]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
rt2x00: Cleanup struct skb_frame_desc.
[linux-beck.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the usb_cache_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
80                                       USB_VENDOR_REQUEST_IN, offset,
81                                       value, length,
82                                       REGISTER_TIMEOUT16(length));
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
110                                       USB_VENDOR_REQUEST_OUT, offset,
111                                       value, length,
112                                       REGISTER_TIMEOUT16(length));
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117         u16 reg;
118         unsigned int i;
119
120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122                 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123                         break;
124                 udelay(REGISTER_BUSY_DELAY);
125         }
126
127         return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131                                 const unsigned int word, const u8 value)
132 {
133         u16 reg;
134
135         mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137         /*
138          * Wait until the BBP becomes ready.
139          */
140         reg = rt2500usb_bbp_check(rt2x00dev);
141         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144                 return;
145         }
146
147         /*
148          * Write the data into the BBP.
149          */
150         reg = 0;
151         rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
154
155         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
156
157         mutex_unlock(&rt2x00dev->usb_cache_mutex);
158 }
159
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161                                const unsigned int word, u8 *value)
162 {
163         u16 reg;
164
165         mutex_lock(&rt2x00dev->usb_cache_mutex);
166
167         /*
168          * Wait until the BBP becomes ready.
169          */
170         reg = rt2500usb_bbp_check(rt2x00dev);
171         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173                 return;
174         }
175
176         /*
177          * Write the request into the BBP.
178          */
179         reg = 0;
180         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
182
183         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
184
185         /*
186          * Wait until the BBP becomes ready.
187          */
188         reg = rt2500usb_bbp_check(rt2x00dev);
189         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191                 *value = 0xff;
192                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193                 return;
194         }
195
196         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->usb_cache_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206         unsigned int i;
207
208         if (!word)
209                 return;
210
211         mutex_lock(&rt2x00dev->usb_cache_mutex);
212
213         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215                 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216                         goto rf_write;
217                 udelay(REGISTER_BUSY_DELAY);
218         }
219
220         mutex_unlock(&rt2x00dev->usb_cache_mutex);
221         ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222         return;
223
224 rf_write:
225         reg = 0;
226         rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
228
229         reg = 0;
230         rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231         rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232         rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233         rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
234
235         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236         rt2x00_rf_write(rt2x00dev, word, value);
237
238         mutex_unlock(&rt2x00dev->usb_cache_mutex);
239 }
240
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
243
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245                                const unsigned int word, u32 *data)
246 {
247         rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
248 }
249
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251                                 const unsigned int word, u32 data)
252 {
253         rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
254 }
255
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257         .owner  = THIS_MODULE,
258         .csr    = {
259                 .read           = rt2500usb_read_csr,
260                 .write          = rt2500usb_write_csr,
261                 .word_size      = sizeof(u16),
262                 .word_count     = CSR_REG_SIZE / sizeof(u16),
263         },
264         .eeprom = {
265                 .read           = rt2x00_eeprom_read,
266                 .write          = rt2x00_eeprom_write,
267                 .word_size      = sizeof(u16),
268                 .word_count     = EEPROM_SIZE / sizeof(u16),
269         },
270         .bbp    = {
271                 .read           = rt2500usb_bbp_read,
272                 .write          = rt2500usb_bbp_write,
273                 .word_size      = sizeof(u8),
274                 .word_count     = BBP_SIZE / sizeof(u8),
275         },
276         .rf     = {
277                 .read           = rt2x00_rf_read,
278                 .write          = rt2500usb_rf_write,
279                 .word_size      = sizeof(u32),
280                 .word_count     = RF_SIZE / sizeof(u32),
281         },
282 };
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
284
285 #ifdef CONFIG_RT2500USB_LEDS
286 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
287                                      enum led_brightness brightness)
288 {
289         struct rt2x00_led *led =
290             container_of(led_cdev, struct rt2x00_led, led_dev);
291         unsigned int enabled = brightness != LED_OFF;
292         u16 reg;
293
294         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
295
296         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
297                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
298         else if (led->type == LED_TYPE_ACTIVITY)
299                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
300
301         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
302 }
303
304 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
305                                unsigned long *delay_on,
306                                unsigned long *delay_off)
307 {
308         struct rt2x00_led *led =
309             container_of(led_cdev, struct rt2x00_led, led_dev);
310         u16 reg;
311
312         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
313         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
314         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
315         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
316
317         return 0;
318 }
319
320 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
321                                struct rt2x00_led *led,
322                                enum led_type type)
323 {
324         led->rt2x00dev = rt2x00dev;
325         led->type = type;
326         led->led_dev.brightness_set = rt2500usb_brightness_set;
327         led->led_dev.blink_set = rt2500usb_blink_set;
328         led->flags = LED_INITIALIZED;
329 }
330 #endif /* CONFIG_RT2500USB_LEDS */
331
332 /*
333  * Configuration handlers.
334  */
335 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
336                                     const unsigned int filter_flags)
337 {
338         u16 reg;
339
340         /*
341          * Start configuration steps.
342          * Note that the version error will always be dropped
343          * and broadcast frames will always be accepted since
344          * there is no filter for it at this time.
345          */
346         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
347         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
348                            !(filter_flags & FIF_FCSFAIL));
349         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
350                            !(filter_flags & FIF_PLCPFAIL));
351         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
352                            !(filter_flags & FIF_CONTROL));
353         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
354                            !(filter_flags & FIF_PROMISC_IN_BSS));
355         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
356                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
357                            !rt2x00dev->intf_ap_count);
358         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
359         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
360                            !(filter_flags & FIF_ALLMULTI));
361         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
362         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
363 }
364
365 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
366                                   struct rt2x00_intf *intf,
367                                   struct rt2x00intf_conf *conf,
368                                   const unsigned int flags)
369 {
370         unsigned int bcn_preload;
371         u16 reg;
372
373         if (flags & CONFIG_UPDATE_TYPE) {
374                 /*
375                  * Enable beacon config
376                  */
377                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
378                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
379                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
380                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
381                                    2 * (conf->type != IEEE80211_IF_TYPE_STA));
382                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
383
384                 /*
385                  * Enable synchronisation.
386                  */
387                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
388                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
389                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
390
391                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
392                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
393                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
394                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
395                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
396         }
397
398         if (flags & CONFIG_UPDATE_MAC)
399                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
400                                               (3 * sizeof(__le16)));
401
402         if (flags & CONFIG_UPDATE_BSSID)
403                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
404                                               (3 * sizeof(__le16)));
405 }
406
407 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
408                                  struct rt2x00lib_erp *erp)
409 {
410         u16 reg;
411
412         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
413         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
414         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
415
416         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
417         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
418                            !!erp->short_preamble);
419         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
420 }
421
422 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
423                                      const int basic_rate_mask)
424 {
425         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
426 }
427
428 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
429                                      struct rf_channel *rf, const int txpower)
430 {
431         /*
432          * Set TXpower.
433          */
434         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
435
436         /*
437          * For RT2525E we should first set the channel to half band higher.
438          */
439         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
440                 static const u32 vals[] = {
441                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
442                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
443                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
444                         0x00000902, 0x00000906
445                 };
446
447                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
448                 if (rf->rf4)
449                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
450         }
451
452         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
453         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
454         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
455         if (rf->rf4)
456                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
457 }
458
459 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
460                                      const int txpower)
461 {
462         u32 rf3;
463
464         rt2x00_rf_read(rt2x00dev, 3, &rf3);
465         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
466         rt2500usb_rf_write(rt2x00dev, 3, rf3);
467 }
468
469 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
470                                      struct antenna_setup *ant)
471 {
472         u8 r2;
473         u8 r14;
474         u16 csr5;
475         u16 csr6;
476
477         /*
478          * We should never come here because rt2x00lib is supposed
479          * to catch this and send us the correct antenna explicitely.
480          */
481         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
482                ant->tx == ANTENNA_SW_DIVERSITY);
483
484         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
485         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
486         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
487         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
488
489         /*
490          * Configure the TX antenna.
491          */
492         switch (ant->tx) {
493         case ANTENNA_HW_DIVERSITY:
494                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
495                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
496                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
497                 break;
498         case ANTENNA_A:
499                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
500                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
501                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
502                 break;
503         case ANTENNA_B:
504         default:
505                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
506                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
507                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
508                 break;
509         }
510
511         /*
512          * Configure the RX antenna.
513          */
514         switch (ant->rx) {
515         case ANTENNA_HW_DIVERSITY:
516                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
517                 break;
518         case ANTENNA_A:
519                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
520                 break;
521         case ANTENNA_B:
522         default:
523                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
524                 break;
525         }
526
527         /*
528          * RT2525E and RT5222 need to flip TX I/Q
529          */
530         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
531             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
532                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
533                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
534                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
535
536                 /*
537                  * RT2525E does not need RX I/Q Flip.
538                  */
539                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
540                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
541         } else {
542                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
543                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
544         }
545
546         rt2500usb_bbp_write(rt2x00dev, 2, r2);
547         rt2500usb_bbp_write(rt2x00dev, 14, r14);
548         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
549         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
550 }
551
552 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
553                                       struct rt2x00lib_conf *libconf)
554 {
555         u16 reg;
556
557         rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
558         rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
559         rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
560
561         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
562         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
563                            libconf->conf->beacon_int * 4);
564         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
565 }
566
567 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
568                              struct rt2x00lib_conf *libconf,
569                              const unsigned int flags)
570 {
571         if (flags & CONFIG_UPDATE_PHYMODE)
572                 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
573         if (flags & CONFIG_UPDATE_CHANNEL)
574                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
575                                          libconf->conf->power_level);
576         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
577                 rt2500usb_config_txpower(rt2x00dev,
578                                          libconf->conf->power_level);
579         if (flags & CONFIG_UPDATE_ANTENNA)
580                 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
581         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
582                 rt2500usb_config_duration(rt2x00dev, libconf);
583 }
584
585 /*
586  * Link tuning
587  */
588 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
589                                  struct link_qual *qual)
590 {
591         u16 reg;
592
593         /*
594          * Update FCS error count from register.
595          */
596         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
597         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
598
599         /*
600          * Update False CCA count from register.
601          */
602         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
603         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
604 }
605
606 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
607 {
608         u16 eeprom;
609         u16 value;
610
611         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
612         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
613         rt2500usb_bbp_write(rt2x00dev, 24, value);
614
615         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
616         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
617         rt2500usb_bbp_write(rt2x00dev, 25, value);
618
619         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
620         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
621         rt2500usb_bbp_write(rt2x00dev, 61, value);
622
623         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
624         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
625         rt2500usb_bbp_write(rt2x00dev, 17, value);
626
627         rt2x00dev->link.vgc_level = value;
628 }
629
630 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
631 {
632         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
633         u16 bbp_thresh;
634         u16 vgc_bound;
635         u16 sens;
636         u16 r24;
637         u16 r25;
638         u16 r61;
639         u16 r17_sens;
640         u8 r17;
641         u8 up_bound;
642         u8 low_bound;
643
644         /*
645          * Read current r17 value, as well as the sensitivity values
646          * for the r17 register.
647          */
648         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
649         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
650
651         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
652         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
653         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
654
655         /*
656          * If we are not associated, we should go straight to the
657          * dynamic CCA tuning.
658          */
659         if (!rt2x00dev->intf_associated)
660                 goto dynamic_cca_tune;
661
662         /*
663          * Determine the BBP tuning threshold and correctly
664          * set BBP 24, 25 and 61.
665          */
666         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
667         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
668
669         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
670         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
671         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
672
673         if ((rssi + bbp_thresh) > 0) {
674                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
675                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
676                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
677         } else {
678                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
679                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
680                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
681         }
682
683         rt2500usb_bbp_write(rt2x00dev, 24, r24);
684         rt2500usb_bbp_write(rt2x00dev, 25, r25);
685         rt2500usb_bbp_write(rt2x00dev, 61, r61);
686
687         /*
688          * A too low RSSI will cause too much false CCA which will
689          * then corrupt the R17 tuning. To remidy this the tuning should
690          * be stopped (While making sure the R17 value will not exceed limits)
691          */
692         if (rssi >= -40) {
693                 if (r17 != 0x60)
694                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
695                 return;
696         }
697
698         /*
699          * Special big-R17 for short distance
700          */
701         if (rssi >= -58) {
702                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
703                 if (r17 != sens)
704                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
705                 return;
706         }
707
708         /*
709          * Special mid-R17 for middle distance
710          */
711         if (rssi >= -74) {
712                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
713                 if (r17 != sens)
714                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
715                 return;
716         }
717
718         /*
719          * Leave short or middle distance condition, restore r17
720          * to the dynamic tuning range.
721          */
722         low_bound = 0x32;
723         if (rssi < -77)
724                 up_bound -= (-77 - rssi);
725
726         if (up_bound < low_bound)
727                 up_bound = low_bound;
728
729         if (r17 > up_bound) {
730                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
731                 rt2x00dev->link.vgc_level = up_bound;
732                 return;
733         }
734
735 dynamic_cca_tune:
736
737         /*
738          * R17 is inside the dynamic tuning range,
739          * start tuning the link based on the false cca counter.
740          */
741         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
742                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
743                 rt2x00dev->link.vgc_level = r17;
744         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
745                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
746                 rt2x00dev->link.vgc_level = r17;
747         }
748 }
749
750 /*
751  * Initialization functions.
752  */
753 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
754 {
755         u16 reg;
756
757         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
758                                     USB_MODE_TEST, REGISTER_TIMEOUT);
759         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
760                                     0x00f0, REGISTER_TIMEOUT);
761
762         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
763         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
764         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
765
766         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
767         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
768
769         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
770         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
771         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
772         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
773         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
774
775         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
776         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
777         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
778         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
779         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
780
781         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
782         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
783         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
784         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
785         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
786         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
787
788         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
789         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
790         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
791         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
792         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
793         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
794
795         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
796         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
797         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
798         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
799         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
800         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
801
802         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
803         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
804         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
805         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
806         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
807         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
808
809         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
810         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
811
812         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
813                 return -EBUSY;
814
815         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
816         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
817         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
818         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
819         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
820
821         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
822                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
823                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
824         } else {
825                 reg = 0;
826                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
827                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
828         }
829         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
830
831         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
832         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
833         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
834         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
835
836         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
837         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
838                            rt2x00dev->rx->data_size);
839         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
840
841         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
842         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
843         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
844         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
845
846         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
847         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
848         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
849
850         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
851         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
852         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
853
854         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
855         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
856         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
857
858         return 0;
859 }
860
861 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
862 {
863         unsigned int i;
864         u8 value;
865
866         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
867                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
868                 if ((value != 0xff) && (value != 0x00))
869                         return 0;
870                 udelay(REGISTER_BUSY_DELAY);
871         }
872
873         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
874         return -EACCES;
875 }
876
877 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
878 {
879         unsigned int i;
880         u16 eeprom;
881         u8 value;
882         u8 reg_id;
883
884         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
885                 return -EACCES;
886
887         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
888         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
889         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
890         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
891         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
892         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
893         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
894         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
895         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
896         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
897         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
898         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
899         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
900         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
901         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
902         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
903         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
904         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
905         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
906         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
907         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
908         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
909         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
910         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
911         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
912         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
913         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
914         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
915         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
916         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
917         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
918
919         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
920                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
921
922                 if (eeprom != 0xffff && eeprom != 0x0000) {
923                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
924                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
925                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
926                 }
927         }
928
929         return 0;
930 }
931
932 /*
933  * Device state switch handlers.
934  */
935 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
936                                 enum dev_state state)
937 {
938         u16 reg;
939
940         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
941         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
942                            (state == STATE_RADIO_RX_OFF) ||
943                            (state == STATE_RADIO_RX_OFF_LINK));
944         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
945 }
946
947 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
948 {
949         /*
950          * Initialize all registers.
951          */
952         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
953                      rt2500usb_init_bbp(rt2x00dev)))
954                 return -EIO;
955
956         return 0;
957 }
958
959 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
960 {
961         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
962         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
963
964         /*
965          * Disable synchronisation.
966          */
967         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
968
969         rt2x00usb_disable_radio(rt2x00dev);
970 }
971
972 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
973                                enum dev_state state)
974 {
975         u16 reg;
976         u16 reg2;
977         unsigned int i;
978         char put_to_sleep;
979         char bbp_state;
980         char rf_state;
981
982         put_to_sleep = (state != STATE_AWAKE);
983
984         reg = 0;
985         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
986         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
987         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
988         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
989         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
990         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
991
992         /*
993          * Device is not guaranteed to be in the requested state yet.
994          * We must wait until the register indicates that the
995          * device has entered the correct state.
996          */
997         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
998                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
999                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1000                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1001                 if (bbp_state == state && rf_state == state)
1002                         return 0;
1003                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1004                 msleep(30);
1005         }
1006
1007         return -EBUSY;
1008 }
1009
1010 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1011                                       enum dev_state state)
1012 {
1013         int retval = 0;
1014
1015         switch (state) {
1016         case STATE_RADIO_ON:
1017                 retval = rt2500usb_enable_radio(rt2x00dev);
1018                 break;
1019         case STATE_RADIO_OFF:
1020                 rt2500usb_disable_radio(rt2x00dev);
1021                 break;
1022         case STATE_RADIO_RX_ON:
1023         case STATE_RADIO_RX_ON_LINK:
1024         case STATE_RADIO_RX_OFF:
1025         case STATE_RADIO_RX_OFF_LINK:
1026                 rt2500usb_toggle_rx(rt2x00dev, state);
1027                 break;
1028         case STATE_RADIO_IRQ_ON:
1029         case STATE_RADIO_IRQ_OFF:
1030                 /* No support, but no error either */
1031                 break;
1032         case STATE_DEEP_SLEEP:
1033         case STATE_SLEEP:
1034         case STATE_STANDBY:
1035         case STATE_AWAKE:
1036                 retval = rt2500usb_set_state(rt2x00dev, state);
1037                 break;
1038         default:
1039                 retval = -ENOTSUPP;
1040                 break;
1041         }
1042
1043         if (unlikely(retval))
1044                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1045                       state, retval);
1046
1047         return retval;
1048 }
1049
1050 /*
1051  * TX descriptor initialization
1052  */
1053 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1054                                     struct sk_buff *skb,
1055                                     struct txentry_desc *txdesc)
1056 {
1057         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1058         __le32 *txd = skbdesc->desc;
1059         u32 word;
1060
1061         /*
1062          * Start writing the descriptor words.
1063          */
1064         rt2x00_desc_read(txd, 1, &word);
1065         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1066         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1067         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1068         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1069         rt2x00_desc_write(txd, 1, word);
1070
1071         rt2x00_desc_read(txd, 2, &word);
1072         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1073         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1074         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1075         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1076         rt2x00_desc_write(txd, 2, word);
1077
1078         rt2x00_desc_read(txd, 0, &word);
1079         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1080         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1081                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1082         rt2x00_set_field32(&word, TXD_W0_ACK,
1083                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1084         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1085                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1086         rt2x00_set_field32(&word, TXD_W0_OFDM,
1087                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1088         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1089                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1090         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1091         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT,
1092                            skb->len - skbdesc->desc_len);
1093         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1094         rt2x00_desc_write(txd, 0, word);
1095 }
1096
1097 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1098                                      struct sk_buff *skb)
1099 {
1100         int length;
1101
1102         /*
1103          * The length _must_ be a multiple of 2,
1104          * but it must _not_ be a multiple of the USB packet size.
1105          */
1106         length = roundup(skb->len, 2);
1107         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1108
1109         return length;
1110 }
1111
1112 /*
1113  * TX data initialization
1114  */
1115 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1116                                     const enum data_queue_qid queue)
1117 {
1118         u16 reg;
1119
1120         if (queue != QID_BEACON) {
1121                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1122                 return;
1123         }
1124
1125         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1126         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1127                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1128                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1129                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1130                 /*
1131                  * Beacon generation will fail initially.
1132                  * To prevent this we need to register the TXRX_CSR19
1133                  * register several times.
1134                  */
1135                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1136                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1137                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1138                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1139                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1140         }
1141 }
1142
1143 /*
1144  * RX control handlers
1145  */
1146 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1147                                   struct rxdone_entry_desc *rxdesc)
1148 {
1149         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1150         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1151         __le32 *rxd =
1152             (__le32 *)(entry->skb->data +
1153                        (entry_priv->urb->actual_length -
1154                         entry->queue->desc_size));
1155         u32 word0;
1156         u32 word1;
1157
1158         /*
1159          * Copy descriptor to the skb->cb array, this has 2 benefits:
1160          * 1) Each descriptor word is 4 byte aligned.
1161          * 2) Descriptor is safe  from moving of frame data in rt2x00usb.
1162          */
1163         skbdesc->desc_len =
1164             min_t(u16, entry->queue->desc_size, sizeof(entry->skb->cb));
1165         memcpy(entry->skb->cb, rxd, skbdesc->desc_len);
1166         skbdesc->desc = entry->skb->cb;
1167         rxd = (__le32 *)skbdesc->desc;
1168
1169         /*
1170          * It is now safe to read the descriptor on all architectures.
1171          */
1172         rt2x00_desc_read(rxd, 0, &word0);
1173         rt2x00_desc_read(rxd, 1, &word1);
1174
1175         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1176                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1177         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1178                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1179
1180         /*
1181          * Obtain the status about this packet.
1182          * When frame was received with an OFDM bitrate,
1183          * the signal is the PLCP value. If it was received with
1184          * a CCK bitrate the signal is the rate in 100kbit/s.
1185          */
1186         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1187         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1188             entry->queue->rt2x00dev->rssi_offset;
1189         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1190
1191         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1192                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1193         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1194                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1195
1196         /*
1197          * Adjust the skb memory window to the frame boundaries.
1198          */
1199         skb_trim(entry->skb, rxdesc->size);
1200 }
1201
1202 /*
1203  * Interrupt functions.
1204  */
1205 static void rt2500usb_beacondone(struct urb *urb)
1206 {
1207         struct queue_entry *entry = (struct queue_entry *)urb->context;
1208         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1209
1210         if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1211                 return;
1212
1213         /*
1214          * Check if this was the guardian beacon,
1215          * if that was the case we need to send the real beacon now.
1216          * Otherwise we should free the sk_buffer, the device
1217          * should be doing the rest of the work now.
1218          */
1219         if (bcn_priv->guardian_urb == urb) {
1220                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1221         } else if (bcn_priv->urb == urb) {
1222                 dev_kfree_skb(entry->skb);
1223                 entry->skb = NULL;
1224         }
1225 }
1226
1227 /*
1228  * Device probe functions.
1229  */
1230 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1231 {
1232         u16 word;
1233         u8 *mac;
1234         u8 bbp;
1235
1236         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1237
1238         /*
1239          * Start validation of the data that has been read.
1240          */
1241         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1242         if (!is_valid_ether_addr(mac)) {
1243                 DECLARE_MAC_BUF(macbuf);
1244
1245                 random_ether_addr(mac);
1246                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1247         }
1248
1249         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1250         if (word == 0xffff) {
1251                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1252                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1253                                    ANTENNA_SW_DIVERSITY);
1254                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1255                                    ANTENNA_SW_DIVERSITY);
1256                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1257                                    LED_MODE_DEFAULT);
1258                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1259                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1260                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1261                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1262                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1263         }
1264
1265         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1266         if (word == 0xffff) {
1267                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1268                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1269                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1270                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1271                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1272         }
1273
1274         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1275         if (word == 0xffff) {
1276                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1277                                    DEFAULT_RSSI_OFFSET);
1278                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1279                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1280         }
1281
1282         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1283         if (word == 0xffff) {
1284                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1285                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1286                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1287         }
1288
1289         /*
1290          * Switch lower vgc bound to current BBP R17 value,
1291          * lower the value a bit for better quality.
1292          */
1293         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1294         bbp -= 6;
1295
1296         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1297         if (word == 0xffff) {
1298                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1299                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1300                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1301                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1302         }
1303
1304         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1305         if (word == 0xffff) {
1306                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1307                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1308                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1309                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1310         } else {
1311                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1312                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1313         }
1314
1315         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1316         if (word == 0xffff) {
1317                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1318                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1319                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1320                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1321         }
1322
1323         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1324         if (word == 0xffff) {
1325                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1326                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1327                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1328                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1329         }
1330
1331         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1332         if (word == 0xffff) {
1333                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1334                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1335                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1336                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1337         }
1338
1339         return 0;
1340 }
1341
1342 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1343 {
1344         u16 reg;
1345         u16 value;
1346         u16 eeprom;
1347
1348         /*
1349          * Read EEPROM word for configuration.
1350          */
1351         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1352
1353         /*
1354          * Identify RF chipset.
1355          */
1356         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1357         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1358         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1359
1360         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1361                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1362                 return -ENODEV;
1363         }
1364
1365         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1366             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1367             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1368             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1369             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1370             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1371                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1372                 return -ENODEV;
1373         }
1374
1375         /*
1376          * Identify default antenna configuration.
1377          */
1378         rt2x00dev->default_ant.tx =
1379             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1380         rt2x00dev->default_ant.rx =
1381             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1382
1383         /*
1384          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1385          * I am not 100% sure about this, but the legacy drivers do not
1386          * indicate antenna swapping in software is required when
1387          * diversity is enabled.
1388          */
1389         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1390                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1391         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1392                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1393
1394         /*
1395          * Store led mode, for correct led behaviour.
1396          */
1397 #ifdef CONFIG_RT2500USB_LEDS
1398         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1399
1400         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1401         if (value == LED_MODE_TXRX_ACTIVITY)
1402                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1403                                    LED_TYPE_ACTIVITY);
1404 #endif /* CONFIG_RT2500USB_LEDS */
1405
1406         /*
1407          * Check if the BBP tuning should be disabled.
1408          */
1409         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1410         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1411                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1412
1413         /*
1414          * Read the RSSI <-> dBm offset information.
1415          */
1416         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1417         rt2x00dev->rssi_offset =
1418             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1419
1420         return 0;
1421 }
1422
1423 /*
1424  * RF value list for RF2522
1425  * Supports: 2.4 GHz
1426  */
1427 static const struct rf_channel rf_vals_bg_2522[] = {
1428         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1429         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1430         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1431         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1432         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1433         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1434         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1435         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1436         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1437         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1438         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1439         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1440         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1441         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1442 };
1443
1444 /*
1445  * RF value list for RF2523
1446  * Supports: 2.4 GHz
1447  */
1448 static const struct rf_channel rf_vals_bg_2523[] = {
1449         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1450         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1451         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1452         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1453         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1454         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1455         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1456         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1457         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1458         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1459         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1460         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1461         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1462         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1463 };
1464
1465 /*
1466  * RF value list for RF2524
1467  * Supports: 2.4 GHz
1468  */
1469 static const struct rf_channel rf_vals_bg_2524[] = {
1470         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1471         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1472         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1473         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1474         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1475         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1476         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1477         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1478         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1479         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1480         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1481         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1482         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1483         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1484 };
1485
1486 /*
1487  * RF value list for RF2525
1488  * Supports: 2.4 GHz
1489  */
1490 static const struct rf_channel rf_vals_bg_2525[] = {
1491         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1492         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1493         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1494         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1495         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1496         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1497         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1498         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1499         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1500         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1501         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1502         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1503         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1504         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1505 };
1506
1507 /*
1508  * RF value list for RF2525e
1509  * Supports: 2.4 GHz
1510  */
1511 static const struct rf_channel rf_vals_bg_2525e[] = {
1512         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1513         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1514         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1515         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1516         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1517         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1518         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1519         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1520         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1521         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1522         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1523         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1524         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1525         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1526 };
1527
1528 /*
1529  * RF value list for RF5222
1530  * Supports: 2.4 GHz & 5.2 GHz
1531  */
1532 static const struct rf_channel rf_vals_5222[] = {
1533         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1534         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1535         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1536         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1537         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1538         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1539         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1540         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1541         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1542         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1543         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1544         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1545         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1546         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1547
1548         /* 802.11 UNI / HyperLan 2 */
1549         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1550         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1551         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1552         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1553         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1554         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1555         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1556         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1557
1558         /* 802.11 HyperLan 2 */
1559         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1560         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1561         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1562         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1563         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1564         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1565         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1566         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1567         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1568         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1569
1570         /* 802.11 UNII */
1571         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1572         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1573         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1574         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1575         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1576 };
1577
1578 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1579 {
1580         struct hw_mode_spec *spec = &rt2x00dev->spec;
1581         u8 *txpower;
1582         unsigned int i;
1583
1584         /*
1585          * Initialize all hw fields.
1586          */
1587         rt2x00dev->hw->flags =
1588             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1589             IEEE80211_HW_RX_INCLUDES_FCS |
1590             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1591             IEEE80211_HW_SIGNAL_DBM;
1592
1593         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1594
1595         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1596         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1597                                 rt2x00_eeprom_addr(rt2x00dev,
1598                                                    EEPROM_MAC_ADDR_0));
1599
1600         /*
1601          * Convert tx_power array in eeprom.
1602          */
1603         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1604         for (i = 0; i < 14; i++)
1605                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1606
1607         /*
1608          * Initialize hw_mode information.
1609          */
1610         spec->supported_bands = SUPPORT_BAND_2GHZ;
1611         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1612         spec->tx_power_a = NULL;
1613         spec->tx_power_bg = txpower;
1614         spec->tx_power_default = DEFAULT_TXPOWER;
1615
1616         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1617                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1618                 spec->channels = rf_vals_bg_2522;
1619         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1620                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1621                 spec->channels = rf_vals_bg_2523;
1622         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1623                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1624                 spec->channels = rf_vals_bg_2524;
1625         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1626                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1627                 spec->channels = rf_vals_bg_2525;
1628         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1629                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1630                 spec->channels = rf_vals_bg_2525e;
1631         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1632                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1633                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1634                 spec->channels = rf_vals_5222;
1635         }
1636 }
1637
1638 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1639 {
1640         int retval;
1641
1642         /*
1643          * Allocate eeprom data.
1644          */
1645         retval = rt2500usb_validate_eeprom(rt2x00dev);
1646         if (retval)
1647                 return retval;
1648
1649         retval = rt2500usb_init_eeprom(rt2x00dev);
1650         if (retval)
1651                 return retval;
1652
1653         /*
1654          * Initialize hw specifications.
1655          */
1656         rt2500usb_probe_hw_mode(rt2x00dev);
1657
1658         /*
1659          * This device requires the atim queue
1660          */
1661         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1662         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1663         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1664
1665         /*
1666          * Set the rssi offset.
1667          */
1668         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1669
1670         return 0;
1671 }
1672
1673 /*
1674  * IEEE80211 stack callback functions.
1675  */
1676 static int rt2500usb_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
1677 {
1678         struct rt2x00_dev *rt2x00dev = hw->priv;
1679         struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1680         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1681         struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
1682         struct queue_entry_priv_usb_bcn *bcn_priv;
1683         struct skb_frame_desc *skbdesc;
1684         struct txentry_desc txdesc;
1685         int pipe = usb_sndbulkpipe(usb_dev, 1);
1686         int length;
1687         u16 reg;
1688
1689         if (unlikely(!intf->beacon))
1690                 return -ENOBUFS;
1691
1692         bcn_priv = intf->beacon->priv_data;
1693
1694         /*
1695          * Copy all TX descriptor information into txdesc,
1696          * after that we are free to use the skb->cb array
1697          * for our information.
1698          */
1699         intf->beacon->skb = skb;
1700         rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
1701
1702         /*
1703          * Add the descriptor in front of the skb.
1704          */
1705         skb_push(skb, intf->beacon->queue->desc_size);
1706         memset(skb->data, 0, intf->beacon->queue->desc_size);
1707
1708         /*
1709          * Fill in skb descriptor
1710          */
1711         skbdesc = get_skb_frame_desc(skb);
1712         memset(skbdesc, 0, sizeof(*skbdesc));
1713         skbdesc->desc = skb->data;
1714         skbdesc->desc_len = intf->beacon->queue->desc_size;
1715         skbdesc->entry = intf->beacon;
1716
1717         /*
1718          * Disable beaconing while we are reloading the beacon data,
1719          * otherwise we might be sending out invalid data.
1720          */
1721         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1722         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1723         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1724         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1725         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1726
1727         rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
1728
1729         /*
1730          * USB devices cannot blindly pass the skb->len as the
1731          * length of the data to usb_fill_bulk_urb. Pass the skb
1732          * to the driver to determine what the length should be.
1733          */
1734         length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1735
1736         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1737                           skb->data, length, rt2500usb_beacondone,
1738                           intf->beacon);
1739
1740         /*
1741          * Second we need to create the guardian byte.
1742          * We only need a single byte, so lets recycle
1743          * the 'flags' field we are not using for beacons.
1744          */
1745         bcn_priv->guardian_data = 0;
1746         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1747                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1748                           intf->beacon);
1749
1750         /*
1751          * Send out the guardian byte.
1752          */
1753         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1754
1755         /*
1756          * Enable beacon generation.
1757          */
1758         rt2500usb_kick_tx_queue(rt2x00dev, QID_BEACON);
1759
1760         return 0;
1761 }
1762
1763 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1764         .tx                     = rt2x00mac_tx,
1765         .start                  = rt2x00mac_start,
1766         .stop                   = rt2x00mac_stop,
1767         .add_interface          = rt2x00mac_add_interface,
1768         .remove_interface       = rt2x00mac_remove_interface,
1769         .config                 = rt2x00mac_config,
1770         .config_interface       = rt2x00mac_config_interface,
1771         .configure_filter       = rt2x00mac_configure_filter,
1772         .get_stats              = rt2x00mac_get_stats,
1773         .bss_info_changed       = rt2x00mac_bss_info_changed,
1774         .conf_tx                = rt2x00mac_conf_tx,
1775         .get_tx_stats           = rt2x00mac_get_tx_stats,
1776         .beacon_update          = rt2500usb_beacon_update,
1777 };
1778
1779 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1780         .probe_hw               = rt2500usb_probe_hw,
1781         .initialize             = rt2x00usb_initialize,
1782         .uninitialize           = rt2x00usb_uninitialize,
1783         .init_rxentry           = rt2x00usb_init_rxentry,
1784         .init_txentry           = rt2x00usb_init_txentry,
1785         .set_device_state       = rt2500usb_set_device_state,
1786         .link_stats             = rt2500usb_link_stats,
1787         .reset_tuner            = rt2500usb_reset_tuner,
1788         .link_tuner             = rt2500usb_link_tuner,
1789         .write_tx_desc          = rt2500usb_write_tx_desc,
1790         .write_tx_data          = rt2x00usb_write_tx_data,
1791         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1792         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1793         .fill_rxdone            = rt2500usb_fill_rxdone,
1794         .config_filter          = rt2500usb_config_filter,
1795         .config_intf            = rt2500usb_config_intf,
1796         .config_erp             = rt2500usb_config_erp,
1797         .config                 = rt2500usb_config,
1798 };
1799
1800 static const struct data_queue_desc rt2500usb_queue_rx = {
1801         .entry_num              = RX_ENTRIES,
1802         .data_size              = DATA_FRAME_SIZE,
1803         .desc_size              = RXD_DESC_SIZE,
1804         .priv_size              = sizeof(struct queue_entry_priv_usb),
1805 };
1806
1807 static const struct data_queue_desc rt2500usb_queue_tx = {
1808         .entry_num              = TX_ENTRIES,
1809         .data_size              = DATA_FRAME_SIZE,
1810         .desc_size              = TXD_DESC_SIZE,
1811         .priv_size              = sizeof(struct queue_entry_priv_usb),
1812 };
1813
1814 static const struct data_queue_desc rt2500usb_queue_bcn = {
1815         .entry_num              = BEACON_ENTRIES,
1816         .data_size              = MGMT_FRAME_SIZE,
1817         .desc_size              = TXD_DESC_SIZE,
1818         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1819 };
1820
1821 static const struct data_queue_desc rt2500usb_queue_atim = {
1822         .entry_num              = ATIM_ENTRIES,
1823         .data_size              = DATA_FRAME_SIZE,
1824         .desc_size              = TXD_DESC_SIZE,
1825         .priv_size              = sizeof(struct queue_entry_priv_usb),
1826 };
1827
1828 static const struct rt2x00_ops rt2500usb_ops = {
1829         .name           = KBUILD_MODNAME,
1830         .max_sta_intf   = 1,
1831         .max_ap_intf    = 1,
1832         .eeprom_size    = EEPROM_SIZE,
1833         .rf_size        = RF_SIZE,
1834         .tx_queues      = NUM_TX_QUEUES,
1835         .rx             = &rt2500usb_queue_rx,
1836         .tx             = &rt2500usb_queue_tx,
1837         .bcn            = &rt2500usb_queue_bcn,
1838         .atim           = &rt2500usb_queue_atim,
1839         .lib            = &rt2500usb_rt2x00_ops,
1840         .hw             = &rt2500usb_mac80211_ops,
1841 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1842         .debugfs        = &rt2500usb_rt2x00debug,
1843 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1844 };
1845
1846 /*
1847  * rt2500usb module information.
1848  */
1849 static struct usb_device_id rt2500usb_device_table[] = {
1850         /* ASUS */
1851         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1852         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1853         /* Belkin */
1854         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1855         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1857         /* Cisco Systems */
1858         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1859         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1860         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1861         /* Conceptronic */
1862         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         /* D-LINK */
1864         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         /* Gigabyte */
1866         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1867         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1868         /* Hercules */
1869         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1870         /* Melco */
1871         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1874         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1875         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1876         /* MSI */
1877         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1878         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1879         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         /* Ralink */
1881         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1883         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1884         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         /* Siemens */
1886         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1887         /* SMC */
1888         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         /* Spairon */
1890         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         /* Trust */
1892         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1893         /* Zinwell */
1894         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1895         { 0, }
1896 };
1897
1898 MODULE_AUTHOR(DRV_PROJECT);
1899 MODULE_VERSION(DRV_VERSION);
1900 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1901 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1902 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1903 MODULE_LICENSE("GPL");
1904
1905 static struct usb_driver rt2500usb_driver = {
1906         .name           = KBUILD_MODNAME,
1907         .id_table       = rt2500usb_device_table,
1908         .probe          = rt2x00usb_probe,
1909         .disconnect     = rt2x00usb_disconnect,
1910         .suspend        = rt2x00usb_suspend,
1911         .resume         = rt2x00usb_resume,
1912 };
1913
1914 static int __init rt2500usb_init(void)
1915 {
1916         return usb_register(&rt2500usb_driver);
1917 }
1918
1919 static void __exit rt2500usb_exit(void)
1920 {
1921         usb_deregister(&rt2500usb_driver);
1922 }
1923
1924 module_init(rt2500usb_init);
1925 module_exit(rt2500usb_exit);