]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
rt2x00: Implement HW encryption (rt2500usb)
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 1;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         if (!word)
208                 return;
209
210         mutex_lock(&rt2x00dev->csr_mutex);
211
212         /*
213          * Wait until the RF becomes available, afterwards we
214          * can safely write the new data into the register.
215          */
216         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
217                 reg = 0;
218                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
219                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
220
221                 reg = 0;
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
224                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
225                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
226
227                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
228                 rt2x00_rf_write(rt2x00dev, word, value);
229         }
230
231         mutex_unlock(&rt2x00dev->csr_mutex);
232 }
233
234 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
235 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
236                                      const unsigned int offset,
237                                      u32 *value)
238 {
239         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
240 }
241
242 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
243                                       const unsigned int offset,
244                                       u32 value)
245 {
246         rt2500usb_register_write(rt2x00dev, offset, value);
247 }
248
249 static const struct rt2x00debug rt2500usb_rt2x00debug = {
250         .owner  = THIS_MODULE,
251         .csr    = {
252                 .read           = _rt2500usb_register_read,
253                 .write          = _rt2500usb_register_write,
254                 .flags          = RT2X00DEBUGFS_OFFSET,
255                 .word_base      = CSR_REG_BASE,
256                 .word_size      = sizeof(u16),
257                 .word_count     = CSR_REG_SIZE / sizeof(u16),
258         },
259         .eeprom = {
260                 .read           = rt2x00_eeprom_read,
261                 .write          = rt2x00_eeprom_write,
262                 .word_base      = EEPROM_BASE,
263                 .word_size      = sizeof(u16),
264                 .word_count     = EEPROM_SIZE / sizeof(u16),
265         },
266         .bbp    = {
267                 .read           = rt2500usb_bbp_read,
268                 .write          = rt2500usb_bbp_write,
269                 .word_base      = BBP_BASE,
270                 .word_size      = sizeof(u8),
271                 .word_count     = BBP_SIZE / sizeof(u8),
272         },
273         .rf     = {
274                 .read           = rt2x00_rf_read,
275                 .write          = rt2500usb_rf_write,
276                 .word_base      = RF_BASE,
277                 .word_size      = sizeof(u32),
278                 .word_count     = RF_SIZE / sizeof(u32),
279         },
280 };
281 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
282
283 #ifdef CONFIG_RT2X00_LIB_LEDS
284 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
285                                      enum led_brightness brightness)
286 {
287         struct rt2x00_led *led =
288             container_of(led_cdev, struct rt2x00_led, led_dev);
289         unsigned int enabled = brightness != LED_OFF;
290         u16 reg;
291
292         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
293
294         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
295                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
296         else if (led->type == LED_TYPE_ACTIVITY)
297                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
298
299         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
300 }
301
302 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
303                                unsigned long *delay_on,
304                                unsigned long *delay_off)
305 {
306         struct rt2x00_led *led =
307             container_of(led_cdev, struct rt2x00_led, led_dev);
308         u16 reg;
309
310         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
311         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
312         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
313         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
314
315         return 0;
316 }
317
318 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
319                                struct rt2x00_led *led,
320                                enum led_type type)
321 {
322         led->rt2x00dev = rt2x00dev;
323         led->type = type;
324         led->led_dev.brightness_set = rt2500usb_brightness_set;
325         led->led_dev.blink_set = rt2500usb_blink_set;
326         led->flags = LED_INITIALIZED;
327 }
328 #endif /* CONFIG_RT2X00_LIB_LEDS */
329
330 /*
331  * Configuration handlers.
332  */
333
334 /*
335  * rt2500usb does not differentiate between shared and pairwise
336  * keys, so we should use the same function for both key types.
337  */
338 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
339                                 struct rt2x00lib_crypto *crypto,
340                                 struct ieee80211_key_conf *key)
341 {
342         int timeout;
343         u32 mask;
344         u16 reg;
345
346         if (crypto->cmd == SET_KEY) {
347                 /*
348                  * Pairwise key will always be entry 0, but this
349                  * could collide with a shared key on the same
350                  * position...
351                  */
352                 mask = TXRX_CSR0_KEY_ID.bit_mask;
353
354                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
355                 reg &= mask;
356
357                 if (reg && reg == mask)
358                         return -ENOSPC;
359
360                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
361
362                 key->hw_key_idx += reg ? ffz(reg) : 0;
363
364                 /*
365                  * The encryption key doesn't fit within the CSR cache,
366                  * this means we should allocate it seperately and use
367                  * rt2x00usb_vendor_request() to send the key to the hardware.
368                  */
369                 reg = KEY_ENTRY(key->hw_key_idx);
370                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
371                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
372                                                     USB_VENDOR_REQUEST_OUT, reg,
373                                                     crypto->key,
374                                                     sizeof(crypto->key),
375                                                     timeout);
376
377                 /*
378                  * The driver does not support the IV/EIV generation
379                  * in hardware. However it doesn't support the IV/EIV
380                  * inside the ieee80211 frame either, but requires it
381                  * to be provided seperately for the descriptor.
382                  * rt2x00lib will cut the IV/EIV data out of all frames
383                  * given to us by mac80211, but we must tell mac80211
384                  * to generate the IV/EIV data.
385                  */
386                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
387                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
388         }
389
390         /*
391          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
392          * a particular key is valid.
393          */
394         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
395         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
396         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
397
398         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
399         if (crypto->cmd == SET_KEY)
400                 mask |= 1 << key->hw_key_idx;
401         else if (crypto->cmd == DISABLE_KEY)
402                 mask &= ~(1 << key->hw_key_idx);
403         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
404         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
405
406         return 0;
407 }
408
409 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
410                                     const unsigned int filter_flags)
411 {
412         u16 reg;
413
414         /*
415          * Start configuration steps.
416          * Note that the version error will always be dropped
417          * and broadcast frames will always be accepted since
418          * there is no filter for it at this time.
419          */
420         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
421         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
422                            !(filter_flags & FIF_FCSFAIL));
423         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
424                            !(filter_flags & FIF_PLCPFAIL));
425         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
426                            !(filter_flags & FIF_CONTROL));
427         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
428                            !(filter_flags & FIF_PROMISC_IN_BSS));
429         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
430                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
431                            !rt2x00dev->intf_ap_count);
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
433         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
434                            !(filter_flags & FIF_ALLMULTI));
435         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
436         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
437 }
438
439 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
440                                   struct rt2x00_intf *intf,
441                                   struct rt2x00intf_conf *conf,
442                                   const unsigned int flags)
443 {
444         unsigned int bcn_preload;
445         u16 reg;
446
447         if (flags & CONFIG_UPDATE_TYPE) {
448                 /*
449                  * Enable beacon config
450                  */
451                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
452                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
453                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
454                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
455                                    2 * (conf->type != NL80211_IFTYPE_STATION));
456                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
457
458                 /*
459                  * Enable synchronisation.
460                  */
461                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
462                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
463                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
464
465                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
466                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
467                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
468                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
469                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
470         }
471
472         if (flags & CONFIG_UPDATE_MAC)
473                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
474                                               (3 * sizeof(__le16)));
475
476         if (flags & CONFIG_UPDATE_BSSID)
477                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
478                                               (3 * sizeof(__le16)));
479 }
480
481 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
482                                  struct rt2x00lib_erp *erp)
483 {
484         u16 reg;
485
486         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
487         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
488         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
489
490         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
491         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
492                            !!erp->short_preamble);
493         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
494
495         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
496
497         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
498         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
499         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
500 }
501
502 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
503                                  struct antenna_setup *ant)
504 {
505         u8 r2;
506         u8 r14;
507         u16 csr5;
508         u16 csr6;
509
510         /*
511          * We should never come here because rt2x00lib is supposed
512          * to catch this and send us the correct antenna explicitely.
513          */
514         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
515                ant->tx == ANTENNA_SW_DIVERSITY);
516
517         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
518         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
519         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
520         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
521
522         /*
523          * Configure the TX antenna.
524          */
525         switch (ant->tx) {
526         case ANTENNA_HW_DIVERSITY:
527                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
528                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
529                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
530                 break;
531         case ANTENNA_A:
532                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
533                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
534                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
535                 break;
536         case ANTENNA_B:
537         default:
538                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
539                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
540                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
541                 break;
542         }
543
544         /*
545          * Configure the RX antenna.
546          */
547         switch (ant->rx) {
548         case ANTENNA_HW_DIVERSITY:
549                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
550                 break;
551         case ANTENNA_A:
552                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
553                 break;
554         case ANTENNA_B:
555         default:
556                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
557                 break;
558         }
559
560         /*
561          * RT2525E and RT5222 need to flip TX I/Q
562          */
563         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
564             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
565                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
566                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
567                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
568
569                 /*
570                  * RT2525E does not need RX I/Q Flip.
571                  */
572                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
573                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
574         } else {
575                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
576                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
577         }
578
579         rt2500usb_bbp_write(rt2x00dev, 2, r2);
580         rt2500usb_bbp_write(rt2x00dev, 14, r14);
581         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
582         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
583 }
584
585 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
586                                      struct rf_channel *rf, const int txpower)
587 {
588         /*
589          * Set TXpower.
590          */
591         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
592
593         /*
594          * For RT2525E we should first set the channel to half band higher.
595          */
596         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
597                 static const u32 vals[] = {
598                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
599                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
600                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
601                         0x00000902, 0x00000906
602                 };
603
604                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
605                 if (rf->rf4)
606                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
607         }
608
609         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
610         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
611         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
612         if (rf->rf4)
613                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
614 }
615
616 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
617                                      const int txpower)
618 {
619         u32 rf3;
620
621         rt2x00_rf_read(rt2x00dev, 3, &rf3);
622         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
623         rt2500usb_rf_write(rt2x00dev, 3, rf3);
624 }
625
626 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
627                                       struct rt2x00lib_conf *libconf)
628 {
629         u16 reg;
630
631         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
632         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
633                            libconf->conf->beacon_int * 4);
634         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
635 }
636
637 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
638                              struct rt2x00lib_conf *libconf,
639                              const unsigned int flags)
640 {
641         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
642                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
643                                          libconf->conf->power_level);
644         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
645             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
646                 rt2500usb_config_txpower(rt2x00dev,
647                                          libconf->conf->power_level);
648         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
649                 rt2500usb_config_duration(rt2x00dev, libconf);
650 }
651
652 /*
653  * Link tuning
654  */
655 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
656                                  struct link_qual *qual)
657 {
658         u16 reg;
659
660         /*
661          * Update FCS error count from register.
662          */
663         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
664         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
665
666         /*
667          * Update False CCA count from register.
668          */
669         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
670         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
671 }
672
673 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
674 {
675         u16 eeprom;
676         u16 value;
677
678         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
679         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
680         rt2500usb_bbp_write(rt2x00dev, 24, value);
681
682         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
683         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
684         rt2500usb_bbp_write(rt2x00dev, 25, value);
685
686         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
687         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
688         rt2500usb_bbp_write(rt2x00dev, 61, value);
689
690         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
691         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
692         rt2500usb_bbp_write(rt2x00dev, 17, value);
693
694         rt2x00dev->link.vgc_level = value;
695 }
696
697 /*
698  * NOTE: This function is directly ported from legacy driver, but
699  * despite it being declared it was never called. Although link tuning
700  * sounds like a good idea, and usually works well for the other drivers,
701  * it does _not_ work with rt2500usb. Enabling this function will result
702  * in TX capabilities only until association kicks in. Immediately
703  * after the successful association all TX frames will be kept in the
704  * hardware queue and never transmitted.
705  */
706 #if 0
707 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
708 {
709         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
710         u16 bbp_thresh;
711         u16 vgc_bound;
712         u16 sens;
713         u16 r24;
714         u16 r25;
715         u16 r61;
716         u16 r17_sens;
717         u8 r17;
718         u8 up_bound;
719         u8 low_bound;
720
721         /*
722          * Read current r17 value, as well as the sensitivity values
723          * for the r17 register.
724          */
725         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
726         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
727
728         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
729         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
730         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
731
732         /*
733          * If we are not associated, we should go straight to the
734          * dynamic CCA tuning.
735          */
736         if (!rt2x00dev->intf_associated)
737                 goto dynamic_cca_tune;
738
739         /*
740          * Determine the BBP tuning threshold and correctly
741          * set BBP 24, 25 and 61.
742          */
743         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
744         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
745
746         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
747         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
748         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
749
750         if ((rssi + bbp_thresh) > 0) {
751                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
752                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
753                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
754         } else {
755                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
756                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
757                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
758         }
759
760         rt2500usb_bbp_write(rt2x00dev, 24, r24);
761         rt2500usb_bbp_write(rt2x00dev, 25, r25);
762         rt2500usb_bbp_write(rt2x00dev, 61, r61);
763
764         /*
765          * A too low RSSI will cause too much false CCA which will
766          * then corrupt the R17 tuning. To remidy this the tuning should
767          * be stopped (While making sure the R17 value will not exceed limits)
768          */
769         if (rssi >= -40) {
770                 if (r17 != 0x60)
771                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
772                 return;
773         }
774
775         /*
776          * Special big-R17 for short distance
777          */
778         if (rssi >= -58) {
779                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
780                 if (r17 != sens)
781                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
782                 return;
783         }
784
785         /*
786          * Special mid-R17 for middle distance
787          */
788         if (rssi >= -74) {
789                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
790                 if (r17 != sens)
791                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
792                 return;
793         }
794
795         /*
796          * Leave short or middle distance condition, restore r17
797          * to the dynamic tuning range.
798          */
799         low_bound = 0x32;
800         if (rssi < -77)
801                 up_bound -= (-77 - rssi);
802
803         if (up_bound < low_bound)
804                 up_bound = low_bound;
805
806         if (r17 > up_bound) {
807                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
808                 rt2x00dev->link.vgc_level = up_bound;
809                 return;
810         }
811
812 dynamic_cca_tune:
813
814         /*
815          * R17 is inside the dynamic tuning range,
816          * start tuning the link based on the false cca counter.
817          */
818         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
819                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
820                 rt2x00dev->link.vgc_level = r17;
821         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
822                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
823                 rt2x00dev->link.vgc_level = r17;
824         }
825 }
826 #else
827 #define rt2500usb_link_tuner    NULL
828 #endif
829
830 /*
831  * Initialization functions.
832  */
833 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
834 {
835         u16 reg;
836
837         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
838                                     USB_MODE_TEST, REGISTER_TIMEOUT);
839         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
840                                     0x00f0, REGISTER_TIMEOUT);
841
842         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
843         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
844         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
845
846         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
847         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
848
849         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
850         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
851         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
852         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
853         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
854
855         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
856         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
857         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
858         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
859         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
860
861         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
862         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
863         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
864         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
865         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
866         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
867
868         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
869         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
870         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
871         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
872         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
873         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
874
875         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
876         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
877         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
878         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
879         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
880         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
881
882         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
883         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
884         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
885         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
886         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
887         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
888
889         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
890         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
891         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
892         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
893         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
894         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
895
896         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
897         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
898
899         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
900                 return -EBUSY;
901
902         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
903         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
904         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
905         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
906         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
907
908         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
909                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
910                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
911         } else {
912                 reg = 0;
913                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
914                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
915         }
916         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
917
918         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
919         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
920         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
921         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
922
923         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
924         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
925                            rt2x00dev->rx->data_size);
926         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
927
928         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
929         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
930         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
931         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
932
933         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
934         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
935         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
936
937         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
938         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
939         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
940
941         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
942         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
943         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
944
945         return 0;
946 }
947
948 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
949 {
950         unsigned int i;
951         u8 value;
952
953         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
954                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
955                 if ((value != 0xff) && (value != 0x00))
956                         return 0;
957                 udelay(REGISTER_BUSY_DELAY);
958         }
959
960         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
961         return -EACCES;
962 }
963
964 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
965 {
966         unsigned int i;
967         u16 eeprom;
968         u8 value;
969         u8 reg_id;
970
971         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
972                 return -EACCES;
973
974         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
975         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
976         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
977         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
978         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
979         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
980         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
981         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
982         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
983         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
984         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
985         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
986         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
987         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
988         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
989         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
990         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
991         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
992         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
993         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
994         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
995         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
996         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
997         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
998         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
999         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
1000         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
1001         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
1002         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
1003         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
1004         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
1005
1006         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1007                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1008
1009                 if (eeprom != 0xffff && eeprom != 0x0000) {
1010                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1011                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1012                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
1013                 }
1014         }
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * Device state switch handlers.
1021  */
1022 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1023                                 enum dev_state state)
1024 {
1025         u16 reg;
1026
1027         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1028         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
1029                            (state == STATE_RADIO_RX_OFF) ||
1030                            (state == STATE_RADIO_RX_OFF_LINK));
1031         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1032 }
1033
1034 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1035 {
1036         /*
1037          * Initialize all registers.
1038          */
1039         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
1040                      rt2500usb_init_bbp(rt2x00dev)))
1041                 return -EIO;
1042
1043         return 0;
1044 }
1045
1046 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1047 {
1048         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
1049         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
1050
1051         /*
1052          * Disable synchronisation.
1053          */
1054         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1055
1056         rt2x00usb_disable_radio(rt2x00dev);
1057 }
1058
1059 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1060                                enum dev_state state)
1061 {
1062         u16 reg;
1063         u16 reg2;
1064         unsigned int i;
1065         char put_to_sleep;
1066         char bbp_state;
1067         char rf_state;
1068
1069         put_to_sleep = (state != STATE_AWAKE);
1070
1071         reg = 0;
1072         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1073         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1074         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1075         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1076         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1077         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1078
1079         /*
1080          * Device is not guaranteed to be in the requested state yet.
1081          * We must wait until the register indicates that the
1082          * device has entered the correct state.
1083          */
1084         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1085                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1086                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1087                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1088                 if (bbp_state == state && rf_state == state)
1089                         return 0;
1090                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1091                 msleep(30);
1092         }
1093
1094         return -EBUSY;
1095 }
1096
1097 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1098                                       enum dev_state state)
1099 {
1100         int retval = 0;
1101
1102         switch (state) {
1103         case STATE_RADIO_ON:
1104                 retval = rt2500usb_enable_radio(rt2x00dev);
1105                 break;
1106         case STATE_RADIO_OFF:
1107                 rt2500usb_disable_radio(rt2x00dev);
1108                 break;
1109         case STATE_RADIO_RX_ON:
1110         case STATE_RADIO_RX_ON_LINK:
1111         case STATE_RADIO_RX_OFF:
1112         case STATE_RADIO_RX_OFF_LINK:
1113                 rt2500usb_toggle_rx(rt2x00dev, state);
1114                 break;
1115         case STATE_RADIO_IRQ_ON:
1116         case STATE_RADIO_IRQ_OFF:
1117                 /* No support, but no error either */
1118                 break;
1119         case STATE_DEEP_SLEEP:
1120         case STATE_SLEEP:
1121         case STATE_STANDBY:
1122         case STATE_AWAKE:
1123                 retval = rt2500usb_set_state(rt2x00dev, state);
1124                 break;
1125         default:
1126                 retval = -ENOTSUPP;
1127                 break;
1128         }
1129
1130         if (unlikely(retval))
1131                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1132                       state, retval);
1133
1134         return retval;
1135 }
1136
1137 /*
1138  * TX descriptor initialization
1139  */
1140 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1141                                     struct sk_buff *skb,
1142                                     struct txentry_desc *txdesc)
1143 {
1144         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1145         __le32 *txd = skbdesc->desc;
1146         u32 word;
1147
1148         /*
1149          * Start writing the descriptor words.
1150          */
1151         rt2x00_desc_read(txd, 1, &word);
1152         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1153         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1154         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1155         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1156         rt2x00_desc_write(txd, 1, word);
1157
1158         rt2x00_desc_read(txd, 2, &word);
1159         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1160         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1161         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1162         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1163         rt2x00_desc_write(txd, 2, word);
1164
1165         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1166                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1167                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1168         }
1169
1170         rt2x00_desc_read(txd, 0, &word);
1171         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1172         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1173                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1174         rt2x00_set_field32(&word, TXD_W0_ACK,
1175                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1176         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1177                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1178         rt2x00_set_field32(&word, TXD_W0_OFDM,
1179                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1180         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1181                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1182         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1183         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1184         rt2x00_set_field32(&word, TXD_W0_CIPHER, txdesc->cipher);
1185         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1186         rt2x00_desc_write(txd, 0, word);
1187 }
1188
1189 /*
1190  * TX data initialization
1191  */
1192 static void rt2500usb_beacondone(struct urb *urb);
1193
1194 static void rt2500usb_write_beacon(struct queue_entry *entry)
1195 {
1196         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1197         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1198         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1199         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1200         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1201         int length;
1202         u16 reg;
1203
1204         /*
1205          * Add the descriptor in front of the skb.
1206          */
1207         skb_push(entry->skb, entry->queue->desc_size);
1208         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1209         skbdesc->desc = entry->skb->data;
1210
1211         /*
1212          * Disable beaconing while we are reloading the beacon data,
1213          * otherwise we might be sending out invalid data.
1214          */
1215         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1216         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1217         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1218         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1219         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220
1221         /*
1222          * USB devices cannot blindly pass the skb->len as the
1223          * length of the data to usb_fill_bulk_urb. Pass the skb
1224          * to the driver to determine what the length should be.
1225          */
1226         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1227
1228         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1229                           entry->skb->data, length, rt2500usb_beacondone,
1230                           entry);
1231
1232         /*
1233          * Second we need to create the guardian byte.
1234          * We only need a single byte, so lets recycle
1235          * the 'flags' field we are not using for beacons.
1236          */
1237         bcn_priv->guardian_data = 0;
1238         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1239                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1240                           entry);
1241
1242         /*
1243          * Send out the guardian byte.
1244          */
1245         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1246 }
1247
1248 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1249 {
1250         int length;
1251
1252         /*
1253          * The length _must_ be a multiple of 2,
1254          * but it must _not_ be a multiple of the USB packet size.
1255          */
1256         length = roundup(entry->skb->len, 2);
1257         length += (2 * !(length % entry->queue->usb_maxpacket));
1258
1259         return length;
1260 }
1261
1262 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1263                                     const enum data_queue_qid queue)
1264 {
1265         u16 reg;
1266
1267         if (queue != QID_BEACON) {
1268                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1269                 return;
1270         }
1271
1272         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1273         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1274                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1275                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1276                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1277                 /*
1278                  * Beacon generation will fail initially.
1279                  * To prevent this we need to register the TXRX_CSR19
1280                  * register several times.
1281                  */
1282                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1283                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1284                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1285                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1286                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1287         }
1288 }
1289
1290 /*
1291  * RX control handlers
1292  */
1293 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1294                                   struct rxdone_entry_desc *rxdesc)
1295 {
1296         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1297         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1298         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1299         __le32 *rxd =
1300             (__le32 *)(entry->skb->data +
1301                        (entry_priv->urb->actual_length -
1302                         entry->queue->desc_size));
1303         u32 word0;
1304         u32 word1;
1305
1306         /*
1307          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1308          * frame data in rt2x00usb.
1309          */
1310         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1311         rxd = (__le32 *)skbdesc->desc;
1312
1313         /*
1314          * It is now safe to read the descriptor on all architectures.
1315          */
1316         rt2x00_desc_read(rxd, 0, &word0);
1317         rt2x00_desc_read(rxd, 1, &word1);
1318
1319         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1320                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1321         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1322                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1323
1324         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1325                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1326                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1327                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1328         }
1329
1330         if (rxdesc->cipher != CIPHER_NONE) {
1331                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1332                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1333                 /* ICV is located at the end of frame */
1334
1335                 /*
1336                  * Hardware has stripped IV/EIV data from 802.11 frame during
1337                  * decryption. It has provided the data seperately but rt2x00lib
1338                  * should decide if it should be reinserted.
1339                  */
1340                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1341                 if (rxdesc->cipher != CIPHER_TKIP)
1342                         rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1343                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1344                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1345                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1346                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1347         }
1348
1349         /*
1350          * Obtain the status about this packet.
1351          * When frame was received with an OFDM bitrate,
1352          * the signal is the PLCP value. If it was received with
1353          * a CCK bitrate the signal is the rate in 100kbit/s.
1354          */
1355         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1356         rxdesc->rssi =
1357             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1358         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1359
1360         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1361                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1362         else
1363                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1364         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1365                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1366
1367         /*
1368          * Adjust the skb memory window to the frame boundaries.
1369          */
1370         skb_trim(entry->skb, rxdesc->size);
1371 }
1372
1373 /*
1374  * Interrupt functions.
1375  */
1376 static void rt2500usb_beacondone(struct urb *urb)
1377 {
1378         struct queue_entry *entry = (struct queue_entry *)urb->context;
1379         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1380
1381         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1382                 return;
1383
1384         /*
1385          * Check if this was the guardian beacon,
1386          * if that was the case we need to send the real beacon now.
1387          * Otherwise we should free the sk_buffer, the device
1388          * should be doing the rest of the work now.
1389          */
1390         if (bcn_priv->guardian_urb == urb) {
1391                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1392         } else if (bcn_priv->urb == urb) {
1393                 dev_kfree_skb(entry->skb);
1394                 entry->skb = NULL;
1395         }
1396 }
1397
1398 /*
1399  * Device probe functions.
1400  */
1401 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1402 {
1403         u16 word;
1404         u8 *mac;
1405         u8 bbp;
1406
1407         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1408
1409         /*
1410          * Start validation of the data that has been read.
1411          */
1412         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1413         if (!is_valid_ether_addr(mac)) {
1414                 random_ether_addr(mac);
1415                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1416         }
1417
1418         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1419         if (word == 0xffff) {
1420                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1421                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1422                                    ANTENNA_SW_DIVERSITY);
1423                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1424                                    ANTENNA_SW_DIVERSITY);
1425                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1426                                    LED_MODE_DEFAULT);
1427                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1428                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1429                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1430                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1431                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1432         }
1433
1434         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1435         if (word == 0xffff) {
1436                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1437                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1438                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1439                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1440                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1441         }
1442
1443         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1444         if (word == 0xffff) {
1445                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1446                                    DEFAULT_RSSI_OFFSET);
1447                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1448                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1449         }
1450
1451         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1452         if (word == 0xffff) {
1453                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1454                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1455                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1456         }
1457
1458         /*
1459          * Switch lower vgc bound to current BBP R17 value,
1460          * lower the value a bit for better quality.
1461          */
1462         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1463         bbp -= 6;
1464
1465         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1466         if (word == 0xffff) {
1467                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1468                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1469                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1470                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1471         } else {
1472                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1473                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1474         }
1475
1476         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1477         if (word == 0xffff) {
1478                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1479                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1480                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1481                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1482         }
1483
1484         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1485         if (word == 0xffff) {
1486                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1487                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1488                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1489                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1490         }
1491
1492         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1493         if (word == 0xffff) {
1494                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1495                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1496                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1497                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1498         }
1499
1500         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1501         if (word == 0xffff) {
1502                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1503                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1504                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1505                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1506         }
1507
1508         return 0;
1509 }
1510
1511 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1512 {
1513         u16 reg;
1514         u16 value;
1515         u16 eeprom;
1516
1517         /*
1518          * Read EEPROM word for configuration.
1519          */
1520         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1521
1522         /*
1523          * Identify RF chipset.
1524          */
1525         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1526         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1527         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1528
1529         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1530                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1531                 return -ENODEV;
1532         }
1533
1534         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1535             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1536             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1537             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1538             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1539             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1540                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1541                 return -ENODEV;
1542         }
1543
1544         /*
1545          * Identify default antenna configuration.
1546          */
1547         rt2x00dev->default_ant.tx =
1548             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1549         rt2x00dev->default_ant.rx =
1550             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1551
1552         /*
1553          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1554          * I am not 100% sure about this, but the legacy drivers do not
1555          * indicate antenna swapping in software is required when
1556          * diversity is enabled.
1557          */
1558         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1559                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1560         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1561                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1562
1563         /*
1564          * Store led mode, for correct led behaviour.
1565          */
1566 #ifdef CONFIG_RT2X00_LIB_LEDS
1567         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1568
1569         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1570         if (value == LED_MODE_TXRX_ACTIVITY)
1571                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1572                                    LED_TYPE_ACTIVITY);
1573 #endif /* CONFIG_RT2X00_LIB_LEDS */
1574
1575         /*
1576          * Check if the BBP tuning should be disabled.
1577          */
1578         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1579         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1580                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1581
1582         /*
1583          * Read the RSSI <-> dBm offset information.
1584          */
1585         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1586         rt2x00dev->rssi_offset =
1587             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1588
1589         return 0;
1590 }
1591
1592 /*
1593  * RF value list for RF2522
1594  * Supports: 2.4 GHz
1595  */
1596 static const struct rf_channel rf_vals_bg_2522[] = {
1597         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1598         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1599         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1600         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1601         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1602         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1603         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1604         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1605         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1606         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1607         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1608         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1609         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1610         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1611 };
1612
1613 /*
1614  * RF value list for RF2523
1615  * Supports: 2.4 GHz
1616  */
1617 static const struct rf_channel rf_vals_bg_2523[] = {
1618         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1619         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1620         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1621         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1622         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1623         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1624         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1625         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1626         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1627         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1628         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1629         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1630         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1631         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1632 };
1633
1634 /*
1635  * RF value list for RF2524
1636  * Supports: 2.4 GHz
1637  */
1638 static const struct rf_channel rf_vals_bg_2524[] = {
1639         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1640         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1641         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1642         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1643         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1644         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1645         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1646         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1647         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1648         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1649         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1650         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1651         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1652         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1653 };
1654
1655 /*
1656  * RF value list for RF2525
1657  * Supports: 2.4 GHz
1658  */
1659 static const struct rf_channel rf_vals_bg_2525[] = {
1660         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1661         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1662         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1663         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1664         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1665         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1666         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1667         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1668         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1669         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1670         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1671         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1672         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1673         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1674 };
1675
1676 /*
1677  * RF value list for RF2525e
1678  * Supports: 2.4 GHz
1679  */
1680 static const struct rf_channel rf_vals_bg_2525e[] = {
1681         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1682         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1683         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1684         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1685         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1686         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1687         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1688         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1689         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1690         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1691         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1692         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1693         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1694         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1695 };
1696
1697 /*
1698  * RF value list for RF5222
1699  * Supports: 2.4 GHz & 5.2 GHz
1700  */
1701 static const struct rf_channel rf_vals_5222[] = {
1702         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1703         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1704         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1705         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1706         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1707         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1708         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1709         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1710         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1711         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1712         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1713         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1714         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1715         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1716
1717         /* 802.11 UNI / HyperLan 2 */
1718         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1719         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1720         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1721         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1722         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1723         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1724         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1725         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1726
1727         /* 802.11 HyperLan 2 */
1728         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1729         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1730         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1731         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1732         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1733         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1734         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1735         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1736         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1737         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1738
1739         /* 802.11 UNII */
1740         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1741         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1742         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1743         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1744         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1745 };
1746
1747 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1748 {
1749         struct hw_mode_spec *spec = &rt2x00dev->spec;
1750         struct channel_info *info;
1751         char *tx_power;
1752         unsigned int i;
1753
1754         /*
1755          * Initialize all hw fields.
1756          */
1757         rt2x00dev->hw->flags =
1758             IEEE80211_HW_RX_INCLUDES_FCS |
1759             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1760             IEEE80211_HW_SIGNAL_DBM;
1761
1762         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1763
1764         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1765         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1766                                 rt2x00_eeprom_addr(rt2x00dev,
1767                                                    EEPROM_MAC_ADDR_0));
1768
1769         /*
1770          * Initialize hw_mode information.
1771          */
1772         spec->supported_bands = SUPPORT_BAND_2GHZ;
1773         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1774
1775         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1776                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1777                 spec->channels = rf_vals_bg_2522;
1778         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1779                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1780                 spec->channels = rf_vals_bg_2523;
1781         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1782                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1783                 spec->channels = rf_vals_bg_2524;
1784         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1785                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1786                 spec->channels = rf_vals_bg_2525;
1787         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1788                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1789                 spec->channels = rf_vals_bg_2525e;
1790         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1791                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1792                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1793                 spec->channels = rf_vals_5222;
1794         }
1795
1796         /*
1797          * Create channel information array
1798          */
1799         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1800         if (!info)
1801                 return -ENOMEM;
1802
1803         spec->channels_info = info;
1804
1805         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1806         for (i = 0; i < 14; i++)
1807                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1808
1809         if (spec->num_channels > 14) {
1810                 for (i = 14; i < spec->num_channels; i++)
1811                         info[i].tx_power1 = DEFAULT_TXPOWER;
1812         }
1813
1814         return 0;
1815 }
1816
1817 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1818 {
1819         int retval;
1820
1821         /*
1822          * Allocate eeprom data.
1823          */
1824         retval = rt2500usb_validate_eeprom(rt2x00dev);
1825         if (retval)
1826                 return retval;
1827
1828         retval = rt2500usb_init_eeprom(rt2x00dev);
1829         if (retval)
1830                 return retval;
1831
1832         /*
1833          * Initialize hw specifications.
1834          */
1835         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1836         if (retval)
1837                 return retval;
1838
1839         /*
1840          * This device requires the atim queue
1841          */
1842         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1843         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1844         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1845         if (!modparam_nohwcrypt) {
1846                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1847                 __set_bit(CONFIG_CRYPTO_COPY_IV, &rt2x00dev->flags);
1848         }
1849         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1850
1851         /*
1852          * Set the rssi offset.
1853          */
1854         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1855
1856         return 0;
1857 }
1858
1859 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1860         .tx                     = rt2x00mac_tx,
1861         .start                  = rt2x00mac_start,
1862         .stop                   = rt2x00mac_stop,
1863         .add_interface          = rt2x00mac_add_interface,
1864         .remove_interface       = rt2x00mac_remove_interface,
1865         .config                 = rt2x00mac_config,
1866         .config_interface       = rt2x00mac_config_interface,
1867         .configure_filter       = rt2x00mac_configure_filter,
1868         .set_key                = rt2x00mac_set_key,
1869         .get_stats              = rt2x00mac_get_stats,
1870         .bss_info_changed       = rt2x00mac_bss_info_changed,
1871         .conf_tx                = rt2x00mac_conf_tx,
1872         .get_tx_stats           = rt2x00mac_get_tx_stats,
1873 };
1874
1875 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1876         .probe_hw               = rt2500usb_probe_hw,
1877         .initialize             = rt2x00usb_initialize,
1878         .uninitialize           = rt2x00usb_uninitialize,
1879         .clear_entry            = rt2x00usb_clear_entry,
1880         .set_device_state       = rt2500usb_set_device_state,
1881         .link_stats             = rt2500usb_link_stats,
1882         .reset_tuner            = rt2500usb_reset_tuner,
1883         .link_tuner             = rt2500usb_link_tuner,
1884         .write_tx_desc          = rt2500usb_write_tx_desc,
1885         .write_tx_data          = rt2x00usb_write_tx_data,
1886         .write_beacon           = rt2500usb_write_beacon,
1887         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1888         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1889         .fill_rxdone            = rt2500usb_fill_rxdone,
1890         .config_shared_key      = rt2500usb_config_key,
1891         .config_pairwise_key    = rt2500usb_config_key,
1892         .config_filter          = rt2500usb_config_filter,
1893         .config_intf            = rt2500usb_config_intf,
1894         .config_erp             = rt2500usb_config_erp,
1895         .config_ant             = rt2500usb_config_ant,
1896         .config                 = rt2500usb_config,
1897 };
1898
1899 static const struct data_queue_desc rt2500usb_queue_rx = {
1900         .entry_num              = RX_ENTRIES,
1901         .data_size              = DATA_FRAME_SIZE,
1902         .desc_size              = RXD_DESC_SIZE,
1903         .priv_size              = sizeof(struct queue_entry_priv_usb),
1904 };
1905
1906 static const struct data_queue_desc rt2500usb_queue_tx = {
1907         .entry_num              = TX_ENTRIES,
1908         .data_size              = DATA_FRAME_SIZE,
1909         .desc_size              = TXD_DESC_SIZE,
1910         .priv_size              = sizeof(struct queue_entry_priv_usb),
1911 };
1912
1913 static const struct data_queue_desc rt2500usb_queue_bcn = {
1914         .entry_num              = BEACON_ENTRIES,
1915         .data_size              = MGMT_FRAME_SIZE,
1916         .desc_size              = TXD_DESC_SIZE,
1917         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1918 };
1919
1920 static const struct data_queue_desc rt2500usb_queue_atim = {
1921         .entry_num              = ATIM_ENTRIES,
1922         .data_size              = DATA_FRAME_SIZE,
1923         .desc_size              = TXD_DESC_SIZE,
1924         .priv_size              = sizeof(struct queue_entry_priv_usb),
1925 };
1926
1927 static const struct rt2x00_ops rt2500usb_ops = {
1928         .name           = KBUILD_MODNAME,
1929         .max_sta_intf   = 1,
1930         .max_ap_intf    = 1,
1931         .eeprom_size    = EEPROM_SIZE,
1932         .rf_size        = RF_SIZE,
1933         .tx_queues      = NUM_TX_QUEUES,
1934         .rx             = &rt2500usb_queue_rx,
1935         .tx             = &rt2500usb_queue_tx,
1936         .bcn            = &rt2500usb_queue_bcn,
1937         .atim           = &rt2500usb_queue_atim,
1938         .lib            = &rt2500usb_rt2x00_ops,
1939         .hw             = &rt2500usb_mac80211_ops,
1940 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1941         .debugfs        = &rt2500usb_rt2x00debug,
1942 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1943 };
1944
1945 /*
1946  * rt2500usb module information.
1947  */
1948 static struct usb_device_id rt2500usb_device_table[] = {
1949         /* ASUS */
1950         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1951         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1952         /* Belkin */
1953         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1954         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1955         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1956         /* Cisco Systems */
1957         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1958         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1959         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1960         /* Conceptronic */
1961         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1962         /* D-LINK */
1963         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1964         /* Gigabyte */
1965         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1966         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1967         /* Hercules */
1968         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1969         /* Melco */
1970         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1971         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1972         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1973         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1974         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1975         /* MSI */
1976         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1977         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1978         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1979         /* Ralink */
1980         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1981         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1982         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1983         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1984         /* Siemens */
1985         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1986         /* SMC */
1987         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1988         /* Spairon */
1989         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1990         /* Trust */
1991         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1992         /* Zinwell */
1993         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1994         { 0, }
1995 };
1996
1997 MODULE_AUTHOR(DRV_PROJECT);
1998 MODULE_VERSION(DRV_VERSION);
1999 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
2000 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
2001 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
2002 MODULE_LICENSE("GPL");
2003
2004 static struct usb_driver rt2500usb_driver = {
2005         .name           = KBUILD_MODNAME,
2006         .id_table       = rt2500usb_device_table,
2007         .probe          = rt2x00usb_probe,
2008         .disconnect     = rt2x00usb_disconnect,
2009         .suspend        = rt2x00usb_suspend,
2010         .resume         = rt2x00usb_resume,
2011 };
2012
2013 static int __init rt2500usb_init(void)
2014 {
2015         return usb_register(&rt2500usb_driver);
2016 }
2017
2018 static void __exit rt2500usb_exit(void)
2019 {
2020         usb_deregister(&rt2500usb_driver);
2021 }
2022
2023 module_init(rt2500usb_init);
2024 module_exit(rt2500usb_exit);