]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/p54/p54common.c
Merge branches 'sh/serial-rework' and 'sh/oprofile'
[karo-tx-linux.git] / drivers / net / wireless / p54 / p54common.c
1
2 /*
3  * Common code for mac80211 Prism54 drivers
4  *
5  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
6  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
7  *
8  * Based on the islsm (softmac prism54) driver, which is:
9  * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15
16 #include <linux/init.h>
17 #include <linux/firmware.h>
18 #include <linux/etherdevice.h>
19
20 #include <net/mac80211.h>
21
22 #include "p54.h"
23 #include "p54common.h"
24
25 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
26 MODULE_DESCRIPTION("Softmac Prism54 common code");
27 MODULE_LICENSE("GPL");
28 MODULE_ALIAS("prism54common");
29
30 static struct ieee80211_rate p54_bgrates[] = {
31         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
32         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
33         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
34         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 60, .hw_value = 4, },
36         { .bitrate = 90, .hw_value = 5, },
37         { .bitrate = 120, .hw_value = 6, },
38         { .bitrate = 180, .hw_value = 7, },
39         { .bitrate = 240, .hw_value = 8, },
40         { .bitrate = 360, .hw_value = 9, },
41         { .bitrate = 480, .hw_value = 10, },
42         { .bitrate = 540, .hw_value = 11, },
43 };
44
45 static struct ieee80211_channel p54_bgchannels[] = {
46         { .center_freq = 2412, .hw_value = 1, },
47         { .center_freq = 2417, .hw_value = 2, },
48         { .center_freq = 2422, .hw_value = 3, },
49         { .center_freq = 2427, .hw_value = 4, },
50         { .center_freq = 2432, .hw_value = 5, },
51         { .center_freq = 2437, .hw_value = 6, },
52         { .center_freq = 2442, .hw_value = 7, },
53         { .center_freq = 2447, .hw_value = 8, },
54         { .center_freq = 2452, .hw_value = 9, },
55         { .center_freq = 2457, .hw_value = 10, },
56         { .center_freq = 2462, .hw_value = 11, },
57         { .center_freq = 2467, .hw_value = 12, },
58         { .center_freq = 2472, .hw_value = 13, },
59         { .center_freq = 2484, .hw_value = 14, },
60 };
61
62 static struct ieee80211_supported_band band_2GHz = {
63         .channels = p54_bgchannels,
64         .n_channels = ARRAY_SIZE(p54_bgchannels),
65         .bitrates = p54_bgrates,
66         .n_bitrates = ARRAY_SIZE(p54_bgrates),
67 };
68
69 static struct ieee80211_rate p54_arates[] = {
70         { .bitrate = 60, .hw_value = 4, },
71         { .bitrate = 90, .hw_value = 5, },
72         { .bitrate = 120, .hw_value = 6, },
73         { .bitrate = 180, .hw_value = 7, },
74         { .bitrate = 240, .hw_value = 8, },
75         { .bitrate = 360, .hw_value = 9, },
76         { .bitrate = 480, .hw_value = 10, },
77         { .bitrate = 540, .hw_value = 11, },
78 };
79
80 static struct ieee80211_channel p54_achannels[] = {
81         { .center_freq = 4920 },
82         { .center_freq = 4940 },
83         { .center_freq = 4960 },
84         { .center_freq = 4980 },
85         { .center_freq = 5040 },
86         { .center_freq = 5060 },
87         { .center_freq = 5080 },
88         { .center_freq = 5170 },
89         { .center_freq = 5180 },
90         { .center_freq = 5190 },
91         { .center_freq = 5200 },
92         { .center_freq = 5210 },
93         { .center_freq = 5220 },
94         { .center_freq = 5230 },
95         { .center_freq = 5240 },
96         { .center_freq = 5260 },
97         { .center_freq = 5280 },
98         { .center_freq = 5300 },
99         { .center_freq = 5320 },
100         { .center_freq = 5500 },
101         { .center_freq = 5520 },
102         { .center_freq = 5540 },
103         { .center_freq = 5560 },
104         { .center_freq = 5580 },
105         { .center_freq = 5600 },
106         { .center_freq = 5620 },
107         { .center_freq = 5640 },
108         { .center_freq = 5660 },
109         { .center_freq = 5680 },
110         { .center_freq = 5700 },
111         { .center_freq = 5745 },
112         { .center_freq = 5765 },
113         { .center_freq = 5785 },
114         { .center_freq = 5805 },
115         { .center_freq = 5825 },
116 };
117
118 static struct ieee80211_supported_band band_5GHz = {
119         .channels = p54_achannels,
120         .n_channels = ARRAY_SIZE(p54_achannels),
121         .bitrates = p54_arates,
122         .n_bitrates = ARRAY_SIZE(p54_arates),
123 };
124
125 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
126 {
127         struct p54_common *priv = dev->priv;
128         struct bootrec_exp_if *exp_if;
129         struct bootrec *bootrec;
130         u32 *data = (u32 *)fw->data;
131         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
132         u8 *fw_version = NULL;
133         size_t len;
134         int i;
135
136         if (priv->rx_start)
137                 return 0;
138
139         while (data < end_data && *data)
140                 data++;
141
142         while (data < end_data && !*data)
143                 data++;
144
145         bootrec = (struct bootrec *) data;
146
147         while (bootrec->data <= end_data &&
148                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
149                 u32 code = le32_to_cpu(bootrec->code);
150                 switch (code) {
151                 case BR_CODE_COMPONENT_ID:
152                         priv->fw_interface = be32_to_cpup((__be32 *)
153                                              bootrec->data);
154                         switch (priv->fw_interface) {
155                         case FW_FMAC:
156                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
157                                 break;
158                         case FW_LM20:
159                                 printk(KERN_INFO "p54: LM20 firmware\n");
160                                 break;
161                         case FW_LM86:
162                                 printk(KERN_INFO "p54: LM86 firmware\n");
163                                 break;
164                         case FW_LM87:
165                                 printk(KERN_INFO "p54: LM87 firmware\n");
166                                 break;
167                         default:
168                                 printk(KERN_INFO "p54: unknown firmware\n");
169                                 break;
170                         }
171                         break;
172                 case BR_CODE_COMPONENT_VERSION:
173                         /* 24 bytes should be enough for all firmwares */
174                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
175                                 fw_version = (unsigned char*)bootrec->data;
176                         break;
177                 case BR_CODE_DESCR: {
178                         struct bootrec_desc *desc =
179                                 (struct bootrec_desc *)bootrec->data;
180                         priv->rx_start = le32_to_cpu(desc->rx_start);
181                         /* FIXME add sanity checking */
182                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
183                         priv->headroom = desc->headroom;
184                         priv->tailroom = desc->tailroom;
185                         if (le32_to_cpu(bootrec->len) == 11)
186                                 priv->rx_mtu = le16_to_cpu(bootrec->rx_mtu);
187                         else
188                                 priv->rx_mtu = (size_t)
189                                         0x620 - priv->tx_hdr_len;
190                         break;
191                         }
192                 case BR_CODE_EXPOSED_IF:
193                         exp_if = (struct bootrec_exp_if *) bootrec->data;
194                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
195                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
196                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
197                         break;
198                 case BR_CODE_DEPENDENT_IF:
199                         break;
200                 case BR_CODE_END_OF_BRA:
201                 case LEGACY_BR_CODE_END_OF_BRA:
202                         end_data = NULL;
203                         break;
204                 default:
205                         break;
206                 }
207                 bootrec = (struct bootrec *)&bootrec->data[len];
208         }
209
210         if (fw_version)
211                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
212                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
213
214         if (priv->fw_var >= 0x300) {
215                 /* Firmware supports QoS, use it! */
216                 priv->tx_stats[4].limit = 3;
217                 priv->tx_stats[5].limit = 4;
218                 priv->tx_stats[6].limit = 3;
219                 priv->tx_stats[7].limit = 1;
220                 dev->queues = 4;
221         }
222
223         return 0;
224 }
225 EXPORT_SYMBOL_GPL(p54_parse_firmware);
226
227 static int p54_convert_rev0(struct ieee80211_hw *dev,
228                             struct pda_pa_curve_data *curve_data)
229 {
230         struct p54_common *priv = dev->priv;
231         struct p54_pa_curve_data_sample *dst;
232         struct pda_pa_curve_data_sample_rev0 *src;
233         size_t cd_len = sizeof(*curve_data) +
234                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
235                  curve_data->channels;
236         unsigned int i, j;
237         void *source, *target;
238
239         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
240         if (!priv->curve_data)
241                 return -ENOMEM;
242
243         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
244         source = curve_data->data;
245         target = priv->curve_data->data;
246         for (i = 0; i < curve_data->channels; i++) {
247                 __le16 *freq = source;
248                 source += sizeof(__le16);
249                 *((__le16 *)target) = *freq;
250                 target += sizeof(__le16);
251                 for (j = 0; j < curve_data->points_per_channel; j++) {
252                         dst = target;
253                         src = source;
254
255                         dst->rf_power = src->rf_power;
256                         dst->pa_detector = src->pa_detector;
257                         dst->data_64qam = src->pcv;
258                         /* "invent" the points for the other modulations */
259 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
260                         dst->data_16qam = SUB(src->pcv, 12);
261                         dst->data_qpsk = SUB(dst->data_16qam, 12);
262                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
263                         dst->data_barker = SUB(dst->data_bpsk, 14);
264 #undef SUB
265                         target += sizeof(*dst);
266                         source += sizeof(*src);
267                 }
268         }
269
270         return 0;
271 }
272
273 static int p54_convert_rev1(struct ieee80211_hw *dev,
274                             struct pda_pa_curve_data *curve_data)
275 {
276         struct p54_common *priv = dev->priv;
277         struct p54_pa_curve_data_sample *dst;
278         struct pda_pa_curve_data_sample_rev1 *src;
279         size_t cd_len = sizeof(*curve_data) +
280                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
281                  curve_data->channels;
282         unsigned int i, j;
283         void *source, *target;
284
285         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
286         if (!priv->curve_data)
287                 return -ENOMEM;
288
289         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
290         source = curve_data->data;
291         target = priv->curve_data->data;
292         for (i = 0; i < curve_data->channels; i++) {
293                 __le16 *freq = source;
294                 source += sizeof(__le16);
295                 *((__le16 *)target) = *freq;
296                 target += sizeof(__le16);
297                 for (j = 0; j < curve_data->points_per_channel; j++) {
298                         memcpy(target, source, sizeof(*src));
299
300                         target += sizeof(*dst);
301                         source += sizeof(*src);
302                 }
303                 source++;
304         }
305
306         return 0;
307 }
308
309 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
310                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
311 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
312
313 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
314 {
315         struct p54_common *priv = dev->priv;
316         struct eeprom_pda_wrap *wrap = NULL;
317         struct pda_entry *entry;
318         unsigned int data_len, entry_len;
319         void *tmp;
320         int err;
321         u8 *end = (u8 *)eeprom + len;
322         u16 synth;
323         DECLARE_MAC_BUF(mac);
324
325         wrap = (struct eeprom_pda_wrap *) eeprom;
326         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
327
328         /* verify that at least the entry length/code fits */
329         while ((u8 *)entry <= end - sizeof(*entry)) {
330                 entry_len = le16_to_cpu(entry->len);
331                 data_len = ((entry_len - 1) << 1);
332
333                 /* abort if entry exceeds whole structure */
334                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
335                         break;
336
337                 switch (le16_to_cpu(entry->code)) {
338                 case PDR_MAC_ADDRESS:
339                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
340                         break;
341                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
342                         if (data_len < 2) {
343                                 err = -EINVAL;
344                                 goto err;
345                         }
346
347                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
348                                 err = -EINVAL;
349                                 goto err;
350                         }
351
352                         priv->output_limit = kmalloc(entry->data[1] *
353                                 sizeof(*priv->output_limit), GFP_KERNEL);
354
355                         if (!priv->output_limit) {
356                                 err = -ENOMEM;
357                                 goto err;
358                         }
359
360                         memcpy(priv->output_limit, &entry->data[2],
361                                entry->data[1]*sizeof(*priv->output_limit));
362                         priv->output_limit_len = entry->data[1];
363                         break;
364                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
365                         struct pda_pa_curve_data *curve_data =
366                                 (struct pda_pa_curve_data *)entry->data;
367                         if (data_len < sizeof(*curve_data)) {
368                                 err = -EINVAL;
369                                 goto err;
370                         }
371
372                         switch (curve_data->cal_method_rev) {
373                         case 0:
374                                 err = p54_convert_rev0(dev, curve_data);
375                                 break;
376                         case 1:
377                                 err = p54_convert_rev1(dev, curve_data);
378                                 break;
379                         default:
380                                 printk(KERN_ERR "p54: unknown curve data "
381                                                 "revision %d\n",
382                                                 curve_data->cal_method_rev);
383                                 err = -ENODEV;
384                                 break;
385                         }
386                         if (err)
387                                 goto err;
388
389                 }
390                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
391                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
392                         if (!priv->iq_autocal) {
393                                 err = -ENOMEM;
394                                 goto err;
395                         }
396
397                         memcpy(priv->iq_autocal, entry->data, data_len);
398                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
399                         break;
400                 case PDR_INTERFACE_LIST:
401                         tmp = entry->data;
402                         while ((u8 *)tmp < entry->data + data_len) {
403                                 struct bootrec_exp_if *exp_if = tmp;
404                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
405                                         synth = le16_to_cpu(exp_if->variant);
406                                 tmp += sizeof(struct bootrec_exp_if);
407                         }
408                         break;
409                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
410                         priv->version = *(u8 *)(entry->data + 1);
411                         break;
412                 case PDR_END:
413                         /* make it overrun */
414                         entry_len = len;
415                         break;
416                 default:
417                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
418                                 le16_to_cpu(entry->code));
419                         break;
420                 }
421
422                 entry = (void *)entry + (entry_len + 1)*2;
423         }
424
425         if (!priv->iq_autocal || !priv->output_limit || !priv->curve_data) {
426                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
427                 err = -EINVAL;
428                 goto err;
429         }
430
431         priv->rxhw = synth & 0x07;
432         if (priv->rxhw == 4)
433                 p54_init_xbow_synth(dev);
434         if (!(synth & 0x40))
435                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
436         if (!(synth & 0x80))
437                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
438
439         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
440                 u8 perm_addr[ETH_ALEN];
441
442                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
443                         wiphy_name(dev->wiphy));
444                 random_ether_addr(perm_addr);
445                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
446         }
447
448         printk(KERN_INFO "%s: hwaddr %s, MAC:isl38%02x RF:%s\n",
449                 wiphy_name(dev->wiphy),
450                 print_mac(mac, dev->wiphy->perm_addr),
451                 priv->version, p54_rf_chips[priv->rxhw]);
452
453         return 0;
454
455   err:
456         if (priv->iq_autocal) {
457                 kfree(priv->iq_autocal);
458                 priv->iq_autocal = NULL;
459         }
460
461         if (priv->output_limit) {
462                 kfree(priv->output_limit);
463                 priv->output_limit = NULL;
464         }
465
466         if (priv->curve_data) {
467                 kfree(priv->curve_data);
468                 priv->curve_data = NULL;
469         }
470
471         printk(KERN_ERR "p54: eeprom parse failed!\n");
472         return err;
473 }
474
475 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
476 {
477         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
478         return ((rssi * 0x83) / 64 - 400) / 4;
479 }
480
481 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
482 {
483         struct p54_common *priv = dev->priv;
484         struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
485         struct ieee80211_rx_status rx_status = {0};
486         u16 freq = le16_to_cpu(hdr->freq);
487         size_t header_len = sizeof(*hdr);
488         u32 tsf32;
489
490         if (!(hdr->magic & cpu_to_le16(0x0001))) {
491                 if (priv->filter_flags & FIF_FCSFAIL)
492                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
493                 else
494                         return 0;
495         }
496
497         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
498         rx_status.noise = priv->noise;
499         /* XX correct? */
500         rx_status.qual = (100 * hdr->rssi) / 127;
501         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
502                         hdr->rate : (hdr->rate - 4)) & 0xf;
503         rx_status.freq = freq;
504         rx_status.band =  dev->conf.channel->band;
505         rx_status.antenna = hdr->antenna;
506
507         tsf32 = le32_to_cpu(hdr->tsf32);
508         if (tsf32 < priv->tsf_low32)
509                 priv->tsf_high32++;
510         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
511         priv->tsf_low32 = tsf32;
512
513         rx_status.flag |= RX_FLAG_TSFT;
514
515         if (hdr->magic & cpu_to_le16(0x4000))
516                 header_len += hdr->align[0];
517
518         skb_pull(skb, header_len);
519         skb_trim(skb, le16_to_cpu(hdr->len));
520
521         ieee80211_rx_irqsafe(dev, skb, &rx_status);
522
523         return -1;
524 }
525
526 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
527 {
528         struct p54_common *priv = dev->priv;
529         int i;
530
531         for (i = 0; i < dev->queues; i++)
532                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
533                         ieee80211_wake_queue(dev, i);
534 }
535
536 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
537 {
538         struct p54_common *priv = dev->priv;
539         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
540         struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
541         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
542         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
543         struct memrecord *range = NULL;
544         u32 freed = 0;
545         u32 last_addr = priv->rx_start;
546         unsigned long flags;
547
548         spin_lock_irqsave(&priv->tx_queue.lock, flags);
549         while (entry != (struct sk_buff *)&priv->tx_queue) {
550                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
551                 range = (void *)info->driver_data;
552                 if (range->start_addr == addr) {
553                         struct p54_control_hdr *entry_hdr;
554                         struct p54_tx_control_allocdata *entry_data;
555                         int pad = 0;
556
557                         if (entry->next != (struct sk_buff *)&priv->tx_queue) {
558                                 struct ieee80211_tx_info *ni;
559                                 struct memrecord *mr;
560
561                                 ni = IEEE80211_SKB_CB(entry->next);
562                                 mr = (struct memrecord *)ni->driver_data;
563                                 freed = mr->start_addr - last_addr;
564                         } else
565                                 freed = priv->rx_end - last_addr;
566
567                         last_addr = range->end_addr;
568                         __skb_unlink(entry, &priv->tx_queue);
569                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
570
571                         memset(&info->status, 0, sizeof(info->status));
572                         entry_hdr = (struct p54_control_hdr *) entry->data;
573                         entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
574                         if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
575                                 pad = entry_data->align[0];
576
577                         priv->tx_stats[entry_data->hw_queue].len--;
578                         if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) {
579                                 if (!(payload->status & 0x01))
580                                         info->flags |= IEEE80211_TX_STAT_ACK;
581                                 else
582                                         info->status.excessive_retries = 1;
583                         }
584                         info->status.retry_count = payload->retries - 1;
585                         info->status.ack_signal = p54_rssi_to_dbm(dev,
586                                         le16_to_cpu(payload->ack_rssi));
587                         skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
588                         ieee80211_tx_status_irqsafe(dev, entry);
589                         goto out;
590                 } else
591                         last_addr = range->end_addr;
592                 entry = entry->next;
593         }
594         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
595
596 out:
597         if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
598             sizeof(struct p54_control_hdr))
599                 p54_wake_free_queues(dev);
600 }
601
602 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
603                                    struct sk_buff *skb)
604 {
605         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
606         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
607         struct p54_common *priv = dev->priv;
608
609         if (!priv->eeprom)
610                 return ;
611
612         memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
613
614         complete(&priv->eeprom_comp);
615 }
616
617 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
618 {
619         struct p54_common *priv = dev->priv;
620         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
621         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
622         u32 tsf32 = le32_to_cpu(stats->tsf32);
623
624         if (tsf32 < priv->tsf_low32)
625                 priv->tsf_high32++;
626         priv->tsf_low32 = tsf32;
627
628         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
629         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
630         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
631
632         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
633         complete(&priv->stats_comp);
634
635         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
636 }
637
638 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
639 {
640         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
641
642         switch (le16_to_cpu(hdr->type)) {
643         case P54_CONTROL_TYPE_TXDONE:
644                 p54_rx_frame_sent(dev, skb);
645                 break;
646         case P54_CONTROL_TYPE_BBP:
647                 break;
648         case P54_CONTROL_TYPE_STAT_READBACK:
649                 p54_rx_stats(dev, skb);
650                 break;
651         case P54_CONTROL_TYPE_EEPROM_READBACK:
652                 p54_rx_eeprom_readback(dev, skb);
653                 break;
654         default:
655                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
656                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
657                 break;
658         }
659
660         return 0;
661 }
662
663 /* returns zero if skb can be reused */
664 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
665 {
666         u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
667
668         if (type == 0x80)
669                 return p54_rx_control(dev, skb);
670         else
671                 return p54_rx_data(dev, skb);
672 }
673 EXPORT_SYMBOL_GPL(p54_rx);
674
675 /*
676  * So, the firmware is somewhat stupid and doesn't know what places in its
677  * memory incoming data should go to. By poking around in the firmware, we
678  * can find some unused memory to upload our packets to. However, data that we
679  * want the card to TX needs to stay intact until the card has told us that
680  * it is done with it. This function finds empty places we can upload to and
681  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
682  * allocated areas.
683  */
684 static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
685                                struct p54_control_hdr *data, u32 len)
686 {
687         struct p54_common *priv = dev->priv;
688         struct sk_buff *entry = priv->tx_queue.next;
689         struct sk_buff *target_skb = NULL;
690         u32 last_addr = priv->rx_start;
691         u32 largest_hole = 0;
692         u32 target_addr = priv->rx_start;
693         unsigned long flags;
694         unsigned int left;
695         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
696
697         spin_lock_irqsave(&priv->tx_queue.lock, flags);
698         left = skb_queue_len(&priv->tx_queue);
699         while (left--) {
700                 u32 hole_size;
701                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
702                 struct memrecord *range = (void *)info->driver_data;
703                 hole_size = range->start_addr - last_addr;
704                 if (!target_skb && hole_size >= len) {
705                         target_skb = entry->prev;
706                         hole_size -= len;
707                         target_addr = last_addr;
708                 }
709                 largest_hole = max(largest_hole, hole_size);
710                 last_addr = range->end_addr;
711                 entry = entry->next;
712         }
713         if (!target_skb && priv->rx_end - last_addr >= len) {
714                 target_skb = priv->tx_queue.prev;
715                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
716                 if (!skb_queue_empty(&priv->tx_queue)) {
717                         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
718                         struct memrecord *range = (void *)info->driver_data;
719                         target_addr = range->end_addr;
720                 }
721         } else
722                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
723
724         if (skb) {
725                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
726                 struct memrecord *range = (void *)info->driver_data;
727                 range->start_addr = target_addr;
728                 range->end_addr = target_addr + len;
729                 __skb_queue_after(&priv->tx_queue, target_skb, skb);
730                 if (largest_hole < priv->rx_mtu + priv->headroom +
731                                    priv->tailroom +
732                                    sizeof(struct p54_control_hdr))
733                         ieee80211_stop_queues(dev);
734         }
735         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
736
737         data->req_id = cpu_to_le32(target_addr + priv->headroom);
738 }
739
740 int p54_read_eeprom(struct ieee80211_hw *dev)
741 {
742         struct p54_common *priv = dev->priv;
743         struct p54_control_hdr *hdr = NULL;
744         struct p54_eeprom_lm86 *eeprom_hdr;
745         size_t eeprom_size = 0x2020, offset = 0, blocksize;
746         int ret = -ENOMEM;
747         void *eeprom = NULL;
748
749         hdr = (struct p54_control_hdr *)kzalloc(sizeof(*hdr) +
750                 sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN, GFP_KERNEL);
751         if (!hdr)
752                 goto free;
753
754         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
755         if (!priv->eeprom)
756                 goto free;
757
758         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
759         if (!eeprom)
760                 goto free;
761
762         hdr->magic1 = cpu_to_le16(0x8000);
763         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
764         hdr->retry1 = hdr->retry2 = 0;
765         eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
766
767         while (eeprom_size) {
768                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
769                 hdr->len = cpu_to_le16(blocksize + sizeof(*eeprom_hdr));
770                 eeprom_hdr->offset = cpu_to_le16(offset);
771                 eeprom_hdr->len = cpu_to_le16(blocksize);
772                 p54_assign_address(dev, NULL, hdr, le16_to_cpu(hdr->len) +
773                                    sizeof(*hdr));
774                 priv->tx(dev, hdr, le16_to_cpu(hdr->len) + sizeof(*hdr), 0);
775
776                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
777                         printk(KERN_ERR "%s: device does not respond!\n",
778                                 wiphy_name(dev->wiphy));
779                         ret = -EBUSY;
780                         goto free;
781                 }
782
783                 memcpy(eeprom + offset, priv->eeprom, blocksize);
784                 offset += blocksize;
785                 eeprom_size -= blocksize;
786         }
787
788         ret = p54_parse_eeprom(dev, eeprom, offset);
789 free:
790         kfree(priv->eeprom);
791         priv->eeprom = NULL;
792         kfree(hdr);
793         kfree(eeprom);
794
795         return ret;
796 }
797 EXPORT_SYMBOL_GPL(p54_read_eeprom);
798
799 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
800 {
801         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
802         struct ieee80211_tx_queue_stats *current_queue;
803         struct p54_common *priv = dev->priv;
804         struct p54_control_hdr *hdr;
805         struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
806         struct p54_tx_control_allocdata *txhdr;
807         size_t padding, len;
808         u8 rate;
809         u8 cts_rate = 0x20;
810
811         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
812         if (unlikely(current_queue->len > current_queue->limit))
813                 return NETDEV_TX_BUSY;
814         current_queue->len++;
815         current_queue->count++;
816         if (current_queue->len == current_queue->limit)
817                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
818
819         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
820         len = skb->len;
821
822         txhdr = (struct p54_tx_control_allocdata *)
823                         skb_push(skb, sizeof(*txhdr) + padding);
824         hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
825
826         if (padding)
827                 hdr->magic1 = cpu_to_le16(0x4010);
828         else
829                 hdr->magic1 = cpu_to_le16(0x0010);
830         hdr->len = cpu_to_le16(len);
831         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
832         hdr->retry1 = hdr->retry2 = info->control.retry_limit;
833
834         /* TODO: add support for alternate retry TX rates */
835         rate = ieee80211_get_tx_rate(dev, info)->hw_value;
836         if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE) {
837                 rate |= 0x10;
838                 cts_rate |= 0x10;
839         }
840         if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
841                 rate |= 0x40;
842                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
843         } else if (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT) {
844                 rate |= 0x20;
845                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
846         }
847         memset(txhdr->rateset, rate, 8);
848         txhdr->key_type = 0;
849         txhdr->key_len = 0;
850         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
851         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
852                 2 : info->antenna_sel_tx - 1;
853         txhdr->output_power = priv->output_power;
854         txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
855                           0 : cts_rate;
856         if (padding)
857                 txhdr->align[0] = padding;
858
859         /* FIXME: The sequence that follows is needed for this driver to
860          * work with mac80211 since "mac80211: fix TX sequence numbers".
861          * As with the temporary code in rt2x00, changes will be needed
862          * to get proper sequence numbers on beacons. In addition, this
863          * patch places the sequence number in the hardware state, which
864          * limits us to a single virtual state.
865          */
866         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
867                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
868                         priv->seqno += 0x10;
869                 ieee80211hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
870                 ieee80211hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
871         }
872         /* modifies skb->cb and with it info, so must be last! */
873         p54_assign_address(dev, skb, hdr, skb->len);
874
875         priv->tx(dev, hdr, skb->len, 0);
876         return 0;
877 }
878
879 static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
880                           const u8 *bssid)
881 {
882         struct p54_common *priv = dev->priv;
883         struct p54_control_hdr *hdr;
884         struct p54_tx_control_filter *filter;
885         size_t data_len;
886
887         hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
888                       priv->tx_hdr_len, GFP_ATOMIC);
889         if (!hdr)
890                 return -ENOMEM;
891
892         hdr = (void *)hdr + priv->tx_hdr_len;
893
894         filter = (struct p54_tx_control_filter *) hdr->data;
895         hdr->magic1 = cpu_to_le16(0x8001);
896         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
897
898         priv->filter_type = filter->filter_type = cpu_to_le16(filter_type);
899         memcpy(filter->mac_addr, priv->mac_addr, ETH_ALEN);
900         if (!bssid)
901                 memset(filter->bssid, ~0, ETH_ALEN);
902         else
903                 memcpy(filter->bssid, bssid, ETH_ALEN);
904
905         filter->rx_antenna = priv->rx_antenna;
906
907         if (priv->fw_var < 0x500) {
908                 data_len = P54_TX_CONTROL_FILTER_V1_LEN;
909                 filter->v1.basic_rate_mask = cpu_to_le32(0x15F);
910                 filter->v1.rx_addr = cpu_to_le32(priv->rx_end);
911                 filter->v1.max_rx = cpu_to_le16(priv->rx_mtu);
912                 filter->v1.rxhw = cpu_to_le16(priv->rxhw);
913                 filter->v1.wakeup_timer = cpu_to_le16(500);
914         } else {
915                 data_len = P54_TX_CONTROL_FILTER_V2_LEN;
916                 filter->v2.rx_addr = cpu_to_le32(priv->rx_end);
917                 filter->v2.max_rx = cpu_to_le16(priv->rx_mtu);
918                 filter->v2.rxhw = cpu_to_le16(priv->rxhw);
919                 filter->v2.timer = cpu_to_le16(1000);
920         }
921
922         hdr->len = cpu_to_le16(data_len);
923         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
924         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
925         return 0;
926 }
927
928 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
929 {
930         struct p54_common *priv = dev->priv;
931         struct p54_control_hdr *hdr;
932         struct p54_tx_control_channel *chan;
933         unsigned int i;
934         size_t data_len;
935         void *entry;
936
937         hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
938                       priv->tx_hdr_len, GFP_KERNEL);
939         if (!hdr)
940                 return -ENOMEM;
941
942         hdr = (void *)hdr + priv->tx_hdr_len;
943
944         chan = (struct p54_tx_control_channel *) hdr->data;
945
946         hdr->magic1 = cpu_to_le16(0x8001);
947
948         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
949
950         chan->flags = cpu_to_le16(0x1);
951         chan->dwell = cpu_to_le16(0x0);
952
953         for (i = 0; i < priv->iq_autocal_len; i++) {
954                 if (priv->iq_autocal[i].freq != freq)
955                         continue;
956
957                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
958                        sizeof(*priv->iq_autocal));
959                 break;
960         }
961         if (i == priv->iq_autocal_len)
962                 goto err;
963
964         for (i = 0; i < priv->output_limit_len; i++) {
965                 if (priv->output_limit[i].freq != freq)
966                         continue;
967
968                 chan->val_barker = 0x38;
969                 chan->val_bpsk = chan->dup_bpsk =
970                         priv->output_limit[i].val_bpsk;
971                 chan->val_qpsk = chan->dup_qpsk =
972                         priv->output_limit[i].val_qpsk;
973                 chan->val_16qam = chan->dup_16qam =
974                         priv->output_limit[i].val_16qam;
975                 chan->val_64qam = chan->dup_64qam =
976                         priv->output_limit[i].val_64qam;
977                 break;
978         }
979         if (i == priv->output_limit_len)
980                 goto err;
981
982         entry = priv->curve_data->data;
983         for (i = 0; i < priv->curve_data->channels; i++) {
984                 if (*((__le16 *)entry) != freq) {
985                         entry += sizeof(__le16);
986                         entry += sizeof(struct p54_pa_curve_data_sample) *
987                                  priv->curve_data->points_per_channel;
988                         continue;
989                 }
990
991                 entry += sizeof(__le16);
992                 chan->pa_points_per_curve =
993                         min(priv->curve_data->points_per_channel, (u8) 8);
994
995                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
996                        chan->pa_points_per_curve);
997                 break;
998         }
999
1000         if (priv->fw_var < 0x500) {
1001                 data_len = P54_TX_CONTROL_CHANNEL_V1_LEN;
1002                 chan->v1.rssical_mul = cpu_to_le16(130);
1003                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1004         } else {
1005                 data_len = P54_TX_CONTROL_CHANNEL_V2_LEN;
1006                 chan->v2.rssical_mul = cpu_to_le16(130);
1007                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1008                 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1009         }
1010
1011         hdr->len = cpu_to_le16(data_len);
1012         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
1013         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
1014         return 0;
1015
1016  err:
1017         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1018         kfree(hdr);
1019         return -EINVAL;
1020 }
1021
1022 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1023 {
1024         struct p54_common *priv = dev->priv;
1025         struct p54_control_hdr *hdr;
1026         struct p54_tx_control_led *led;
1027
1028         hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
1029                       priv->tx_hdr_len, GFP_KERNEL);
1030         if (!hdr)
1031                 return -ENOMEM;
1032
1033         hdr = (void *)hdr + priv->tx_hdr_len;
1034         hdr->magic1 = cpu_to_le16(0x8001);
1035         hdr->len = cpu_to_le16(sizeof(*led));
1036         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
1037         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
1038
1039         led = (struct p54_tx_control_led *) hdr->data;
1040         led->mode = cpu_to_le16(mode);
1041         led->led_permanent = cpu_to_le16(link);
1042         led->led_temporary = cpu_to_le16(act);
1043         led->duration = cpu_to_le16(1000);
1044
1045         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
1046
1047         return 0;
1048 }
1049
1050 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1051 do {                                                            \
1052         queue.aifs = cpu_to_le16(ai_fs);                        \
1053         queue.cwmin = cpu_to_le16(cw_min);                      \
1054         queue.cwmax = cpu_to_le16(cw_max);                      \
1055         queue.txop = cpu_to_le16(_txop);                        \
1056 } while(0)
1057
1058 static void p54_init_vdcf(struct ieee80211_hw *dev)
1059 {
1060         struct p54_common *priv = dev->priv;
1061         struct p54_control_hdr *hdr;
1062         struct p54_tx_control_vdcf *vdcf;
1063
1064         /* all USB V1 adapters need a extra headroom */
1065         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1066         hdr->magic1 = cpu_to_le16(0x8001);
1067         hdr->len = cpu_to_le16(sizeof(*vdcf));
1068         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
1069         hdr->req_id = cpu_to_le32(priv->rx_start);
1070
1071         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1072
1073         P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
1074         P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
1075         P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
1076         P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
1077 }
1078
1079 static void p54_set_vdcf(struct ieee80211_hw *dev)
1080 {
1081         struct p54_common *priv = dev->priv;
1082         struct p54_control_hdr *hdr;
1083         struct p54_tx_control_vdcf *vdcf;
1084
1085         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1086
1087         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
1088
1089         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1090
1091         if (dev->conf.flags & IEEE80211_CONF_SHORT_SLOT_TIME) {
1092                 vdcf->slottime = 9;
1093                 vdcf->magic1 = 0x10;
1094                 vdcf->magic2 = 0x00;
1095         } else {
1096                 vdcf->slottime = 20;
1097                 vdcf->magic1 = 0x0a;
1098                 vdcf->magic2 = 0x06;
1099         }
1100
1101         /* (see prism54/isl_oid.h for further details) */
1102         vdcf->frameburst = cpu_to_le16(0);
1103
1104         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
1105 }
1106
1107 static int p54_start(struct ieee80211_hw *dev)
1108 {
1109         struct p54_common *priv = dev->priv;
1110         int err;
1111
1112         if (!priv->cached_vdcf) {
1113                 priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
1114                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1115                         GFP_KERNEL);
1116
1117                 if (!priv->cached_vdcf)
1118                         return -ENOMEM;
1119         }
1120
1121         if (!priv->cached_stats) {
1122                 priv->cached_stats = kzalloc(sizeof(struct p54_statistics) +
1123                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1124                         GFP_KERNEL);
1125
1126                 if (!priv->cached_stats) {
1127                         kfree(priv->cached_vdcf);
1128                         priv->cached_vdcf = NULL;
1129                         return -ENOMEM;
1130                 }
1131         }
1132
1133         err = priv->open(dev);
1134         if (!err)
1135                 priv->mode = NL80211_IFTYPE_MONITOR;
1136
1137         p54_init_vdcf(dev);
1138
1139         mod_timer(&priv->stats_timer, jiffies + HZ);
1140         return err;
1141 }
1142
1143 static void p54_stop(struct ieee80211_hw *dev)
1144 {
1145         struct p54_common *priv = dev->priv;
1146         struct sk_buff *skb;
1147
1148         del_timer(&priv->stats_timer);
1149         while ((skb = skb_dequeue(&priv->tx_queue)))
1150                 kfree_skb(skb);
1151         priv->stop(dev);
1152         priv->tsf_high32 = priv->tsf_low32 = 0;
1153         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1154 }
1155
1156 static int p54_add_interface(struct ieee80211_hw *dev,
1157                              struct ieee80211_if_init_conf *conf)
1158 {
1159         struct p54_common *priv = dev->priv;
1160
1161         if (priv->mode != NL80211_IFTYPE_MONITOR)
1162                 return -EOPNOTSUPP;
1163
1164         switch (conf->type) {
1165         case NL80211_IFTYPE_STATION:
1166                 priv->mode = conf->type;
1167                 break;
1168         default:
1169                 return -EOPNOTSUPP;
1170         }
1171
1172         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1173
1174         p54_set_filter(dev, 0, NULL);
1175
1176         switch (conf->type) {
1177         case NL80211_IFTYPE_STATION:
1178                 p54_set_filter(dev, 1, NULL);
1179                 break;
1180         default:
1181                 BUG();  /* impossible */
1182                 break;
1183         }
1184
1185         p54_set_leds(dev, 1, 0, 0);
1186
1187         return 0;
1188 }
1189
1190 static void p54_remove_interface(struct ieee80211_hw *dev,
1191                                  struct ieee80211_if_init_conf *conf)
1192 {
1193         struct p54_common *priv = dev->priv;
1194         priv->mode = NL80211_IFTYPE_MONITOR;
1195         memset(priv->mac_addr, 0, ETH_ALEN);
1196         p54_set_filter(dev, 0, NULL);
1197 }
1198
1199 static int p54_config(struct ieee80211_hw *dev, struct ieee80211_conf *conf)
1200 {
1201         int ret;
1202         struct p54_common *priv = dev->priv;
1203
1204         mutex_lock(&priv->conf_mutex);
1205         priv->rx_antenna = (conf->antenna_sel_rx == 0) ?
1206                 2 : conf->antenna_sel_tx - 1;
1207         priv->output_power = conf->power_level << 2;
1208         ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
1209         p54_set_vdcf(dev);
1210         mutex_unlock(&priv->conf_mutex);
1211         return ret;
1212 }
1213
1214 static int p54_config_interface(struct ieee80211_hw *dev,
1215                                 struct ieee80211_vif *vif,
1216                                 struct ieee80211_if_conf *conf)
1217 {
1218         struct p54_common *priv = dev->priv;
1219
1220         mutex_lock(&priv->conf_mutex);
1221         p54_set_filter(dev, 0, conf->bssid);
1222         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1223         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1224         mutex_unlock(&priv->conf_mutex);
1225         return 0;
1226 }
1227
1228 static void p54_configure_filter(struct ieee80211_hw *dev,
1229                                  unsigned int changed_flags,
1230                                  unsigned int *total_flags,
1231                                  int mc_count, struct dev_mc_list *mclist)
1232 {
1233         struct p54_common *priv = dev->priv;
1234
1235         *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1236                         FIF_PROMISC_IN_BSS |
1237                         FIF_FCSFAIL;
1238
1239         priv->filter_flags = *total_flags;
1240
1241         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1242                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1243                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1244                                  NULL);
1245                 else
1246                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1247                                  priv->bssid);
1248         }
1249
1250         if (changed_flags & FIF_PROMISC_IN_BSS) {
1251                 if (*total_flags & FIF_PROMISC_IN_BSS)
1252                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) |
1253                                 0x8, NULL);
1254                 else
1255                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) &
1256                                 ~0x8, priv->bssid);
1257         }
1258 }
1259
1260 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1261                        const struct ieee80211_tx_queue_params *params)
1262 {
1263         struct p54_common *priv = dev->priv;
1264         struct p54_tx_control_vdcf *vdcf;
1265
1266         vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
1267                 ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
1268
1269         if ((params) && !(queue > 4)) {
1270                 P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
1271                         params->cw_min, params->cw_max, params->txop);
1272         } else
1273                 return -EINVAL;
1274
1275         p54_set_vdcf(dev);
1276
1277         return 0;
1278 }
1279
1280 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1281 {
1282         struct p54_common *priv = dev->priv;
1283         struct p54_control_hdr *hdr;
1284         struct p54_tx_control_xbow_synth *xbow;
1285
1286         hdr = kzalloc(sizeof(*hdr) + sizeof(*xbow) +
1287                       priv->tx_hdr_len, GFP_KERNEL);
1288         if (!hdr)
1289                 return -ENOMEM;
1290
1291         hdr = (void *)hdr + priv->tx_hdr_len;
1292         hdr->magic1 = cpu_to_le16(0x8001);
1293         hdr->len = cpu_to_le16(sizeof(*xbow));
1294         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_XBOW_SYNTH_CFG);
1295         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*xbow));
1296
1297         xbow = (struct p54_tx_control_xbow_synth *) hdr->data;
1298         xbow->magic1 = cpu_to_le16(0x1);
1299         xbow->magic2 = cpu_to_le16(0x2);
1300         xbow->freq = cpu_to_le16(5390);
1301
1302         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*xbow), 1);
1303
1304         return 0;
1305 }
1306
1307 static void p54_statistics_timer(unsigned long data)
1308 {
1309         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1310         struct p54_common *priv = dev->priv;
1311         struct p54_control_hdr *hdr;
1312         struct p54_statistics *stats;
1313
1314         BUG_ON(!priv->cached_stats);
1315
1316         hdr = (void *)priv->cached_stats + priv->tx_hdr_len;
1317         hdr->magic1 = cpu_to_le16(0x8000);
1318         hdr->len = cpu_to_le16(sizeof(*stats));
1319         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_STAT_READBACK);
1320         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*stats));
1321
1322         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*stats), 0);
1323 }
1324
1325 static int p54_get_stats(struct ieee80211_hw *dev,
1326                          struct ieee80211_low_level_stats *stats)
1327 {
1328         struct p54_common *priv = dev->priv;
1329
1330         del_timer(&priv->stats_timer);
1331         p54_statistics_timer((unsigned long)dev);
1332
1333         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1334                 printk(KERN_ERR "%s: device does not respond!\n",
1335                         wiphy_name(dev->wiphy));
1336                 return -EBUSY;
1337         }
1338
1339         memcpy(stats, &priv->stats, sizeof(*stats));
1340
1341         return 0;
1342 }
1343
1344 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1345                             struct ieee80211_tx_queue_stats *stats)
1346 {
1347         struct p54_common *priv = dev->priv;
1348
1349         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1350
1351         return 0;
1352 }
1353
1354 static const struct ieee80211_ops p54_ops = {
1355         .tx                     = p54_tx,
1356         .start                  = p54_start,
1357         .stop                   = p54_stop,
1358         .add_interface          = p54_add_interface,
1359         .remove_interface       = p54_remove_interface,
1360         .config                 = p54_config,
1361         .config_interface       = p54_config_interface,
1362         .configure_filter       = p54_configure_filter,
1363         .conf_tx                = p54_conf_tx,
1364         .get_stats              = p54_get_stats,
1365         .get_tx_stats           = p54_get_tx_stats
1366 };
1367
1368 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1369 {
1370         struct ieee80211_hw *dev;
1371         struct p54_common *priv;
1372
1373         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1374         if (!dev)
1375                 return NULL;
1376
1377         priv = dev->priv;
1378         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1379         skb_queue_head_init(&priv->tx_queue);
1380         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1381                      IEEE80211_HW_RX_INCLUDES_FCS |
1382                      IEEE80211_HW_SIGNAL_DBM |
1383                      IEEE80211_HW_NOISE_DBM;
1384
1385         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1386
1387         dev->channel_change_time = 1000;        /* TODO: find actual value */
1388
1389         priv->tx_stats[0].limit = 1;
1390         priv->tx_stats[1].limit = 1;
1391         priv->tx_stats[2].limit = 1;
1392         priv->tx_stats[3].limit = 1;
1393         priv->tx_stats[4].limit = 5;
1394         dev->queues = 1;
1395         priv->noise = -94;
1396         dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
1397                                  sizeof(struct p54_tx_control_allocdata);
1398
1399         mutex_init(&priv->conf_mutex);
1400         init_completion(&priv->eeprom_comp);
1401         init_completion(&priv->stats_comp);
1402         setup_timer(&priv->stats_timer, p54_statistics_timer,
1403                 (unsigned long)dev);
1404
1405         return dev;
1406 }
1407 EXPORT_SYMBOL_GPL(p54_init_common);
1408
1409 void p54_free_common(struct ieee80211_hw *dev)
1410 {
1411         struct p54_common *priv = dev->priv;
1412         kfree(priv->cached_stats);
1413         kfree(priv->iq_autocal);
1414         kfree(priv->output_limit);
1415         kfree(priv->curve_data);
1416         kfree(priv->cached_vdcf);
1417 }
1418 EXPORT_SYMBOL_GPL(p54_free_common);
1419
1420 static int __init p54_init(void)
1421 {
1422         return 0;
1423 }
1424
1425 static void __exit p54_exit(void)
1426 {
1427 }
1428
1429 module_init(p54_init);
1430 module_exit(p54_exit);