]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
rt2x00: Fix trivial log message
[linux-beck.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the usb_cache_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81                                       USB_VENDOR_REQUEST_IN, offset,
82                                       value, length, timeout);
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111                                       USB_VENDOR_REQUEST_OUT, offset,
112                                       value, length, timeout);
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117         u16 reg;
118         unsigned int i;
119
120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122                 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123                         break;
124                 udelay(REGISTER_BUSY_DELAY);
125         }
126
127         return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131                                 const unsigned int word, const u8 value)
132 {
133         u16 reg;
134
135         mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137         /*
138          * Wait until the BBP becomes ready.
139          */
140         reg = rt2500usb_bbp_check(rt2x00dev);
141         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144                 return;
145         }
146
147         /*
148          * Write the data into the BBP.
149          */
150         reg = 0;
151         rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
154
155         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
156
157         mutex_unlock(&rt2x00dev->usb_cache_mutex);
158 }
159
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161                                const unsigned int word, u8 *value)
162 {
163         u16 reg;
164
165         mutex_lock(&rt2x00dev->usb_cache_mutex);
166
167         /*
168          * Wait until the BBP becomes ready.
169          */
170         reg = rt2500usb_bbp_check(rt2x00dev);
171         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173                 return;
174         }
175
176         /*
177          * Write the request into the BBP.
178          */
179         reg = 0;
180         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
182
183         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
184
185         /*
186          * Wait until the BBP becomes ready.
187          */
188         reg = rt2500usb_bbp_check(rt2x00dev);
189         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191                 *value = 0xff;
192                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193                 return;
194         }
195
196         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->usb_cache_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206         unsigned int i;
207
208         if (!word)
209                 return;
210
211         mutex_lock(&rt2x00dev->usb_cache_mutex);
212
213         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215                 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216                         goto rf_write;
217                 udelay(REGISTER_BUSY_DELAY);
218         }
219
220         mutex_unlock(&rt2x00dev->usb_cache_mutex);
221         ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222         return;
223
224 rf_write:
225         reg = 0;
226         rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
228
229         reg = 0;
230         rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231         rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232         rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233         rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
234
235         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236         rt2x00_rf_write(rt2x00dev, word, value);
237
238         mutex_unlock(&rt2x00dev->usb_cache_mutex);
239 }
240
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
243
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245                                const unsigned int word, u32 *data)
246 {
247         rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
248 }
249
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251                                 const unsigned int word, u32 data)
252 {
253         rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
254 }
255
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257         .owner  = THIS_MODULE,
258         .csr    = {
259                 .read           = rt2500usb_read_csr,
260                 .write          = rt2500usb_write_csr,
261                 .word_size      = sizeof(u16),
262                 .word_count     = CSR_REG_SIZE / sizeof(u16),
263         },
264         .eeprom = {
265                 .read           = rt2x00_eeprom_read,
266                 .write          = rt2x00_eeprom_write,
267                 .word_size      = sizeof(u16),
268                 .word_count     = EEPROM_SIZE / sizeof(u16),
269         },
270         .bbp    = {
271                 .read           = rt2500usb_bbp_read,
272                 .write          = rt2500usb_bbp_write,
273                 .word_size      = sizeof(u8),
274                 .word_count     = BBP_SIZE / sizeof(u8),
275         },
276         .rf     = {
277                 .read           = rt2x00_rf_read,
278                 .write          = rt2500usb_rf_write,
279                 .word_size      = sizeof(u32),
280                 .word_count     = RF_SIZE / sizeof(u32),
281         },
282 };
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
284
285 #ifdef CONFIG_RT2500USB_LEDS
286 static void rt2500usb_led_brightness(struct led_classdev *led_cdev,
287                                      enum led_brightness brightness)
288 {
289         struct rt2x00_led *led =
290             container_of(led_cdev, struct rt2x00_led, led_dev);
291         unsigned int enabled = brightness != LED_OFF;
292         unsigned int activity =
293             led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
294
295         if (in_atomic()) {
296                 NOTICE(led->rt2x00dev,
297                        "Ignoring LED brightness command for led %d\n",
298                        led->type);
299                 return;
300         }
301
302         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
303                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
304                                    MAC_CSR20_LINK, enabled);
305                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
306                                    MAC_CSR20_ACTIVITY, enabled && activity);
307         }
308
309         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20,
310                                  led->rt2x00dev->led_mcu_reg);
311 }
312 #else
313 #define rt2500usb_led_brightness        NULL
314 #endif /* CONFIG_RT2500USB_LEDS */
315
316 /*
317  * Configuration handlers.
318  */
319 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
320                                   struct rt2x00_intf *intf,
321                                   struct rt2x00intf_conf *conf,
322                                   const unsigned int flags)
323 {
324         unsigned int bcn_preload;
325         u16 reg;
326
327         if (flags & CONFIG_UPDATE_TYPE) {
328                 /*
329                  * Enable beacon config
330                  */
331                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
332                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
333                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
334                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
335                                    2 * (conf->type != IEEE80211_IF_TYPE_STA));
336                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
337
338                 /*
339                  * Enable synchronisation.
340                  */
341                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
342                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
343                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
344
345                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
346                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
347                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
348         }
349
350         if (flags & CONFIG_UPDATE_MAC)
351                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
352                                               (3 * sizeof(__le16)));
353
354         if (flags & CONFIG_UPDATE_BSSID)
355                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
356                                               (3 * sizeof(__le16)));
357 }
358
359 static int rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
360                                      const int short_preamble,
361                                      const int ack_timeout,
362                                      const int ack_consume_time)
363 {
364         u16 reg;
365
366         /*
367          * When in atomic context, we should let rt2x00lib
368          * try this configuration again later.
369          */
370         if (in_atomic())
371                 return -EAGAIN;
372
373         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
374         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
375         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
376
377         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
378         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
379                            !!short_preamble);
380         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
381
382         return 0;
383 }
384
385 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
386                                      const int basic_rate_mask)
387 {
388         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
389 }
390
391 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
392                                      struct rf_channel *rf, const int txpower)
393 {
394         /*
395          * Set TXpower.
396          */
397         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
398
399         /*
400          * For RT2525E we should first set the channel to half band higher.
401          */
402         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
403                 static const u32 vals[] = {
404                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
405                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
406                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
407                         0x00000902, 0x00000906
408                 };
409
410                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
411                 if (rf->rf4)
412                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
413         }
414
415         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
416         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
417         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
418         if (rf->rf4)
419                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
420 }
421
422 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
423                                      const int txpower)
424 {
425         u32 rf3;
426
427         rt2x00_rf_read(rt2x00dev, 3, &rf3);
428         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
429         rt2500usb_rf_write(rt2x00dev, 3, rf3);
430 }
431
432 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
433                                      struct antenna_setup *ant)
434 {
435         u8 r2;
436         u8 r14;
437         u16 csr5;
438         u16 csr6;
439
440         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
441         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
442         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
443         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
444
445         /*
446          * Configure the TX antenna.
447          */
448         switch (ant->tx) {
449         case ANTENNA_HW_DIVERSITY:
450                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
451                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
452                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
453                 break;
454         case ANTENNA_A:
455                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
456                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
457                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
458                 break;
459         case ANTENNA_SW_DIVERSITY:
460                 /*
461                  * NOTE: We should never come here because rt2x00lib is
462                  * supposed to catch this and send us the correct antenna
463                  * explicitely. However we are nog going to bug about this.
464                  * Instead, just default to antenna B.
465                  */
466         case ANTENNA_B:
467                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
468                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
469                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
470                 break;
471         }
472
473         /*
474          * Configure the RX antenna.
475          */
476         switch (ant->rx) {
477         case ANTENNA_HW_DIVERSITY:
478                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
479                 break;
480         case ANTENNA_A:
481                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
482                 break;
483         case ANTENNA_SW_DIVERSITY:
484                 /*
485                  * NOTE: We should never come here because rt2x00lib is
486                  * supposed to catch this and send us the correct antenna
487                  * explicitely. However we are nog going to bug about this.
488                  * Instead, just default to antenna B.
489                  */
490         case ANTENNA_B:
491                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
492                 break;
493         }
494
495         /*
496          * RT2525E and RT5222 need to flip TX I/Q
497          */
498         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
499             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
500                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
501                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
502                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
503
504                 /*
505                  * RT2525E does not need RX I/Q Flip.
506                  */
507                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
508                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
509         } else {
510                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
511                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
512         }
513
514         rt2500usb_bbp_write(rt2x00dev, 2, r2);
515         rt2500usb_bbp_write(rt2x00dev, 14, r14);
516         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
517         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
518 }
519
520 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
521                                       struct rt2x00lib_conf *libconf)
522 {
523         u16 reg;
524
525         rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
526         rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
527         rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
528
529         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
530         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
531                            libconf->conf->beacon_int * 4);
532         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
533 }
534
535 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
536                              struct rt2x00lib_conf *libconf,
537                              const unsigned int flags)
538 {
539         if (flags & CONFIG_UPDATE_PHYMODE)
540                 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
541         if (flags & CONFIG_UPDATE_CHANNEL)
542                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
543                                          libconf->conf->power_level);
544         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
545                 rt2500usb_config_txpower(rt2x00dev,
546                                          libconf->conf->power_level);
547         if (flags & CONFIG_UPDATE_ANTENNA)
548                 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
549         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
550                 rt2500usb_config_duration(rt2x00dev, libconf);
551 }
552
553 /*
554  * Link tuning
555  */
556 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
557                                  struct link_qual *qual)
558 {
559         u16 reg;
560
561         /*
562          * Update FCS error count from register.
563          */
564         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
565         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
566
567         /*
568          * Update False CCA count from register.
569          */
570         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
571         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
572 }
573
574 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
575 {
576         u16 eeprom;
577         u16 value;
578
579         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
580         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
581         rt2500usb_bbp_write(rt2x00dev, 24, value);
582
583         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
584         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
585         rt2500usb_bbp_write(rt2x00dev, 25, value);
586
587         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
588         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
589         rt2500usb_bbp_write(rt2x00dev, 61, value);
590
591         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
592         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
593         rt2500usb_bbp_write(rt2x00dev, 17, value);
594
595         rt2x00dev->link.vgc_level = value;
596 }
597
598 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
599 {
600         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
601         u16 bbp_thresh;
602         u16 vgc_bound;
603         u16 sens;
604         u16 r24;
605         u16 r25;
606         u16 r61;
607         u16 r17_sens;
608         u8 r17;
609         u8 up_bound;
610         u8 low_bound;
611
612         /*
613          * Read current r17 value, as well as the sensitivity values
614          * for the r17 register.
615          */
616         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
617         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
618
619         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
620         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
621         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
622
623         /*
624          * If we are not associated, we should go straight to the
625          * dynamic CCA tuning.
626          */
627         if (!rt2x00dev->intf_associated)
628                 goto dynamic_cca_tune;
629
630         /*
631          * Determine the BBP tuning threshold and correctly
632          * set BBP 24, 25 and 61.
633          */
634         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
635         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
636
637         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
638         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
639         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
640
641         if ((rssi + bbp_thresh) > 0) {
642                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
643                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
644                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
645         } else {
646                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
647                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
648                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
649         }
650
651         rt2500usb_bbp_write(rt2x00dev, 24, r24);
652         rt2500usb_bbp_write(rt2x00dev, 25, r25);
653         rt2500usb_bbp_write(rt2x00dev, 61, r61);
654
655         /*
656          * A too low RSSI will cause too much false CCA which will
657          * then corrupt the R17 tuning. To remidy this the tuning should
658          * be stopped (While making sure the R17 value will not exceed limits)
659          */
660         if (rssi >= -40) {
661                 if (r17 != 0x60)
662                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
663                 return;
664         }
665
666         /*
667          * Special big-R17 for short distance
668          */
669         if (rssi >= -58) {
670                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
671                 if (r17 != sens)
672                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
673                 return;
674         }
675
676         /*
677          * Special mid-R17 for middle distance
678          */
679         if (rssi >= -74) {
680                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
681                 if (r17 != sens)
682                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
683                 return;
684         }
685
686         /*
687          * Leave short or middle distance condition, restore r17
688          * to the dynamic tuning range.
689          */
690         low_bound = 0x32;
691         if (rssi < -77)
692                 up_bound -= (-77 - rssi);
693
694         if (up_bound < low_bound)
695                 up_bound = low_bound;
696
697         if (r17 > up_bound) {
698                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
699                 rt2x00dev->link.vgc_level = up_bound;
700                 return;
701         }
702
703 dynamic_cca_tune:
704
705         /*
706          * R17 is inside the dynamic tuning range,
707          * start tuning the link based on the false cca counter.
708          */
709         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
710                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
711                 rt2x00dev->link.vgc_level = r17;
712         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
713                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
714                 rt2x00dev->link.vgc_level = r17;
715         }
716 }
717
718 /*
719  * Initialization functions.
720  */
721 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
722 {
723         u16 reg;
724
725         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
726                                     USB_MODE_TEST, REGISTER_TIMEOUT);
727         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
728                                     0x00f0, REGISTER_TIMEOUT);
729
730         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
731         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
732         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
733
734         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
735         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
736
737         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
738         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
739         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
740         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
741         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
742
743         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
744         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
745         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
746         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
747         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
748
749         rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
750         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
751         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
752         rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
753
754         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
755         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
756         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
757         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
758         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
759         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
760
761         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
762         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
763         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
764         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
765         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
766         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
767
768         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
769         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
770         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
771         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
772         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
773         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
774
775         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
776         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
777         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
778         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
779         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
780         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
781
782         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
783         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
784
785         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
786                 return -EBUSY;
787
788         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
789         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
790         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
791         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
792         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
793
794         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
795                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
796                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
797         } else {
798                 reg = 0;
799                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
800                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
801         }
802         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
803
804         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
805         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
806         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
807         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
808
809         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
810         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
811                            rt2x00dev->rx->data_size);
812         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
813
814         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
815         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
816         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
817         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
818
819         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
820         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
821         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
822
823         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
824         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
825         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
826
827         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
828         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
829         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
830
831         return 0;
832 }
833
834 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
835 {
836         unsigned int i;
837         u16 eeprom;
838         u8 value;
839         u8 reg_id;
840
841         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
842                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
843                 if ((value != 0xff) && (value != 0x00))
844                         goto continue_csr_init;
845                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
846                 udelay(REGISTER_BUSY_DELAY);
847         }
848
849         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
850         return -EACCES;
851
852 continue_csr_init:
853         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
854         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
855         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
856         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
857         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
858         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
859         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
860         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
861         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
862         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
863         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
864         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
865         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
866         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
867         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
868         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
869         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
870         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
871         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
872         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
873         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
874         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
875         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
876         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
877         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
878         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
879         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
880         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
881         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
882         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
883         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
884
885         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
886                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
887
888                 if (eeprom != 0xffff && eeprom != 0x0000) {
889                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
890                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
891                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
892                 }
893         }
894
895         return 0;
896 }
897
898 /*
899  * Device state switch handlers.
900  */
901 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
902                                 enum dev_state state)
903 {
904         u16 reg;
905
906         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
907         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
908                            state == STATE_RADIO_RX_OFF);
909         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
910 }
911
912 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
913 {
914         /*
915          * Initialize all registers.
916          */
917         if (rt2500usb_init_registers(rt2x00dev) ||
918             rt2500usb_init_bbp(rt2x00dev)) {
919                 ERROR(rt2x00dev, "Register initialization failed.\n");
920                 return -EIO;
921         }
922
923         return 0;
924 }
925
926 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
927 {
928         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
929         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
930
931         /*
932          * Disable synchronisation.
933          */
934         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
935
936         rt2x00usb_disable_radio(rt2x00dev);
937 }
938
939 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
940                                enum dev_state state)
941 {
942         u16 reg;
943         u16 reg2;
944         unsigned int i;
945         char put_to_sleep;
946         char bbp_state;
947         char rf_state;
948
949         put_to_sleep = (state != STATE_AWAKE);
950
951         reg = 0;
952         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
953         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
954         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
955         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
956         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
957         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
958
959         /*
960          * Device is not guaranteed to be in the requested state yet.
961          * We must wait until the register indicates that the
962          * device has entered the correct state.
963          */
964         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
965                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
966                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
967                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
968                 if (bbp_state == state && rf_state == state)
969                         return 0;
970                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
971                 msleep(30);
972         }
973
974         NOTICE(rt2x00dev, "Device failed to enter state %d, "
975                "current device state: bbp %d and rf %d.\n",
976                state, bbp_state, rf_state);
977
978         return -EBUSY;
979 }
980
981 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
982                                       enum dev_state state)
983 {
984         int retval = 0;
985
986         switch (state) {
987         case STATE_RADIO_ON:
988                 retval = rt2500usb_enable_radio(rt2x00dev);
989                 break;
990         case STATE_RADIO_OFF:
991                 rt2500usb_disable_radio(rt2x00dev);
992                 break;
993         case STATE_RADIO_RX_ON:
994         case STATE_RADIO_RX_ON_LINK:
995                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
996                 break;
997         case STATE_RADIO_RX_OFF:
998         case STATE_RADIO_RX_OFF_LINK:
999                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1000                 break;
1001         case STATE_DEEP_SLEEP:
1002         case STATE_SLEEP:
1003         case STATE_STANDBY:
1004         case STATE_AWAKE:
1005                 retval = rt2500usb_set_state(rt2x00dev, state);
1006                 break;
1007         default:
1008                 retval = -ENOTSUPP;
1009                 break;
1010         }
1011
1012         return retval;
1013 }
1014
1015 /*
1016  * TX descriptor initialization
1017  */
1018 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1019                                     struct sk_buff *skb,
1020                                     struct txentry_desc *txdesc,
1021                                     struct ieee80211_tx_control *control)
1022 {
1023         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1024         __le32 *txd = skbdesc->desc;
1025         u32 word;
1026
1027         /*
1028          * Start writing the descriptor words.
1029          */
1030         rt2x00_desc_read(txd, 1, &word);
1031         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1032         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1033         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1034         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1035         rt2x00_desc_write(txd, 1, word);
1036
1037         rt2x00_desc_read(txd, 2, &word);
1038         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1039         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1040         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1041         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1042         rt2x00_desc_write(txd, 2, word);
1043
1044         rt2x00_desc_read(txd, 0, &word);
1045         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1046         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1047                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1048         rt2x00_set_field32(&word, TXD_W0_ACK,
1049                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1050         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1051                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1052         rt2x00_set_field32(&word, TXD_W0_OFDM,
1053                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1054         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1055                            !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1056         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1057         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1058         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1059         rt2x00_desc_write(txd, 0, word);
1060 }
1061
1062 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1063                                      struct sk_buff *skb)
1064 {
1065         int length;
1066
1067         /*
1068          * The length _must_ be a multiple of 2,
1069          * but it must _not_ be a multiple of the USB packet size.
1070          */
1071         length = roundup(skb->len, 2);
1072         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1073
1074         return length;
1075 }
1076
1077 /*
1078  * TX data initialization
1079  */
1080 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1081                                     const unsigned int queue)
1082 {
1083         u16 reg;
1084
1085         if (queue != RT2X00_BCN_QUEUE_BEACON)
1086                 return;
1087
1088         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1089         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1090                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1091                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1092                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1093                 /*
1094                  * Beacon generation will fail initially.
1095                  * To prevent this we need to register the TXRX_CSR19
1096                  * register several times.
1097                  */
1098                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1099                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1100                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1101                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1102                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1103         }
1104 }
1105
1106 /*
1107  * RX control handlers
1108  */
1109 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1110                                   struct rxdone_entry_desc *rxdesc)
1111 {
1112         struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
1113         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1114         __le32 *rxd =
1115             (__le32 *)(entry->skb->data +
1116                        (priv_rx->urb->actual_length - entry->queue->desc_size));
1117         unsigned int offset = entry->queue->desc_size + 2;
1118         u32 word0;
1119         u32 word1;
1120
1121         /*
1122          * Copy descriptor to the available headroom inside the skbuffer.
1123          */
1124         skb_push(entry->skb, offset);
1125         memcpy(entry->skb->data, rxd, entry->queue->desc_size);
1126         rxd = (__le32 *)entry->skb->data;
1127
1128         /*
1129          * The descriptor is now aligned to 4 bytes and thus it is
1130          * now safe to read it on all architectures.
1131          */
1132         rt2x00_desc_read(rxd, 0, &word0);
1133         rt2x00_desc_read(rxd, 1, &word1);
1134
1135         rxdesc->flags = 0;
1136         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1137                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1138         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1139                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1140
1141         /*
1142          * Obtain the status about this packet.
1143          */
1144         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1145         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1146             entry->queue->rt2x00dev->rssi_offset;
1147         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1148         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1149         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1150
1151         /*
1152          * Adjust the skb memory window to the frame boundaries.
1153          */
1154         skb_pull(entry->skb, offset);
1155         skb_trim(entry->skb, rxdesc->size);
1156
1157         /*
1158          * Set descriptor and data pointer.
1159          */
1160         skbdesc->data = entry->skb->data;
1161         skbdesc->data_len = rxdesc->size;
1162         skbdesc->desc = rxd;
1163         skbdesc->desc_len = entry->queue->desc_size;
1164 }
1165
1166 /*
1167  * Interrupt functions.
1168  */
1169 static void rt2500usb_beacondone(struct urb *urb)
1170 {
1171         struct queue_entry *entry = (struct queue_entry *)urb->context;
1172         struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
1173
1174         if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1175                 return;
1176
1177         /*
1178          * Check if this was the guardian beacon,
1179          * if that was the case we need to send the real beacon now.
1180          * Otherwise we should free the sk_buffer, the device
1181          * should be doing the rest of the work now.
1182          */
1183         if (priv_bcn->guardian_urb == urb) {
1184                 usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
1185         } else if (priv_bcn->urb == urb) {
1186                 dev_kfree_skb(entry->skb);
1187                 entry->skb = NULL;
1188         }
1189 }
1190
1191 /*
1192  * Device probe functions.
1193  */
1194 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1195 {
1196         u16 word;
1197         u8 *mac;
1198         u8 bbp;
1199
1200         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1201
1202         /*
1203          * Start validation of the data that has been read.
1204          */
1205         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1206         if (!is_valid_ether_addr(mac)) {
1207                 DECLARE_MAC_BUF(macbuf);
1208
1209                 random_ether_addr(mac);
1210                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1211         }
1212
1213         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1214         if (word == 0xffff) {
1215                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1216                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1217                                    ANTENNA_SW_DIVERSITY);
1218                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1219                                    ANTENNA_SW_DIVERSITY);
1220                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1221                                    LED_MODE_DEFAULT);
1222                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1223                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1224                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1225                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1226                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1227         }
1228
1229         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1230         if (word == 0xffff) {
1231                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1232                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1233                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1234                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1235                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1236         }
1237
1238         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1239         if (word == 0xffff) {
1240                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1241                                    DEFAULT_RSSI_OFFSET);
1242                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1243                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1244         }
1245
1246         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1247         if (word == 0xffff) {
1248                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1249                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1250                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1251         }
1252
1253         /*
1254          * Switch lower vgc bound to current BBP R17 value,
1255          * lower the value a bit for better quality.
1256          */
1257         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1258         bbp -= 6;
1259
1260         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1261         if (word == 0xffff) {
1262                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1263                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1264                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1265                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1266         }
1267
1268         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1269         if (word == 0xffff) {
1270                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1271                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1272                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1273                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1274         } else {
1275                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1276                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1277         }
1278
1279         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1280         if (word == 0xffff) {
1281                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1282                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1283                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1284                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1285         }
1286
1287         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1288         if (word == 0xffff) {
1289                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1290                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1291                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1292                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1293         }
1294
1295         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1296         if (word == 0xffff) {
1297                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1298                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1299                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1300                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1301         }
1302
1303         return 0;
1304 }
1305
1306 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1307 {
1308         u16 reg;
1309         u16 value;
1310         u16 eeprom;
1311
1312         /*
1313          * Read EEPROM word for configuration.
1314          */
1315         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1316
1317         /*
1318          * Identify RF chipset.
1319          */
1320         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1321         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1322         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1323
1324         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1325                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1326                 return -ENODEV;
1327         }
1328
1329         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1330             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1331             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1332             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1333             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1334             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1335                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1336                 return -ENODEV;
1337         }
1338
1339         /*
1340          * Identify default antenna configuration.
1341          */
1342         rt2x00dev->default_ant.tx =
1343             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1344         rt2x00dev->default_ant.rx =
1345             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1346
1347         /*
1348          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1349          * I am not 100% sure about this, but the legacy drivers do not
1350          * indicate antenna swapping in software is required when
1351          * diversity is enabled.
1352          */
1353         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1354                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1355         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1356                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1357
1358         /*
1359          * Store led mode, for correct led behaviour.
1360          */
1361 #ifdef CONFIG_RT2500USB_LEDS
1362         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1363
1364         switch (value) {
1365         case LED_MODE_ASUS:
1366         case LED_MODE_ALPHA:
1367         case LED_MODE_DEFAULT:
1368                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1369                 break;
1370         case LED_MODE_TXRX_ACTIVITY:
1371                 rt2x00dev->led_flags =
1372                     LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1373                 break;
1374         case LED_MODE_SIGNAL_STRENGTH:
1375                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1376                 break;
1377         }
1378
1379         /*
1380          * Store the current led register value, we need it later
1381          * in set_brightness but that is called in irq context which
1382          * means we can't use rt2500usb_register_read() at that time.
1383          */
1384         rt2500usb_register_read(rt2x00dev, MAC_CSR20, &rt2x00dev->led_mcu_reg);
1385 #endif /* CONFIG_RT2500USB_LEDS */
1386
1387         /*
1388          * Check if the BBP tuning should be disabled.
1389          */
1390         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1391         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1392                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1393
1394         /*
1395          * Read the RSSI <-> dBm offset information.
1396          */
1397         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1398         rt2x00dev->rssi_offset =
1399             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1400
1401         return 0;
1402 }
1403
1404 /*
1405  * RF value list for RF2522
1406  * Supports: 2.4 GHz
1407  */
1408 static const struct rf_channel rf_vals_bg_2522[] = {
1409         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1410         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1411         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1412         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1413         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1414         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1415         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1416         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1417         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1418         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1419         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1420         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1421         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1422         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1423 };
1424
1425 /*
1426  * RF value list for RF2523
1427  * Supports: 2.4 GHz
1428  */
1429 static const struct rf_channel rf_vals_bg_2523[] = {
1430         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1431         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1432         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1433         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1434         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1435         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1436         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1437         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1438         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1439         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1440         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1441         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1442         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1443         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1444 };
1445
1446 /*
1447  * RF value list for RF2524
1448  * Supports: 2.4 GHz
1449  */
1450 static const struct rf_channel rf_vals_bg_2524[] = {
1451         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1452         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1453         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1454         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1455         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1456         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1457         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1458         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1459         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1460         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1461         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1462         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1463         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1464         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1465 };
1466
1467 /*
1468  * RF value list for RF2525
1469  * Supports: 2.4 GHz
1470  */
1471 static const struct rf_channel rf_vals_bg_2525[] = {
1472         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1473         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1474         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1475         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1476         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1477         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1478         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1479         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1480         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1481         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1482         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1483         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1484         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1485         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1486 };
1487
1488 /*
1489  * RF value list for RF2525e
1490  * Supports: 2.4 GHz
1491  */
1492 static const struct rf_channel rf_vals_bg_2525e[] = {
1493         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1494         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1495         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1496         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1497         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1498         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1499         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1500         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1501         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1502         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1503         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1504         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1505         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1506         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1507 };
1508
1509 /*
1510  * RF value list for RF5222
1511  * Supports: 2.4 GHz & 5.2 GHz
1512  */
1513 static const struct rf_channel rf_vals_5222[] = {
1514         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1515         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1516         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1517         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1518         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1519         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1520         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1521         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1522         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1523         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1524         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1525         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1526         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1527         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1528
1529         /* 802.11 UNI / HyperLan 2 */
1530         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1531         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1532         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1533         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1534         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1535         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1536         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1537         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1538
1539         /* 802.11 HyperLan 2 */
1540         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1541         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1542         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1543         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1544         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1545         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1546         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1547         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1548         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1549         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1550
1551         /* 802.11 UNII */
1552         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1553         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1554         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1555         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1556         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1557 };
1558
1559 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1560 {
1561         struct hw_mode_spec *spec = &rt2x00dev->spec;
1562         u8 *txpower;
1563         unsigned int i;
1564
1565         /*
1566          * Initialize all hw fields.
1567          */
1568         rt2x00dev->hw->flags =
1569             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1570             IEEE80211_HW_RX_INCLUDES_FCS |
1571             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1572         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1573         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1574         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1575         rt2x00dev->hw->queues = 2;
1576
1577         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1578         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1579                                 rt2x00_eeprom_addr(rt2x00dev,
1580                                                    EEPROM_MAC_ADDR_0));
1581
1582         /*
1583          * Convert tx_power array in eeprom.
1584          */
1585         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1586         for (i = 0; i < 14; i++)
1587                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1588
1589         /*
1590          * Initialize hw_mode information.
1591          */
1592         spec->supported_bands = SUPPORT_BAND_2GHZ;
1593         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1594         spec->tx_power_a = NULL;
1595         spec->tx_power_bg = txpower;
1596         spec->tx_power_default = DEFAULT_TXPOWER;
1597
1598         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1599                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1600                 spec->channels = rf_vals_bg_2522;
1601         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1602                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1603                 spec->channels = rf_vals_bg_2523;
1604         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1605                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1606                 spec->channels = rf_vals_bg_2524;
1607         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1608                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1609                 spec->channels = rf_vals_bg_2525;
1610         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1611                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1612                 spec->channels = rf_vals_bg_2525e;
1613         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1614                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1615                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1616                 spec->channels = rf_vals_5222;
1617         }
1618 }
1619
1620 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1621 {
1622         int retval;
1623
1624         /*
1625          * Allocate eeprom data.
1626          */
1627         retval = rt2500usb_validate_eeprom(rt2x00dev);
1628         if (retval)
1629                 return retval;
1630
1631         retval = rt2500usb_init_eeprom(rt2x00dev);
1632         if (retval)
1633                 return retval;
1634
1635         /*
1636          * Initialize hw specifications.
1637          */
1638         rt2500usb_probe_hw_mode(rt2x00dev);
1639
1640         /*
1641          * This device requires the atim queue
1642          */
1643         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1644         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1645
1646         /*
1647          * Set the rssi offset.
1648          */
1649         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1650
1651         return 0;
1652 }
1653
1654 /*
1655  * IEEE80211 stack callback functions.
1656  */
1657 static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
1658                                        unsigned int changed_flags,
1659                                        unsigned int *total_flags,
1660                                        int mc_count,
1661                                        struct dev_addr_list *mc_list)
1662 {
1663         struct rt2x00_dev *rt2x00dev = hw->priv;
1664         u16 reg;
1665
1666         /*
1667          * Mask off any flags we are going to ignore from
1668          * the total_flags field.
1669          */
1670         *total_flags &=
1671             FIF_ALLMULTI |
1672             FIF_FCSFAIL |
1673             FIF_PLCPFAIL |
1674             FIF_CONTROL |
1675             FIF_OTHER_BSS |
1676             FIF_PROMISC_IN_BSS;
1677
1678         /*
1679          * Apply some rules to the filters:
1680          * - Some filters imply different filters to be set.
1681          * - Some things we can't filter out at all.
1682          */
1683         if (mc_count)
1684                 *total_flags |= FIF_ALLMULTI;
1685         if (*total_flags & FIF_OTHER_BSS ||
1686             *total_flags & FIF_PROMISC_IN_BSS)
1687                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1688
1689         /*
1690          * Check if there is any work left for us.
1691          */
1692         if (rt2x00dev->packet_filter == *total_flags)
1693                 return;
1694         rt2x00dev->packet_filter = *total_flags;
1695
1696         /*
1697          * When in atomic context, reschedule and let rt2x00lib
1698          * call this function again.
1699          */
1700         if (in_atomic()) {
1701                 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
1702                 return;
1703         }
1704
1705         /*
1706          * Start configuration steps.
1707          * Note that the version error will always be dropped
1708          * and broadcast frames will always be accepted since
1709          * there is no filter for it at this time.
1710          */
1711         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1712         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
1713                            !(*total_flags & FIF_FCSFAIL));
1714         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
1715                            !(*total_flags & FIF_PLCPFAIL));
1716         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
1717                            !(*total_flags & FIF_CONTROL));
1718         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
1719                            !(*total_flags & FIF_PROMISC_IN_BSS));
1720         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
1721                            !(*total_flags & FIF_PROMISC_IN_BSS));
1722         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
1723         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
1724                            !(*total_flags & FIF_ALLMULTI));
1725         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
1726         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1727 }
1728
1729 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1730                                    struct sk_buff *skb,
1731                                    struct ieee80211_tx_control *control)
1732 {
1733         struct rt2x00_dev *rt2x00dev = hw->priv;
1734         struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1735         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1736         struct queue_entry_priv_usb_bcn *priv_bcn;
1737         struct skb_frame_desc *skbdesc;
1738         int pipe = usb_sndbulkpipe(usb_dev, 1);
1739         int length;
1740         u16 reg;
1741
1742         if (unlikely(!intf->beacon))
1743                 return -ENOBUFS;
1744
1745         priv_bcn = intf->beacon->priv_data;
1746
1747         /*
1748          * Add the descriptor in front of the skb.
1749          */
1750         skb_push(skb, intf->beacon->queue->desc_size);
1751         memset(skb->data, 0, intf->beacon->queue->desc_size);
1752
1753         /*
1754          * Fill in skb descriptor
1755          */
1756         skbdesc = get_skb_frame_desc(skb);
1757         memset(skbdesc, 0, sizeof(*skbdesc));
1758         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1759         skbdesc->data = skb->data + intf->beacon->queue->desc_size;
1760         skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
1761         skbdesc->desc = skb->data;
1762         skbdesc->desc_len = intf->beacon->queue->desc_size;
1763         skbdesc->entry = intf->beacon;
1764
1765         /*
1766          * Disable beaconing while we are reloading the beacon data,
1767          * otherwise we might be sending out invalid data.
1768          */
1769         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1770         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1771         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1772         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1773         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1774
1775         /*
1776          * mac80211 doesn't provide the control->queue variable
1777          * for beacons. Set our own queue identification so
1778          * it can be used during descriptor initialization.
1779          */
1780         control->queue = RT2X00_BCN_QUEUE_BEACON;
1781         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1782
1783         /*
1784          * USB devices cannot blindly pass the skb->len as the
1785          * length of the data to usb_fill_bulk_urb. Pass the skb
1786          * to the driver to determine what the length should be.
1787          */
1788         length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1789
1790         usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
1791                           skb->data, length, rt2500usb_beacondone,
1792                           intf->beacon);
1793
1794         /*
1795          * Second we need to create the guardian byte.
1796          * We only need a single byte, so lets recycle
1797          * the 'flags' field we are not using for beacons.
1798          */
1799         priv_bcn->guardian_data = 0;
1800         usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
1801                           &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
1802                           intf->beacon);
1803
1804         /*
1805          * Send out the guardian byte.
1806          */
1807         usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
1808
1809         /*
1810          * Enable beacon generation.
1811          */
1812         rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
1813
1814         return 0;
1815 }
1816
1817 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1818         .tx                     = rt2x00mac_tx,
1819         .start                  = rt2x00mac_start,
1820         .stop                   = rt2x00mac_stop,
1821         .add_interface          = rt2x00mac_add_interface,
1822         .remove_interface       = rt2x00mac_remove_interface,
1823         .config                 = rt2x00mac_config,
1824         .config_interface       = rt2x00mac_config_interface,
1825         .configure_filter       = rt2500usb_configure_filter,
1826         .get_stats              = rt2x00mac_get_stats,
1827         .bss_info_changed       = rt2x00mac_bss_info_changed,
1828         .conf_tx                = rt2x00mac_conf_tx,
1829         .get_tx_stats           = rt2x00mac_get_tx_stats,
1830         .beacon_update          = rt2500usb_beacon_update,
1831 };
1832
1833 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1834         .probe_hw               = rt2500usb_probe_hw,
1835         .initialize             = rt2x00usb_initialize,
1836         .uninitialize           = rt2x00usb_uninitialize,
1837         .init_rxentry           = rt2x00usb_init_rxentry,
1838         .init_txentry           = rt2x00usb_init_txentry,
1839         .set_device_state       = rt2500usb_set_device_state,
1840         .link_stats             = rt2500usb_link_stats,
1841         .reset_tuner            = rt2500usb_reset_tuner,
1842         .link_tuner             = rt2500usb_link_tuner,
1843         .led_brightness         = rt2500usb_led_brightness,
1844         .write_tx_desc          = rt2500usb_write_tx_desc,
1845         .write_tx_data          = rt2x00usb_write_tx_data,
1846         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1847         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1848         .fill_rxdone            = rt2500usb_fill_rxdone,
1849         .config_intf            = rt2500usb_config_intf,
1850         .config_preamble        = rt2500usb_config_preamble,
1851         .config                 = rt2500usb_config,
1852 };
1853
1854 static const struct data_queue_desc rt2500usb_queue_rx = {
1855         .entry_num              = RX_ENTRIES,
1856         .data_size              = DATA_FRAME_SIZE,
1857         .desc_size              = RXD_DESC_SIZE,
1858         .priv_size              = sizeof(struct queue_entry_priv_usb_rx),
1859 };
1860
1861 static const struct data_queue_desc rt2500usb_queue_tx = {
1862         .entry_num              = TX_ENTRIES,
1863         .data_size              = DATA_FRAME_SIZE,
1864         .desc_size              = TXD_DESC_SIZE,
1865         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1866 };
1867
1868 static const struct data_queue_desc rt2500usb_queue_bcn = {
1869         .entry_num              = BEACON_ENTRIES,
1870         .data_size              = MGMT_FRAME_SIZE,
1871         .desc_size              = TXD_DESC_SIZE,
1872         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1873 };
1874
1875 static const struct data_queue_desc rt2500usb_queue_atim = {
1876         .entry_num              = ATIM_ENTRIES,
1877         .data_size              = DATA_FRAME_SIZE,
1878         .desc_size              = TXD_DESC_SIZE,
1879         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1880 };
1881
1882 static const struct rt2x00_ops rt2500usb_ops = {
1883         .name           = KBUILD_MODNAME,
1884         .max_sta_intf   = 1,
1885         .max_ap_intf    = 1,
1886         .eeprom_size    = EEPROM_SIZE,
1887         .rf_size        = RF_SIZE,
1888         .rx             = &rt2500usb_queue_rx,
1889         .tx             = &rt2500usb_queue_tx,
1890         .bcn            = &rt2500usb_queue_bcn,
1891         .atim           = &rt2500usb_queue_atim,
1892         .lib            = &rt2500usb_rt2x00_ops,
1893         .hw             = &rt2500usb_mac80211_ops,
1894 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1895         .debugfs        = &rt2500usb_rt2x00debug,
1896 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1897 };
1898
1899 /*
1900  * rt2500usb module information.
1901  */
1902 static struct usb_device_id rt2500usb_device_table[] = {
1903         /* ASUS */
1904         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1905         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1906         /* Belkin */
1907         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1908         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1909         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1910         /* Cisco Systems */
1911         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1912         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1913         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1914         /* Conceptronic */
1915         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1916         /* D-LINK */
1917         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1918         /* Gigabyte */
1919         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1920         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1921         /* Hercules */
1922         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1923         /* Melco */
1924         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1925         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1926         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1927         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1928         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1929         /* MSI */
1930         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1931         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1932         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1933         /* Ralink */
1934         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1935         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1936         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1937         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1938         /* Siemens */
1939         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1940         /* SMC */
1941         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1942         /* Spairon */
1943         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1944         /* Trust */
1945         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1946         /* Zinwell */
1947         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1948         { 0, }
1949 };
1950
1951 MODULE_AUTHOR(DRV_PROJECT);
1952 MODULE_VERSION(DRV_VERSION);
1953 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1954 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1955 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1956 MODULE_LICENSE("GPL");
1957
1958 static struct usb_driver rt2500usb_driver = {
1959         .name           = KBUILD_MODNAME,
1960         .id_table       = rt2500usb_device_table,
1961         .probe          = rt2x00usb_probe,
1962         .disconnect     = rt2x00usb_disconnect,
1963         .suspend        = rt2x00usb_suspend,
1964         .resume         = rt2x00usb_resume,
1965 };
1966
1967 static int __init rt2500usb_init(void)
1968 {
1969         return usb_register(&rt2500usb_driver);
1970 }
1971
1972 static void __exit rt2500usb_exit(void)
1973 {
1974         usb_deregister(&rt2500usb_driver);
1975 }
1976
1977 module_init(rt2500usb_init);
1978 module_exit(rt2500usb_exit);