]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/p54/p54common.c
p54: move eeprom code into common library
[karo-tx-linux.git] / drivers / net / wireless / p54 / p54common.c
1
2 /*
3  * Common code for mac80211 Prism54 drivers
4  *
5  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
6  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
7  *
8  * Based on the islsm (softmac prism54) driver, which is:
9  * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15
16 #include <linux/init.h>
17 #include <linux/firmware.h>
18 #include <linux/etherdevice.h>
19
20 #include <net/mac80211.h>
21
22 #include "p54.h"
23 #include "p54common.h"
24
25 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
26 MODULE_DESCRIPTION("Softmac Prism54 common code");
27 MODULE_LICENSE("GPL");
28 MODULE_ALIAS("prism54common");
29
30 static struct ieee80211_rate p54_rates[] = {
31         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
32         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
33         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
34         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 60, .hw_value = 4, },
36         { .bitrate = 90, .hw_value = 5, },
37         { .bitrate = 120, .hw_value = 6, },
38         { .bitrate = 180, .hw_value = 7, },
39         { .bitrate = 240, .hw_value = 8, },
40         { .bitrate = 360, .hw_value = 9, },
41         { .bitrate = 480, .hw_value = 10, },
42         { .bitrate = 540, .hw_value = 11, },
43 };
44
45 static struct ieee80211_channel p54_channels[] = {
46         { .center_freq = 2412, .hw_value = 1, },
47         { .center_freq = 2417, .hw_value = 2, },
48         { .center_freq = 2422, .hw_value = 3, },
49         { .center_freq = 2427, .hw_value = 4, },
50         { .center_freq = 2432, .hw_value = 5, },
51         { .center_freq = 2437, .hw_value = 6, },
52         { .center_freq = 2442, .hw_value = 7, },
53         { .center_freq = 2447, .hw_value = 8, },
54         { .center_freq = 2452, .hw_value = 9, },
55         { .center_freq = 2457, .hw_value = 10, },
56         { .center_freq = 2462, .hw_value = 11, },
57         { .center_freq = 2467, .hw_value = 12, },
58         { .center_freq = 2472, .hw_value = 13, },
59         { .center_freq = 2484, .hw_value = 14, },
60 };
61
62 static struct ieee80211_supported_band band_2GHz = {
63         .channels = p54_channels,
64         .n_channels = ARRAY_SIZE(p54_channels),
65         .bitrates = p54_rates,
66         .n_bitrates = ARRAY_SIZE(p54_rates),
67 };
68
69 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
70 {
71         struct p54_common *priv = dev->priv;
72         struct bootrec_exp_if *exp_if;
73         struct bootrec *bootrec;
74         u32 *data = (u32 *)fw->data;
75         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
76         u8 *fw_version = NULL;
77         size_t len;
78         int i;
79
80         if (priv->rx_start)
81                 return 0;
82
83         while (data < end_data && *data)
84                 data++;
85
86         while (data < end_data && !*data)
87                 data++;
88
89         bootrec = (struct bootrec *) data;
90
91         while (bootrec->data <= end_data &&
92                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
93                 u32 code = le32_to_cpu(bootrec->code);
94                 switch (code) {
95                 case BR_CODE_COMPONENT_ID:
96                         switch (be32_to_cpu(*(__be32 *)bootrec->data)) {
97                         case FW_FMAC:
98                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
99                                 break;
100                         case FW_LM20:
101                                 printk(KERN_INFO "p54: LM20 firmware\n");
102                                 break;
103                         case FW_LM86:
104                                 printk(KERN_INFO "p54: LM86 firmware\n");
105                                 break;
106                         case FW_LM87:
107                                 printk(KERN_INFO "p54: LM87 firmware - not supported yet!\n");
108                                 break;
109                         default:
110                                 printk(KERN_INFO "p54: unknown firmware\n");
111                                 break;
112                         }
113                         break;
114                 case BR_CODE_COMPONENT_VERSION:
115                         /* 24 bytes should be enough for all firmwares */
116                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
117                                 fw_version = (unsigned char*)bootrec->data;
118                         break;
119                 case BR_CODE_DESCR: {
120                         struct bootrec_desc *desc =
121                                 (struct bootrec_desc *)bootrec->data;
122                         priv->rx_start = le32_to_cpu(desc->rx_start);
123                         /* FIXME add sanity checking */
124                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
125                         priv->headroom = desc->headroom;
126                         priv->tailroom = desc->tailroom;
127                         if (bootrec->len == 11)
128                                 priv->rx_mtu = (size_t) le16_to_cpu(
129                                         (__le16)bootrec->data[10]);
130                         else
131                                 priv->rx_mtu = (size_t)
132                                         0x620 - priv->tx_hdr_len;
133                         break;
134                         }
135                 case BR_CODE_EXPOSED_IF:
136                         exp_if = (struct bootrec_exp_if *) bootrec->data;
137                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
138                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
139                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
140                         break;
141                 case BR_CODE_DEPENDENT_IF:
142                         break;
143                 case BR_CODE_END_OF_BRA:
144                 case LEGACY_BR_CODE_END_OF_BRA:
145                         end_data = NULL;
146                         break;
147                 default:
148                         break;
149                 }
150                 bootrec = (struct bootrec *)&bootrec->data[len];
151         }
152
153         if (fw_version)
154                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
155                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
156
157         if (priv->fw_var >= 0x300) {
158                 /* Firmware supports QoS, use it! */
159                 priv->tx_stats[4].limit = 3;
160                 priv->tx_stats[5].limit = 4;
161                 priv->tx_stats[6].limit = 3;
162                 priv->tx_stats[7].limit = 1;
163                 dev->queues = 4;
164         }
165
166         return 0;
167 }
168 EXPORT_SYMBOL_GPL(p54_parse_firmware);
169
170 static int p54_convert_rev0(struct ieee80211_hw *dev,
171                             struct pda_pa_curve_data *curve_data)
172 {
173         struct p54_common *priv = dev->priv;
174         struct p54_pa_curve_data_sample *dst;
175         struct pda_pa_curve_data_sample_rev0 *src;
176         size_t cd_len = sizeof(*curve_data) +
177                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
178                  curve_data->channels;
179         unsigned int i, j;
180         void *source, *target;
181
182         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
183         if (!priv->curve_data)
184                 return -ENOMEM;
185
186         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
187         source = curve_data->data;
188         target = priv->curve_data->data;
189         for (i = 0; i < curve_data->channels; i++) {
190                 __le16 *freq = source;
191                 source += sizeof(__le16);
192                 *((__le16 *)target) = *freq;
193                 target += sizeof(__le16);
194                 for (j = 0; j < curve_data->points_per_channel; j++) {
195                         dst = target;
196                         src = source;
197
198                         dst->rf_power = src->rf_power;
199                         dst->pa_detector = src->pa_detector;
200                         dst->data_64qam = src->pcv;
201                         /* "invent" the points for the other modulations */
202 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
203                         dst->data_16qam = SUB(src->pcv, 12);
204                         dst->data_qpsk = SUB(dst->data_16qam, 12);
205                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
206                         dst->data_barker = SUB(dst->data_bpsk, 14);
207 #undef SUB
208                         target += sizeof(*dst);
209                         source += sizeof(*src);
210                 }
211         }
212
213         return 0;
214 }
215
216 static int p54_convert_rev1(struct ieee80211_hw *dev,
217                             struct pda_pa_curve_data *curve_data)
218 {
219         struct p54_common *priv = dev->priv;
220         struct p54_pa_curve_data_sample *dst;
221         struct pda_pa_curve_data_sample_rev1 *src;
222         size_t cd_len = sizeof(*curve_data) +
223                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
224                  curve_data->channels;
225         unsigned int i, j;
226         void *source, *target;
227
228         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
229         if (!priv->curve_data)
230                 return -ENOMEM;
231
232         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
233         source = curve_data->data;
234         target = priv->curve_data->data;
235         for (i = 0; i < curve_data->channels; i++) {
236                 __le16 *freq = source;
237                 source += sizeof(__le16);
238                 *((__le16 *)target) = *freq;
239                 target += sizeof(__le16);
240                 for (j = 0; j < curve_data->points_per_channel; j++) {
241                         memcpy(target, source, sizeof(*src));
242
243                         target += sizeof(*dst);
244                         source += sizeof(*src);
245                 }
246                 source++;
247         }
248
249         return 0;
250 }
251
252 const char* p54_rf_chips[] = { "NULL", "Indigo?", "Duette",
253                               "Frisbee", "Xbow", "Longbow" };
254
255 int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
256 {
257         struct p54_common *priv = dev->priv;
258         struct eeprom_pda_wrap *wrap = NULL;
259         struct pda_entry *entry;
260         unsigned int data_len, entry_len;
261         void *tmp;
262         int err;
263         u8 *end = (u8 *)eeprom + len;
264         DECLARE_MAC_BUF(mac);
265
266         wrap = (struct eeprom_pda_wrap *) eeprom;
267         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
268
269         /* verify that at least the entry length/code fits */
270         while ((u8 *)entry <= end - sizeof(*entry)) {
271                 entry_len = le16_to_cpu(entry->len);
272                 data_len = ((entry_len - 1) << 1);
273
274                 /* abort if entry exceeds whole structure */
275                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
276                         break;
277
278                 switch (le16_to_cpu(entry->code)) {
279                 case PDR_MAC_ADDRESS:
280                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
281                         break;
282                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
283                         if (data_len < 2) {
284                                 err = -EINVAL;
285                                 goto err;
286                         }
287
288                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
289                                 err = -EINVAL;
290                                 goto err;
291                         }
292
293                         priv->output_limit = kmalloc(entry->data[1] *
294                                 sizeof(*priv->output_limit), GFP_KERNEL);
295
296                         if (!priv->output_limit) {
297                                 err = -ENOMEM;
298                                 goto err;
299                         }
300
301                         memcpy(priv->output_limit, &entry->data[2],
302                                entry->data[1]*sizeof(*priv->output_limit));
303                         priv->output_limit_len = entry->data[1];
304                         break;
305                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
306                         struct pda_pa_curve_data *curve_data =
307                                 (struct pda_pa_curve_data *)entry->data;
308                         if (data_len < sizeof(*curve_data)) {
309                                 err = -EINVAL;
310                                 goto err;
311                         }
312
313                         switch (curve_data->cal_method_rev) {
314                         case 0:
315                                 err = p54_convert_rev0(dev, curve_data);
316                                 break;
317                         case 1:
318                                 err = p54_convert_rev1(dev, curve_data);
319                                 break;
320                         default:
321                                 printk(KERN_ERR "p54: unknown curve data "
322                                                 "revision %d\n",
323                                                 curve_data->cal_method_rev);
324                                 err = -ENODEV;
325                                 break;
326                         }
327                         if (err)
328                                 goto err;
329
330                 }
331                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
332                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
333                         if (!priv->iq_autocal) {
334                                 err = -ENOMEM;
335                                 goto err;
336                         }
337
338                         memcpy(priv->iq_autocal, entry->data, data_len);
339                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
340                         break;
341                 case PDR_INTERFACE_LIST:
342                         tmp = entry->data;
343                         while ((u8 *)tmp < entry->data + data_len) {
344                                 struct bootrec_exp_if *exp_if = tmp;
345                                 if (le16_to_cpu(exp_if->if_id) == 0xF)
346                                         priv->rxhw = le16_to_cpu(exp_if->variant) & 0x07;
347                                 tmp += sizeof(struct bootrec_exp_if);
348                         }
349                         break;
350                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
351                         priv->version = *(u8 *)(entry->data + 1);
352                         break;
353                 case PDR_END:
354                         /* make it overrun */
355                         entry_len = len;
356                         break;
357                 default:
358                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
359                                 le16_to_cpu(entry->code));
360                         break;
361                 }
362
363                 entry = (void *)entry + (entry_len + 1)*2;
364         }
365
366         if (!priv->iq_autocal || !priv->output_limit || !priv->curve_data) {
367                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
368                 err = -EINVAL;
369                 goto err;
370         }
371
372         switch (priv->rxhw) {
373                 case 4: /* XBow */
374                 case 1: /* Indigo? */
375                 case 2: /* Duette */
376                         /* TODO: 5GHz initialization goes here */
377
378                 case 3: /* Frisbee */
379                 case 5: /* Longbow */
380                         dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
381                         break;
382                 default:
383                         printk(KERN_ERR "%s: unsupported RF-Chip\n",
384                                 wiphy_name(dev->wiphy));
385                         err = -EINVAL;
386                         goto err;
387         }
388
389         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
390                 u8 perm_addr[ETH_ALEN];
391
392                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
393                         wiphy_name(dev->wiphy));
394                 random_ether_addr(perm_addr);
395                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
396         }
397
398         printk(KERN_INFO "%s: hwaddr %s, MAC:isl38%02x RF:%s\n",
399                 wiphy_name(dev->wiphy),
400                 print_mac(mac, dev->wiphy->perm_addr),
401                 priv->version, p54_rf_chips[priv->rxhw]);
402
403         return 0;
404
405   err:
406         if (priv->iq_autocal) {
407                 kfree(priv->iq_autocal);
408                 priv->iq_autocal = NULL;
409         }
410
411         if (priv->output_limit) {
412                 kfree(priv->output_limit);
413                 priv->output_limit = NULL;
414         }
415
416         if (priv->curve_data) {
417                 kfree(priv->curve_data);
418                 priv->curve_data = NULL;
419         }
420
421         printk(KERN_ERR "p54: eeprom parse failed!\n");
422         return err;
423 }
424 EXPORT_SYMBOL_GPL(p54_parse_eeprom);
425
426 static void p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
427 {
428         struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
429         struct ieee80211_rx_status rx_status = {0};
430         u16 freq = le16_to_cpu(hdr->freq);
431
432         rx_status.signal = hdr->rssi;
433         /* XX correct? */
434         rx_status.qual = (100 * hdr->rssi) / 127;
435         rx_status.rate_idx = hdr->rate & 0xf;
436         rx_status.freq = freq;
437         rx_status.band = IEEE80211_BAND_2GHZ;
438         rx_status.antenna = hdr->antenna;
439         rx_status.mactime = le64_to_cpu(hdr->timestamp);
440         rx_status.flag |= RX_FLAG_TSFT;
441
442         skb_pull(skb, sizeof(*hdr));
443         skb_trim(skb, le16_to_cpu(hdr->len));
444
445         ieee80211_rx_irqsafe(dev, skb, &rx_status);
446 }
447
448 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
449 {
450         struct p54_common *priv = dev->priv;
451         int i;
452
453         for (i = 0; i < dev->queues; i++)
454                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
455                         ieee80211_wake_queue(dev, i);
456 }
457
458 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
459 {
460         struct p54_common *priv = dev->priv;
461         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
462         struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
463         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
464         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
465         struct memrecord *range = NULL;
466         u32 freed = 0;
467         u32 last_addr = priv->rx_start;
468         unsigned long flags;
469
470         spin_lock_irqsave(&priv->tx_queue.lock, flags);
471         while (entry != (struct sk_buff *)&priv->tx_queue) {
472                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
473                 range = (void *)info->driver_data;
474                 if (range->start_addr == addr) {
475                         struct p54_control_hdr *entry_hdr;
476                         struct p54_tx_control_allocdata *entry_data;
477                         int pad = 0;
478
479                         if (entry->next != (struct sk_buff *)&priv->tx_queue) {
480                                 struct ieee80211_tx_info *ni;
481                                 struct memrecord *mr;
482
483                                 ni = IEEE80211_SKB_CB(entry->next);
484                                 mr = (struct memrecord *)ni->driver_data;
485                                 freed = mr->start_addr - last_addr;
486                         } else
487                                 freed = priv->rx_end - last_addr;
488
489                         last_addr = range->end_addr;
490                         __skb_unlink(entry, &priv->tx_queue);
491                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
492
493                         memset(&info->status, 0, sizeof(info->status));
494                         entry_hdr = (struct p54_control_hdr *) entry->data;
495                         entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
496                         if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
497                                 pad = entry_data->align[0];
498
499                         priv->tx_stats[entry_data->hw_queue].len--;
500                         if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) {
501                                 if (!(payload->status & 0x01))
502                                         info->flags |= IEEE80211_TX_STAT_ACK;
503                                 else
504                                         info->status.excessive_retries = 1;
505                         }
506                         info->status.retry_count = payload->retries - 1;
507                         info->status.ack_signal = le16_to_cpu(payload->ack_rssi);
508                         skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
509                         ieee80211_tx_status_irqsafe(dev, entry);
510                         goto out;
511                 } else
512                         last_addr = range->end_addr;
513                 entry = entry->next;
514         }
515         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
516
517 out:
518         if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
519             sizeof(struct p54_control_hdr))
520                 p54_wake_free_queues(dev);
521 }
522
523 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
524                                    struct sk_buff *skb)
525 {
526         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
527         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
528         struct p54_common *priv = dev->priv;
529
530         if (!priv->eeprom)
531                 return ;
532
533         memcpy(priv->eeprom, eeprom->data, eeprom->len);
534
535         complete(&priv->eeprom_comp);
536 }
537
538 static void p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
539 {
540         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
541
542         switch (le16_to_cpu(hdr->type)) {
543         case P54_CONTROL_TYPE_TXDONE:
544                 p54_rx_frame_sent(dev, skb);
545                 break;
546         case P54_CONTROL_TYPE_BBP:
547                 break;
548         case P54_CONTROL_TYPE_EEPROM_READBACK:
549                 p54_rx_eeprom_readback(dev, skb);
550                 break;
551         default:
552                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
553                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
554                 break;
555         }
556 }
557
558 /* returns zero if skb can be reused */
559 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
560 {
561         u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
562         switch (type) {
563         case 0x00:
564         case 0x01:
565                 p54_rx_data(dev, skb);
566                 return -1;
567         case 0x4d:
568                 /* TODO: do something better... but then again, I've never seen this happen */
569                 printk(KERN_ERR "%s: Received fault. Probably need to restart hardware now..\n",
570                        wiphy_name(dev->wiphy));
571                 break;
572         case 0x80:
573                 p54_rx_control(dev, skb);
574                 break;
575         default:
576                 printk(KERN_ERR "%s: unknown frame RXed (0x%02x)\n",
577                        wiphy_name(dev->wiphy), type);
578                 break;
579         }
580         return 0;
581 }
582 EXPORT_SYMBOL_GPL(p54_rx);
583
584 /*
585  * So, the firmware is somewhat stupid and doesn't know what places in its
586  * memory incoming data should go to. By poking around in the firmware, we
587  * can find some unused memory to upload our packets to. However, data that we
588  * want the card to TX needs to stay intact until the card has told us that
589  * it is done with it. This function finds empty places we can upload to and
590  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
591  * allocated areas.
592  */
593 static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
594                                struct p54_control_hdr *data, u32 len)
595 {
596         struct p54_common *priv = dev->priv;
597         struct sk_buff *entry = priv->tx_queue.next;
598         struct sk_buff *target_skb = NULL;
599         u32 last_addr = priv->rx_start;
600         u32 largest_hole = 0;
601         u32 target_addr = priv->rx_start;
602         unsigned long flags;
603         unsigned int left;
604         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
605
606         spin_lock_irqsave(&priv->tx_queue.lock, flags);
607         left = skb_queue_len(&priv->tx_queue);
608         while (left--) {
609                 u32 hole_size;
610                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
611                 struct memrecord *range = (void *)info->driver_data;
612                 hole_size = range->start_addr - last_addr;
613                 if (!target_skb && hole_size >= len) {
614                         target_skb = entry->prev;
615                         hole_size -= len;
616                         target_addr = last_addr;
617                 }
618                 largest_hole = max(largest_hole, hole_size);
619                 last_addr = range->end_addr;
620                 entry = entry->next;
621         }
622         if (!target_skb && priv->rx_end - last_addr >= len) {
623                 target_skb = priv->tx_queue.prev;
624                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
625                 if (!skb_queue_empty(&priv->tx_queue)) {
626                         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
627                         struct memrecord *range = (void *)info->driver_data;
628                         target_addr = range->end_addr;
629                 }
630         } else
631                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
632
633         if (skb) {
634                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
635                 struct memrecord *range = (void *)info->driver_data;
636                 range->start_addr = target_addr;
637                 range->end_addr = target_addr + len;
638                 __skb_queue_after(&priv->tx_queue, target_skb, skb);
639                 if (largest_hole < priv->rx_mtu + priv->headroom +
640                                    priv->tailroom +
641                                    sizeof(struct p54_control_hdr))
642                         ieee80211_stop_queues(dev);
643         }
644         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
645
646         data->req_id = cpu_to_le32(target_addr + priv->headroom);
647 }
648
649 int p54_read_eeprom(struct ieee80211_hw *dev)
650 {
651         struct p54_common *priv = dev->priv;
652         struct p54_control_hdr *hdr = NULL;
653         struct p54_eeprom_lm86 *eeprom_hdr;
654         size_t eeprom_size = 0x2020, offset = 0, blocksize;
655         int ret = -ENOMEM;
656         void *eeprom = NULL;
657
658         hdr = (struct p54_control_hdr *)kzalloc(sizeof(*hdr) +
659                 sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN, GFP_KERNEL);
660         if (!hdr)
661                 goto free;
662
663         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
664         if (!priv->eeprom)
665                 goto free;
666
667         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
668         if (!eeprom)
669                 goto free;
670
671         hdr->magic1 = cpu_to_le16(0x8000);
672         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
673         hdr->retry1 = hdr->retry2 = 0;
674         eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
675
676         while (eeprom_size) {
677                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
678                 hdr->len = cpu_to_le16(blocksize + sizeof(*eeprom_hdr));
679                 eeprom_hdr->offset = cpu_to_le16(offset);
680                 eeprom_hdr->len = cpu_to_le16(blocksize);
681                 p54_assign_address(dev, NULL, hdr, hdr->len + sizeof(*hdr));
682                 priv->tx(dev, hdr, hdr->len + sizeof(*hdr), 0);
683
684                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
685                         printk(KERN_ERR "%s: device does not respond!\n",
686                                 wiphy_name(dev->wiphy));
687                         ret = -EBUSY;
688                         goto free;
689                 }
690
691                 memcpy(eeprom + offset, priv->eeprom, blocksize);
692                 offset += blocksize;
693                 eeprom_size -= blocksize;
694         }
695
696         ret = p54_parse_eeprom(dev, eeprom, offset);
697 free:
698         kfree(priv->eeprom);
699         priv->eeprom = NULL;
700         kfree(hdr);
701         kfree(eeprom);
702
703         return ret;
704 }
705 EXPORT_SYMBOL_GPL(p54_read_eeprom);
706
707 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
708 {
709         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
710         struct ieee80211_tx_queue_stats *current_queue;
711         struct p54_common *priv = dev->priv;
712         struct p54_control_hdr *hdr;
713         struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
714         struct p54_tx_control_allocdata *txhdr;
715         size_t padding, len;
716         u8 rate;
717         u8 cts_rate = 0x20;
718
719         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
720         if (unlikely(current_queue->len > current_queue->limit))
721                 return NETDEV_TX_BUSY;
722         current_queue->len++;
723         current_queue->count++;
724         if (current_queue->len == current_queue->limit)
725                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
726
727         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
728         len = skb->len;
729
730         txhdr = (struct p54_tx_control_allocdata *)
731                         skb_push(skb, sizeof(*txhdr) + padding);
732         hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
733
734         if (padding)
735                 hdr->magic1 = cpu_to_le16(0x4010);
736         else
737                 hdr->magic1 = cpu_to_le16(0x0010);
738         hdr->len = cpu_to_le16(len);
739         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
740         hdr->retry1 = hdr->retry2 = info->control.retry_limit;
741
742         /* TODO: add support for alternate retry TX rates */
743         rate = ieee80211_get_tx_rate(dev, info)->hw_value;
744         if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE) {
745                 rate |= 0x10;
746                 cts_rate |= 0x10;
747         }
748         if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
749                 rate |= 0x40;
750                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
751         } else if (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT) {
752                 rate |= 0x20;
753                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
754         }
755         memset(txhdr->rateset, rate, 8);
756         txhdr->key_type = 0;
757         txhdr->key_len = 0;
758         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
759         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
760                 2 : info->antenna_sel_tx - 1;
761         txhdr->output_power = 0x7f; // HW Maximum
762         txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
763                           0 : cts_rate;
764         if (padding)
765                 txhdr->align[0] = padding;
766
767         /* FIXME: The sequence that follows is needed for this driver to
768          * work with mac80211 since "mac80211: fix TX sequence numbers".
769          * As with the temporary code in rt2x00, changes will be needed
770          * to get proper sequence numbers on beacons. In addition, this
771          * patch places the sequence number in the hardware state, which
772          * limits us to a single virtual state.
773          */
774         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
775                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
776                         priv->seqno += 0x10;
777                 ieee80211hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
778                 ieee80211hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
779         }
780         /* modifies skb->cb and with it info, so must be last! */
781         p54_assign_address(dev, skb, hdr, skb->len);
782
783         priv->tx(dev, hdr, skb->len, 0);
784         return 0;
785 }
786
787 static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
788                           const u8 *dst, const u8 *src, u8 antenna,
789                           u32 magic3, u32 magic8, u32 magic9)
790 {
791         struct p54_common *priv = dev->priv;
792         struct p54_control_hdr *hdr;
793         struct p54_tx_control_filter *filter;
794
795         hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
796                       priv->tx_hdr_len, GFP_ATOMIC);
797         if (!hdr)
798                 return -ENOMEM;
799
800         hdr = (void *)hdr + priv->tx_hdr_len;
801
802         filter = (struct p54_tx_control_filter *) hdr->data;
803         hdr->magic1 = cpu_to_le16(0x8001);
804         hdr->len = cpu_to_le16(sizeof(*filter));
805         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*filter));
806         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
807
808         filter->filter_type = cpu_to_le16(filter_type);
809         memcpy(filter->dst, dst, ETH_ALEN);
810         if (!src)
811                 memset(filter->src, ~0, ETH_ALEN);
812         else
813                 memcpy(filter->src, src, ETH_ALEN);
814         filter->antenna = antenna;
815         filter->magic3 = cpu_to_le32(magic3);
816         filter->rx_addr = cpu_to_le32(priv->rx_end);
817         filter->max_rx = cpu_to_le16(priv->rx_mtu);
818         filter->rxhw = cpu_to_le16(priv->rxhw);
819         filter->magic8 = cpu_to_le16(magic8);
820         filter->magic9 = cpu_to_le16(magic9);
821
822         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*filter), 1);
823         return 0;
824 }
825
826 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
827 {
828         struct p54_common *priv = dev->priv;
829         struct p54_control_hdr *hdr;
830         struct p54_tx_control_channel *chan;
831         unsigned int i;
832         void *entry;
833
834         hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
835                       priv->tx_hdr_len, GFP_KERNEL);
836         if (!hdr)
837                 return -ENOMEM;
838
839         hdr = (void *)hdr + priv->tx_hdr_len;
840
841         chan = (struct p54_tx_control_channel *) hdr->data;
842
843         hdr->magic1 = cpu_to_le16(0x8001);
844         hdr->len = cpu_to_le16(sizeof(*chan));
845         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
846         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*chan));
847
848         chan->flags = cpu_to_le16(0x1);
849         chan->dwell = cpu_to_le16(0x0);
850
851         for (i = 0; i < priv->iq_autocal_len; i++) {
852                 if (priv->iq_autocal[i].freq != freq)
853                         continue;
854
855                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
856                        sizeof(*priv->iq_autocal));
857                 break;
858         }
859         if (i == priv->iq_autocal_len)
860                 goto err;
861
862         for (i = 0; i < priv->output_limit_len; i++) {
863                 if (priv->output_limit[i].freq != freq)
864                         continue;
865
866                 chan->val_barker = 0x38;
867                 chan->val_bpsk = chan->dup_bpsk =
868                         priv->output_limit[i].val_bpsk;
869                 chan->val_qpsk = chan->dup_qpsk =
870                         priv->output_limit[i].val_qpsk;
871                 chan->val_16qam = chan->dup_16qam =
872                         priv->output_limit[i].val_16qam;
873                 chan->val_64qam = chan->dup_64qam =
874                         priv->output_limit[i].val_64qam;
875                 break;
876         }
877         if (i == priv->output_limit_len)
878                 goto err;
879
880         entry = priv->curve_data->data;
881         for (i = 0; i < priv->curve_data->channels; i++) {
882                 if (*((__le16 *)entry) != freq) {
883                         entry += sizeof(__le16);
884                         entry += sizeof(struct p54_pa_curve_data_sample) *
885                                  priv->curve_data->points_per_channel;
886                         continue;
887                 }
888
889                 entry += sizeof(__le16);
890                 chan->pa_points_per_curve =
891                         min(priv->curve_data->points_per_channel, (u8) 8);
892
893                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
894                        chan->pa_points_per_curve);
895                 break;
896         }
897
898         chan->rssical_mul = cpu_to_le16(130);
899         chan->rssical_add = cpu_to_le16(0xfe70);        /* -400 */
900
901         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*chan), 1);
902         return 0;
903
904  err:
905         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
906         kfree(hdr);
907         return -EINVAL;
908 }
909
910 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
911 {
912         struct p54_common *priv = dev->priv;
913         struct p54_control_hdr *hdr;
914         struct p54_tx_control_led *led;
915
916         hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
917                       priv->tx_hdr_len, GFP_KERNEL);
918         if (!hdr)
919                 return -ENOMEM;
920
921         hdr = (void *)hdr + priv->tx_hdr_len;
922         hdr->magic1 = cpu_to_le16(0x8001);
923         hdr->len = cpu_to_le16(sizeof(*led));
924         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
925         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
926
927         led = (struct p54_tx_control_led *) hdr->data;
928         led->mode = cpu_to_le16(mode);
929         led->led_permanent = cpu_to_le16(link);
930         led->led_temporary = cpu_to_le16(act);
931         led->duration = cpu_to_le16(1000);
932
933         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
934
935         return 0;
936 }
937
938 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
939 do {                                                            \
940         queue.aifs = cpu_to_le16(ai_fs);                        \
941         queue.cwmin = cpu_to_le16(cw_min);                      \
942         queue.cwmax = cpu_to_le16(cw_max);                      \
943         queue.txop = cpu_to_le16(_txop);                        \
944 } while(0)
945
946 static void p54_init_vdcf(struct ieee80211_hw *dev)
947 {
948         struct p54_common *priv = dev->priv;
949         struct p54_control_hdr *hdr;
950         struct p54_tx_control_vdcf *vdcf;
951
952         /* all USB V1 adapters need a extra headroom */
953         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
954         hdr->magic1 = cpu_to_le16(0x8001);
955         hdr->len = cpu_to_le16(sizeof(*vdcf));
956         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
957         hdr->req_id = cpu_to_le32(priv->rx_start);
958
959         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
960
961         P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
962         P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
963         P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
964         P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
965 }
966
967 static void p54_set_vdcf(struct ieee80211_hw *dev)
968 {
969         struct p54_common *priv = dev->priv;
970         struct p54_control_hdr *hdr;
971         struct p54_tx_control_vdcf *vdcf;
972
973         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
974
975         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
976
977         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
978
979         if (dev->conf.flags & IEEE80211_CONF_SHORT_SLOT_TIME) {
980                 vdcf->slottime = 9;
981                 vdcf->magic1 = 0x10;
982                 vdcf->magic2 = 0x00;
983         } else {
984                 vdcf->slottime = 20;
985                 vdcf->magic1 = 0x0a;
986                 vdcf->magic2 = 0x06;
987         }
988
989         /* (see prism54/isl_oid.h for further details) */
990         vdcf->frameburst = cpu_to_le16(0);
991
992         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
993 }
994
995 static int p54_start(struct ieee80211_hw *dev)
996 {
997         struct p54_common *priv = dev->priv;
998         int err;
999
1000         if (!priv->cached_vdcf) {
1001                 priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
1002                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1003                         GFP_KERNEL);
1004
1005                 if (!priv->cached_vdcf)
1006                         return -ENOMEM;
1007         }
1008
1009         err = priv->open(dev);
1010         if (!err)
1011                 priv->mode = IEEE80211_IF_TYPE_MNTR;
1012
1013         p54_init_vdcf(dev);
1014
1015         return err;
1016 }
1017
1018 static void p54_stop(struct ieee80211_hw *dev)
1019 {
1020         struct p54_common *priv = dev->priv;
1021         struct sk_buff *skb;
1022         while ((skb = skb_dequeue(&priv->tx_queue)))
1023                 kfree_skb(skb);
1024         priv->stop(dev);
1025         priv->mode = IEEE80211_IF_TYPE_INVALID;
1026 }
1027
1028 static int p54_add_interface(struct ieee80211_hw *dev,
1029                              struct ieee80211_if_init_conf *conf)
1030 {
1031         struct p54_common *priv = dev->priv;
1032
1033         if (priv->mode != IEEE80211_IF_TYPE_MNTR)
1034                 return -EOPNOTSUPP;
1035
1036         switch (conf->type) {
1037         case IEEE80211_IF_TYPE_STA:
1038                 priv->mode = conf->type;
1039                 break;
1040         default:
1041                 return -EOPNOTSUPP;
1042         }
1043
1044         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1045
1046         p54_set_filter(dev, 0, priv->mac_addr, NULL, 0, 1, 0, 0xF642);
1047         p54_set_filter(dev, 0, priv->mac_addr, NULL, 1, 0, 0, 0xF642);
1048
1049         switch (conf->type) {
1050         case IEEE80211_IF_TYPE_STA:
1051                 p54_set_filter(dev, 1, priv->mac_addr, NULL, 0, 0x15F, 0x1F4, 0);
1052                 break;
1053         default:
1054                 BUG();  /* impossible */
1055                 break;
1056         }
1057
1058         p54_set_leds(dev, 1, 0, 0);
1059
1060         return 0;
1061 }
1062
1063 static void p54_remove_interface(struct ieee80211_hw *dev,
1064                                  struct ieee80211_if_init_conf *conf)
1065 {
1066         struct p54_common *priv = dev->priv;
1067         priv->mode = IEEE80211_IF_TYPE_MNTR;
1068         memset(priv->mac_addr, 0, ETH_ALEN);
1069         p54_set_filter(dev, 0, priv->mac_addr, NULL, 2, 0, 0, 0);
1070 }
1071
1072 static int p54_config(struct ieee80211_hw *dev, struct ieee80211_conf *conf)
1073 {
1074         int ret;
1075         struct p54_common *priv = dev->priv;
1076
1077         mutex_lock(&priv->conf_mutex);
1078         ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
1079         p54_set_vdcf(dev);
1080         mutex_unlock(&priv->conf_mutex);
1081         return ret;
1082 }
1083
1084 static int p54_config_interface(struct ieee80211_hw *dev,
1085                                 struct ieee80211_vif *vif,
1086                                 struct ieee80211_if_conf *conf)
1087 {
1088         struct p54_common *priv = dev->priv;
1089
1090         mutex_lock(&priv->conf_mutex);
1091         p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 0, 1, 0, 0xF642);
1092         p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 2, 0, 0, 0);
1093         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1094         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1095         mutex_unlock(&priv->conf_mutex);
1096         return 0;
1097 }
1098
1099 static void p54_configure_filter(struct ieee80211_hw *dev,
1100                                  unsigned int changed_flags,
1101                                  unsigned int *total_flags,
1102                                  int mc_count, struct dev_mc_list *mclist)
1103 {
1104         struct p54_common *priv = dev->priv;
1105
1106         *total_flags &= FIF_BCN_PRBRESP_PROMISC;
1107
1108         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1109                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1110                         p54_set_filter(dev, 0, priv->mac_addr,
1111                                        NULL, 2, 0, 0, 0);
1112                 else
1113                         p54_set_filter(dev, 0, priv->mac_addr,
1114                                        priv->bssid, 2, 0, 0, 0);
1115         }
1116 }
1117
1118 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1119                        const struct ieee80211_tx_queue_params *params)
1120 {
1121         struct p54_common *priv = dev->priv;
1122         struct p54_tx_control_vdcf *vdcf;
1123
1124         vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
1125                 ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
1126
1127         if ((params) && !(queue > 4)) {
1128                 P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
1129                         params->cw_min, params->cw_max, params->txop);
1130         } else
1131                 return -EINVAL;
1132
1133         p54_set_vdcf(dev);
1134
1135         return 0;
1136 }
1137
1138 static int p54_get_stats(struct ieee80211_hw *dev,
1139                          struct ieee80211_low_level_stats *stats)
1140 {
1141         /* TODO */
1142         return 0;
1143 }
1144
1145 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1146                             struct ieee80211_tx_queue_stats *stats)
1147 {
1148         struct p54_common *priv = dev->priv;
1149
1150         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1151
1152         return 0;
1153 }
1154
1155 static const struct ieee80211_ops p54_ops = {
1156         .tx                     = p54_tx,
1157         .start                  = p54_start,
1158         .stop                   = p54_stop,
1159         .add_interface          = p54_add_interface,
1160         .remove_interface       = p54_remove_interface,
1161         .config                 = p54_config,
1162         .config_interface       = p54_config_interface,
1163         .configure_filter       = p54_configure_filter,
1164         .conf_tx                = p54_conf_tx,
1165         .get_stats              = p54_get_stats,
1166         .get_tx_stats           = p54_get_tx_stats
1167 };
1168
1169 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1170 {
1171         struct ieee80211_hw *dev;
1172         struct p54_common *priv;
1173
1174         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1175         if (!dev)
1176                 return NULL;
1177
1178         priv = dev->priv;
1179         priv->mode = IEEE80211_IF_TYPE_INVALID;
1180         skb_queue_head_init(&priv->tx_queue);
1181         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1182                      IEEE80211_HW_RX_INCLUDES_FCS |
1183                      IEEE80211_HW_SIGNAL_UNSPEC;
1184
1185         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1186
1187         dev->channel_change_time = 1000;        /* TODO: find actual value */
1188         dev->max_signal = 127;
1189
1190         priv->tx_stats[0].limit = 1;
1191         priv->tx_stats[1].limit = 1;
1192         priv->tx_stats[2].limit = 1;
1193         priv->tx_stats[3].limit = 1;
1194         priv->tx_stats[4].limit = 5;
1195         dev->queues = 1;
1196         dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
1197                                  sizeof(struct p54_tx_control_allocdata);
1198
1199         mutex_init(&priv->conf_mutex);
1200         init_completion(&priv->eeprom_comp);
1201
1202         return dev;
1203 }
1204 EXPORT_SYMBOL_GPL(p54_init_common);
1205
1206 void p54_free_common(struct ieee80211_hw *dev)
1207 {
1208         struct p54_common *priv = dev->priv;
1209         kfree(priv->iq_autocal);
1210         kfree(priv->output_limit);
1211         kfree(priv->curve_data);
1212         kfree(priv->cached_vdcf);
1213 }
1214 EXPORT_SYMBOL_GPL(p54_free_common);
1215
1216 static int __init p54_init(void)
1217 {
1218         return 0;
1219 }
1220
1221 static void __exit p54_exit(void)
1222 {
1223 }
1224
1225 module_init(p54_init);
1226 module_exit(p54_exit);