]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2400pci.c
rt2x00: Fix race condition when using inderect registers
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         mutex_lock(&rt2x00dev->csr_mutex);
73
74         /*
75          * Wait until the BBP becomes ready.
76          */
77         reg = rt2400pci_bbp_check(rt2x00dev);
78         if (rt2x00_get_field32(reg, BBPCSR_BUSY))
79                 goto exit_fail;
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91
92         mutex_unlock(&rt2x00dev->csr_mutex);
93
94         return;
95
96 exit_fail:
97         mutex_unlock(&rt2x00dev->csr_mutex);
98
99         ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
100 }
101
102 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
103                                const unsigned int word, u8 *value)
104 {
105         u32 reg;
106
107         mutex_lock(&rt2x00dev->csr_mutex);
108
109         /*
110          * Wait until the BBP becomes ready.
111          */
112         reg = rt2400pci_bbp_check(rt2x00dev);
113         if (rt2x00_get_field32(reg, BBPCSR_BUSY))
114                 goto exit_fail;
115
116         /*
117          * Write the request into the BBP.
118          */
119         reg = 0;
120         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
121         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
122         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
123
124         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
125
126         /*
127          * Wait until the BBP becomes ready.
128          */
129         reg = rt2400pci_bbp_check(rt2x00dev);
130         if (rt2x00_get_field32(reg, BBPCSR_BUSY))
131                 goto exit_fail;
132
133         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
134
135         mutex_unlock(&rt2x00dev->csr_mutex);
136
137         return;
138
139 exit_fail:
140         mutex_unlock(&rt2x00dev->csr_mutex);
141
142         ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
143         *value = 0xff;
144 }
145
146 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
147                                const unsigned int word, const u32 value)
148 {
149         u32 reg;
150         unsigned int i;
151
152         if (!word)
153                 return;
154
155         mutex_lock(&rt2x00dev->csr_mutex);
156
157         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
158                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
159                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
160                         goto rf_write;
161                 udelay(REGISTER_BUSY_DELAY);
162         }
163
164         mutex_unlock(&rt2x00dev->csr_mutex);
165         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
166         return;
167
168 rf_write:
169         reg = 0;
170         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
171         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
172         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
173         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
174
175         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
176         rt2x00_rf_write(rt2x00dev, word, value);
177
178         mutex_unlock(&rt2x00dev->csr_mutex);
179 }
180
181 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
182 {
183         struct rt2x00_dev *rt2x00dev = eeprom->data;
184         u32 reg;
185
186         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
187
188         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
189         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
190         eeprom->reg_data_clock =
191             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
192         eeprom->reg_chip_select =
193             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
194 }
195
196 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
197 {
198         struct rt2x00_dev *rt2x00dev = eeprom->data;
199         u32 reg = 0;
200
201         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
202         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
203         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
204                            !!eeprom->reg_data_clock);
205         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
206                            !!eeprom->reg_chip_select);
207
208         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
212 static const struct rt2x00debug rt2400pci_rt2x00debug = {
213         .owner  = THIS_MODULE,
214         .csr    = {
215                 .read           = rt2x00pci_register_read,
216                 .write          = rt2x00pci_register_write,
217                 .flags          = RT2X00DEBUGFS_OFFSET,
218                 .word_base      = CSR_REG_BASE,
219                 .word_size      = sizeof(u32),
220                 .word_count     = CSR_REG_SIZE / sizeof(u32),
221         },
222         .eeprom = {
223                 .read           = rt2x00_eeprom_read,
224                 .write          = rt2x00_eeprom_write,
225                 .word_base      = EEPROM_BASE,
226                 .word_size      = sizeof(u16),
227                 .word_count     = EEPROM_SIZE / sizeof(u16),
228         },
229         .bbp    = {
230                 .read           = rt2400pci_bbp_read,
231                 .write          = rt2400pci_bbp_write,
232                 .word_base      = BBP_BASE,
233                 .word_size      = sizeof(u8),
234                 .word_count     = BBP_SIZE / sizeof(u8),
235         },
236         .rf     = {
237                 .read           = rt2x00_rf_read,
238                 .write          = rt2400pci_rf_write,
239                 .word_base      = RF_BASE,
240                 .word_size      = sizeof(u32),
241                 .word_count     = RF_SIZE / sizeof(u32),
242         },
243 };
244 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
245
246 #ifdef CONFIG_RT2X00_LIB_RFKILL
247 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
248 {
249         u32 reg;
250
251         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
252         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
253 }
254 #else
255 #define rt2400pci_rfkill_poll   NULL
256 #endif /* CONFIG_RT2X00_LIB_RFKILL */
257
258 #ifdef CONFIG_RT2X00_LIB_LEDS
259 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
260                                      enum led_brightness brightness)
261 {
262         struct rt2x00_led *led =
263             container_of(led_cdev, struct rt2x00_led, led_dev);
264         unsigned int enabled = brightness != LED_OFF;
265         u32 reg;
266
267         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
268
269         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
270                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
271         else if (led->type == LED_TYPE_ACTIVITY)
272                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
273
274         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
275 }
276
277 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
278                                unsigned long *delay_on,
279                                unsigned long *delay_off)
280 {
281         struct rt2x00_led *led =
282             container_of(led_cdev, struct rt2x00_led, led_dev);
283         u32 reg;
284
285         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
286         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
287         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
288         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
289
290         return 0;
291 }
292
293 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
294                                struct rt2x00_led *led,
295                                enum led_type type)
296 {
297         led->rt2x00dev = rt2x00dev;
298         led->type = type;
299         led->led_dev.brightness_set = rt2400pci_brightness_set;
300         led->led_dev.blink_set = rt2400pci_blink_set;
301         led->flags = LED_INITIALIZED;
302 }
303 #endif /* CONFIG_RT2X00_LIB_LEDS */
304
305 /*
306  * Configuration handlers.
307  */
308 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
309                                     const unsigned int filter_flags)
310 {
311         u32 reg;
312
313         /*
314          * Start configuration steps.
315          * Note that the version error will always be dropped
316          * since there is no filter for it at this time.
317          */
318         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
319         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
320                            !(filter_flags & FIF_FCSFAIL));
321         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
322                            !(filter_flags & FIF_PLCPFAIL));
323         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
324                            !(filter_flags & FIF_CONTROL));
325         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
326                            !(filter_flags & FIF_PROMISC_IN_BSS));
327         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
328                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
329                            !rt2x00dev->intf_ap_count);
330         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
331         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
332 }
333
334 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
335                                   struct rt2x00_intf *intf,
336                                   struct rt2x00intf_conf *conf,
337                                   const unsigned int flags)
338 {
339         unsigned int bcn_preload;
340         u32 reg;
341
342         if (flags & CONFIG_UPDATE_TYPE) {
343                 /*
344                  * Enable beacon config
345                  */
346                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
347                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
348                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
349                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
350
351                 /*
352                  * Enable synchronisation.
353                  */
354                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
355                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
356                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
357                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
358                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
359         }
360
361         if (flags & CONFIG_UPDATE_MAC)
362                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
363                                               conf->mac, sizeof(conf->mac));
364
365         if (flags & CONFIG_UPDATE_BSSID)
366                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
367                                               conf->bssid, sizeof(conf->bssid));
368 }
369
370 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
371                                  struct rt2x00lib_erp *erp)
372 {
373         int preamble_mask;
374         u32 reg;
375
376         /*
377          * When short preamble is enabled, we should set bit 0x08
378          */
379         preamble_mask = erp->short_preamble << 3;
380
381         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
382         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
383                            erp->ack_timeout);
384         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
385                            erp->ack_consume_time);
386         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
387
388         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
389         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
390         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
391         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
392         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
393
394         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
395         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
396         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
397         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
398         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
399
400         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
401         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
402         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
403         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
404         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
405
406         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
407         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
408         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
409         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
410         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
411
412         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
413
414         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
415         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
416         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
417
418         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
419         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
420         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
421         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
422
423         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
424         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
425         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
426         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
427 }
428
429 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
430                                  struct antenna_setup *ant)
431 {
432         u8 r1;
433         u8 r4;
434
435         /*
436          * We should never come here because rt2x00lib is supposed
437          * to catch this and send us the correct antenna explicitely.
438          */
439         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
440                ant->tx == ANTENNA_SW_DIVERSITY);
441
442         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
443         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
444
445         /*
446          * Configure the TX antenna.
447          */
448         switch (ant->tx) {
449         case ANTENNA_HW_DIVERSITY:
450                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
451                 break;
452         case ANTENNA_A:
453                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
454                 break;
455         case ANTENNA_B:
456         default:
457                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
458                 break;
459         }
460
461         /*
462          * Configure the RX antenna.
463          */
464         switch (ant->rx) {
465         case ANTENNA_HW_DIVERSITY:
466                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
467                 break;
468         case ANTENNA_A:
469                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
470                 break;
471         case ANTENNA_B:
472         default:
473                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
474                 break;
475         }
476
477         rt2400pci_bbp_write(rt2x00dev, 4, r4);
478         rt2400pci_bbp_write(rt2x00dev, 1, r1);
479 }
480
481 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
482                                      struct rf_channel *rf)
483 {
484         /*
485          * Switch on tuning bits.
486          */
487         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
488         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
489
490         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
491         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
492         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
493
494         /*
495          * RF2420 chipset don't need any additional actions.
496          */
497         if (rt2x00_rf(&rt2x00dev->chip, RF2420))
498                 return;
499
500         /*
501          * For the RT2421 chipsets we need to write an invalid
502          * reference clock rate to activate auto_tune.
503          * After that we set the value back to the correct channel.
504          */
505         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
506         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
507         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
508
509         msleep(1);
510
511         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
512         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
513         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
514
515         msleep(1);
516
517         /*
518          * Switch off tuning bits.
519          */
520         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
521         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
522
523         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
524         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
525
526         /*
527          * Clear false CRC during channel switch.
528          */
529         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
530 }
531
532 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
533 {
534         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
535 }
536
537 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
538                                          struct rt2x00lib_conf *libconf)
539 {
540         u32 reg;
541
542         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
543         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
544                            libconf->conf->long_frame_max_tx_count);
545         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
546                            libconf->conf->short_frame_max_tx_count);
547         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
548 }
549
550 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
551                                       struct rt2x00lib_conf *libconf)
552 {
553         u32 reg;
554
555         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
556         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
557         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
558         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
559
560         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
561         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
562                            libconf->conf->beacon_int * 16);
563         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
564                            libconf->conf->beacon_int * 16);
565         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
566 }
567
568 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
569                              struct rt2x00lib_conf *libconf,
570                              const unsigned int flags)
571 {
572         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
573                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
574         if (flags & IEEE80211_CONF_CHANGE_POWER)
575                 rt2400pci_config_txpower(rt2x00dev,
576                                          libconf->conf->power_level);
577         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
578                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
579         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
580                 rt2400pci_config_duration(rt2x00dev, libconf);
581 }
582
583 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
584                                 const int cw_min, const int cw_max)
585 {
586         u32 reg;
587
588         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
589         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
590         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
591         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
592 }
593
594 /*
595  * Link tuning
596  */
597 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
598                                  struct link_qual *qual)
599 {
600         u32 reg;
601         u8 bbp;
602
603         /*
604          * Update FCS error count from register.
605          */
606         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
607         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
608
609         /*
610          * Update False CCA count from register.
611          */
612         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
613         qual->false_cca = bbp;
614 }
615
616 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
617 {
618         rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
619         rt2x00dev->link.vgc_level = 0x08;
620 }
621
622 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
623 {
624         u8 reg;
625
626         /*
627          * The link tuner should not run longer then 60 seconds,
628          * and should run once every 2 seconds.
629          */
630         if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
631                 return;
632
633         /*
634          * Base r13 link tuning on the false cca count.
635          */
636         rt2400pci_bbp_read(rt2x00dev, 13, &reg);
637
638         if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
639                 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
640                 rt2x00dev->link.vgc_level = reg;
641         } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
642                 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
643                 rt2x00dev->link.vgc_level = reg;
644         }
645 }
646
647 /*
648  * Initialization functions.
649  */
650 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
651 {
652         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
653         u32 word;
654
655         if (entry->queue->qid == QID_RX) {
656                 rt2x00_desc_read(entry_priv->desc, 0, &word);
657
658                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
659         } else {
660                 rt2x00_desc_read(entry_priv->desc, 0, &word);
661
662                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
663                         rt2x00_get_field32(word, TXD_W0_VALID));
664         }
665 }
666
667 static void rt2400pci_clear_entry(struct queue_entry *entry)
668 {
669         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
670         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
671         u32 word;
672
673         if (entry->queue->qid == QID_RX) {
674                 rt2x00_desc_read(entry_priv->desc, 2, &word);
675                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
676                 rt2x00_desc_write(entry_priv->desc, 2, word);
677
678                 rt2x00_desc_read(entry_priv->desc, 1, &word);
679                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
680                 rt2x00_desc_write(entry_priv->desc, 1, word);
681
682                 rt2x00_desc_read(entry_priv->desc, 0, &word);
683                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
684                 rt2x00_desc_write(entry_priv->desc, 0, word);
685         } else {
686                 rt2x00_desc_read(entry_priv->desc, 0, &word);
687                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
688                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
689                 rt2x00_desc_write(entry_priv->desc, 0, word);
690         }
691 }
692
693 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
694 {
695         struct queue_entry_priv_pci *entry_priv;
696         u32 reg;
697
698         /*
699          * Initialize registers.
700          */
701         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
702         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
703         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
704         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
705         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
706         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
707
708         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
709         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
710         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
711                            entry_priv->desc_dma);
712         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
713
714         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
715         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
716         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
717                            entry_priv->desc_dma);
718         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
719
720         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
721         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
722         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
723                            entry_priv->desc_dma);
724         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
725
726         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
727         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
728         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
729                            entry_priv->desc_dma);
730         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
731
732         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
733         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
734         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
735         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
736
737         entry_priv = rt2x00dev->rx->entries[0].priv_data;
738         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
739         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
740                            entry_priv->desc_dma);
741         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
742
743         return 0;
744 }
745
746 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
747 {
748         u32 reg;
749
750         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
751         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
752         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
753         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
754
755         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
756         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
757         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
758         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
759         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
760
761         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
762         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
763                            (rt2x00dev->rx->data_size / 128));
764         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
765
766         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
767         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
768         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
769         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
770         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
771         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
772         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
773         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
774         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
775         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
776
777         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
778
779         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
780         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
781         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
782         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
783         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
784         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
785
786         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
787         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
788         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
789         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
790         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
791         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
792         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
793         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
794
795         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
796
797         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
798                 return -EBUSY;
799
800         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
801         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
802
803         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
804         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
805         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
806
807         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
808         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
809         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
810         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
811         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
812         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
813
814         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
815         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
816         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
817         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
818         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
819
820         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
821         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
822         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
823         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
824
825         /*
826          * We must clear the FCS and FIFO error count.
827          * These registers are cleared on read,
828          * so we may pass a useless variable to store the value.
829          */
830         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
831         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
832
833         return 0;
834 }
835
836 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
837 {
838         unsigned int i;
839         u8 value;
840
841         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
842                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
843                 if ((value != 0xff) && (value != 0x00))
844                         return 0;
845                 udelay(REGISTER_BUSY_DELAY);
846         }
847
848         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
849         return -EACCES;
850 }
851
852 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
853 {
854         unsigned int i;
855         u16 eeprom;
856         u8 reg_id;
857         u8 value;
858
859         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
860                 return -EACCES;
861
862         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
863         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
864         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
865         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
866         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
867         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
868         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
869         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
870         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
871         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
872         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
873         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
874         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
875         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
876
877         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
878                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
879
880                 if (eeprom != 0xffff && eeprom != 0x0000) {
881                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
882                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
883                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
884                 }
885         }
886
887         return 0;
888 }
889
890 /*
891  * Device state switch handlers.
892  */
893 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
894                                 enum dev_state state)
895 {
896         u32 reg;
897
898         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
899         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
900                            (state == STATE_RADIO_RX_OFF) ||
901                            (state == STATE_RADIO_RX_OFF_LINK));
902         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
903 }
904
905 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
906                                  enum dev_state state)
907 {
908         int mask = (state == STATE_RADIO_IRQ_OFF);
909         u32 reg;
910
911         /*
912          * When interrupts are being enabled, the interrupt registers
913          * should clear the register to assure a clean state.
914          */
915         if (state == STATE_RADIO_IRQ_ON) {
916                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
917                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
918         }
919
920         /*
921          * Only toggle the interrupts bits we are going to use.
922          * Non-checked interrupt bits are disabled by default.
923          */
924         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
925         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
926         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
927         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
928         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
929         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
930         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
931 }
932
933 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
934 {
935         /*
936          * Initialize all registers.
937          */
938         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
939                      rt2400pci_init_registers(rt2x00dev) ||
940                      rt2400pci_init_bbp(rt2x00dev)))
941                 return -EIO;
942
943         return 0;
944 }
945
946 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
947 {
948         u32 reg;
949
950         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
951
952         /*
953          * Disable synchronisation.
954          */
955         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
956
957         /*
958          * Cancel RX and TX.
959          */
960         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
961         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
962         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
963 }
964
965 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
966                                enum dev_state state)
967 {
968         u32 reg;
969         unsigned int i;
970         char put_to_sleep;
971         char bbp_state;
972         char rf_state;
973
974         put_to_sleep = (state != STATE_AWAKE);
975
976         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
977         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
978         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
979         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
980         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
981         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
982
983         /*
984          * Device is not guaranteed to be in the requested state yet.
985          * We must wait until the register indicates that the
986          * device has entered the correct state.
987          */
988         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
989                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
990                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
991                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
992                 if (bbp_state == state && rf_state == state)
993                         return 0;
994                 msleep(10);
995         }
996
997         return -EBUSY;
998 }
999
1000 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1001                                       enum dev_state state)
1002 {
1003         int retval = 0;
1004
1005         switch (state) {
1006         case STATE_RADIO_ON:
1007                 retval = rt2400pci_enable_radio(rt2x00dev);
1008                 break;
1009         case STATE_RADIO_OFF:
1010                 rt2400pci_disable_radio(rt2x00dev);
1011                 break;
1012         case STATE_RADIO_RX_ON:
1013         case STATE_RADIO_RX_ON_LINK:
1014         case STATE_RADIO_RX_OFF:
1015         case STATE_RADIO_RX_OFF_LINK:
1016                 rt2400pci_toggle_rx(rt2x00dev, state);
1017                 break;
1018         case STATE_RADIO_IRQ_ON:
1019         case STATE_RADIO_IRQ_OFF:
1020                 rt2400pci_toggle_irq(rt2x00dev, state);
1021                 break;
1022         case STATE_DEEP_SLEEP:
1023         case STATE_SLEEP:
1024         case STATE_STANDBY:
1025         case STATE_AWAKE:
1026                 retval = rt2400pci_set_state(rt2x00dev, state);
1027                 break;
1028         default:
1029                 retval = -ENOTSUPP;
1030                 break;
1031         }
1032
1033         if (unlikely(retval))
1034                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1035                       state, retval);
1036
1037         return retval;
1038 }
1039
1040 /*
1041  * TX descriptor initialization
1042  */
1043 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1044                                     struct sk_buff *skb,
1045                                     struct txentry_desc *txdesc)
1046 {
1047         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1048         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1049         __le32 *txd = skbdesc->desc;
1050         u32 word;
1051
1052         /*
1053          * Start writing the descriptor words.
1054          */
1055         rt2x00_desc_read(entry_priv->desc, 1, &word);
1056         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1057         rt2x00_desc_write(entry_priv->desc, 1, word);
1058
1059         rt2x00_desc_read(txd, 2, &word);
1060         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1061         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1062         rt2x00_desc_write(txd, 2, word);
1063
1064         rt2x00_desc_read(txd, 3, &word);
1065         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1066         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1067         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1068         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1069         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1070         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1071         rt2x00_desc_write(txd, 3, word);
1072
1073         rt2x00_desc_read(txd, 4, &word);
1074         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1075         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1076         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1077         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1078         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1079         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1080         rt2x00_desc_write(txd, 4, word);
1081
1082         rt2x00_desc_read(txd, 0, &word);
1083         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1084         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1085         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1086                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1087         rt2x00_set_field32(&word, TXD_W0_ACK,
1088                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1089         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1090                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1091         rt2x00_set_field32(&word, TXD_W0_RTS,
1092                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1093         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1094         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1095                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1096         rt2x00_desc_write(txd, 0, word);
1097 }
1098
1099 /*
1100  * TX data initialization
1101  */
1102 static void rt2400pci_write_beacon(struct queue_entry *entry)
1103 {
1104         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1105         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1106         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1107         u32 word;
1108         u32 reg;
1109
1110         /*
1111          * Disable beaconing while we are reloading the beacon data,
1112          * otherwise we might be sending out invalid data.
1113          */
1114         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1115         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1116         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1117         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1118         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1119
1120         /*
1121          * Replace rt2x00lib allocated descriptor with the
1122          * pointer to the _real_ hardware descriptor.
1123          * After that, map the beacon to DMA and update the
1124          * descriptor.
1125          */
1126         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1127         skbdesc->desc = entry_priv->desc;
1128
1129         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1130
1131         rt2x00_desc_read(entry_priv->desc, 1, &word);
1132         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1133         rt2x00_desc_write(entry_priv->desc, 1, word);
1134 }
1135
1136 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1137                                     const enum data_queue_qid queue)
1138 {
1139         u32 reg;
1140
1141         if (queue == QID_BEACON) {
1142                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1143                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1144                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1145                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1146                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1147                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1148                 }
1149                 return;
1150         }
1151
1152         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1153         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1154         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1155         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1156         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1157 }
1158
1159 /*
1160  * RX control handlers
1161  */
1162 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1163                                   struct rxdone_entry_desc *rxdesc)
1164 {
1165         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1166         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1167         u32 word0;
1168         u32 word2;
1169         u32 word3;
1170         u32 word4;
1171         u64 tsf;
1172         u32 rx_low;
1173         u32 rx_high;
1174
1175         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1176         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1177         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1178         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1179
1180         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1181                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1182         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1183                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1184
1185         /*
1186          * We only get the lower 32bits from the timestamp,
1187          * to get the full 64bits we must complement it with
1188          * the timestamp from get_tsf().
1189          * Note that when a wraparound of the lower 32bits
1190          * has occurred between the frame arrival and the get_tsf()
1191          * call, we must decrease the higher 32bits with 1 to get
1192          * to correct value.
1193          */
1194         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1195         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1196         rx_high = upper_32_bits(tsf);
1197
1198         if ((u32)tsf <= rx_low)
1199                 rx_high--;
1200
1201         /*
1202          * Obtain the status about this packet.
1203          * The signal is the PLCP value, and needs to be stripped
1204          * of the preamble bit (0x08).
1205          */
1206         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1207         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1208         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1209             entry->queue->rt2x00dev->rssi_offset;
1210         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1211
1212         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1213         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1214                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1215 }
1216
1217 /*
1218  * Interrupt functions.
1219  */
1220 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1221                              const enum data_queue_qid queue_idx)
1222 {
1223         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1224         struct queue_entry_priv_pci *entry_priv;
1225         struct queue_entry *entry;
1226         struct txdone_entry_desc txdesc;
1227         u32 word;
1228
1229         while (!rt2x00queue_empty(queue)) {
1230                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1231                 entry_priv = entry->priv_data;
1232                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1233
1234                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1235                     !rt2x00_get_field32(word, TXD_W0_VALID))
1236                         break;
1237
1238                 /*
1239                  * Obtain the status about this packet.
1240                  */
1241                 txdesc.flags = 0;
1242                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1243                 case 0: /* Success */
1244                 case 1: /* Success with retry */
1245                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1246                         break;
1247                 case 2: /* Failure, excessive retries */
1248                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1249                         /* Don't break, this is a failed frame! */
1250                 default: /* Failure */
1251                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1252                 }
1253                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1254
1255                 rt2x00lib_txdone(entry, &txdesc);
1256         }
1257 }
1258
1259 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1260 {
1261         struct rt2x00_dev *rt2x00dev = dev_instance;
1262         u32 reg;
1263
1264         /*
1265          * Get the interrupt sources & saved to local variable.
1266          * Write register value back to clear pending interrupts.
1267          */
1268         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1269         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1270
1271         if (!reg)
1272                 return IRQ_NONE;
1273
1274         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1275                 return IRQ_HANDLED;
1276
1277         /*
1278          * Handle interrupts, walk through all bits
1279          * and run the tasks, the bits are checked in order of
1280          * priority.
1281          */
1282
1283         /*
1284          * 1 - Beacon timer expired interrupt.
1285          */
1286         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1287                 rt2x00lib_beacondone(rt2x00dev);
1288
1289         /*
1290          * 2 - Rx ring done interrupt.
1291          */
1292         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1293                 rt2x00pci_rxdone(rt2x00dev);
1294
1295         /*
1296          * 3 - Atim ring transmit done interrupt.
1297          */
1298         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1299                 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1300
1301         /*
1302          * 4 - Priority ring transmit done interrupt.
1303          */
1304         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1305                 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1306
1307         /*
1308          * 5 - Tx ring transmit done interrupt.
1309          */
1310         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1311                 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1312
1313         return IRQ_HANDLED;
1314 }
1315
1316 /*
1317  * Device probe functions.
1318  */
1319 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1320 {
1321         struct eeprom_93cx6 eeprom;
1322         u32 reg;
1323         u16 word;
1324         u8 *mac;
1325
1326         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1327
1328         eeprom.data = rt2x00dev;
1329         eeprom.register_read = rt2400pci_eepromregister_read;
1330         eeprom.register_write = rt2400pci_eepromregister_write;
1331         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1332             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1333         eeprom.reg_data_in = 0;
1334         eeprom.reg_data_out = 0;
1335         eeprom.reg_data_clock = 0;
1336         eeprom.reg_chip_select = 0;
1337
1338         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1339                                EEPROM_SIZE / sizeof(u16));
1340
1341         /*
1342          * Start validation of the data that has been read.
1343          */
1344         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1345         if (!is_valid_ether_addr(mac)) {
1346                 random_ether_addr(mac);
1347                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1348         }
1349
1350         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1351         if (word == 0xffff) {
1352                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1353                 return -EINVAL;
1354         }
1355
1356         return 0;
1357 }
1358
1359 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1360 {
1361         u32 reg;
1362         u16 value;
1363         u16 eeprom;
1364
1365         /*
1366          * Read EEPROM word for configuration.
1367          */
1368         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1369
1370         /*
1371          * Identify RF chipset.
1372          */
1373         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1374         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1375         rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1376
1377         if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1378             !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1379                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1380                 return -ENODEV;
1381         }
1382
1383         /*
1384          * Identify default antenna configuration.
1385          */
1386         rt2x00dev->default_ant.tx =
1387             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1388         rt2x00dev->default_ant.rx =
1389             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1390
1391         /*
1392          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1393          * I am not 100% sure about this, but the legacy drivers do not
1394          * indicate antenna swapping in software is required when
1395          * diversity is enabled.
1396          */
1397         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1398                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1399         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1400                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1401
1402         /*
1403          * Store led mode, for correct led behaviour.
1404          */
1405 #ifdef CONFIG_RT2X00_LIB_LEDS
1406         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1407
1408         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1409         if (value == LED_MODE_TXRX_ACTIVITY)
1410                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1411                                    LED_TYPE_ACTIVITY);
1412 #endif /* CONFIG_RT2X00_LIB_LEDS */
1413
1414         /*
1415          * Detect if this device has an hardware controlled radio.
1416          */
1417 #ifdef CONFIG_RT2X00_LIB_RFKILL
1418         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1419                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1420 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1421
1422         /*
1423          * Check if the BBP tuning should be enabled.
1424          */
1425         if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1426                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1427
1428         return 0;
1429 }
1430
1431 /*
1432  * RF value list for RF2420 & RF2421
1433  * Supports: 2.4 GHz
1434  */
1435 static const struct rf_channel rf_vals_b[] = {
1436         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1437         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1438         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1439         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1440         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1441         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1442         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1443         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1444         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1445         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1446         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1447         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1448         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1449         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1450 };
1451
1452 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1453 {
1454         struct hw_mode_spec *spec = &rt2x00dev->spec;
1455         struct channel_info *info;
1456         char *tx_power;
1457         unsigned int i;
1458
1459         /*
1460          * Initialize all hw fields.
1461          */
1462         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1463                                IEEE80211_HW_SIGNAL_DBM;
1464         rt2x00dev->hw->extra_tx_headroom = 0;
1465
1466         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1467         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1468                                 rt2x00_eeprom_addr(rt2x00dev,
1469                                                    EEPROM_MAC_ADDR_0));
1470
1471         /*
1472          * Initialize hw_mode information.
1473          */
1474         spec->supported_bands = SUPPORT_BAND_2GHZ;
1475         spec->supported_rates = SUPPORT_RATE_CCK;
1476
1477         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1478         spec->channels = rf_vals_b;
1479
1480         /*
1481          * Create channel information array
1482          */
1483         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1484         if (!info)
1485                 return -ENOMEM;
1486
1487         spec->channels_info = info;
1488
1489         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1490         for (i = 0; i < 14; i++)
1491                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1492
1493         return 0;
1494 }
1495
1496 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1497 {
1498         int retval;
1499
1500         /*
1501          * Allocate eeprom data.
1502          */
1503         retval = rt2400pci_validate_eeprom(rt2x00dev);
1504         if (retval)
1505                 return retval;
1506
1507         retval = rt2400pci_init_eeprom(rt2x00dev);
1508         if (retval)
1509                 return retval;
1510
1511         /*
1512          * Initialize hw specifications.
1513          */
1514         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1515         if (retval)
1516                 return retval;
1517
1518         /*
1519          * This device requires the atim queue and DMA-mapped skbs.
1520          */
1521         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1522         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1523
1524         /*
1525          * Set the rssi offset.
1526          */
1527         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1528
1529         return 0;
1530 }
1531
1532 /*
1533  * IEEE80211 stack callback functions.
1534  */
1535 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1536                              const struct ieee80211_tx_queue_params *params)
1537 {
1538         struct rt2x00_dev *rt2x00dev = hw->priv;
1539
1540         /*
1541          * We don't support variating cw_min and cw_max variables
1542          * per queue. So by default we only configure the TX queue,
1543          * and ignore all other configurations.
1544          */
1545         if (queue != 0)
1546                 return -EINVAL;
1547
1548         if (rt2x00mac_conf_tx(hw, queue, params))
1549                 return -EINVAL;
1550
1551         /*
1552          * Write configuration to register.
1553          */
1554         rt2400pci_config_cw(rt2x00dev,
1555                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1556
1557         return 0;
1558 }
1559
1560 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1561 {
1562         struct rt2x00_dev *rt2x00dev = hw->priv;
1563         u64 tsf;
1564         u32 reg;
1565
1566         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1567         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1568         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1569         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1570
1571         return tsf;
1572 }
1573
1574 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1575 {
1576         struct rt2x00_dev *rt2x00dev = hw->priv;
1577         u32 reg;
1578
1579         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1580         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1581 }
1582
1583 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1584         .tx                     = rt2x00mac_tx,
1585         .start                  = rt2x00mac_start,
1586         .stop                   = rt2x00mac_stop,
1587         .add_interface          = rt2x00mac_add_interface,
1588         .remove_interface       = rt2x00mac_remove_interface,
1589         .config                 = rt2x00mac_config,
1590         .config_interface       = rt2x00mac_config_interface,
1591         .configure_filter       = rt2x00mac_configure_filter,
1592         .get_stats              = rt2x00mac_get_stats,
1593         .bss_info_changed       = rt2x00mac_bss_info_changed,
1594         .conf_tx                = rt2400pci_conf_tx,
1595         .get_tx_stats           = rt2x00mac_get_tx_stats,
1596         .get_tsf                = rt2400pci_get_tsf,
1597         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1598 };
1599
1600 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1601         .irq_handler            = rt2400pci_interrupt,
1602         .probe_hw               = rt2400pci_probe_hw,
1603         .initialize             = rt2x00pci_initialize,
1604         .uninitialize           = rt2x00pci_uninitialize,
1605         .get_entry_state        = rt2400pci_get_entry_state,
1606         .clear_entry            = rt2400pci_clear_entry,
1607         .set_device_state       = rt2400pci_set_device_state,
1608         .rfkill_poll            = rt2400pci_rfkill_poll,
1609         .link_stats             = rt2400pci_link_stats,
1610         .reset_tuner            = rt2400pci_reset_tuner,
1611         .link_tuner             = rt2400pci_link_tuner,
1612         .write_tx_desc          = rt2400pci_write_tx_desc,
1613         .write_tx_data          = rt2x00pci_write_tx_data,
1614         .write_beacon           = rt2400pci_write_beacon,
1615         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1616         .fill_rxdone            = rt2400pci_fill_rxdone,
1617         .config_filter          = rt2400pci_config_filter,
1618         .config_intf            = rt2400pci_config_intf,
1619         .config_erp             = rt2400pci_config_erp,
1620         .config_ant             = rt2400pci_config_ant,
1621         .config                 = rt2400pci_config,
1622 };
1623
1624 static const struct data_queue_desc rt2400pci_queue_rx = {
1625         .entry_num              = RX_ENTRIES,
1626         .data_size              = DATA_FRAME_SIZE,
1627         .desc_size              = RXD_DESC_SIZE,
1628         .priv_size              = sizeof(struct queue_entry_priv_pci),
1629 };
1630
1631 static const struct data_queue_desc rt2400pci_queue_tx = {
1632         .entry_num              = TX_ENTRIES,
1633         .data_size              = DATA_FRAME_SIZE,
1634         .desc_size              = TXD_DESC_SIZE,
1635         .priv_size              = sizeof(struct queue_entry_priv_pci),
1636 };
1637
1638 static const struct data_queue_desc rt2400pci_queue_bcn = {
1639         .entry_num              = BEACON_ENTRIES,
1640         .data_size              = MGMT_FRAME_SIZE,
1641         .desc_size              = TXD_DESC_SIZE,
1642         .priv_size              = sizeof(struct queue_entry_priv_pci),
1643 };
1644
1645 static const struct data_queue_desc rt2400pci_queue_atim = {
1646         .entry_num              = ATIM_ENTRIES,
1647         .data_size              = DATA_FRAME_SIZE,
1648         .desc_size              = TXD_DESC_SIZE,
1649         .priv_size              = sizeof(struct queue_entry_priv_pci),
1650 };
1651
1652 static const struct rt2x00_ops rt2400pci_ops = {
1653         .name           = KBUILD_MODNAME,
1654         .max_sta_intf   = 1,
1655         .max_ap_intf    = 1,
1656         .eeprom_size    = EEPROM_SIZE,
1657         .rf_size        = RF_SIZE,
1658         .tx_queues      = NUM_TX_QUEUES,
1659         .rx             = &rt2400pci_queue_rx,
1660         .tx             = &rt2400pci_queue_tx,
1661         .bcn            = &rt2400pci_queue_bcn,
1662         .atim           = &rt2400pci_queue_atim,
1663         .lib            = &rt2400pci_rt2x00_ops,
1664         .hw             = &rt2400pci_mac80211_ops,
1665 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1666         .debugfs        = &rt2400pci_rt2x00debug,
1667 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1668 };
1669
1670 /*
1671  * RT2400pci module information.
1672  */
1673 static struct pci_device_id rt2400pci_device_table[] = {
1674         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1675         { 0, }
1676 };
1677
1678 MODULE_AUTHOR(DRV_PROJECT);
1679 MODULE_VERSION(DRV_VERSION);
1680 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1681 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1682 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1683 MODULE_LICENSE("GPL");
1684
1685 static struct pci_driver rt2400pci_driver = {
1686         .name           = KBUILD_MODNAME,
1687         .id_table       = rt2400pci_device_table,
1688         .probe          = rt2x00pci_probe,
1689         .remove         = __devexit_p(rt2x00pci_remove),
1690         .suspend        = rt2x00pci_suspend,
1691         .resume         = rt2x00pci_resume,
1692 };
1693
1694 static int __init rt2400pci_init(void)
1695 {
1696         return pci_register_driver(&rt2400pci_driver);
1697 }
1698
1699 static void __exit rt2400pci_exit(void)
1700 {
1701         pci_unregister_driver(&rt2400pci_driver);
1702 }
1703
1704 module_init(rt2400pci_init);
1705 module_exit(rt2400pci_exit);