]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
Merge branch 'linus' into core/futexes
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 0;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         mutex_lock(&rt2x00dev->csr_mutex);
208
209         /*
210          * Wait until the RF becomes available, afterwards we
211          * can safely write the new data into the register.
212          */
213         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
216                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
217
218                 reg = 0;
219                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
223
224                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
225                 rt2x00_rf_write(rt2x00dev, word, value);
226         }
227
228         mutex_unlock(&rt2x00dev->csr_mutex);
229 }
230
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
233                                      const unsigned int offset,
234                                      u32 *value)
235 {
236         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
237 }
238
239 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
240                                       const unsigned int offset,
241                                       u32 value)
242 {
243         rt2500usb_register_write(rt2x00dev, offset, value);
244 }
245
246 static const struct rt2x00debug rt2500usb_rt2x00debug = {
247         .owner  = THIS_MODULE,
248         .csr    = {
249                 .read           = _rt2500usb_register_read,
250                 .write          = _rt2500usb_register_write,
251                 .flags          = RT2X00DEBUGFS_OFFSET,
252                 .word_base      = CSR_REG_BASE,
253                 .word_size      = sizeof(u16),
254                 .word_count     = CSR_REG_SIZE / sizeof(u16),
255         },
256         .eeprom = {
257                 .read           = rt2x00_eeprom_read,
258                 .write          = rt2x00_eeprom_write,
259                 .word_base      = EEPROM_BASE,
260                 .word_size      = sizeof(u16),
261                 .word_count     = EEPROM_SIZE / sizeof(u16),
262         },
263         .bbp    = {
264                 .read           = rt2500usb_bbp_read,
265                 .write          = rt2500usb_bbp_write,
266                 .word_base      = BBP_BASE,
267                 .word_size      = sizeof(u8),
268                 .word_count     = BBP_SIZE / sizeof(u8),
269         },
270         .rf     = {
271                 .read           = rt2x00_rf_read,
272                 .write          = rt2500usb_rf_write,
273                 .word_base      = RF_BASE,
274                 .word_size      = sizeof(u32),
275                 .word_count     = RF_SIZE / sizeof(u32),
276         },
277 };
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
279
280 #ifdef CONFIG_RT2X00_LIB_RFKILL
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283         u16 reg;
284
285         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288 #else
289 #define rt2500usb_rfkill_poll   NULL
290 #endif /* CONFIG_RT2X00_LIB_RFKILL */
291
292 #ifdef CONFIG_RT2X00_LIB_LEDS
293 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
294                                      enum led_brightness brightness)
295 {
296         struct rt2x00_led *led =
297             container_of(led_cdev, struct rt2x00_led, led_dev);
298         unsigned int enabled = brightness != LED_OFF;
299         u16 reg;
300
301         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
302
303         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
304                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
305         else if (led->type == LED_TYPE_ACTIVITY)
306                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
307
308         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
309 }
310
311 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
312                                unsigned long *delay_on,
313                                unsigned long *delay_off)
314 {
315         struct rt2x00_led *led =
316             container_of(led_cdev, struct rt2x00_led, led_dev);
317         u16 reg;
318
319         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
320         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
321         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
322         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
323
324         return 0;
325 }
326
327 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
328                                struct rt2x00_led *led,
329                                enum led_type type)
330 {
331         led->rt2x00dev = rt2x00dev;
332         led->type = type;
333         led->led_dev.brightness_set = rt2500usb_brightness_set;
334         led->led_dev.blink_set = rt2500usb_blink_set;
335         led->flags = LED_INITIALIZED;
336 }
337 #endif /* CONFIG_RT2X00_LIB_LEDS */
338
339 /*
340  * Configuration handlers.
341  */
342
343 /*
344  * rt2500usb does not differentiate between shared and pairwise
345  * keys, so we should use the same function for both key types.
346  */
347 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
348                                 struct rt2x00lib_crypto *crypto,
349                                 struct ieee80211_key_conf *key)
350 {
351         int timeout;
352         u32 mask;
353         u16 reg;
354
355         if (crypto->cmd == SET_KEY) {
356                 /*
357                  * Pairwise key will always be entry 0, but this
358                  * could collide with a shared key on the same
359                  * position...
360                  */
361                 mask = TXRX_CSR0_KEY_ID.bit_mask;
362
363                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
364                 reg &= mask;
365
366                 if (reg && reg == mask)
367                         return -ENOSPC;
368
369                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
370
371                 key->hw_key_idx += reg ? ffz(reg) : 0;
372
373                 /*
374                  * The encryption key doesn't fit within the CSR cache,
375                  * this means we should allocate it seperately and use
376                  * rt2x00usb_vendor_request() to send the key to the hardware.
377                  */
378                 reg = KEY_ENTRY(key->hw_key_idx);
379                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
380                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
381                                                     USB_VENDOR_REQUEST_OUT, reg,
382                                                     crypto->key,
383                                                     sizeof(crypto->key),
384                                                     timeout);
385
386                 /*
387                  * The driver does not support the IV/EIV generation
388                  * in hardware. However it demands the data to be provided
389                  * both seperately as well as inside the frame.
390                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
391                  * to ensure rt2x00lib will not strip the data from the
392                  * frame after the copy, now we must tell mac80211
393                  * to generate the IV/EIV data.
394                  */
395                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
397         }
398
399         /*
400          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
401          * a particular key is valid.
402          */
403         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
404         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
405         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
406
407         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
408         if (crypto->cmd == SET_KEY)
409                 mask |= 1 << key->hw_key_idx;
410         else if (crypto->cmd == DISABLE_KEY)
411                 mask &= ~(1 << key->hw_key_idx);
412         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
413         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
414
415         return 0;
416 }
417
418 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
419                                     const unsigned int filter_flags)
420 {
421         u16 reg;
422
423         /*
424          * Start configuration steps.
425          * Note that the version error will always be dropped
426          * and broadcast frames will always be accepted since
427          * there is no filter for it at this time.
428          */
429         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
431                            !(filter_flags & FIF_FCSFAIL));
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
433                            !(filter_flags & FIF_PLCPFAIL));
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
435                            !(filter_flags & FIF_CONTROL));
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
437                            !(filter_flags & FIF_PROMISC_IN_BSS));
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
439                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
440                            !rt2x00dev->intf_ap_count);
441         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
442         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
443                            !(filter_flags & FIF_ALLMULTI));
444         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
445         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
446 }
447
448 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
449                                   struct rt2x00_intf *intf,
450                                   struct rt2x00intf_conf *conf,
451                                   const unsigned int flags)
452 {
453         unsigned int bcn_preload;
454         u16 reg;
455
456         if (flags & CONFIG_UPDATE_TYPE) {
457                 /*
458                  * Enable beacon config
459                  */
460                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
461                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
462                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
463                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
464                                    2 * (conf->type != NL80211_IFTYPE_STATION));
465                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
466
467                 /*
468                  * Enable synchronisation.
469                  */
470                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
471                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
472                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
473
474                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
475                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
476                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
477                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
478                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
479         }
480
481         if (flags & CONFIG_UPDATE_MAC)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
483                                               (3 * sizeof(__le16)));
484
485         if (flags & CONFIG_UPDATE_BSSID)
486                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
487                                               (3 * sizeof(__le16)));
488 }
489
490 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
491                                  struct rt2x00lib_erp *erp)
492 {
493         u16 reg;
494
495         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
496         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
497         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
498
499         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
500         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
501                            !!erp->short_preamble);
502         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
503
504         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
505
506         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
507         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
508         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
509 }
510
511 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
512                                  struct antenna_setup *ant)
513 {
514         u8 r2;
515         u8 r14;
516         u16 csr5;
517         u16 csr6;
518
519         /*
520          * We should never come here because rt2x00lib is supposed
521          * to catch this and send us the correct antenna explicitely.
522          */
523         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
524                ant->tx == ANTENNA_SW_DIVERSITY);
525
526         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
527         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
528         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
529         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
530
531         /*
532          * Configure the TX antenna.
533          */
534         switch (ant->tx) {
535         case ANTENNA_HW_DIVERSITY:
536                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
537                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
538                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
539                 break;
540         case ANTENNA_A:
541                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
542                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
543                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
544                 break;
545         case ANTENNA_B:
546         default:
547                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
548                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
549                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
550                 break;
551         }
552
553         /*
554          * Configure the RX antenna.
555          */
556         switch (ant->rx) {
557         case ANTENNA_HW_DIVERSITY:
558                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
559                 break;
560         case ANTENNA_A:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
562                 break;
563         case ANTENNA_B:
564         default:
565                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
566                 break;
567         }
568
569         /*
570          * RT2525E and RT5222 need to flip TX I/Q
571          */
572         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
573             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
574                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
575                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
576                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
577
578                 /*
579                  * RT2525E does not need RX I/Q Flip.
580                  */
581                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
582                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
583         } else {
584                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
585                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
586         }
587
588         rt2500usb_bbp_write(rt2x00dev, 2, r2);
589         rt2500usb_bbp_write(rt2x00dev, 14, r14);
590         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
591         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
592 }
593
594 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
595                                      struct rf_channel *rf, const int txpower)
596 {
597         /*
598          * Set TXpower.
599          */
600         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
601
602         /*
603          * For RT2525E we should first set the channel to half band higher.
604          */
605         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
606                 static const u32 vals[] = {
607                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
608                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
609                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
610                         0x00000902, 0x00000906
611                 };
612
613                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
614                 if (rf->rf4)
615                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
616         }
617
618         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
619         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
620         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
621         if (rf->rf4)
622                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
623 }
624
625 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
626                                      const int txpower)
627 {
628         u32 rf3;
629
630         rt2x00_rf_read(rt2x00dev, 3, &rf3);
631         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
632         rt2500usb_rf_write(rt2x00dev, 3, rf3);
633 }
634
635 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
636                                       struct rt2x00lib_conf *libconf)
637 {
638         u16 reg;
639
640         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
641         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
642                            libconf->conf->beacon_int * 4);
643         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
644 }
645
646 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
647                                 struct rt2x00lib_conf *libconf)
648 {
649         enum dev_state state =
650             (libconf->conf->flags & IEEE80211_CONF_PS) ?
651                 STATE_SLEEP : STATE_AWAKE;
652         u16 reg;
653
654         if (state == STATE_SLEEP) {
655                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
656                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
657                                    libconf->conf->beacon_int - 20);
658                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
659                                    libconf->conf->listen_interval - 1);
660
661                 /* We must first disable autowake before it can be enabled */
662                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
663                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
664
665                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
666                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
667         }
668
669         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
670 }
671
672 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
673                              struct rt2x00lib_conf *libconf,
674                              const unsigned int flags)
675 {
676         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
677                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
678                                          libconf->conf->power_level);
679         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
680             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
681                 rt2500usb_config_txpower(rt2x00dev,
682                                          libconf->conf->power_level);
683         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
684                 rt2500usb_config_duration(rt2x00dev, libconf);
685         if (flags & IEEE80211_CONF_CHANGE_PS)
686                 rt2500usb_config_ps(rt2x00dev, libconf);
687 }
688
689 /*
690  * Link tuning
691  */
692 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
693                                  struct link_qual *qual)
694 {
695         u16 reg;
696
697         /*
698          * Update FCS error count from register.
699          */
700         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
701         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
702
703         /*
704          * Update False CCA count from register.
705          */
706         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
707         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
708 }
709
710 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
711                                   struct link_qual *qual)
712 {
713         u16 eeprom;
714         u16 value;
715
716         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
717         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
718         rt2500usb_bbp_write(rt2x00dev, 24, value);
719
720         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
721         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
722         rt2500usb_bbp_write(rt2x00dev, 25, value);
723
724         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
725         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
726         rt2500usb_bbp_write(rt2x00dev, 61, value);
727
728         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
729         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
730         rt2500usb_bbp_write(rt2x00dev, 17, value);
731
732         qual->vgc_level = value;
733 }
734
735 /*
736  * NOTE: This function is directly ported from legacy driver, but
737  * despite it being declared it was never called. Although link tuning
738  * sounds like a good idea, and usually works well for the other drivers,
739  * it does _not_ work with rt2500usb. Enabling this function will result
740  * in TX capabilities only until association kicks in. Immediately
741  * after the successful association all TX frames will be kept in the
742  * hardware queue and never transmitted.
743  */
744 #if 0
745 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
746 {
747         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
748         u16 bbp_thresh;
749         u16 vgc_bound;
750         u16 sens;
751         u16 r24;
752         u16 r25;
753         u16 r61;
754         u16 r17_sens;
755         u8 r17;
756         u8 up_bound;
757         u8 low_bound;
758
759         /*
760          * Read current r17 value, as well as the sensitivity values
761          * for the r17 register.
762          */
763         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
764         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
765
766         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
767         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
768         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
769
770         /*
771          * If we are not associated, we should go straight to the
772          * dynamic CCA tuning.
773          */
774         if (!rt2x00dev->intf_associated)
775                 goto dynamic_cca_tune;
776
777         /*
778          * Determine the BBP tuning threshold and correctly
779          * set BBP 24, 25 and 61.
780          */
781         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
782         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
783
784         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
785         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
786         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
787
788         if ((rssi + bbp_thresh) > 0) {
789                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
790                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
791                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
792         } else {
793                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
794                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
795                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
796         }
797
798         rt2500usb_bbp_write(rt2x00dev, 24, r24);
799         rt2500usb_bbp_write(rt2x00dev, 25, r25);
800         rt2500usb_bbp_write(rt2x00dev, 61, r61);
801
802         /*
803          * A too low RSSI will cause too much false CCA which will
804          * then corrupt the R17 tuning. To remidy this the tuning should
805          * be stopped (While making sure the R17 value will not exceed limits)
806          */
807         if (rssi >= -40) {
808                 if (r17 != 0x60)
809                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
810                 return;
811         }
812
813         /*
814          * Special big-R17 for short distance
815          */
816         if (rssi >= -58) {
817                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
818                 if (r17 != sens)
819                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
820                 return;
821         }
822
823         /*
824          * Special mid-R17 for middle distance
825          */
826         if (rssi >= -74) {
827                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
828                 if (r17 != sens)
829                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
830                 return;
831         }
832
833         /*
834          * Leave short or middle distance condition, restore r17
835          * to the dynamic tuning range.
836          */
837         low_bound = 0x32;
838         if (rssi < -77)
839                 up_bound -= (-77 - rssi);
840
841         if (up_bound < low_bound)
842                 up_bound = low_bound;
843
844         if (r17 > up_bound) {
845                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
846                 rt2x00dev->link.vgc_level = up_bound;
847                 return;
848         }
849
850 dynamic_cca_tune:
851
852         /*
853          * R17 is inside the dynamic tuning range,
854          * start tuning the link based on the false cca counter.
855          */
856         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
857                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
858                 rt2x00dev->link.vgc_level = r17;
859         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
860                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
861                 rt2x00dev->link.vgc_level = r17;
862         }
863 }
864 #else
865 #define rt2500usb_link_tuner    NULL
866 #endif
867
868 /*
869  * Initialization functions.
870  */
871 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
872 {
873         u16 reg;
874
875         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
876                                     USB_MODE_TEST, REGISTER_TIMEOUT);
877         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
878                                     0x00f0, REGISTER_TIMEOUT);
879
880         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
881         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
882         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
883
884         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
885         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
886
887         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
888         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
889         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
890         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
891         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
892
893         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
894         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
895         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
896         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
897         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
898
899         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
900         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
901         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
902         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
903         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
904         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
905
906         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
907         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
908         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
909         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
910         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
911         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
912
913         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
914         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
915         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
916         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
917         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
918         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
919
920         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
921         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
922         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
923         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
924         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
925         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
926
927         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
928         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
929         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
930         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
931         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
932         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
933
934         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
935         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
936
937         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
938                 return -EBUSY;
939
940         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
941         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
942         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
943         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
944         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
945
946         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
947                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
948                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
949         } else {
950                 reg = 0;
951                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
952                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
953         }
954         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
955
956         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
957         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
958         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
959         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
960
961         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
962         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
963                            rt2x00dev->rx->data_size);
964         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
965
966         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
967         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
968         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
969         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
970
971         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
972         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
973         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
974
975         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
976         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
977         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
978
979         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
980         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
981         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
982
983         return 0;
984 }
985
986 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
987 {
988         unsigned int i;
989         u8 value;
990
991         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
992                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
993                 if ((value != 0xff) && (value != 0x00))
994                         return 0;
995                 udelay(REGISTER_BUSY_DELAY);
996         }
997
998         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
999         return -EACCES;
1000 }
1001
1002 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1003 {
1004         unsigned int i;
1005         u16 eeprom;
1006         u8 value;
1007         u8 reg_id;
1008
1009         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
1010                 return -EACCES;
1011
1012         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
1013         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
1014         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
1015         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
1016         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
1017         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
1018         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
1019         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
1020         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
1021         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
1022         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
1023         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
1024         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
1025         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
1026         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
1027         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
1028         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
1029         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
1030         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
1031         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
1032         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
1033         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
1034         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
1035         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
1036         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
1037         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
1038         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
1039         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
1040         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
1041         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
1042         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
1043
1044         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1045                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1046
1047                 if (eeprom != 0xffff && eeprom != 0x0000) {
1048                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1049                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1050                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
1051                 }
1052         }
1053
1054         return 0;
1055 }
1056
1057 /*
1058  * Device state switch handlers.
1059  */
1060 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1061                                 enum dev_state state)
1062 {
1063         u16 reg;
1064
1065         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1066         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
1067                            (state == STATE_RADIO_RX_OFF) ||
1068                            (state == STATE_RADIO_RX_OFF_LINK));
1069         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1070 }
1071
1072 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1073 {
1074         /*
1075          * Initialize all registers.
1076          */
1077         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
1078                      rt2500usb_init_bbp(rt2x00dev)))
1079                 return -EIO;
1080
1081         return 0;
1082 }
1083
1084 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1085 {
1086         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
1087         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
1088
1089         /*
1090          * Disable synchronisation.
1091          */
1092         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1093
1094         rt2x00usb_disable_radio(rt2x00dev);
1095 }
1096
1097 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1098                                enum dev_state state)
1099 {
1100         u16 reg;
1101         u16 reg2;
1102         unsigned int i;
1103         char put_to_sleep;
1104         char bbp_state;
1105         char rf_state;
1106
1107         put_to_sleep = (state != STATE_AWAKE);
1108
1109         reg = 0;
1110         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1111         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1112         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1113         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1114         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1115         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1116
1117         /*
1118          * Device is not guaranteed to be in the requested state yet.
1119          * We must wait until the register indicates that the
1120          * device has entered the correct state.
1121          */
1122         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1123                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1124                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1125                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1126                 if (bbp_state == state && rf_state == state)
1127                         return 0;
1128                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1129                 msleep(30);
1130         }
1131
1132         return -EBUSY;
1133 }
1134
1135 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1136                                       enum dev_state state)
1137 {
1138         int retval = 0;
1139
1140         switch (state) {
1141         case STATE_RADIO_ON:
1142                 retval = rt2500usb_enable_radio(rt2x00dev);
1143                 break;
1144         case STATE_RADIO_OFF:
1145                 rt2500usb_disable_radio(rt2x00dev);
1146                 break;
1147         case STATE_RADIO_RX_ON:
1148         case STATE_RADIO_RX_ON_LINK:
1149         case STATE_RADIO_RX_OFF:
1150         case STATE_RADIO_RX_OFF_LINK:
1151                 rt2500usb_toggle_rx(rt2x00dev, state);
1152                 break;
1153         case STATE_RADIO_IRQ_ON:
1154         case STATE_RADIO_IRQ_OFF:
1155                 /* No support, but no error either */
1156                 break;
1157         case STATE_DEEP_SLEEP:
1158         case STATE_SLEEP:
1159         case STATE_STANDBY:
1160         case STATE_AWAKE:
1161                 retval = rt2500usb_set_state(rt2x00dev, state);
1162                 break;
1163         default:
1164                 retval = -ENOTSUPP;
1165                 break;
1166         }
1167
1168         if (unlikely(retval))
1169                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1170                       state, retval);
1171
1172         return retval;
1173 }
1174
1175 /*
1176  * TX descriptor initialization
1177  */
1178 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1179                                     struct sk_buff *skb,
1180                                     struct txentry_desc *txdesc)
1181 {
1182         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1183         __le32 *txd = skbdesc->desc;
1184         u32 word;
1185
1186         /*
1187          * Start writing the descriptor words.
1188          */
1189         rt2x00_desc_read(txd, 1, &word);
1190         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1191         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1192         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1193         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1194         rt2x00_desc_write(txd, 1, word);
1195
1196         rt2x00_desc_read(txd, 2, &word);
1197         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1198         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1199         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1200         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1201         rt2x00_desc_write(txd, 2, word);
1202
1203         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1204                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1205                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1206         }
1207
1208         rt2x00_desc_read(txd, 0, &word);
1209         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1210         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1211                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1212         rt2x00_set_field32(&word, TXD_W0_ACK,
1213                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1214         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1215                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1216         rt2x00_set_field32(&word, TXD_W0_OFDM,
1217                            (txdesc->rate_mode == RATE_MODE_OFDM));
1218         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1219                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1220         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1221         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1222         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1223         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1224         rt2x00_desc_write(txd, 0, word);
1225 }
1226
1227 /*
1228  * TX data initialization
1229  */
1230 static void rt2500usb_beacondone(struct urb *urb);
1231
1232 static void rt2500usb_write_beacon(struct queue_entry *entry)
1233 {
1234         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1235         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1236         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1237         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1238         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1239         int length;
1240         u16 reg;
1241
1242         /*
1243          * Add the descriptor in front of the skb.
1244          */
1245         skb_push(entry->skb, entry->queue->desc_size);
1246         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1247         skbdesc->desc = entry->skb->data;
1248
1249         /*
1250          * Disable beaconing while we are reloading the beacon data,
1251          * otherwise we might be sending out invalid data.
1252          */
1253         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1254         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1255         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1256         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1257         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1258
1259         /*
1260          * USB devices cannot blindly pass the skb->len as the
1261          * length of the data to usb_fill_bulk_urb. Pass the skb
1262          * to the driver to determine what the length should be.
1263          */
1264         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1265
1266         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1267                           entry->skb->data, length, rt2500usb_beacondone,
1268                           entry);
1269
1270         /*
1271          * Second we need to create the guardian byte.
1272          * We only need a single byte, so lets recycle
1273          * the 'flags' field we are not using for beacons.
1274          */
1275         bcn_priv->guardian_data = 0;
1276         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1277                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1278                           entry);
1279
1280         /*
1281          * Send out the guardian byte.
1282          */
1283         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1284 }
1285
1286 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1287 {
1288         int length;
1289
1290         /*
1291          * The length _must_ be a multiple of 2,
1292          * but it must _not_ be a multiple of the USB packet size.
1293          */
1294         length = roundup(entry->skb->len, 2);
1295         length += (2 * !(length % entry->queue->usb_maxpacket));
1296
1297         return length;
1298 }
1299
1300 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1301                                     const enum data_queue_qid queue)
1302 {
1303         u16 reg;
1304
1305         if (queue != QID_BEACON) {
1306                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1307                 return;
1308         }
1309
1310         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1311         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1312                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1313                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1314                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1315                 /*
1316                  * Beacon generation will fail initially.
1317                  * To prevent this we need to register the TXRX_CSR19
1318                  * register several times.
1319                  */
1320                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1321                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1322                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1323                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1324                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1325         }
1326 }
1327
1328 /*
1329  * RX control handlers
1330  */
1331 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1332                                   struct rxdone_entry_desc *rxdesc)
1333 {
1334         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1335         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1336         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1337         __le32 *rxd =
1338             (__le32 *)(entry->skb->data +
1339                        (entry_priv->urb->actual_length -
1340                         entry->queue->desc_size));
1341         u32 word0;
1342         u32 word1;
1343
1344         /*
1345          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1346          * frame data in rt2x00usb.
1347          */
1348         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1349         rxd = (__le32 *)skbdesc->desc;
1350
1351         /*
1352          * It is now safe to read the descriptor on all architectures.
1353          */
1354         rt2x00_desc_read(rxd, 0, &word0);
1355         rt2x00_desc_read(rxd, 1, &word1);
1356
1357         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1358                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1359         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1360                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1361
1362         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1363                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1364                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1365                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1366         }
1367
1368         if (rxdesc->cipher != CIPHER_NONE) {
1369                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1370                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1371                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1372
1373                 /* ICV is located at the end of frame */
1374
1375                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1376                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1377                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1378                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1379                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1380         }
1381
1382         /*
1383          * Obtain the status about this packet.
1384          * When frame was received with an OFDM bitrate,
1385          * the signal is the PLCP value. If it was received with
1386          * a CCK bitrate the signal is the rate in 100kbit/s.
1387          */
1388         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1389         rxdesc->rssi =
1390             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1391         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1392
1393         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1394                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1395         else
1396                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1397         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1398                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1399
1400         /*
1401          * Adjust the skb memory window to the frame boundaries.
1402          */
1403         skb_trim(entry->skb, rxdesc->size);
1404 }
1405
1406 /*
1407  * Interrupt functions.
1408  */
1409 static void rt2500usb_beacondone(struct urb *urb)
1410 {
1411         struct queue_entry *entry = (struct queue_entry *)urb->context;
1412         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1413
1414         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1415                 return;
1416
1417         /*
1418          * Check if this was the guardian beacon,
1419          * if that was the case we need to send the real beacon now.
1420          * Otherwise we should free the sk_buffer, the device
1421          * should be doing the rest of the work now.
1422          */
1423         if (bcn_priv->guardian_urb == urb) {
1424                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1425         } else if (bcn_priv->urb == urb) {
1426                 dev_kfree_skb(entry->skb);
1427                 entry->skb = NULL;
1428         }
1429 }
1430
1431 /*
1432  * Device probe functions.
1433  */
1434 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1435 {
1436         u16 word;
1437         u8 *mac;
1438         u8 bbp;
1439
1440         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1441
1442         /*
1443          * Start validation of the data that has been read.
1444          */
1445         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1446         if (!is_valid_ether_addr(mac)) {
1447                 random_ether_addr(mac);
1448                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1449         }
1450
1451         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1452         if (word == 0xffff) {
1453                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1454                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1455                                    ANTENNA_SW_DIVERSITY);
1456                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1457                                    ANTENNA_SW_DIVERSITY);
1458                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1459                                    LED_MODE_DEFAULT);
1460                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1461                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1462                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1463                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1464                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1465         }
1466
1467         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1468         if (word == 0xffff) {
1469                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1470                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1471                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1472                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1473                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1474         }
1475
1476         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1477         if (word == 0xffff) {
1478                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1479                                    DEFAULT_RSSI_OFFSET);
1480                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1481                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1482         }
1483
1484         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1485         if (word == 0xffff) {
1486                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1487                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1488                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1489         }
1490
1491         /*
1492          * Switch lower vgc bound to current BBP R17 value,
1493          * lower the value a bit for better quality.
1494          */
1495         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1496         bbp -= 6;
1497
1498         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1499         if (word == 0xffff) {
1500                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1501                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1502                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1503                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1504         } else {
1505                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1506                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1507         }
1508
1509         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1510         if (word == 0xffff) {
1511                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1512                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1513                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1514                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1515         }
1516
1517         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1518         if (word == 0xffff) {
1519                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1520                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1521                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1522                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1523         }
1524
1525         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1526         if (word == 0xffff) {
1527                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1528                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1529                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1530                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1531         }
1532
1533         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1534         if (word == 0xffff) {
1535                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1536                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1537                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1538                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1539         }
1540
1541         return 0;
1542 }
1543
1544 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1545 {
1546         u16 reg;
1547         u16 value;
1548         u16 eeprom;
1549
1550         /*
1551          * Read EEPROM word for configuration.
1552          */
1553         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1554
1555         /*
1556          * Identify RF chipset.
1557          */
1558         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1559         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1560         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1561
1562         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1563                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1564                 return -ENODEV;
1565         }
1566
1567         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1568             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1569             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1570             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1571             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1572             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1573                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1574                 return -ENODEV;
1575         }
1576
1577         /*
1578          * Identify default antenna configuration.
1579          */
1580         rt2x00dev->default_ant.tx =
1581             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1582         rt2x00dev->default_ant.rx =
1583             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1584
1585         /*
1586          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1587          * I am not 100% sure about this, but the legacy drivers do not
1588          * indicate antenna swapping in software is required when
1589          * diversity is enabled.
1590          */
1591         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1592                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1593         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1594                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1595
1596         /*
1597          * Store led mode, for correct led behaviour.
1598          */
1599 #ifdef CONFIG_RT2X00_LIB_LEDS
1600         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1601
1602         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1603         if (value == LED_MODE_TXRX_ACTIVITY ||
1604             value == LED_MODE_DEFAULT ||
1605             value == LED_MODE_ASUS)
1606                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1607                                    LED_TYPE_ACTIVITY);
1608 #endif /* CONFIG_RT2X00_LIB_LEDS */
1609
1610         /*
1611          * Detect if this device has an hardware controlled radio.
1612          */
1613 #ifdef CONFIG_RT2X00_LIB_RFKILL
1614         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1615                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1616 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1617
1618         /*
1619          * Check if the BBP tuning should be disabled.
1620          */
1621         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1622         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1623                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1624
1625         /*
1626          * Read the RSSI <-> dBm offset information.
1627          */
1628         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1629         rt2x00dev->rssi_offset =
1630             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1631
1632         return 0;
1633 }
1634
1635 /*
1636  * RF value list for RF2522
1637  * Supports: 2.4 GHz
1638  */
1639 static const struct rf_channel rf_vals_bg_2522[] = {
1640         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1641         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1642         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1643         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1644         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1645         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1646         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1647         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1648         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1649         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1650         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1651         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1652         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1653         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1654 };
1655
1656 /*
1657  * RF value list for RF2523
1658  * Supports: 2.4 GHz
1659  */
1660 static const struct rf_channel rf_vals_bg_2523[] = {
1661         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1662         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1663         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1664         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1665         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1666         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1667         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1668         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1669         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1670         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1671         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1672         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1673         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1674         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1675 };
1676
1677 /*
1678  * RF value list for RF2524
1679  * Supports: 2.4 GHz
1680  */
1681 static const struct rf_channel rf_vals_bg_2524[] = {
1682         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1683         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1684         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1685         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1686         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1687         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1688         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1689         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1690         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1691         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1692         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1693         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1694         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1695         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1696 };
1697
1698 /*
1699  * RF value list for RF2525
1700  * Supports: 2.4 GHz
1701  */
1702 static const struct rf_channel rf_vals_bg_2525[] = {
1703         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1704         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1705         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1706         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1707         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1708         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1709         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1710         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1711         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1712         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1713         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1714         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1715         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1716         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1717 };
1718
1719 /*
1720  * RF value list for RF2525e
1721  * Supports: 2.4 GHz
1722  */
1723 static const struct rf_channel rf_vals_bg_2525e[] = {
1724         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1725         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1726         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1727         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1728         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1729         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1730         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1731         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1732         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1733         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1734         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1735         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1736         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1737         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1738 };
1739
1740 /*
1741  * RF value list for RF5222
1742  * Supports: 2.4 GHz & 5.2 GHz
1743  */
1744 static const struct rf_channel rf_vals_5222[] = {
1745         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1746         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1747         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1748         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1749         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1750         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1751         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1752         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1753         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1754         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1755         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1756         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1757         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1758         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1759
1760         /* 802.11 UNI / HyperLan 2 */
1761         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1762         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1763         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1764         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1765         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1766         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1767         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1768         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1769
1770         /* 802.11 HyperLan 2 */
1771         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1772         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1773         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1774         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1775         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1776         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1777         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1778         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1779         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1780         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1781
1782         /* 802.11 UNII */
1783         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1784         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1785         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1786         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1787         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1788 };
1789
1790 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1791 {
1792         struct hw_mode_spec *spec = &rt2x00dev->spec;
1793         struct channel_info *info;
1794         char *tx_power;
1795         unsigned int i;
1796
1797         /*
1798          * Initialize all hw fields.
1799          */
1800         rt2x00dev->hw->flags =
1801             IEEE80211_HW_RX_INCLUDES_FCS |
1802             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1803             IEEE80211_HW_SIGNAL_DBM |
1804             IEEE80211_HW_SUPPORTS_PS |
1805             IEEE80211_HW_PS_NULLFUNC_STACK;
1806
1807         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1808
1809         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1810         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1811                                 rt2x00_eeprom_addr(rt2x00dev,
1812                                                    EEPROM_MAC_ADDR_0));
1813
1814         /*
1815          * Initialize hw_mode information.
1816          */
1817         spec->supported_bands = SUPPORT_BAND_2GHZ;
1818         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1819
1820         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1821                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1822                 spec->channels = rf_vals_bg_2522;
1823         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1824                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1825                 spec->channels = rf_vals_bg_2523;
1826         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1827                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1828                 spec->channels = rf_vals_bg_2524;
1829         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1830                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1831                 spec->channels = rf_vals_bg_2525;
1832         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1833                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1834                 spec->channels = rf_vals_bg_2525e;
1835         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1836                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1837                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1838                 spec->channels = rf_vals_5222;
1839         }
1840
1841         /*
1842          * Create channel information array
1843          */
1844         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1845         if (!info)
1846                 return -ENOMEM;
1847
1848         spec->channels_info = info;
1849
1850         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1851         for (i = 0; i < 14; i++)
1852                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1853
1854         if (spec->num_channels > 14) {
1855                 for (i = 14; i < spec->num_channels; i++)
1856                         info[i].tx_power1 = DEFAULT_TXPOWER;
1857         }
1858
1859         return 0;
1860 }
1861
1862 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1863 {
1864         int retval;
1865
1866         /*
1867          * Allocate eeprom data.
1868          */
1869         retval = rt2500usb_validate_eeprom(rt2x00dev);
1870         if (retval)
1871                 return retval;
1872
1873         retval = rt2500usb_init_eeprom(rt2x00dev);
1874         if (retval)
1875                 return retval;
1876
1877         /*
1878          * Initialize hw specifications.
1879          */
1880         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1881         if (retval)
1882                 return retval;
1883
1884         /*
1885          * This device requires the atim queue
1886          */
1887         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1888         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1889         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1890         if (!modparam_nohwcrypt) {
1891                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1892                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1893         }
1894         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1895
1896         /*
1897          * Set the rssi offset.
1898          */
1899         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1900
1901         return 0;
1902 }
1903
1904 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1905         .tx                     = rt2x00mac_tx,
1906         .start                  = rt2x00mac_start,
1907         .stop                   = rt2x00mac_stop,
1908         .add_interface          = rt2x00mac_add_interface,
1909         .remove_interface       = rt2x00mac_remove_interface,
1910         .config                 = rt2x00mac_config,
1911         .config_interface       = rt2x00mac_config_interface,
1912         .configure_filter       = rt2x00mac_configure_filter,
1913         .set_key                = rt2x00mac_set_key,
1914         .get_stats              = rt2x00mac_get_stats,
1915         .bss_info_changed       = rt2x00mac_bss_info_changed,
1916         .conf_tx                = rt2x00mac_conf_tx,
1917         .get_tx_stats           = rt2x00mac_get_tx_stats,
1918 };
1919
1920 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1921         .probe_hw               = rt2500usb_probe_hw,
1922         .initialize             = rt2x00usb_initialize,
1923         .uninitialize           = rt2x00usb_uninitialize,
1924         .clear_entry            = rt2x00usb_clear_entry,
1925         .set_device_state       = rt2500usb_set_device_state,
1926         .rfkill_poll            = rt2500usb_rfkill_poll,
1927         .link_stats             = rt2500usb_link_stats,
1928         .reset_tuner            = rt2500usb_reset_tuner,
1929         .link_tuner             = rt2500usb_link_tuner,
1930         .write_tx_desc          = rt2500usb_write_tx_desc,
1931         .write_tx_data          = rt2x00usb_write_tx_data,
1932         .write_beacon           = rt2500usb_write_beacon,
1933         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1934         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1935         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1936         .fill_rxdone            = rt2500usb_fill_rxdone,
1937         .config_shared_key      = rt2500usb_config_key,
1938         .config_pairwise_key    = rt2500usb_config_key,
1939         .config_filter          = rt2500usb_config_filter,
1940         .config_intf            = rt2500usb_config_intf,
1941         .config_erp             = rt2500usb_config_erp,
1942         .config_ant             = rt2500usb_config_ant,
1943         .config                 = rt2500usb_config,
1944 };
1945
1946 static const struct data_queue_desc rt2500usb_queue_rx = {
1947         .entry_num              = RX_ENTRIES,
1948         .data_size              = DATA_FRAME_SIZE,
1949         .desc_size              = RXD_DESC_SIZE,
1950         .priv_size              = sizeof(struct queue_entry_priv_usb),
1951 };
1952
1953 static const struct data_queue_desc rt2500usb_queue_tx = {
1954         .entry_num              = TX_ENTRIES,
1955         .data_size              = DATA_FRAME_SIZE,
1956         .desc_size              = TXD_DESC_SIZE,
1957         .priv_size              = sizeof(struct queue_entry_priv_usb),
1958 };
1959
1960 static const struct data_queue_desc rt2500usb_queue_bcn = {
1961         .entry_num              = BEACON_ENTRIES,
1962         .data_size              = MGMT_FRAME_SIZE,
1963         .desc_size              = TXD_DESC_SIZE,
1964         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1965 };
1966
1967 static const struct data_queue_desc rt2500usb_queue_atim = {
1968         .entry_num              = ATIM_ENTRIES,
1969         .data_size              = DATA_FRAME_SIZE,
1970         .desc_size              = TXD_DESC_SIZE,
1971         .priv_size              = sizeof(struct queue_entry_priv_usb),
1972 };
1973
1974 static const struct rt2x00_ops rt2500usb_ops = {
1975         .name           = KBUILD_MODNAME,
1976         .max_sta_intf   = 1,
1977         .max_ap_intf    = 1,
1978         .eeprom_size    = EEPROM_SIZE,
1979         .rf_size        = RF_SIZE,
1980         .tx_queues      = NUM_TX_QUEUES,
1981         .rx             = &rt2500usb_queue_rx,
1982         .tx             = &rt2500usb_queue_tx,
1983         .bcn            = &rt2500usb_queue_bcn,
1984         .atim           = &rt2500usb_queue_atim,
1985         .lib            = &rt2500usb_rt2x00_ops,
1986         .hw             = &rt2500usb_mac80211_ops,
1987 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1988         .debugfs        = &rt2500usb_rt2x00debug,
1989 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1990 };
1991
1992 /*
1993  * rt2500usb module information.
1994  */
1995 static struct usb_device_id rt2500usb_device_table[] = {
1996         /* ASUS */
1997         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1998         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1999         /* Belkin */
2000         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
2001         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
2002         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
2003         /* Cisco Systems */
2004         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
2005         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
2006         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
2007         /* CNet */
2008         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
2009         /* Conceptronic */
2010         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
2011         /* D-LINK */
2012         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
2013         /* Gigabyte */
2014         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
2015         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
2016         /* Hercules */
2017         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
2018         /* Melco */
2019         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
2020         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
2021         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
2022         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
2023         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
2024         /* MSI */
2025         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
2026         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
2027         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
2028         /* Ralink */
2029         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
2030         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
2031         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
2032         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2033         /* Sagem */
2034         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
2035         /* Siemens */
2036         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
2037         /* SMC */
2038         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
2039         /* Spairon */
2040         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
2041         /* SURECOM */
2042         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
2043         /* Trust */
2044         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2045         /* VTech */
2046         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
2047         /* Zinwell */
2048         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
2049         { 0, }
2050 };
2051
2052 MODULE_AUTHOR(DRV_PROJECT);
2053 MODULE_VERSION(DRV_VERSION);
2054 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
2055 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
2056 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
2057 MODULE_LICENSE("GPL");
2058
2059 static struct usb_driver rt2500usb_driver = {
2060         .name           = KBUILD_MODNAME,
2061         .id_table       = rt2500usb_device_table,
2062         .probe          = rt2x00usb_probe,
2063         .disconnect     = rt2x00usb_disconnect,
2064         .suspend        = rt2x00usb_suspend,
2065         .resume         = rt2x00usb_resume,
2066 };
2067
2068 static int __init rt2500usb_init(void)
2069 {
2070         return usb_register(&rt2500usb_driver);
2071 }
2072
2073 static void __exit rt2500usb_exit(void)
2074 {
2075         usb_deregister(&rt2500usb_driver);
2076 }
2077
2078 module_init(rt2500usb_init);
2079 module_exit(rt2500usb_exit);