]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
Merge branch 'for-3.13/logitech' into for-next
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00mmio.h"
38 #include "rt2x00pci.h"
39 #include "rt2400pci.h"
40
41 /*
42  * Register access.
43  * All access to the CSR registers will go through the methods
44  * rt2x00mmio_register_read and rt2x00mmio_register_write.
45  * BBP and RF register require indirect register access,
46  * and use the CSR registers BBPCSR and RFCSR to achieve this.
47  * These indirect registers work with busy bits,
48  * and we will try maximal REGISTER_BUSY_COUNT times to access
49  * the register while taking a REGISTER_BUSY_DELAY us delay
50  * between each attempt. When the busy bit is still set at that time,
51  * the access attempt is considered to have failed,
52  * and we will print an error.
53  */
54 #define WAIT_FOR_BBP(__dev, __reg) \
55         rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
56 #define WAIT_FOR_RF(__dev, __reg) \
57         rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
58
59 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
60                                 const unsigned int word, const u8 value)
61 {
62         u32 reg;
63
64         mutex_lock(&rt2x00dev->csr_mutex);
65
66         /*
67          * Wait until the BBP becomes available, afterwards we
68          * can safely write the new data into the register.
69          */
70         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
71                 reg = 0;
72                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
73                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
74                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
75                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
76
77                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
78         }
79
80         mutex_unlock(&rt2x00dev->csr_mutex);
81 }
82
83 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
84                                const unsigned int word, u8 *value)
85 {
86         u32 reg;
87
88         mutex_lock(&rt2x00dev->csr_mutex);
89
90         /*
91          * Wait until the BBP becomes available, afterwards we
92          * can safely write the read request into the register.
93          * After the data has been written, we wait until hardware
94          * returns the correct value, if at any time the register
95          * doesn't become available in time, reg will be 0xffffffff
96          * which means we return 0xff to the caller.
97          */
98         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
99                 reg = 0;
100                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
101                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
102                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
103
104                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
105
106                 WAIT_FOR_BBP(rt2x00dev, &reg);
107         }
108
109         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
110
111         mutex_unlock(&rt2x00dev->csr_mutex);
112 }
113
114 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
115                                const unsigned int word, const u32 value)
116 {
117         u32 reg;
118
119         mutex_lock(&rt2x00dev->csr_mutex);
120
121         /*
122          * Wait until the RF becomes available, afterwards we
123          * can safely write the new data into the register.
124          */
125         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
126                 reg = 0;
127                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
128                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
129                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
130                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
131
132                 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
133                 rt2x00_rf_write(rt2x00dev, word, value);
134         }
135
136         mutex_unlock(&rt2x00dev->csr_mutex);
137 }
138
139 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
140 {
141         struct rt2x00_dev *rt2x00dev = eeprom->data;
142         u32 reg;
143
144         rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
145
146         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
147         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
148         eeprom->reg_data_clock =
149             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
150         eeprom->reg_chip_select =
151             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 }
153
154 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
155 {
156         struct rt2x00_dev *rt2x00dev = eeprom->data;
157         u32 reg = 0;
158
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
162                            !!eeprom->reg_data_clock);
163         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
164                            !!eeprom->reg_chip_select);
165
166         rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
167 }
168
169 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
170 static const struct rt2x00debug rt2400pci_rt2x00debug = {
171         .owner  = THIS_MODULE,
172         .csr    = {
173                 .read           = rt2x00mmio_register_read,
174                 .write          = rt2x00mmio_register_write,
175                 .flags          = RT2X00DEBUGFS_OFFSET,
176                 .word_base      = CSR_REG_BASE,
177                 .word_size      = sizeof(u32),
178                 .word_count     = CSR_REG_SIZE / sizeof(u32),
179         },
180         .eeprom = {
181                 .read           = rt2x00_eeprom_read,
182                 .write          = rt2x00_eeprom_write,
183                 .word_base      = EEPROM_BASE,
184                 .word_size      = sizeof(u16),
185                 .word_count     = EEPROM_SIZE / sizeof(u16),
186         },
187         .bbp    = {
188                 .read           = rt2400pci_bbp_read,
189                 .write          = rt2400pci_bbp_write,
190                 .word_base      = BBP_BASE,
191                 .word_size      = sizeof(u8),
192                 .word_count     = BBP_SIZE / sizeof(u8),
193         },
194         .rf     = {
195                 .read           = rt2x00_rf_read,
196                 .write          = rt2400pci_rf_write,
197                 .word_base      = RF_BASE,
198                 .word_size      = sizeof(u32),
199                 .word_count     = RF_SIZE / sizeof(u32),
200         },
201 };
202 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203
204 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 {
206         u32 reg;
207
208         rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
209         return rt2x00_get_field32(reg, GPIOCSR_VAL0);
210 }
211
212 #ifdef CONFIG_RT2X00_LIB_LEDS
213 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
214                                      enum led_brightness brightness)
215 {
216         struct rt2x00_led *led =
217             container_of(led_cdev, struct rt2x00_led, led_dev);
218         unsigned int enabled = brightness != LED_OFF;
219         u32 reg;
220
221         rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
222
223         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
224                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
225         else if (led->type == LED_TYPE_ACTIVITY)
226                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
227
228         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
229 }
230
231 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
232                                unsigned long *delay_on,
233                                unsigned long *delay_off)
234 {
235         struct rt2x00_led *led =
236             container_of(led_cdev, struct rt2x00_led, led_dev);
237         u32 reg;
238
239         rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
240         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
241         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
242         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
243
244         return 0;
245 }
246
247 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
248                                struct rt2x00_led *led,
249                                enum led_type type)
250 {
251         led->rt2x00dev = rt2x00dev;
252         led->type = type;
253         led->led_dev.brightness_set = rt2400pci_brightness_set;
254         led->led_dev.blink_set = rt2400pci_blink_set;
255         led->flags = LED_INITIALIZED;
256 }
257 #endif /* CONFIG_RT2X00_LIB_LEDS */
258
259 /*
260  * Configuration handlers.
261  */
262 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
263                                     const unsigned int filter_flags)
264 {
265         u32 reg;
266
267         /*
268          * Start configuration steps.
269          * Note that the version error will always be dropped
270          * since there is no filter for it at this time.
271          */
272         rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
273         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274                            !(filter_flags & FIF_FCSFAIL));
275         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276                            !(filter_flags & FIF_PLCPFAIL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278                            !(filter_flags & FIF_CONTROL));
279         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280                            !(filter_flags & FIF_PROMISC_IN_BSS));
281         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
283                            !rt2x00dev->intf_ap_count);
284         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285         rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
286 }
287
288 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
289                                   struct rt2x00_intf *intf,
290                                   struct rt2x00intf_conf *conf,
291                                   const unsigned int flags)
292 {
293         unsigned int bcn_preload;
294         u32 reg;
295
296         if (flags & CONFIG_UPDATE_TYPE) {
297                 /*
298                  * Enable beacon config
299                  */
300                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
301                 rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
302                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
303                 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
304
305                 /*
306                  * Enable synchronisation.
307                  */
308                 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
309                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
311         }
312
313         if (flags & CONFIG_UPDATE_MAC)
314                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
315                                                conf->mac, sizeof(conf->mac));
316
317         if (flags & CONFIG_UPDATE_BSSID)
318                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
319                                                conf->bssid,
320                                                sizeof(conf->bssid));
321 }
322
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324                                  struct rt2x00lib_erp *erp,
325                                  u32 changed)
326 {
327         int preamble_mask;
328         u32 reg;
329
330         /*
331          * When short preamble is enabled, we should set bit 0x08
332          */
333         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334                 preamble_mask = erp->short_preamble << 3;
335
336                 rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
337                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
338                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
339                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341                 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
342
343                 rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
344                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347                                    GET_DURATION(ACK_SIZE, 10));
348                 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
349
350                 rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
351                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354                                    GET_DURATION(ACK_SIZE, 20));
355                 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
356
357                 rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
358                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361                                    GET_DURATION(ACK_SIZE, 55));
362                 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
363
364                 rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
365                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368                                    GET_DURATION(ACK_SIZE, 110));
369                 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
370         }
371
372         if (changed & BSS_CHANGED_BASIC_RATES)
373                 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374
375         if (changed & BSS_CHANGED_ERP_SLOT) {
376                 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
377                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378                 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
379
380                 rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
381                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383                 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
384
385                 rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
386                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388                 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
389         }
390
391         if (changed & BSS_CHANGED_BEACON_INT) {
392                 rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
393                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394                                    erp->beacon_int * 16);
395                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396                                    erp->beacon_int * 16);
397                 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
398         }
399 }
400
401 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
402                                  struct antenna_setup *ant)
403 {
404         u8 r1;
405         u8 r4;
406
407         /*
408          * We should never come here because rt2x00lib is supposed
409          * to catch this and send us the correct antenna explicitely.
410          */
411         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
412                ant->tx == ANTENNA_SW_DIVERSITY);
413
414         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
415         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
416
417         /*
418          * Configure the TX antenna.
419          */
420         switch (ant->tx) {
421         case ANTENNA_HW_DIVERSITY:
422                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
423                 break;
424         case ANTENNA_A:
425                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
426                 break;
427         case ANTENNA_B:
428         default:
429                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
430                 break;
431         }
432
433         /*
434          * Configure the RX antenna.
435          */
436         switch (ant->rx) {
437         case ANTENNA_HW_DIVERSITY:
438                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
439                 break;
440         case ANTENNA_A:
441                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
442                 break;
443         case ANTENNA_B:
444         default:
445                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
446                 break;
447         }
448
449         rt2400pci_bbp_write(rt2x00dev, 4, r4);
450         rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 }
452
453 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
454                                      struct rf_channel *rf)
455 {
456         /*
457          * Switch on tuning bits.
458          */
459         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
460         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
461
462         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
464         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466         /*
467          * RF2420 chipset don't need any additional actions.
468          */
469         if (rt2x00_rf(rt2x00dev, RF2420))
470                 return;
471
472         /*
473          * For the RT2421 chipsets we need to write an invalid
474          * reference clock rate to activate auto_tune.
475          * After that we set the value back to the correct channel.
476          */
477         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
478         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
479         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
480
481         msleep(1);
482
483         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
484         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
485         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486
487         msleep(1);
488
489         /*
490          * Switch off tuning bits.
491          */
492         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
493         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
494
495         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
496         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
497
498         /*
499          * Clear false CRC during channel switch.
500          */
501         rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
502 }
503
504 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
505 {
506         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
507 }
508
509 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
510                                          struct rt2x00lib_conf *libconf)
511 {
512         u32 reg;
513
514         rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
515         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
516                            libconf->conf->long_frame_max_tx_count);
517         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
518                            libconf->conf->short_frame_max_tx_count);
519         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
520 }
521
522 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
523                                 struct rt2x00lib_conf *libconf)
524 {
525         enum dev_state state =
526             (libconf->conf->flags & IEEE80211_CONF_PS) ?
527                 STATE_SLEEP : STATE_AWAKE;
528         u32 reg;
529
530         if (state == STATE_SLEEP) {
531                 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
532                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
533                                    (rt2x00dev->beacon_int - 20) * 16);
534                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
535                                    libconf->conf->listen_interval - 1);
536
537                 /* We must first disable autowake before it can be enabled */
538                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
539                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
540
541                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
542                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
543         } else {
544                 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
545                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
546                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
547         }
548
549         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
550 }
551
552 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
553                              struct rt2x00lib_conf *libconf,
554                              const unsigned int flags)
555 {
556         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
557                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
558         if (flags & IEEE80211_CONF_CHANGE_POWER)
559                 rt2400pci_config_txpower(rt2x00dev,
560                                          libconf->conf->power_level);
561         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
562                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
563         if (flags & IEEE80211_CONF_CHANGE_PS)
564                 rt2400pci_config_ps(rt2x00dev, libconf);
565 }
566
567 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
568                                 const int cw_min, const int cw_max)
569 {
570         u32 reg;
571
572         rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
573         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
574         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
576 }
577
578 /*
579  * Link tuning
580  */
581 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
582                                  struct link_qual *qual)
583 {
584         u32 reg;
585         u8 bbp;
586
587         /*
588          * Update FCS error count from register.
589          */
590         rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
591         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592
593         /*
594          * Update False CCA count from register.
595          */
596         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
597         qual->false_cca = bbp;
598 }
599
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
601                                      struct link_qual *qual, u8 vgc_level)
602 {
603         if (qual->vgc_level_reg != vgc_level) {
604                 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
605                 qual->vgc_level = vgc_level;
606                 qual->vgc_level_reg = vgc_level;
607         }
608 }
609
610 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
611                                   struct link_qual *qual)
612 {
613         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 }
615
616 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
617                                  struct link_qual *qual, const u32 count)
618 {
619         /*
620          * The link tuner should not run longer then 60 seconds,
621          * and should run once every 2 seconds.
622          */
623         if (count > 60 || !(count & 1))
624                 return;
625
626         /*
627          * Base r13 link tuning on the false cca count.
628          */
629         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
630                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
631         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
632                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
633 }
634
635 /*
636  * Queue handlers.
637  */
638 static void rt2400pci_start_queue(struct data_queue *queue)
639 {
640         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
641         u32 reg;
642
643         switch (queue->qid) {
644         case QID_RX:
645                 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
646                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
647                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
648                 break;
649         case QID_BEACON:
650                 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
651                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
652                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
653                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
654                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
655                 break;
656         default:
657                 break;
658         }
659 }
660
661 static void rt2400pci_kick_queue(struct data_queue *queue)
662 {
663         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
664         u32 reg;
665
666         switch (queue->qid) {
667         case QID_AC_VO:
668                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
669                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
670                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
671                 break;
672         case QID_AC_VI:
673                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
674                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
675                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
676                 break;
677         case QID_ATIM:
678                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
679                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
680                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
681                 break;
682         default:
683                 break;
684         }
685 }
686
687 static void rt2400pci_stop_queue(struct data_queue *queue)
688 {
689         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
690         u32 reg;
691
692         switch (queue->qid) {
693         case QID_AC_VO:
694         case QID_AC_VI:
695         case QID_ATIM:
696                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
697                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
698                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
699                 break;
700         case QID_RX:
701                 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
702                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
703                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
704                 break;
705         case QID_BEACON:
706                 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
707                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
708                 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
709                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
710                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
711
712                 /*
713                  * Wait for possibly running tbtt tasklets.
714                  */
715                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
716                 break;
717         default:
718                 break;
719         }
720 }
721
722 /*
723  * Initialization functions.
724  */
725 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
726 {
727         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
728         u32 word;
729
730         if (entry->queue->qid == QID_RX) {
731                 rt2x00_desc_read(entry_priv->desc, 0, &word);
732
733                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
734         } else {
735                 rt2x00_desc_read(entry_priv->desc, 0, &word);
736
737                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
738                         rt2x00_get_field32(word, TXD_W0_VALID));
739         }
740 }
741
742 static void rt2400pci_clear_entry(struct queue_entry *entry)
743 {
744         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
745         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
746         u32 word;
747
748         if (entry->queue->qid == QID_RX) {
749                 rt2x00_desc_read(entry_priv->desc, 2, &word);
750                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
751                 rt2x00_desc_write(entry_priv->desc, 2, word);
752
753                 rt2x00_desc_read(entry_priv->desc, 1, &word);
754                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
755                 rt2x00_desc_write(entry_priv->desc, 1, word);
756
757                 rt2x00_desc_read(entry_priv->desc, 0, &word);
758                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
759                 rt2x00_desc_write(entry_priv->desc, 0, word);
760         } else {
761                 rt2x00_desc_read(entry_priv->desc, 0, &word);
762                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
763                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
764                 rt2x00_desc_write(entry_priv->desc, 0, word);
765         }
766 }
767
768 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
769 {
770         struct queue_entry_priv_mmio *entry_priv;
771         u32 reg;
772
773         /*
774          * Initialize registers.
775          */
776         rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
777         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
778         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
779         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
780         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
781         rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
782
783         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
784         rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
785         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
786                            entry_priv->desc_dma);
787         rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
788
789         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
790         rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
791         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
792                            entry_priv->desc_dma);
793         rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
794
795         entry_priv = rt2x00dev->atim->entries[0].priv_data;
796         rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
797         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
798                            entry_priv->desc_dma);
799         rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
800
801         entry_priv = rt2x00dev->bcn->entries[0].priv_data;
802         rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
803         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
804                            entry_priv->desc_dma);
805         rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
806
807         rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
808         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
809         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
810         rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
811
812         entry_priv = rt2x00dev->rx->entries[0].priv_data;
813         rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
814         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
815                            entry_priv->desc_dma);
816         rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
817
818         return 0;
819 }
820
821 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
822 {
823         u32 reg;
824
825         rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
826         rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
827         rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
828         rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
829
830         rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
831         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
832         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
833         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
834         rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
835
836         rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
837         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
838                            (rt2x00dev->rx->data_size / 128));
839         rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
840
841         rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
842         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
843         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
844         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
845         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
846         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
847         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
848         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
849         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
850         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
851
852         rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
853
854         rt2x00mmio_register_read(rt2x00dev, ARCSR0, &reg);
855         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
856         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
857         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
858         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
859         rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
860
861         rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
862         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
863         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
864         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
865         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
866         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
867         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
868         rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
869
870         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
871
872         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
873                 return -EBUSY;
874
875         rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
876         rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
877
878         rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
879         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
880         rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
881
882         rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
883         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
884         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
885         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
886         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
887         rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
888
889         rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
890         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
891         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
892         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
893         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
894
895         rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
896         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
897         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
898         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
899
900         /*
901          * We must clear the FCS and FIFO error count.
902          * These registers are cleared on read,
903          * so we may pass a useless variable to store the value.
904          */
905         rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
906         rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
907
908         return 0;
909 }
910
911 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
912 {
913         unsigned int i;
914         u8 value;
915
916         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
917                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
918                 if ((value != 0xff) && (value != 0x00))
919                         return 0;
920                 udelay(REGISTER_BUSY_DELAY);
921         }
922
923         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
924         return -EACCES;
925 }
926
927 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
928 {
929         unsigned int i;
930         u16 eeprom;
931         u8 reg_id;
932         u8 value;
933
934         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
935                 return -EACCES;
936
937         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
938         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
939         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
940         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
941         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
942         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
943         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
944         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
945         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
946         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
947         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
948         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
949         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
950         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
951
952         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
953                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
954
955                 if (eeprom != 0xffff && eeprom != 0x0000) {
956                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
957                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
958                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
959                 }
960         }
961
962         return 0;
963 }
964
965 /*
966  * Device state switch handlers.
967  */
968 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
969                                  enum dev_state state)
970 {
971         int mask = (state == STATE_RADIO_IRQ_OFF);
972         u32 reg;
973         unsigned long flags;
974
975         /*
976          * When interrupts are being enabled, the interrupt registers
977          * should clear the register to assure a clean state.
978          */
979         if (state == STATE_RADIO_IRQ_ON) {
980                 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
981                 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
982         }
983
984         /*
985          * Only toggle the interrupts bits we are going to use.
986          * Non-checked interrupt bits are disabled by default.
987          */
988         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
989
990         rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
991         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
992         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
993         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
994         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
995         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
996         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
997
998         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
999
1000         if (state == STATE_RADIO_IRQ_OFF) {
1001                 /*
1002                  * Ensure that all tasklets are finished before
1003                  * disabling the interrupts.
1004                  */
1005                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1006                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1007                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1008         }
1009 }
1010
1011 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1012 {
1013         /*
1014          * Initialize all registers.
1015          */
1016         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1017                      rt2400pci_init_registers(rt2x00dev) ||
1018                      rt2400pci_init_bbp(rt2x00dev)))
1019                 return -EIO;
1020
1021         return 0;
1022 }
1023
1024 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1025 {
1026         /*
1027          * Disable power
1028          */
1029         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1030 }
1031
1032 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1033                                enum dev_state state)
1034 {
1035         u32 reg, reg2;
1036         unsigned int i;
1037         char put_to_sleep;
1038         char bbp_state;
1039         char rf_state;
1040
1041         put_to_sleep = (state != STATE_AWAKE);
1042
1043         rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1044         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1045         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1046         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1047         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1048         rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1049
1050         /*
1051          * Device is not guaranteed to be in the requested state yet.
1052          * We must wait until the register indicates that the
1053          * device has entered the correct state.
1054          */
1055         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1056                 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1057                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1058                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1059                 if (bbp_state == state && rf_state == state)
1060                         return 0;
1061                 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1062                 msleep(10);
1063         }
1064
1065         return -EBUSY;
1066 }
1067
1068 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1069                                       enum dev_state state)
1070 {
1071         int retval = 0;
1072
1073         switch (state) {
1074         case STATE_RADIO_ON:
1075                 retval = rt2400pci_enable_radio(rt2x00dev);
1076                 break;
1077         case STATE_RADIO_OFF:
1078                 rt2400pci_disable_radio(rt2x00dev);
1079                 break;
1080         case STATE_RADIO_IRQ_ON:
1081         case STATE_RADIO_IRQ_OFF:
1082                 rt2400pci_toggle_irq(rt2x00dev, state);
1083                 break;
1084         case STATE_DEEP_SLEEP:
1085         case STATE_SLEEP:
1086         case STATE_STANDBY:
1087         case STATE_AWAKE:
1088                 retval = rt2400pci_set_state(rt2x00dev, state);
1089                 break;
1090         default:
1091                 retval = -ENOTSUPP;
1092                 break;
1093         }
1094
1095         if (unlikely(retval))
1096                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1097                            state, retval);
1098
1099         return retval;
1100 }
1101
1102 /*
1103  * TX descriptor initialization
1104  */
1105 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1106                                     struct txentry_desc *txdesc)
1107 {
1108         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1109         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1110         __le32 *txd = entry_priv->desc;
1111         u32 word;
1112
1113         /*
1114          * Start writing the descriptor words.
1115          */
1116         rt2x00_desc_read(txd, 1, &word);
1117         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1118         rt2x00_desc_write(txd, 1, word);
1119
1120         rt2x00_desc_read(txd, 2, &word);
1121         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1122         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1123         rt2x00_desc_write(txd, 2, word);
1124
1125         rt2x00_desc_read(txd, 3, &word);
1126         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1127         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1128         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1129         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1130         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1131         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1132         rt2x00_desc_write(txd, 3, word);
1133
1134         rt2x00_desc_read(txd, 4, &word);
1135         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1136                            txdesc->u.plcp.length_low);
1137         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1138         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1139         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1140                            txdesc->u.plcp.length_high);
1141         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1142         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1143         rt2x00_desc_write(txd, 4, word);
1144
1145         /*
1146          * Writing TXD word 0 must the last to prevent a race condition with
1147          * the device, whereby the device may take hold of the TXD before we
1148          * finished updating it.
1149          */
1150         rt2x00_desc_read(txd, 0, &word);
1151         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1152         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1153         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1154                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1155         rt2x00_set_field32(&word, TXD_W0_ACK,
1156                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1157         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1158                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1159         rt2x00_set_field32(&word, TXD_W0_RTS,
1160                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1161         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1162         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1163                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1164         rt2x00_desc_write(txd, 0, word);
1165
1166         /*
1167          * Register descriptor details in skb frame descriptor.
1168          */
1169         skbdesc->desc = txd;
1170         skbdesc->desc_len = TXD_DESC_SIZE;
1171 }
1172
1173 /*
1174  * TX data initialization
1175  */
1176 static void rt2400pci_write_beacon(struct queue_entry *entry,
1177                                    struct txentry_desc *txdesc)
1178 {
1179         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1180         u32 reg;
1181
1182         /*
1183          * Disable beaconing while we are reloading the beacon data,
1184          * otherwise we might be sending out invalid data.
1185          */
1186         rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1187         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1188         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1189
1190         if (rt2x00queue_map_txskb(entry)) {
1191                 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1192                 goto out;
1193         }
1194         /*
1195          * Enable beaconing again.
1196          */
1197         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1198         /*
1199          * Write the TX descriptor for the beacon.
1200          */
1201         rt2400pci_write_tx_desc(entry, txdesc);
1202
1203         /*
1204          * Dump beacon to userspace through debugfs.
1205          */
1206         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1207 out:
1208         /*
1209          * Enable beaconing again.
1210          */
1211         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1212         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1213 }
1214
1215 /*
1216  * RX control handlers
1217  */
1218 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1219                                   struct rxdone_entry_desc *rxdesc)
1220 {
1221         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1222         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1223         u32 word0;
1224         u32 word2;
1225         u32 word3;
1226         u32 word4;
1227         u64 tsf;
1228         u32 rx_low;
1229         u32 rx_high;
1230
1231         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1232         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1233         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1234         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1235
1236         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1237                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1238         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1239                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1240
1241         /*
1242          * We only get the lower 32bits from the timestamp,
1243          * to get the full 64bits we must complement it with
1244          * the timestamp from get_tsf().
1245          * Note that when a wraparound of the lower 32bits
1246          * has occurred between the frame arrival and the get_tsf()
1247          * call, we must decrease the higher 32bits with 1 to get
1248          * to correct value.
1249          */
1250         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1251         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1252         rx_high = upper_32_bits(tsf);
1253
1254         if ((u32)tsf <= rx_low)
1255                 rx_high--;
1256
1257         /*
1258          * Obtain the status about this packet.
1259          * The signal is the PLCP value, and needs to be stripped
1260          * of the preamble bit (0x08).
1261          */
1262         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1263         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1264         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1265             entry->queue->rt2x00dev->rssi_offset;
1266         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1267
1268         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1269         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1270                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1271 }
1272
1273 /*
1274  * Interrupt functions.
1275  */
1276 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1277                              const enum data_queue_qid queue_idx)
1278 {
1279         struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1280         struct queue_entry_priv_mmio *entry_priv;
1281         struct queue_entry *entry;
1282         struct txdone_entry_desc txdesc;
1283         u32 word;
1284
1285         while (!rt2x00queue_empty(queue)) {
1286                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1287                 entry_priv = entry->priv_data;
1288                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1289
1290                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1291                     !rt2x00_get_field32(word, TXD_W0_VALID))
1292                         break;
1293
1294                 /*
1295                  * Obtain the status about this packet.
1296                  */
1297                 txdesc.flags = 0;
1298                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1299                 case 0: /* Success */
1300                 case 1: /* Success with retry */
1301                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1302                         break;
1303                 case 2: /* Failure, excessive retries */
1304                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1305                         /* Don't break, this is a failed frame! */
1306                 default: /* Failure */
1307                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1308                 }
1309                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1310
1311                 rt2x00lib_txdone(entry, &txdesc);
1312         }
1313 }
1314
1315 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1316                                               struct rt2x00_field32 irq_field)
1317 {
1318         u32 reg;
1319
1320         /*
1321          * Enable a single interrupt. The interrupt mask register
1322          * access needs locking.
1323          */
1324         spin_lock_irq(&rt2x00dev->irqmask_lock);
1325
1326         rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1327         rt2x00_set_field32(&reg, irq_field, 0);
1328         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1329
1330         spin_unlock_irq(&rt2x00dev->irqmask_lock);
1331 }
1332
1333 static void rt2400pci_txstatus_tasklet(unsigned long data)
1334 {
1335         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1336         u32 reg;
1337
1338         /*
1339          * Handle all tx queues.
1340          */
1341         rt2400pci_txdone(rt2x00dev, QID_ATIM);
1342         rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1343         rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1344
1345         /*
1346          * Enable all TXDONE interrupts again.
1347          */
1348         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1349                 spin_lock_irq(&rt2x00dev->irqmask_lock);
1350
1351                 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1352                 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1353                 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1354                 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1355                 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1356
1357                 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1358         }
1359 }
1360
1361 static void rt2400pci_tbtt_tasklet(unsigned long data)
1362 {
1363         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364         rt2x00lib_beacondone(rt2x00dev);
1365         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1366                 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1367 }
1368
1369 static void rt2400pci_rxdone_tasklet(unsigned long data)
1370 {
1371         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1372         if (rt2x00mmio_rxdone(rt2x00dev))
1373                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1374         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1375                 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1376 }
1377
1378 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1379 {
1380         struct rt2x00_dev *rt2x00dev = dev_instance;
1381         u32 reg, mask;
1382
1383         /*
1384          * Get the interrupt sources & saved to local variable.
1385          * Write register value back to clear pending interrupts.
1386          */
1387         rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1388         rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1389
1390         if (!reg)
1391                 return IRQ_NONE;
1392
1393         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1394                 return IRQ_HANDLED;
1395
1396         mask = reg;
1397
1398         /*
1399          * Schedule tasklets for interrupt handling.
1400          */
1401         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1402                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1403
1404         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1405                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1406
1407         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1408             rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1409             rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1410                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1411                 /*
1412                  * Mask out all txdone interrupts.
1413                  */
1414                 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1415                 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1416                 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1417         }
1418
1419         /*
1420          * Disable all interrupts for which a tasklet was scheduled right now,
1421          * the tasklet will reenable the appropriate interrupts.
1422          */
1423         spin_lock(&rt2x00dev->irqmask_lock);
1424
1425         rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1426         reg |= mask;
1427         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1428
1429         spin_unlock(&rt2x00dev->irqmask_lock);
1430
1431
1432
1433         return IRQ_HANDLED;
1434 }
1435
1436 /*
1437  * Device probe functions.
1438  */
1439 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1440 {
1441         struct eeprom_93cx6 eeprom;
1442         u32 reg;
1443         u16 word;
1444         u8 *mac;
1445
1446         rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1447
1448         eeprom.data = rt2x00dev;
1449         eeprom.register_read = rt2400pci_eepromregister_read;
1450         eeprom.register_write = rt2400pci_eepromregister_write;
1451         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1452             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1453         eeprom.reg_data_in = 0;
1454         eeprom.reg_data_out = 0;
1455         eeprom.reg_data_clock = 0;
1456         eeprom.reg_chip_select = 0;
1457
1458         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1459                                EEPROM_SIZE / sizeof(u16));
1460
1461         /*
1462          * Start validation of the data that has been read.
1463          */
1464         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1465         if (!is_valid_ether_addr(mac)) {
1466                 eth_random_addr(mac);
1467                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1468         }
1469
1470         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1471         if (word == 0xffff) {
1472                 rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1473                 return -EINVAL;
1474         }
1475
1476         return 0;
1477 }
1478
1479 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1480 {
1481         u32 reg;
1482         u16 value;
1483         u16 eeprom;
1484
1485         /*
1486          * Read EEPROM word for configuration.
1487          */
1488         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1489
1490         /*
1491          * Identify RF chipset.
1492          */
1493         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1494         rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1495         rt2x00_set_chip(rt2x00dev, RT2460, value,
1496                         rt2x00_get_field32(reg, CSR0_REVISION));
1497
1498         if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1499                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1500                 return -ENODEV;
1501         }
1502
1503         /*
1504          * Identify default antenna configuration.
1505          */
1506         rt2x00dev->default_ant.tx =
1507             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1508         rt2x00dev->default_ant.rx =
1509             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1510
1511         /*
1512          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1513          * I am not 100% sure about this, but the legacy drivers do not
1514          * indicate antenna swapping in software is required when
1515          * diversity is enabled.
1516          */
1517         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1518                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1519         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1520                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1521
1522         /*
1523          * Store led mode, for correct led behaviour.
1524          */
1525 #ifdef CONFIG_RT2X00_LIB_LEDS
1526         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1527
1528         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1529         if (value == LED_MODE_TXRX_ACTIVITY ||
1530             value == LED_MODE_DEFAULT ||
1531             value == LED_MODE_ASUS)
1532                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1533                                    LED_TYPE_ACTIVITY);
1534 #endif /* CONFIG_RT2X00_LIB_LEDS */
1535
1536         /*
1537          * Detect if this device has an hardware controlled radio.
1538          */
1539         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1540                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1541
1542         /*
1543          * Check if the BBP tuning should be enabled.
1544          */
1545         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1546                 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1547
1548         return 0;
1549 }
1550
1551 /*
1552  * RF value list for RF2420 & RF2421
1553  * Supports: 2.4 GHz
1554  */
1555 static const struct rf_channel rf_vals_b[] = {
1556         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1557         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1558         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1559         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1560         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1561         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1562         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1563         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1564         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1565         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1566         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1567         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1568         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1569         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1570 };
1571
1572 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1573 {
1574         struct hw_mode_spec *spec = &rt2x00dev->spec;
1575         struct channel_info *info;
1576         char *tx_power;
1577         unsigned int i;
1578
1579         /*
1580          * Initialize all hw fields.
1581          */
1582         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1583                                IEEE80211_HW_SIGNAL_DBM |
1584                                IEEE80211_HW_SUPPORTS_PS |
1585                                IEEE80211_HW_PS_NULLFUNC_STACK;
1586
1587         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1588         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1589                                 rt2x00_eeprom_addr(rt2x00dev,
1590                                                    EEPROM_MAC_ADDR_0));
1591
1592         /*
1593          * Initialize hw_mode information.
1594          */
1595         spec->supported_bands = SUPPORT_BAND_2GHZ;
1596         spec->supported_rates = SUPPORT_RATE_CCK;
1597
1598         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1599         spec->channels = rf_vals_b;
1600
1601         /*
1602          * Create channel information array
1603          */
1604         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1605         if (!info)
1606                 return -ENOMEM;
1607
1608         spec->channels_info = info;
1609
1610         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1611         for (i = 0; i < 14; i++) {
1612                 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1613                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1614         }
1615
1616         return 0;
1617 }
1618
1619 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1620 {
1621         int retval;
1622         u32 reg;
1623
1624         /*
1625          * Allocate eeprom data.
1626          */
1627         retval = rt2400pci_validate_eeprom(rt2x00dev);
1628         if (retval)
1629                 return retval;
1630
1631         retval = rt2400pci_init_eeprom(rt2x00dev);
1632         if (retval)
1633                 return retval;
1634
1635         /*
1636          * Enable rfkill polling by setting GPIO direction of the
1637          * rfkill switch GPIO pin correctly.
1638          */
1639         rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1640         rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1641         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1642
1643         /*
1644          * Initialize hw specifications.
1645          */
1646         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1647         if (retval)
1648                 return retval;
1649
1650         /*
1651          * This device requires the atim queue and DMA-mapped skbs.
1652          */
1653         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1654         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1655         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1656
1657         /*
1658          * Set the rssi offset.
1659          */
1660         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1661
1662         return 0;
1663 }
1664
1665 /*
1666  * IEEE80211 stack callback functions.
1667  */
1668 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1669                              struct ieee80211_vif *vif, u16 queue,
1670                              const struct ieee80211_tx_queue_params *params)
1671 {
1672         struct rt2x00_dev *rt2x00dev = hw->priv;
1673
1674         /*
1675          * We don't support variating cw_min and cw_max variables
1676          * per queue. So by default we only configure the TX queue,
1677          * and ignore all other configurations.
1678          */
1679         if (queue != 0)
1680                 return -EINVAL;
1681
1682         if (rt2x00mac_conf_tx(hw, vif, queue, params))
1683                 return -EINVAL;
1684
1685         /*
1686          * Write configuration to register.
1687          */
1688         rt2400pci_config_cw(rt2x00dev,
1689                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1690
1691         return 0;
1692 }
1693
1694 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1695                              struct ieee80211_vif *vif)
1696 {
1697         struct rt2x00_dev *rt2x00dev = hw->priv;
1698         u64 tsf;
1699         u32 reg;
1700
1701         rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1702         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1703         rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1704         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1705
1706         return tsf;
1707 }
1708
1709 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1710 {
1711         struct rt2x00_dev *rt2x00dev = hw->priv;
1712         u32 reg;
1713
1714         rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
1715         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1716 }
1717
1718 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1719         .tx                     = rt2x00mac_tx,
1720         .start                  = rt2x00mac_start,
1721         .stop                   = rt2x00mac_stop,
1722         .add_interface          = rt2x00mac_add_interface,
1723         .remove_interface       = rt2x00mac_remove_interface,
1724         .config                 = rt2x00mac_config,
1725         .configure_filter       = rt2x00mac_configure_filter,
1726         .sw_scan_start          = rt2x00mac_sw_scan_start,
1727         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1728         .get_stats              = rt2x00mac_get_stats,
1729         .bss_info_changed       = rt2x00mac_bss_info_changed,
1730         .conf_tx                = rt2400pci_conf_tx,
1731         .get_tsf                = rt2400pci_get_tsf,
1732         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1733         .rfkill_poll            = rt2x00mac_rfkill_poll,
1734         .flush                  = rt2x00mac_flush,
1735         .set_antenna            = rt2x00mac_set_antenna,
1736         .get_antenna            = rt2x00mac_get_antenna,
1737         .get_ringparam          = rt2x00mac_get_ringparam,
1738         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1739 };
1740
1741 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1742         .irq_handler            = rt2400pci_interrupt,
1743         .txstatus_tasklet       = rt2400pci_txstatus_tasklet,
1744         .tbtt_tasklet           = rt2400pci_tbtt_tasklet,
1745         .rxdone_tasklet         = rt2400pci_rxdone_tasklet,
1746         .probe_hw               = rt2400pci_probe_hw,
1747         .initialize             = rt2x00mmio_initialize,
1748         .uninitialize           = rt2x00mmio_uninitialize,
1749         .get_entry_state        = rt2400pci_get_entry_state,
1750         .clear_entry            = rt2400pci_clear_entry,
1751         .set_device_state       = rt2400pci_set_device_state,
1752         .rfkill_poll            = rt2400pci_rfkill_poll,
1753         .link_stats             = rt2400pci_link_stats,
1754         .reset_tuner            = rt2400pci_reset_tuner,
1755         .link_tuner             = rt2400pci_link_tuner,
1756         .start_queue            = rt2400pci_start_queue,
1757         .kick_queue             = rt2400pci_kick_queue,
1758         .stop_queue             = rt2400pci_stop_queue,
1759         .flush_queue            = rt2x00mmio_flush_queue,
1760         .write_tx_desc          = rt2400pci_write_tx_desc,
1761         .write_beacon           = rt2400pci_write_beacon,
1762         .fill_rxdone            = rt2400pci_fill_rxdone,
1763         .config_filter          = rt2400pci_config_filter,
1764         .config_intf            = rt2400pci_config_intf,
1765         .config_erp             = rt2400pci_config_erp,
1766         .config_ant             = rt2400pci_config_ant,
1767         .config                 = rt2400pci_config,
1768 };
1769
1770 static void rt2400pci_queue_init(struct data_queue *queue)
1771 {
1772         switch (queue->qid) {
1773         case QID_RX:
1774                 queue->limit = 24;
1775                 queue->data_size = DATA_FRAME_SIZE;
1776                 queue->desc_size = RXD_DESC_SIZE;
1777                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1778                 break;
1779
1780         case QID_AC_VO:
1781         case QID_AC_VI:
1782         case QID_AC_BE:
1783         case QID_AC_BK:
1784                 queue->limit = 24;
1785                 queue->data_size = DATA_FRAME_SIZE;
1786                 queue->desc_size = TXD_DESC_SIZE;
1787                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1788                 break;
1789
1790         case QID_BEACON:
1791                 queue->limit = 1;
1792                 queue->data_size = MGMT_FRAME_SIZE;
1793                 queue->desc_size = TXD_DESC_SIZE;
1794                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1795                 break;
1796
1797         case QID_ATIM:
1798                 queue->limit = 8;
1799                 queue->data_size = DATA_FRAME_SIZE;
1800                 queue->desc_size = TXD_DESC_SIZE;
1801                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1802                 break;
1803
1804         default:
1805                 BUG();
1806                 break;
1807         }
1808 }
1809
1810 static const struct rt2x00_ops rt2400pci_ops = {
1811         .name                   = KBUILD_MODNAME,
1812         .max_ap_intf            = 1,
1813         .eeprom_size            = EEPROM_SIZE,
1814         .rf_size                = RF_SIZE,
1815         .tx_queues              = NUM_TX_QUEUES,
1816         .queue_init             = rt2400pci_queue_init,
1817         .lib                    = &rt2400pci_rt2x00_ops,
1818         .hw                     = &rt2400pci_mac80211_ops,
1819 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1820         .debugfs                = &rt2400pci_rt2x00debug,
1821 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1822 };
1823
1824 /*
1825  * RT2400pci module information.
1826  */
1827 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1828         { PCI_DEVICE(0x1814, 0x0101) },
1829         { 0, }
1830 };
1831
1832
1833 MODULE_AUTHOR(DRV_PROJECT);
1834 MODULE_VERSION(DRV_VERSION);
1835 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1836 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1837 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1838 MODULE_LICENSE("GPL");
1839
1840 static int rt2400pci_probe(struct pci_dev *pci_dev,
1841                            const struct pci_device_id *id)
1842 {
1843         return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1844 }
1845
1846 static struct pci_driver rt2400pci_driver = {
1847         .name           = KBUILD_MODNAME,
1848         .id_table       = rt2400pci_device_table,
1849         .probe          = rt2400pci_probe,
1850         .remove         = rt2x00pci_remove,
1851         .suspend        = rt2x00pci_suspend,
1852         .resume         = rt2x00pci_resume,
1853 };
1854
1855 module_pci_driver(rt2400pci_driver);