too many false alarms this time, reduce sensitivity */
363         if (false_alarms > max_false_alarms) {
364
365                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
366                              false_alarms, max_false_alarms);
367
368                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
369                 data->auto_corr_ofdm =
370                         min((u32)ranges->auto_corr_max_ofdm, val);
371
372                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
373                 data->auto_corr_ofdm_mrc =
374                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
375
376                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
377                 data->auto_corr_ofdm_x1 =
378                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
379
380                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
381                 data->auto_corr_ofdm_mrc_x1 =
382                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
383         }
384
385         /* Else if we got fewer than desired, increase sensitivity */
386         else if (false_alarms < min_false_alarms) {
387
388                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
389                              false_alarms, min_false_alarms);
390
391                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
392                 data->auto_corr_ofdm =
393                         max((u32)ranges->auto_corr_min_ofdm, val);
394
395                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
396                 data->auto_corr_ofdm_mrc =
397                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
398
399                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
400                 data->auto_corr_ofdm_x1 =
401                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
402
403                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
404                 data->auto_corr_ofdm_mrc_x1 =
405                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
406         } else {
407                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
408                          min_false_alarms, false_alarms, max_false_alarms);
409         }
410         return 0;
411 }
412
413 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
414 static int iwl_sensitivity_write(struct iwl_priv *priv)
415 {
416         int ret = 0;
417         struct iwl_sensitivity_cmd cmd ;
418         struct iwl_sensitivity_data *data = NULL;
419         struct iwl_host_cmd cmd_out = {
420                 .id = SENSITIVITY_CMD,
421                 .len = sizeof(struct iwl_sensitivity_cmd),
422                 .flags = CMD_ASYNC,
423                 .data = &cmd,
424         };
425
426         data = &(priv->sensitivity_data);
427
428         memset(&cmd, 0, sizeof(cmd));
429
430         cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
431                                 cpu_to_le16((u16)data->auto_corr_ofdm);
432         cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
433                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
434         cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
435                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
436         cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
437                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
438
439         cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
440                                 cpu_to_le16((u16)data->auto_corr_cck);
441         cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
442                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
443
444         cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
445                                 cpu_to_le16((u16)data->nrg_th_cck);
446         cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
447                                 cpu_to_le16((u16)data->nrg_th_ofdm);
448
449         cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
450                                 cpu_to_le16(190);
451         cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
452                                 cpu_to_le16(390);
453         cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
454                                 cpu_to_le16(62);
455
456         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
457                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
458                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
459                         data->nrg_th_ofdm);
460
461         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
462                         data->auto_corr_cck, data->auto_corr_cck_mrc,
463                         data->nrg_th_cck);
464
465         /* Update uCode's "work" table, and copy it to DSP */
466         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
467
468         /* Don't send command to uCode if nothing has changed */
469         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
470                     sizeof(u16)*HD_TABLE_SIZE)) {
471                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
472                 return 0;
473         }
474
475         /* Copy table for comparison next time */
476         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
477                sizeof(u16)*HD_TABLE_SIZE);
478
479         ret = iwl_send_cmd(priv, &cmd_out);
480         if (ret)
481                 IWL_ERR(priv, "SENSITIVITY_CMD failed\n");
482
483         return ret;
484 }
485
486 void iwl_init_sensitivity(struct iwl_priv *priv)
487 {
488         int ret = 0;
489         int i;
490         struct iwl_sensitivity_data *data = NULL;
491         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
492
493         if (priv->disable_sens_cal)
494                 return;
495
496         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
497
498         /* Clear driver's sensitivity algo data */
499         data = &(priv->sensitivity_data);
500
501         if (ranges == NULL)
502                 return;
503
504         memset(data, 0, sizeof(struct iwl_sensitivity_data));
505
506         data->num_in_cck_no_fa = 0;
507         data->nrg_curr_state = IWL_FA_TOO_MANY;
508         data->nrg_prev_state = IWL_FA_TOO_MANY;
509         data->nrg_silence_ref = 0;
510         data->nrg_silence_idx = 0;
511         data->nrg_energy_idx = 0;
512
513         for (i = 0; i < 10; i++)
514                 data->nrg_value[i] = 0;
515
516         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
517                 data->nrg_silence_rssi[i] = 0;
518
519         data->auto_corr_ofdm = 90;
520         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
521         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
522         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
523         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
524         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
525         data->nrg_th_cck = ranges->nrg_th_cck;
526         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
527
528         data->last_bad_plcp_cnt_ofdm = 0;
529         data->last_fa_cnt_ofdm = 0;
530         data->last_bad_plcp_cnt_cck = 0;
531         data->last_fa_cnt_cck = 0;
532
533         ret |= iwl_sensitivity_write(priv);
534         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
535 }
536 EXPORT_SYMBOL(iwl_init_sensitivity);
537
538 void iwl_sensitivity_calibration(struct iwl_priv *priv,
539                                     struct iwl_notif_statistics *resp)
540 {
541         u32 rx_enable_time;
542         u32 fa_cck;
543         u32 fa_ofdm;
544         u32 bad_plcp_cck;
545         u32 bad_plcp_ofdm;
546         u32 norm_fa_ofdm;
547         u32 norm_fa_cck;
548         struct iwl_sensitivity_data *data = NULL;
549         struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
550         struct statistics_rx *statistics = &(resp->rx);
551         unsigned long flags;
552         struct statistics_general_data statis;
553
554         if (priv->disable_sens_cal)
555                 return;
556
557         data = &(priv->sensitivity_data);
558
559         if (!iwl_is_associated(priv)) {
560                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
561                 return;
562         }
563
564         spin_lock_irqsave(&priv->lock, flags);
565         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
566                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
567                 spin_unlock_irqrestore(&priv->lock, flags);
568                 return;
569         }
570
571         /* Extract Statistics: */
572         rx_enable_time = le32_to_cpu(rx_info->channel_load);
573         fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
574         fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
575         bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
576         bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
577
578         statis.beacon_silence_rssi_a =
579                         le32_to_cpu(statistics->general.beacon_silence_rssi_a);
580         statis.beacon_silence_rssi_b =
581                         le32_to_cpu(statistics->general.beacon_silence_rssi_b);
582         statis.beacon_silence_rssi_c =
583                         le32_to_cpu(statistics->general.beacon_silence_rssi_c);
584         statis.beacon_energy_a =
585                         le32_to_cpu(statistics->general.beacon_energy_a);
586         statis.beacon_energy_b =
587                         le32_to_cpu(statistics->general.beacon_energy_b);
588         statis.beacon_energy_c =
589                         le32_to_cpu(statistics->general.beacon_energy_c);
590
591         spin_unlock_irqrestore(&priv->lock, flags);
592
593         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
594
595         if (!rx_enable_time) {
596                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0! \n");
597                 return;
598         }
599
600         /* These statistics increase monotonically, and do not reset
601          *   at each beacon.  Calculate difference from last value, or just
602          *   use the new statistics value if it has reset or wrapped around. */
603         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
604                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
605         else {
606                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
607                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
608         }
609
610         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
611                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
612         else {
613                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
614                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
615         }
616
617         if (data->last_fa_cnt_ofdm > fa_ofdm)
618                 data->last_fa_cnt_ofdm = fa_ofdm;
619         else {
620                 fa_ofdm -= data->last_fa_cnt_ofdm;
621                 data->last_fa_cnt_ofdm += fa_ofdm;
622         }
623
624         if (data->last_fa_cnt_cck > fa_cck)
625                 data->last_fa_cnt_cck = fa_cck;
626         else {
627                 fa_cck -= data->last_fa_cnt_cck;
628                 data->last_fa_cnt_cck += fa_cck;
629         }
630
631         /* Total aborted signal locks */
632         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
633         norm_fa_cck = fa_cck + bad_plcp_cck;
634
635         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
636                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
637
638         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
639         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
640         iwl_sensitivity_write(priv);
641
642         return;
643 }
644 EXPORT_SYMBOL(iwl_sensitivity_calibration);
645
646 /*
647  * Accumulate 20 beacons of signal and noise statistics for each of
648  *   3 receivers/antennas/rx-chains, then figure out:
649  * 1)  Which antennas are connected.
650  * 2)  Differential rx gain settings to balance the 3 receivers.
651  */
652 void iwl_chain_noise_calibration(struct iwl_priv *priv,
653                                  struct iwl_notif_statistics *stat_resp)
654 {
655         struct iwl_chain_noise_data *data = NULL;
656
657         u32 chain_noise_a;
658         u32 chain_noise_b;
659         u32 chain_noise_c;
660         u32 chain_sig_a;
661         u32 chain_sig_b;
662         u32 chain_sig_c;
663         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
664         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
665         u32 max_average_sig;
666         u16 max_average_sig_antenna_i;
667         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
668         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
669         u16 i = 0;
670         u16 rxon_chnum = INITIALIZATION_VALUE;
671         u16 stat_chnum = INITIALIZATION_VALUE;
672         u8 rxon_band24;
673         u8 stat_band24;
674         u32 active_chains = 0;
675         u8 num_tx_chains;
676         unsigned long flags;
677         struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
678
679         if (priv->disable_chain_noise_cal)
680                 return;
681
682         data = &(priv->chain_noise_data);
683
684         /* Accumulate just the first 20 beacons after the first association,
685          *   then we're done forever. */
686         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
687                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
688                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
689                 return;
690         }
691
692         spin_lock_irqsave(&priv->lock, flags);
693         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
694                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
695                 spin_unlock_irqrestore(&priv->lock, flags);
696                 return;
697         }
698
699         rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
700         rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
701         stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
702         stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
703
704         /* Make sure we accumulate data for just the associated channel
705          *   (even if scanning). */
706         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
707                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
708                                 rxon_chnum, rxon_band24);
709                 spin_unlock_irqrestore(&priv->lock, flags);
710                 return;
711         }
712
713         /* Accumulate beacon statistics values across 20 beacons */
714         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
715                                 IN_BAND_FILTER;
716         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
717                                 IN_BAND_FILTER;
718         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
719                                 IN_BAND_FILTER;
720
721         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
722         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
723         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
724
725         spin_unlock_irqrestore(&priv->lock, flags);
726
727         data->beacon_count++;
728
729         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
730         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
731         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
732
733         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
734         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
735         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
736
737         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
738                         rxon_chnum, rxon_band24, data->beacon_count);
739         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
740                         chain_sig_a, chain_sig_b, chain_sig_c);
741         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
742                         chain_noise_a, chain_noise_b, chain_noise_c);
743
744         /* If this is the 20th beacon, determine:
745          * 1)  Disconnected antennas (using signal strengths)
746          * 2)  Differential gain (using silence noise) to balance receivers */
747         if (data->beacon_count != CAL_NUM_OF_BEACONS)
748                 return;
749
750         /* Analyze signal for disconnected antenna */
751         average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
752         average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
753         average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
754
755         if (average_sig[0] >= average_sig[1]) {
756                 max_average_sig = average_sig[0];
757                 max_average_sig_antenna_i = 0;
758                 active_chains = (1 << max_average_sig_antenna_i);
759         } else {
760                 max_average_sig = average_sig[1];
761                 max_average_sig_antenna_i = 1;
762                 active_chains = (1 << max_average_sig_antenna_i);
763         }
764
765         if (average_sig[2] >= max_average_sig) {
766                 max_average_sig = average_sig[2];
767                 max_average_sig_antenna_i = 2;
768                 active_chains = (1 << max_average_sig_antenna_i);
769         }
770
771         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
772                      average_sig[0], average_sig[1], average_sig[2]);
773         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
774                      max_average_sig, max_average_sig_antenna_i);
775
776         /* Compare signal strengths for all 3 receivers. */
777         for (i = 0; i < NUM_RX_CHAINS; i++) {
778                 if (i != max_average_sig_antenna_i) {
779                         s32 rssi_delta = (max_average_sig - average_sig[i]);
780
781                         /* If signal is very weak, compared with
782                          * strongest, mark it as disconnected. */
783                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
784                                 data->disconn_array[i] = 1;
785                         else
786                                 active_chains |= (1 << i);
787                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
788                              "disconn_array[i] = %d\n",
789                              i, rssi_delta, data->disconn_array[i]);
790                 }
791         }
792
793         num_tx_chains = 0;
794         for (i = 0; i < NUM_RX_CHAINS; i++) {
795                 /* loops on all the bits of
796                  * priv->hw_setting.valid_tx_ant */
797                 u8 ant_msk = (1 << i);
798                 if (!(priv->hw_params.valid_tx_ant & ant_msk))
799                         continue;
800
801                 num_tx_chains++;
802                 if (data->disconn_array[i] == 0)
803                         /* there is a Tx antenna connected */
804                         break;
805                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
806                 data->disconn_array[i]) {
807                         /* This is the last TX antenna and is also
808                          * disconnected connect it anyway */
809                         data->disconn_array[i] = 0;
810                         active_chains |= ant_msk;
811                         IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected W/A - "
812                                 "declare %d as connected\n", i);
813                         break;
814                 }
815         }
816
817         /* Save for use within RXON, TX, SCAN commands, etc. */
818         priv->chain_noise_data.active_chains = active_chains;
819         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
820                         active_chains);
821
822         /* Analyze noise for rx balance */
823         average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
824         average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
825         average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
826
827         for (i = 0; i < NUM_RX_CHAINS; i++) {
828                 if (!(data->disconn_array[i]) &&
829                    (average_noise[i] <= min_average_noise)) {
830                         /* This means that chain i is active and has
831                          * lower noise values so far: */
832                         min_average_noise = average_noise[i];
833                         min_average_noise_antenna_i = i;
834                 }
835         }
836
837         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
838                         average_noise[0], average_noise[1],
839                         average_noise[2]);
840
841         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
842                         min_average_noise, min_average_noise_antenna_i);
843
844         if (priv->cfg->ops->utils->gain_computation)
845                 priv->cfg->ops->utils->gain_computation(priv, average_noise,
846                         min_average_noise_antenna_i, min_average_noise);
847
848         /* Some power changes may have been made during the calibration.
849          * Update and commit the RXON
850          */
851         if (priv->cfg->ops->lib->update_chain_flags)
852                 priv->cfg->ops->lib->update_chain_flags(priv);
853
854         data->state = IWL_CHAIN_NOISE_DONE;
855         iwl_power_update_mode(priv, false);
856 }
857 EXPORT_SYMBOL(iwl_chain_noise_calibration);
858
859
860 void iwl_reset_run_time_calib(struct iwl_priv *priv)
861 {
862         int i;
863         memset(&(priv->sensitivity_data), 0,
864                sizeof(struct iwl_sensitivity_data));
865         memset(&(priv->chain_noise_data), 0,
866                sizeof(struct iwl_chain_noise_data));
867         for (i = 0; i < NUM_RX_CHAINS; i++)
868                 priv->chain_noise_data.delta_gain_code[i] =
869                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
870
871         /* Ask for statistics now, the uCode will send notification
872          * periodically after association */
873         iwl_send_statistics_request(priv, CMD_ASYNC);
874 }
875 EXPORT_SYMBOL(iwl_reset_run_time_calib);
876