]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
rt2x00: Cleanup indirect register access
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the csr_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
80                                       USB_VENDOR_REQUEST_IN, offset,
81                                       value, length,
82                                       REGISTER_TIMEOUT16(length));
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
110                                       USB_VENDOR_REQUEST_OUT, offset,
111                                       value, length,
112                                       REGISTER_TIMEOUT16(length));
113 }
114
115 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
116                                   const unsigned int offset,
117                                   struct rt2x00_field16 field,
118                                   u16 *reg)
119 {
120         unsigned int i;
121
122         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
123                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
124                 if (!rt2x00_get_field16(*reg, field))
125                         return 1;
126                 udelay(REGISTER_BUSY_DELAY);
127         }
128
129         ERROR(rt2x00dev, "Indirect register access failed: "
130               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
131         *reg = ~0;
132
133         return 0;
134 }
135
136 #define WAIT_FOR_BBP(__dev, __reg) \
137         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
138 #define WAIT_FOR_RF(__dev, __reg) \
139         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
140
141 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
142                                 const unsigned int word, const u8 value)
143 {
144         u16 reg;
145
146         mutex_lock(&rt2x00dev->csr_mutex);
147
148         /*
149          * Wait until the BBP becomes available, afterwards we
150          * can safely write the new data into the register.
151          */
152         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
153                 reg = 0;
154                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
155                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
156                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
157
158                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
159         }
160
161         mutex_unlock(&rt2x00dev->csr_mutex);
162 }
163
164 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
165                                const unsigned int word, u8 *value)
166 {
167         u16 reg;
168
169         mutex_lock(&rt2x00dev->csr_mutex);
170
171         /*
172          * Wait until the BBP becomes available, afterwards we
173          * can safely write the read request into the register.
174          * After the data has been written, we wait until hardware
175          * returns the correct value, if at any time the register
176          * doesn't become available in time, reg will be 0xffffffff
177          * which means we return 0xff to the caller.
178          */
179         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
180                 reg = 0;
181                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
182                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
183
184                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
185
186                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
187                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
188         }
189
190         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
191
192         mutex_unlock(&rt2x00dev->csr_mutex);
193 }
194
195 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
196                                const unsigned int word, const u32 value)
197 {
198         u16 reg;
199
200         if (!word)
201                 return;
202
203         mutex_lock(&rt2x00dev->csr_mutex);
204
205         /*
206          * Wait until the RF becomes available, afterwards we
207          * can safely write the new data into the register.
208          */
209         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210                 reg = 0;
211                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219
220                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221                 rt2x00_rf_write(rt2x00dev, word, value);
222         }
223
224         mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229                                      const unsigned int offset,
230                                      u32 *value)
231 {
232         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
233 }
234
235 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
236                                       const unsigned int offset,
237                                       u32 value)
238 {
239         rt2500usb_register_write(rt2x00dev, offset, value);
240 }
241
242 static const struct rt2x00debug rt2500usb_rt2x00debug = {
243         .owner  = THIS_MODULE,
244         .csr    = {
245                 .read           = _rt2500usb_register_read,
246                 .write          = _rt2500usb_register_write,
247                 .flags          = RT2X00DEBUGFS_OFFSET,
248                 .word_base      = CSR_REG_BASE,
249                 .word_size      = sizeof(u16),
250                 .word_count     = CSR_REG_SIZE / sizeof(u16),
251         },
252         .eeprom = {
253                 .read           = rt2x00_eeprom_read,
254                 .write          = rt2x00_eeprom_write,
255                 .word_base      = EEPROM_BASE,
256                 .word_size      = sizeof(u16),
257                 .word_count     = EEPROM_SIZE / sizeof(u16),
258         },
259         .bbp    = {
260                 .read           = rt2500usb_bbp_read,
261                 .write          = rt2500usb_bbp_write,
262                 .word_base      = BBP_BASE,
263                 .word_size      = sizeof(u8),
264                 .word_count     = BBP_SIZE / sizeof(u8),
265         },
266         .rf     = {
267                 .read           = rt2x00_rf_read,
268                 .write          = rt2500usb_rf_write,
269                 .word_base      = RF_BASE,
270                 .word_size      = sizeof(u32),
271                 .word_count     = RF_SIZE / sizeof(u32),
272         },
273 };
274 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
275
276 #ifdef CONFIG_RT2X00_LIB_LEDS
277 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
278                                      enum led_brightness brightness)
279 {
280         struct rt2x00_led *led =
281             container_of(led_cdev, struct rt2x00_led, led_dev);
282         unsigned int enabled = brightness != LED_OFF;
283         u16 reg;
284
285         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
286
287         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
288                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
289         else if (led->type == LED_TYPE_ACTIVITY)
290                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
291
292         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
293 }
294
295 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
296                                unsigned long *delay_on,
297                                unsigned long *delay_off)
298 {
299         struct rt2x00_led *led =
300             container_of(led_cdev, struct rt2x00_led, led_dev);
301         u16 reg;
302
303         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
304         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
305         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
306         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
307
308         return 0;
309 }
310
311 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
312                                struct rt2x00_led *led,
313                                enum led_type type)
314 {
315         led->rt2x00dev = rt2x00dev;
316         led->type = type;
317         led->led_dev.brightness_set = rt2500usb_brightness_set;
318         led->led_dev.blink_set = rt2500usb_blink_set;
319         led->flags = LED_INITIALIZED;
320 }
321 #endif /* CONFIG_RT2X00_LIB_LEDS */
322
323 /*
324  * Configuration handlers.
325  */
326 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
327                                     const unsigned int filter_flags)
328 {
329         u16 reg;
330
331         /*
332          * Start configuration steps.
333          * Note that the version error will always be dropped
334          * and broadcast frames will always be accepted since
335          * there is no filter for it at this time.
336          */
337         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
338         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
339                            !(filter_flags & FIF_FCSFAIL));
340         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
341                            !(filter_flags & FIF_PLCPFAIL));
342         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
343                            !(filter_flags & FIF_CONTROL));
344         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
345                            !(filter_flags & FIF_PROMISC_IN_BSS));
346         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
347                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
348                            !rt2x00dev->intf_ap_count);
349         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
350         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
351                            !(filter_flags & FIF_ALLMULTI));
352         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
353         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
354 }
355
356 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
357                                   struct rt2x00_intf *intf,
358                                   struct rt2x00intf_conf *conf,
359                                   const unsigned int flags)
360 {
361         unsigned int bcn_preload;
362         u16 reg;
363
364         if (flags & CONFIG_UPDATE_TYPE) {
365                 /*
366                  * Enable beacon config
367                  */
368                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
369                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
370                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
371                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
372                                    2 * (conf->type != NL80211_IFTYPE_STATION));
373                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
374
375                 /*
376                  * Enable synchronisation.
377                  */
378                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
379                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
380                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
381
382                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
383                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
384                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
385                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
386                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
387         }
388
389         if (flags & CONFIG_UPDATE_MAC)
390                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
391                                               (3 * sizeof(__le16)));
392
393         if (flags & CONFIG_UPDATE_BSSID)
394                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
395                                               (3 * sizeof(__le16)));
396 }
397
398 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
399                                  struct rt2x00lib_erp *erp)
400 {
401         u16 reg;
402
403         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
404         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
405         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
406
407         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
408         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
409                            !!erp->short_preamble);
410         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
411
412         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
413
414         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
415         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
416         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
417 }
418
419 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
420                                  struct antenna_setup *ant)
421 {
422         u8 r2;
423         u8 r14;
424         u16 csr5;
425         u16 csr6;
426
427         /*
428          * We should never come here because rt2x00lib is supposed
429          * to catch this and send us the correct antenna explicitely.
430          */
431         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
432                ant->tx == ANTENNA_SW_DIVERSITY);
433
434         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
435         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
436         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
437         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
438
439         /*
440          * Configure the TX antenna.
441          */
442         switch (ant->tx) {
443         case ANTENNA_HW_DIVERSITY:
444                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
445                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
446                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
447                 break;
448         case ANTENNA_A:
449                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
450                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
451                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
452                 break;
453         case ANTENNA_B:
454         default:
455                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
456                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
457                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
458                 break;
459         }
460
461         /*
462          * Configure the RX antenna.
463          */
464         switch (ant->rx) {
465         case ANTENNA_HW_DIVERSITY:
466                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
467                 break;
468         case ANTENNA_A:
469                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
470                 break;
471         case ANTENNA_B:
472         default:
473                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
474                 break;
475         }
476
477         /*
478          * RT2525E and RT5222 need to flip TX I/Q
479          */
480         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
481             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
482                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
483                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
484                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
485
486                 /*
487                  * RT2525E does not need RX I/Q Flip.
488                  */
489                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
490                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
491         } else {
492                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
493                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
494         }
495
496         rt2500usb_bbp_write(rt2x00dev, 2, r2);
497         rt2500usb_bbp_write(rt2x00dev, 14, r14);
498         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
499         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
500 }
501
502 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
503                                      struct rf_channel *rf, const int txpower)
504 {
505         /*
506          * Set TXpower.
507          */
508         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
509
510         /*
511          * For RT2525E we should first set the channel to half band higher.
512          */
513         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
514                 static const u32 vals[] = {
515                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
516                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
517                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
518                         0x00000902, 0x00000906
519                 };
520
521                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
522                 if (rf->rf4)
523                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
524         }
525
526         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
527         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
528         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
529         if (rf->rf4)
530                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
531 }
532
533 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
534                                      const int txpower)
535 {
536         u32 rf3;
537
538         rt2x00_rf_read(rt2x00dev, 3, &rf3);
539         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
540         rt2500usb_rf_write(rt2x00dev, 3, rf3);
541 }
542
543 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
544                                       struct rt2x00lib_conf *libconf)
545 {
546         u16 reg;
547
548         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
549         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
550                            libconf->conf->beacon_int * 4);
551         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
552 }
553
554 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
555                              struct rt2x00lib_conf *libconf,
556                              const unsigned int flags)
557 {
558         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
559                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
560                                          libconf->conf->power_level);
561         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
562             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
563                 rt2500usb_config_txpower(rt2x00dev,
564                                          libconf->conf->power_level);
565         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
566                 rt2500usb_config_duration(rt2x00dev, libconf);
567 }
568
569 /*
570  * Link tuning
571  */
572 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
573                                  struct link_qual *qual)
574 {
575         u16 reg;
576
577         /*
578          * Update FCS error count from register.
579          */
580         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
581         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
582
583         /*
584          * Update False CCA count from register.
585          */
586         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
587         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
588 }
589
590 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
591 {
592         u16 eeprom;
593         u16 value;
594
595         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
596         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
597         rt2500usb_bbp_write(rt2x00dev, 24, value);
598
599         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
600         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
601         rt2500usb_bbp_write(rt2x00dev, 25, value);
602
603         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
604         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
605         rt2500usb_bbp_write(rt2x00dev, 61, value);
606
607         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
608         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
609         rt2500usb_bbp_write(rt2x00dev, 17, value);
610
611         rt2x00dev->link.vgc_level = value;
612 }
613
614 /*
615  * NOTE: This function is directly ported from legacy driver, but
616  * despite it being declared it was never called. Although link tuning
617  * sounds like a good idea, and usually works well for the other drivers,
618  * it does _not_ work with rt2500usb. Enabling this function will result
619  * in TX capabilities only until association kicks in. Immediately
620  * after the successful association all TX frames will be kept in the
621  * hardware queue and never transmitted.
622  */
623 #if 0
624 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
625 {
626         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
627         u16 bbp_thresh;
628         u16 vgc_bound;
629         u16 sens;
630         u16 r24;
631         u16 r25;
632         u16 r61;
633         u16 r17_sens;
634         u8 r17;
635         u8 up_bound;
636         u8 low_bound;
637
638         /*
639          * Read current r17 value, as well as the sensitivity values
640          * for the r17 register.
641          */
642         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
643         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
644
645         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
646         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
647         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
648
649         /*
650          * If we are not associated, we should go straight to the
651          * dynamic CCA tuning.
652          */
653         if (!rt2x00dev->intf_associated)
654                 goto dynamic_cca_tune;
655
656         /*
657          * Determine the BBP tuning threshold and correctly
658          * set BBP 24, 25 and 61.
659          */
660         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
661         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
662
663         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
664         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
665         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
666
667         if ((rssi + bbp_thresh) > 0) {
668                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
669                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
670                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
671         } else {
672                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
673                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
674                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
675         }
676
677         rt2500usb_bbp_write(rt2x00dev, 24, r24);
678         rt2500usb_bbp_write(rt2x00dev, 25, r25);
679         rt2500usb_bbp_write(rt2x00dev, 61, r61);
680
681         /*
682          * A too low RSSI will cause too much false CCA which will
683          * then corrupt the R17 tuning. To remidy this the tuning should
684          * be stopped (While making sure the R17 value will not exceed limits)
685          */
686         if (rssi >= -40) {
687                 if (r17 != 0x60)
688                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
689                 return;
690         }
691
692         /*
693          * Special big-R17 for short distance
694          */
695         if (rssi >= -58) {
696                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
697                 if (r17 != sens)
698                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
699                 return;
700         }
701
702         /*
703          * Special mid-R17 for middle distance
704          */
705         if (rssi >= -74) {
706                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
707                 if (r17 != sens)
708                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
709                 return;
710         }
711
712         /*
713          * Leave short or middle distance condition, restore r17
714          * to the dynamic tuning range.
715          */
716         low_bound = 0x32;
717         if (rssi < -77)
718                 up_bound -= (-77 - rssi);
719
720         if (up_bound < low_bound)
721                 up_bound = low_bound;
722
723         if (r17 > up_bound) {
724                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
725                 rt2x00dev->link.vgc_level = up_bound;
726                 return;
727         }
728
729 dynamic_cca_tune:
730
731         /*
732          * R17 is inside the dynamic tuning range,
733          * start tuning the link based on the false cca counter.
734          */
735         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
736                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
737                 rt2x00dev->link.vgc_level = r17;
738         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
739                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
740                 rt2x00dev->link.vgc_level = r17;
741         }
742 }
743 #else
744 #define rt2500usb_link_tuner    NULL
745 #endif
746
747 /*
748  * Initialization functions.
749  */
750 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
751 {
752         u16 reg;
753
754         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
755                                     USB_MODE_TEST, REGISTER_TIMEOUT);
756         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
757                                     0x00f0, REGISTER_TIMEOUT);
758
759         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
760         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
761         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
762
763         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
764         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
765
766         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
767         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
768         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
769         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
770         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
771
772         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
773         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
774         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
775         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
776         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
777
778         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
779         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
780         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
781         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
782         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
783         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
784
785         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
786         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
787         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
788         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
789         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
790         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
791
792         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
793         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
794         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
795         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
796         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
797         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
798
799         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
800         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
801         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
802         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
803         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
804         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
805
806         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
807         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
808         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
809         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
810         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
811         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
812
813         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
814         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
815
816         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
817                 return -EBUSY;
818
819         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
820         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
821         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
822         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
823         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
824
825         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
826                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
827                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
828         } else {
829                 reg = 0;
830                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
831                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
832         }
833         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
834
835         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
836         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
837         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
838         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
839
840         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
841         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
842                            rt2x00dev->rx->data_size);
843         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
844
845         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
846         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
847         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
848         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
849
850         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
851         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
852         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
853
854         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
855         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
856         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
857
858         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
859         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
860         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
861
862         return 0;
863 }
864
865 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
866 {
867         unsigned int i;
868         u8 value;
869
870         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
871                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
872                 if ((value != 0xff) && (value != 0x00))
873                         return 0;
874                 udelay(REGISTER_BUSY_DELAY);
875         }
876
877         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
878         return -EACCES;
879 }
880
881 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
882 {
883         unsigned int i;
884         u16 eeprom;
885         u8 value;
886         u8 reg_id;
887
888         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
889                 return -EACCES;
890
891         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
892         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
893         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
894         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
895         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
896         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
897         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
898         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
899         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
900         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
901         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
902         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
903         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
904         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
905         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
906         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
907         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
908         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
909         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
910         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
911         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
912         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
913         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
914         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
915         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
916         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
917         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
918         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
919         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
920         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
921         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
922
923         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
924                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
925
926                 if (eeprom != 0xffff && eeprom != 0x0000) {
927                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
928                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
929                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
930                 }
931         }
932
933         return 0;
934 }
935
936 /*
937  * Device state switch handlers.
938  */
939 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
940                                 enum dev_state state)
941 {
942         u16 reg;
943
944         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
945         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
946                            (state == STATE_RADIO_RX_OFF) ||
947                            (state == STATE_RADIO_RX_OFF_LINK));
948         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
949 }
950
951 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
952 {
953         /*
954          * Initialize all registers.
955          */
956         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
957                      rt2500usb_init_bbp(rt2x00dev)))
958                 return -EIO;
959
960         return 0;
961 }
962
963 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
964 {
965         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
966         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
967
968         /*
969          * Disable synchronisation.
970          */
971         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
972
973         rt2x00usb_disable_radio(rt2x00dev);
974 }
975
976 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
977                                enum dev_state state)
978 {
979         u16 reg;
980         u16 reg2;
981         unsigned int i;
982         char put_to_sleep;
983         char bbp_state;
984         char rf_state;
985
986         put_to_sleep = (state != STATE_AWAKE);
987
988         reg = 0;
989         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
990         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
991         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
992         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
993         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
994         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
995
996         /*
997          * Device is not guaranteed to be in the requested state yet.
998          * We must wait until the register indicates that the
999          * device has entered the correct state.
1000          */
1001         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1002                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1003                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1004                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1005                 if (bbp_state == state && rf_state == state)
1006                         return 0;
1007                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1008                 msleep(30);
1009         }
1010
1011         return -EBUSY;
1012 }
1013
1014 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1015                                       enum dev_state state)
1016 {
1017         int retval = 0;
1018
1019         switch (state) {
1020         case STATE_RADIO_ON:
1021                 retval = rt2500usb_enable_radio(rt2x00dev);
1022                 break;
1023         case STATE_RADIO_OFF:
1024                 rt2500usb_disable_radio(rt2x00dev);
1025                 break;
1026         case STATE_RADIO_RX_ON:
1027         case STATE_RADIO_RX_ON_LINK:
1028         case STATE_RADIO_RX_OFF:
1029         case STATE_RADIO_RX_OFF_LINK:
1030                 rt2500usb_toggle_rx(rt2x00dev, state);
1031                 break;
1032         case STATE_RADIO_IRQ_ON:
1033         case STATE_RADIO_IRQ_OFF:
1034                 /* No support, but no error either */
1035                 break;
1036         case STATE_DEEP_SLEEP:
1037         case STATE_SLEEP:
1038         case STATE_STANDBY:
1039         case STATE_AWAKE:
1040                 retval = rt2500usb_set_state(rt2x00dev, state);
1041                 break;
1042         default:
1043                 retval = -ENOTSUPP;
1044                 break;
1045         }
1046
1047         if (unlikely(retval))
1048                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1049                       state, retval);
1050
1051         return retval;
1052 }
1053
1054 /*
1055  * TX descriptor initialization
1056  */
1057 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1058                                     struct sk_buff *skb,
1059                                     struct txentry_desc *txdesc)
1060 {
1061         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1062         __le32 *txd = skbdesc->desc;
1063         u32 word;
1064
1065         /*
1066          * Start writing the descriptor words.
1067          */
1068         rt2x00_desc_read(txd, 1, &word);
1069         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1070         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1071         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1072         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1073         rt2x00_desc_write(txd, 1, word);
1074
1075         rt2x00_desc_read(txd, 2, &word);
1076         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1077         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1078         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1079         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1080         rt2x00_desc_write(txd, 2, word);
1081
1082         rt2x00_desc_read(txd, 0, &word);
1083         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1084         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1085                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1086         rt2x00_set_field32(&word, TXD_W0_ACK,
1087                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1088         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1089                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1090         rt2x00_set_field32(&word, TXD_W0_OFDM,
1091                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1092         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1093                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1094         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1095         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1096         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1097         rt2x00_desc_write(txd, 0, word);
1098 }
1099
1100 /*
1101  * TX data initialization
1102  */
1103 static void rt2500usb_beacondone(struct urb *urb);
1104
1105 static void rt2500usb_write_beacon(struct queue_entry *entry)
1106 {
1107         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1108         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1109         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1110         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1111         int pipe = usb_sndbulkpipe(usb_dev, 1);
1112         int length;
1113         u16 reg;
1114
1115         /*
1116          * Add the descriptor in front of the skb.
1117          */
1118         skb_push(entry->skb, entry->queue->desc_size);
1119         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1120         skbdesc->desc = entry->skb->data;
1121
1122         /*
1123          * Disable beaconing while we are reloading the beacon data,
1124          * otherwise we might be sending out invalid data.
1125          */
1126         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1127         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1128         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1129         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1130         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1131
1132         /*
1133          * USB devices cannot blindly pass the skb->len as the
1134          * length of the data to usb_fill_bulk_urb. Pass the skb
1135          * to the driver to determine what the length should be.
1136          */
1137         length = rt2x00dev->ops->lib->get_tx_data_len(rt2x00dev, entry->skb);
1138
1139         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1140                           entry->skb->data, length, rt2500usb_beacondone,
1141                           entry);
1142
1143         /*
1144          * Second we need to create the guardian byte.
1145          * We only need a single byte, so lets recycle
1146          * the 'flags' field we are not using for beacons.
1147          */
1148         bcn_priv->guardian_data = 0;
1149         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1150                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1151                           entry);
1152
1153         /*
1154          * Send out the guardian byte.
1155          */
1156         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1157 }
1158
1159 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1160                                      struct sk_buff *skb)
1161 {
1162         int length;
1163
1164         /*
1165          * The length _must_ be a multiple of 2,
1166          * but it must _not_ be a multiple of the USB packet size.
1167          */
1168         length = roundup(skb->len, 2);
1169         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1170
1171         return length;
1172 }
1173
1174 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1175                                     const enum data_queue_qid queue)
1176 {
1177         u16 reg;
1178
1179         if (queue != QID_BEACON) {
1180                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1181                 return;
1182         }
1183
1184         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1185         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1186                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1187                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1188                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1189                 /*
1190                  * Beacon generation will fail initially.
1191                  * To prevent this we need to register the TXRX_CSR19
1192                  * register several times.
1193                  */
1194                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1195                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1196                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1197                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1198                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1199         }
1200 }
1201
1202 /*
1203  * RX control handlers
1204  */
1205 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1206                                   struct rxdone_entry_desc *rxdesc)
1207 {
1208         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1209         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1210         __le32 *rxd =
1211             (__le32 *)(entry->skb->data +
1212                        (entry_priv->urb->actual_length -
1213                         entry->queue->desc_size));
1214         u32 word0;
1215         u32 word1;
1216
1217         /*
1218          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1219          * frame data in rt2x00usb.
1220          */
1221         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1222         rxd = (__le32 *)skbdesc->desc;
1223
1224         /*
1225          * It is now safe to read the descriptor on all architectures.
1226          */
1227         rt2x00_desc_read(rxd, 0, &word0);
1228         rt2x00_desc_read(rxd, 1, &word1);
1229
1230         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1231                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1232         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1233                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1234
1235         /*
1236          * Obtain the status about this packet.
1237          * When frame was received with an OFDM bitrate,
1238          * the signal is the PLCP value. If it was received with
1239          * a CCK bitrate the signal is the rate in 100kbit/s.
1240          */
1241         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1242         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1243             entry->queue->rt2x00dev->rssi_offset;
1244         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1245
1246         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1247                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1248         else
1249                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1250         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1251                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1252
1253         /*
1254          * Adjust the skb memory window to the frame boundaries.
1255          */
1256         skb_trim(entry->skb, rxdesc->size);
1257 }
1258
1259 /*
1260  * Interrupt functions.
1261  */
1262 static void rt2500usb_beacondone(struct urb *urb)
1263 {
1264         struct queue_entry *entry = (struct queue_entry *)urb->context;
1265         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1266
1267         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1268                 return;
1269
1270         /*
1271          * Check if this was the guardian beacon,
1272          * if that was the case we need to send the real beacon now.
1273          * Otherwise we should free the sk_buffer, the device
1274          * should be doing the rest of the work now.
1275          */
1276         if (bcn_priv->guardian_urb == urb) {
1277                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1278         } else if (bcn_priv->urb == urb) {
1279                 dev_kfree_skb(entry->skb);
1280                 entry->skb = NULL;
1281         }
1282 }
1283
1284 /*
1285  * Device probe functions.
1286  */
1287 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1288 {
1289         u16 word;
1290         u8 *mac;
1291         u8 bbp;
1292
1293         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1294
1295         /*
1296          * Start validation of the data that has been read.
1297          */
1298         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1299         if (!is_valid_ether_addr(mac)) {
1300                 random_ether_addr(mac);
1301                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1302         }
1303
1304         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1305         if (word == 0xffff) {
1306                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1307                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1308                                    ANTENNA_SW_DIVERSITY);
1309                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1310                                    ANTENNA_SW_DIVERSITY);
1311                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1312                                    LED_MODE_DEFAULT);
1313                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1314                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1315                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1316                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1317                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1318         }
1319
1320         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1321         if (word == 0xffff) {
1322                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1323                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1324                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1325                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1326                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1327         }
1328
1329         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1330         if (word == 0xffff) {
1331                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1332                                    DEFAULT_RSSI_OFFSET);
1333                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1334                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1335         }
1336
1337         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1338         if (word == 0xffff) {
1339                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1340                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1341                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1342         }
1343
1344         /*
1345          * Switch lower vgc bound to current BBP R17 value,
1346          * lower the value a bit for better quality.
1347          */
1348         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1349         bbp -= 6;
1350
1351         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1352         if (word == 0xffff) {
1353                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1354                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1355                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1356                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1357         } else {
1358                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1359                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1360         }
1361
1362         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1363         if (word == 0xffff) {
1364                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1365                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1366                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1367                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1368         }
1369
1370         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1371         if (word == 0xffff) {
1372                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1373                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1374                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1375                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1376         }
1377
1378         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1379         if (word == 0xffff) {
1380                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1381                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1382                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1383                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1384         }
1385
1386         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1387         if (word == 0xffff) {
1388                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1389                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1390                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1391                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1392         }
1393
1394         return 0;
1395 }
1396
1397 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1398 {
1399         u16 reg;
1400         u16 value;
1401         u16 eeprom;
1402
1403         /*
1404          * Read EEPROM word for configuration.
1405          */
1406         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1407
1408         /*
1409          * Identify RF chipset.
1410          */
1411         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1412         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1413         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1414
1415         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1416                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1417                 return -ENODEV;
1418         }
1419
1420         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1421             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1422             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1423             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1424             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1425             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1426                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1427                 return -ENODEV;
1428         }
1429
1430         /*
1431          * Identify default antenna configuration.
1432          */
1433         rt2x00dev->default_ant.tx =
1434             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1435         rt2x00dev->default_ant.rx =
1436             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1437
1438         /*
1439          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1440          * I am not 100% sure about this, but the legacy drivers do not
1441          * indicate antenna swapping in software is required when
1442          * diversity is enabled.
1443          */
1444         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1445                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1446         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1447                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1448
1449         /*
1450          * Store led mode, for correct led behaviour.
1451          */
1452 #ifdef CONFIG_RT2X00_LIB_LEDS
1453         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1454
1455         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1456         if (value == LED_MODE_TXRX_ACTIVITY)
1457                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1458                                    LED_TYPE_ACTIVITY);
1459 #endif /* CONFIG_RT2X00_LIB_LEDS */
1460
1461         /*
1462          * Check if the BBP tuning should be disabled.
1463          */
1464         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1465         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1466                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1467
1468         /*
1469          * Read the RSSI <-> dBm offset information.
1470          */
1471         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1472         rt2x00dev->rssi_offset =
1473             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1474
1475         return 0;
1476 }
1477
1478 /*
1479  * RF value list for RF2522
1480  * Supports: 2.4 GHz
1481  */
1482 static const struct rf_channel rf_vals_bg_2522[] = {
1483         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1484         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1485         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1486         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1487         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1488         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1489         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1490         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1491         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1492         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1493         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1494         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1495         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1496         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1497 };
1498
1499 /*
1500  * RF value list for RF2523
1501  * Supports: 2.4 GHz
1502  */
1503 static const struct rf_channel rf_vals_bg_2523[] = {
1504         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1505         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1506         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1507         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1508         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1509         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1510         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1511         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1512         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1513         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1514         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1515         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1516         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1517         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1518 };
1519
1520 /*
1521  * RF value list for RF2524
1522  * Supports: 2.4 GHz
1523  */
1524 static const struct rf_channel rf_vals_bg_2524[] = {
1525         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1526         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1527         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1528         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1529         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1530         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1531         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1532         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1533         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1534         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1535         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1536         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1537         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1538         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1539 };
1540
1541 /*
1542  * RF value list for RF2525
1543  * Supports: 2.4 GHz
1544  */
1545 static const struct rf_channel rf_vals_bg_2525[] = {
1546         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1547         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1548         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1549         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1550         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1551         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1552         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1553         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1554         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1555         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1556         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1557         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1558         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1559         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1560 };
1561
1562 /*
1563  * RF value list for RF2525e
1564  * Supports: 2.4 GHz
1565  */
1566 static const struct rf_channel rf_vals_bg_2525e[] = {
1567         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1568         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1569         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1570         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1571         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1572         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1573         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1574         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1575         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1576         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1577         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1578         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1579         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1580         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1581 };
1582
1583 /*
1584  * RF value list for RF5222
1585  * Supports: 2.4 GHz & 5.2 GHz
1586  */
1587 static const struct rf_channel rf_vals_5222[] = {
1588         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1589         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1590         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1591         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1592         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1593         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1594         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1595         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1596         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1597         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1598         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1599         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1600         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1601         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1602
1603         /* 802.11 UNI / HyperLan 2 */
1604         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1605         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1606         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1607         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1608         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1609         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1610         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1611         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1612
1613         /* 802.11 HyperLan 2 */
1614         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1615         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1616         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1617         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1618         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1619         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1620         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1621         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1622         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1623         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1624
1625         /* 802.11 UNII */
1626         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1627         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1628         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1629         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1630         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1631 };
1632
1633 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1634 {
1635         struct hw_mode_spec *spec = &rt2x00dev->spec;
1636         struct channel_info *info;
1637         char *tx_power;
1638         unsigned int i;
1639
1640         /*
1641          * Initialize all hw fields.
1642          */
1643         rt2x00dev->hw->flags =
1644             IEEE80211_HW_RX_INCLUDES_FCS |
1645             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1646             IEEE80211_HW_SIGNAL_DBM;
1647
1648         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1649
1650         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1651         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1652                                 rt2x00_eeprom_addr(rt2x00dev,
1653                                                    EEPROM_MAC_ADDR_0));
1654
1655         /*
1656          * Initialize hw_mode information.
1657          */
1658         spec->supported_bands = SUPPORT_BAND_2GHZ;
1659         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1660
1661         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1662                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1663                 spec->channels = rf_vals_bg_2522;
1664         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1665                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1666                 spec->channels = rf_vals_bg_2523;
1667         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1668                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1669                 spec->channels = rf_vals_bg_2524;
1670         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1671                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1672                 spec->channels = rf_vals_bg_2525;
1673         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1674                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1675                 spec->channels = rf_vals_bg_2525e;
1676         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1677                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1678                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1679                 spec->channels = rf_vals_5222;
1680         }
1681
1682         /*
1683          * Create channel information array
1684          */
1685         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1686         if (!info)
1687                 return -ENOMEM;
1688
1689         spec->channels_info = info;
1690
1691         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1692         for (i = 0; i < 14; i++)
1693                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1694
1695         if (spec->num_channels > 14) {
1696                 for (i = 14; i < spec->num_channels; i++)
1697                         info[i].tx_power1 = DEFAULT_TXPOWER;
1698         }
1699
1700         return 0;
1701 }
1702
1703 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1704 {
1705         int retval;
1706
1707         /*
1708          * Allocate eeprom data.
1709          */
1710         retval = rt2500usb_validate_eeprom(rt2x00dev);
1711         if (retval)
1712                 return retval;
1713
1714         retval = rt2500usb_init_eeprom(rt2x00dev);
1715         if (retval)
1716                 return retval;
1717
1718         /*
1719          * Initialize hw specifications.
1720          */
1721         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1722         if (retval)
1723                 return retval;
1724
1725         /*
1726          * This device requires the atim queue
1727          */
1728         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1729         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1730         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1731         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1732
1733         /*
1734          * Set the rssi offset.
1735          */
1736         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1737
1738         return 0;
1739 }
1740
1741 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1742         .tx                     = rt2x00mac_tx,
1743         .start                  = rt2x00mac_start,
1744         .stop                   = rt2x00mac_stop,
1745         .add_interface          = rt2x00mac_add_interface,
1746         .remove_interface       = rt2x00mac_remove_interface,
1747         .config                 = rt2x00mac_config,
1748         .config_interface       = rt2x00mac_config_interface,
1749         .configure_filter       = rt2x00mac_configure_filter,
1750         .get_stats              = rt2x00mac_get_stats,
1751         .bss_info_changed       = rt2x00mac_bss_info_changed,
1752         .conf_tx                = rt2x00mac_conf_tx,
1753         .get_tx_stats           = rt2x00mac_get_tx_stats,
1754 };
1755
1756 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1757         .probe_hw               = rt2500usb_probe_hw,
1758         .initialize             = rt2x00usb_initialize,
1759         .uninitialize           = rt2x00usb_uninitialize,
1760         .clear_entry            = rt2x00usb_clear_entry,
1761         .set_device_state       = rt2500usb_set_device_state,
1762         .link_stats             = rt2500usb_link_stats,
1763         .reset_tuner            = rt2500usb_reset_tuner,
1764         .link_tuner             = rt2500usb_link_tuner,
1765         .write_tx_desc          = rt2500usb_write_tx_desc,
1766         .write_tx_data          = rt2x00usb_write_tx_data,
1767         .write_beacon           = rt2500usb_write_beacon,
1768         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1769         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1770         .fill_rxdone            = rt2500usb_fill_rxdone,
1771         .config_filter          = rt2500usb_config_filter,
1772         .config_intf            = rt2500usb_config_intf,
1773         .config_erp             = rt2500usb_config_erp,
1774         .config_ant             = rt2500usb_config_ant,
1775         .config                 = rt2500usb_config,
1776 };
1777
1778 static const struct data_queue_desc rt2500usb_queue_rx = {
1779         .entry_num              = RX_ENTRIES,
1780         .data_size              = DATA_FRAME_SIZE,
1781         .desc_size              = RXD_DESC_SIZE,
1782         .priv_size              = sizeof(struct queue_entry_priv_usb),
1783 };
1784
1785 static const struct data_queue_desc rt2500usb_queue_tx = {
1786         .entry_num              = TX_ENTRIES,
1787         .data_size              = DATA_FRAME_SIZE,
1788         .desc_size              = TXD_DESC_SIZE,
1789         .priv_size              = sizeof(struct queue_entry_priv_usb),
1790 };
1791
1792 static const struct data_queue_desc rt2500usb_queue_bcn = {
1793         .entry_num              = BEACON_ENTRIES,
1794         .data_size              = MGMT_FRAME_SIZE,
1795         .desc_size              = TXD_DESC_SIZE,
1796         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1797 };
1798
1799 static const struct data_queue_desc rt2500usb_queue_atim = {
1800         .entry_num              = ATIM_ENTRIES,
1801         .data_size              = DATA_FRAME_SIZE,
1802         .desc_size              = TXD_DESC_SIZE,
1803         .priv_size              = sizeof(struct queue_entry_priv_usb),
1804 };
1805
1806 static const struct rt2x00_ops rt2500usb_ops = {
1807         .name           = KBUILD_MODNAME,
1808         .max_sta_intf   = 1,
1809         .max_ap_intf    = 1,
1810         .eeprom_size    = EEPROM_SIZE,
1811         .rf_size        = RF_SIZE,
1812         .tx_queues      = NUM_TX_QUEUES,
1813         .rx             = &rt2500usb_queue_rx,
1814         .tx             = &rt2500usb_queue_tx,
1815         .bcn            = &rt2500usb_queue_bcn,
1816         .atim           = &rt2500usb_queue_atim,
1817         .lib            = &rt2500usb_rt2x00_ops,
1818         .hw             = &rt2500usb_mac80211_ops,
1819 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1820         .debugfs        = &rt2500usb_rt2x00debug,
1821 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1822 };
1823
1824 /*
1825  * rt2500usb module information.
1826  */
1827 static struct usb_device_id rt2500usb_device_table[] = {
1828         /* ASUS */
1829         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1830         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1831         /* Belkin */
1832         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1833         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1834         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1835         /* Cisco Systems */
1836         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1837         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1838         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1839         /* Conceptronic */
1840         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1841         /* D-LINK */
1842         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1843         /* Gigabyte */
1844         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1845         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1846         /* Hercules */
1847         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1848         /* Melco */
1849         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1850         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1851         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1852         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1853         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1854         /* MSI */
1855         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1857         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1858         /* Ralink */
1859         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1860         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1861         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1862         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         /* Siemens */
1864         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         /* SMC */
1866         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1867         /* Spairon */
1868         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1869         /* Trust */
1870         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         /* Zinwell */
1872         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         { 0, }
1874 };
1875
1876 MODULE_AUTHOR(DRV_PROJECT);
1877 MODULE_VERSION(DRV_VERSION);
1878 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1879 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1880 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1881 MODULE_LICENSE("GPL");
1882
1883 static struct usb_driver rt2500usb_driver = {
1884         .name           = KBUILD_MODNAME,
1885         .id_table       = rt2500usb_device_table,
1886         .probe          = rt2x00usb_probe,
1887         .disconnect     = rt2x00usb_disconnect,
1888         .suspend        = rt2x00usb_suspend,
1889         .resume         = rt2x00usb_resume,
1890 };
1891
1892 static int __init rt2500usb_init(void)
1893 {
1894         return usb_register(&rt2500usb_driver);
1895 }
1896
1897 static void __exit rt2500usb_exit(void)
1898 {
1899         usb_deregister(&rt2500usb_driver);
1900 }
1901
1902 module_init(rt2500usb_init);
1903 module_exit(rt2500usb_exit);