]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212                 break;
213         default:
214                 break;
215         }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221         struct queue_entry *entry;
222
223         switch (queue->qid) {
224         case QID_AC_VO:
225         case QID_AC_VI:
226         case QID_AC_BE:
227         case QID_AC_BK:
228                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230                                          entry->entry_idx);
231                 break;
232         case QID_MGMT:
233                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235                                          entry->entry_idx);
236                 break;
237         default:
238                 break;
239         }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245         u32 reg;
246
247         switch (queue->qid) {
248         case QID_RX:
249                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252                 break;
253         case QID_BEACON:
254                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264                 /*
265                  * Wait for current invocation to finish. The tasklet
266                  * won't be scheduled anymore afterwards since we disabled
267                  * the TBTT and PRE TBTT timer.
268                  */
269                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272                 break;
273         default:
274                 break;
275         }
276 }
277
278 /*
279  * Firmware functions
280  */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283         return FIRMWARE_RT2860;
284 }
285
286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287                                     const u8 *data, const size_t len)
288 {
289         u32 reg;
290
291         /*
292          * enable Host program ram write selection
293          */
294         reg = 0;
295         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297
298         /*
299          * Write firmware to device.
300          */
301         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302                                       data, len);
303
304         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306
307         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309
310         return 0;
311 }
312
313 /*
314  * Initialization functions.
315  */
316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319         u32 word;
320
321         if (entry->queue->qid == QID_RX) {
322                 rt2x00_desc_read(entry_priv->desc, 1, &word);
323
324                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325         } else {
326                 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329         }
330 }
331
332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337         u32 word;
338
339         if (entry->queue->qid == QID_RX) {
340                 rt2x00_desc_read(entry_priv->desc, 0, &word);
341                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342                 rt2x00_desc_write(entry_priv->desc, 0, word);
343
344                 rt2x00_desc_read(entry_priv->desc, 1, &word);
345                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346                 rt2x00_desc_write(entry_priv->desc, 1, word);
347
348                 /*
349                  * Set RX IDX in register to inform hardware that we have
350                  * handled this entry and it is available for reuse again.
351                  */
352                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353                                       entry->entry_idx);
354         } else {
355                 rt2x00_desc_read(entry_priv->desc, 1, &word);
356                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357                 rt2x00_desc_write(entry_priv->desc, 1, word);
358         }
359 }
360
361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363         struct queue_entry_priv_pci *entry_priv;
364         u32 reg;
365
366         /*
367          * Initialize registers.
368          */
369         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
370         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
371         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
372                                  rt2x00dev->tx[0].limit);
373         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
374         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
375
376         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
377         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
378         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
379                                  rt2x00dev->tx[1].limit);
380         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
381         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382
383         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
385         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
386                                  rt2x00dev->tx[2].limit);
387         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
388         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
389
390         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
391         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
392         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
393                                  rt2x00dev->tx[3].limit);
394         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
395         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
396
397         entry_priv = rt2x00dev->rx->entries[0].priv_data;
398         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
399         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
400                                  rt2x00dev->rx[0].limit);
401         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
402                                  rt2x00dev->rx[0].limit - 1);
403         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
404
405         /*
406          * Enable global DMA configuration
407          */
408         rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
409         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
410         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
411         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
412         rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
413
414         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
415
416         return 0;
417 }
418
419 /*
420  * Device state switch handlers.
421  */
422 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
423                                  enum dev_state state)
424 {
425         u32 reg;
426         unsigned long flags;
427
428         /*
429          * When interrupts are being enabled, the interrupt registers
430          * should clear the register to assure a clean state.
431          */
432         if (state == STATE_RADIO_IRQ_ON) {
433                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
434                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
435         }
436
437         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
438         reg = 0;
439         if (state == STATE_RADIO_IRQ_ON) {
440                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
441                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
442                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
443                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
444                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
445         }
446         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
447         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
448
449         if (state == STATE_RADIO_IRQ_OFF) {
450                 /*
451                  * Wait for possibly running tasklets to finish.
452                  */
453                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
454                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
455                 tasklet_kill(&rt2x00dev->autowake_tasklet);
456                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
457                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
458         }
459 }
460
461 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
462 {
463         u32 reg;
464
465         /*
466          * Reset DMA indexes
467          */
468         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
469         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
470         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
471         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
472         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
473         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
474         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
475         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
476         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
477
478         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
479         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
480
481         if (rt2x00_is_pcie(rt2x00dev) &&
482             (rt2x00_rt(rt2x00dev, RT3572) ||
483              rt2x00_rt(rt2x00dev, RT5390) ||
484              rt2x00_rt(rt2x00dev, RT5392))) {
485                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
486                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
487                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
488                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
489         }
490
491         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
492
493         reg = 0;
494         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
495         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
496         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
497
498         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
499
500         return 0;
501 }
502
503 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
504 {
505         int retval;
506
507         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
508                      rt2800pci_init_queues(rt2x00dev)))
509                 return -EIO;
510
511         retval = rt2800_enable_radio(rt2x00dev);
512         if (retval)
513                 return retval;
514
515         /* After resume MCU_BOOT_SIGNAL will trash these. */
516         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
517         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
518
519         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
520         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
521
522         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
523         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
524
525         return retval;
526 }
527
528 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
529 {
530         if (rt2x00_is_soc(rt2x00dev)) {
531                 rt2800_disable_radio(rt2x00dev);
532                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
533                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
534         }
535 }
536
537 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
538                                enum dev_state state)
539 {
540         if (state == STATE_AWAKE) {
541                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
542                                    0, 0x02);
543                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
544         } else if (state == STATE_SLEEP) {
545                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
546                                          0xffffffff);
547                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
548                                          0xffffffff);
549                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
550                                    0xff, 0x01);
551         }
552
553         return 0;
554 }
555
556 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
557                                       enum dev_state state)
558 {
559         int retval = 0;
560
561         switch (state) {
562         case STATE_RADIO_ON:
563                 retval = rt2800pci_enable_radio(rt2x00dev);
564                 break;
565         case STATE_RADIO_OFF:
566                 /*
567                  * After the radio has been disabled, the device should
568                  * be put to sleep for powersaving.
569                  */
570                 rt2800pci_disable_radio(rt2x00dev);
571                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
572                 break;
573         case STATE_RADIO_IRQ_ON:
574         case STATE_RADIO_IRQ_OFF:
575                 rt2800pci_toggle_irq(rt2x00dev, state);
576                 break;
577         case STATE_DEEP_SLEEP:
578         case STATE_SLEEP:
579         case STATE_STANDBY:
580         case STATE_AWAKE:
581                 retval = rt2800pci_set_state(rt2x00dev, state);
582                 break;
583         default:
584                 retval = -ENOTSUPP;
585                 break;
586         }
587
588         if (unlikely(retval))
589                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
590                       state, retval);
591
592         return retval;
593 }
594
595 /*
596  * TX descriptor initialization
597  */
598 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
599 {
600         return (__le32 *) entry->skb->data;
601 }
602
603 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
604                                     struct txentry_desc *txdesc)
605 {
606         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
607         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
608         __le32 *txd = entry_priv->desc;
609         u32 word;
610
611         /*
612          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
613          * must contains a TXWI structure + 802.11 header + padding + 802.11
614          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
615          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
616          * data. It means that LAST_SEC0 is always 0.
617          */
618
619         /*
620          * Initialize TX descriptor
621          */
622         word = 0;
623         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
624         rt2x00_desc_write(txd, 0, word);
625
626         word = 0;
627         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
628         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
629                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
630         rt2x00_set_field32(&word, TXD_W1_BURST,
631                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
632         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
633         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
634         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
635         rt2x00_desc_write(txd, 1, word);
636
637         word = 0;
638         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
639                            skbdesc->skb_dma + TXWI_DESC_SIZE);
640         rt2x00_desc_write(txd, 2, word);
641
642         word = 0;
643         rt2x00_set_field32(&word, TXD_W3_WIV,
644                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
645         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
646         rt2x00_desc_write(txd, 3, word);
647
648         /*
649          * Register descriptor details in skb frame descriptor.
650          */
651         skbdesc->desc = txd;
652         skbdesc->desc_len = TXD_DESC_SIZE;
653 }
654
655 /*
656  * RX control handlers
657  */
658 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
659                                   struct rxdone_entry_desc *rxdesc)
660 {
661         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
662         __le32 *rxd = entry_priv->desc;
663         u32 word;
664
665         rt2x00_desc_read(rxd, 3, &word);
666
667         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
668                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
669
670         /*
671          * Unfortunately we don't know the cipher type used during
672          * decryption. This prevents us from correct providing
673          * correct statistics through debugfs.
674          */
675         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
676
677         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
678                 /*
679                  * Hardware has stripped IV/EIV data from 802.11 frame during
680                  * decryption. Unfortunately the descriptor doesn't contain
681                  * any fields with the EIV/IV data either, so they can't
682                  * be restored by rt2x00lib.
683                  */
684                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
685
686                 /*
687                  * The hardware has already checked the Michael Mic and has
688                  * stripped it from the frame. Signal this to mac80211.
689                  */
690                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
691
692                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
693                         rxdesc->flags |= RX_FLAG_DECRYPTED;
694                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
695                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
696         }
697
698         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
699                 rxdesc->dev_flags |= RXDONE_MY_BSS;
700
701         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
702                 rxdesc->dev_flags |= RXDONE_L2PAD;
703
704         /*
705          * Process the RXWI structure that is at the start of the buffer.
706          */
707         rt2800_process_rxwi(entry, rxdesc);
708 }
709
710 /*
711  * Interrupt functions.
712  */
713 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
714 {
715         struct ieee80211_conf conf = { .flags = 0 };
716         struct rt2x00lib_conf libconf = { .conf = &conf };
717
718         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
719 }
720
721 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
722 {
723         struct data_queue *queue;
724         struct queue_entry *entry;
725         u32 status;
726         u8 qid;
727         int max_tx_done = 16;
728
729         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
730                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
731                 if (unlikely(qid >= QID_RX)) {
732                         /*
733                          * Unknown queue, this shouldn't happen. Just drop
734                          * this tx status.
735                          */
736                         WARNING(rt2x00dev, "Got TX status report with "
737                                            "unexpected pid %u, dropping\n", qid);
738                         break;
739                 }
740
741                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
742                 if (unlikely(queue == NULL)) {
743                         /*
744                          * The queue is NULL, this shouldn't happen. Stop
745                          * processing here and drop the tx status
746                          */
747                         WARNING(rt2x00dev, "Got TX status for an unavailable "
748                                            "queue %u, dropping\n", qid);
749                         break;
750                 }
751
752                 if (unlikely(rt2x00queue_empty(queue))) {
753                         /*
754                          * The queue is empty. Stop processing here
755                          * and drop the tx status.
756                          */
757                         WARNING(rt2x00dev, "Got TX status for an empty "
758                                            "queue %u, dropping\n", qid);
759                         break;
760                 }
761
762                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
763                 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
764
765                 if (--max_tx_done == 0)
766                         break;
767         }
768
769         return !max_tx_done;
770 }
771
772 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
773                                               struct rt2x00_field32 irq_field)
774 {
775         u32 reg;
776
777         /*
778          * Enable a single interrupt. The interrupt mask register
779          * access needs locking.
780          */
781         spin_lock_irq(&rt2x00dev->irqmask_lock);
782         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
783         rt2x00_set_field32(&reg, irq_field, 1);
784         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
785         spin_unlock_irq(&rt2x00dev->irqmask_lock);
786 }
787
788 static void rt2800pci_txstatus_tasklet(unsigned long data)
789 {
790         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
791         if (rt2800pci_txdone(rt2x00dev))
792                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
793
794         /*
795          * No need to enable the tx status interrupt here as we always
796          * leave it enabled to minimize the possibility of a tx status
797          * register overflow. See comment in interrupt handler.
798          */
799 }
800
801 static void rt2800pci_pretbtt_tasklet(unsigned long data)
802 {
803         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
804         rt2x00lib_pretbtt(rt2x00dev);
805         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
806                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
807 }
808
809 static void rt2800pci_tbtt_tasklet(unsigned long data)
810 {
811         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
812         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
813         u32 reg;
814
815         rt2x00lib_beacondone(rt2x00dev);
816
817         if (rt2x00dev->intf_ap_count) {
818                 /*
819                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
820                  * causing beacon skew and as a result causing problems with
821                  * some powersaving clients over time. Shorten the beacon
822                  * interval every 64 beacons by 64us to mitigate this effect.
823                  */
824                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
825                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
826                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
827                                            (rt2x00dev->beacon_int * 16) - 1);
828                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
829                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
830                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
831                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
832                                            (rt2x00dev->beacon_int * 16));
833                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
834                 }
835                 drv_data->tbtt_tick++;
836                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
837         }
838
839         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
840                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
841 }
842
843 static void rt2800pci_rxdone_tasklet(unsigned long data)
844 {
845         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
846         if (rt2x00pci_rxdone(rt2x00dev))
847                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
848         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
849                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
850 }
851
852 static void rt2800pci_autowake_tasklet(unsigned long data)
853 {
854         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
855         rt2800pci_wakeup(rt2x00dev);
856         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
857                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
858 }
859
860 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
861 {
862         u32 status;
863         int i;
864
865         /*
866          * The TX_FIFO_STATUS interrupt needs special care. We should
867          * read TX_STA_FIFO but we should do it immediately as otherwise
868          * the register can overflow and we would lose status reports.
869          *
870          * Hence, read the TX_STA_FIFO register and copy all tx status
871          * reports into a kernel FIFO which is handled in the txstatus
872          * tasklet. We use a tasklet to process the tx status reports
873          * because we can schedule the tasklet multiple times (when the
874          * interrupt fires again during tx status processing).
875          *
876          * Furthermore we don't disable the TX_FIFO_STATUS
877          * interrupt here but leave it enabled so that the TX_STA_FIFO
878          * can also be read while the tx status tasklet gets executed.
879          *
880          * Since we have only one producer and one consumer we don't
881          * need to lock the kfifo.
882          */
883         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
884                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
885
886                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
887                         break;
888
889                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
890                         WARNING(rt2x00dev, "TX status FIFO overrun,"
891                                 "drop tx status report.\n");
892                         break;
893                 }
894         }
895
896         /* Schedule the tasklet for processing the tx status. */
897         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
898 }
899
900 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
901 {
902         struct rt2x00_dev *rt2x00dev = dev_instance;
903         u32 reg, mask;
904
905         /* Read status and ACK all interrupts */
906         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
907         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
908
909         if (!reg)
910                 return IRQ_NONE;
911
912         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
913                 return IRQ_HANDLED;
914
915         /*
916          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
917          * for interrupts and interrupt masks we can just use the value of
918          * INT_SOURCE_CSR to create the interrupt mask.
919          */
920         mask = ~reg;
921
922         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
923                 rt2800pci_txstatus_interrupt(rt2x00dev);
924                 /*
925                  * Never disable the TX_FIFO_STATUS interrupt.
926                  */
927                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
928         }
929
930         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
931                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
932
933         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
934                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
935
936         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
937                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
938
939         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
940                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
941
942         /*
943          * Disable all interrupts for which a tasklet was scheduled right now,
944          * the tasklet will reenable the appropriate interrupts.
945          */
946         spin_lock(&rt2x00dev->irqmask_lock);
947         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
948         reg &= mask;
949         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
950         spin_unlock(&rt2x00dev->irqmask_lock);
951
952         return IRQ_HANDLED;
953 }
954
955 /*
956  * Device probe functions.
957  */
958 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
959 {
960         /*
961          * Read EEPROM into buffer
962          */
963         if (rt2x00_is_soc(rt2x00dev))
964                 rt2800pci_read_eeprom_soc(rt2x00dev);
965         else if (rt2800pci_efuse_detect(rt2x00dev))
966                 rt2800pci_read_eeprom_efuse(rt2x00dev);
967         else
968                 rt2800pci_read_eeprom_pci(rt2x00dev);
969
970         return rt2800_validate_eeprom(rt2x00dev);
971 }
972
973 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
974 {
975         int retval;
976
977         /*
978          * Allocate eeprom data.
979          */
980         retval = rt2800pci_validate_eeprom(rt2x00dev);
981         if (retval)
982                 return retval;
983
984         retval = rt2800_init_eeprom(rt2x00dev);
985         if (retval)
986                 return retval;
987
988         /*
989          * Initialize hw specifications.
990          */
991         retval = rt2800_probe_hw_mode(rt2x00dev);
992         if (retval)
993                 return retval;
994
995         /*
996          * This device has multiple filters for control frames
997          * and has a separate filter for PS Poll frames.
998          */
999         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
1000         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1001
1002         /*
1003          * This device has a pre tbtt interrupt and thus fetches
1004          * a new beacon directly prior to transmission.
1005          */
1006         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1007
1008         /*
1009          * This device requires firmware.
1010          */
1011         if (!rt2x00_is_soc(rt2x00dev))
1012                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
1013         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1014         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
1015         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
1016         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1017         if (!modparam_nohwcrypt)
1018                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1019         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1020         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1021
1022         /*
1023          * Set the rssi offset.
1024          */
1025         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1026
1027         return 0;
1028 }
1029
1030 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1031         .tx                     = rt2x00mac_tx,
1032         .start                  = rt2x00mac_start,
1033         .stop                   = rt2x00mac_stop,
1034         .add_interface          = rt2x00mac_add_interface,
1035         .remove_interface       = rt2x00mac_remove_interface,
1036         .config                 = rt2x00mac_config,
1037         .configure_filter       = rt2x00mac_configure_filter,
1038         .set_key                = rt2x00mac_set_key,
1039         .sw_scan_start          = rt2x00mac_sw_scan_start,
1040         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1041         .get_stats              = rt2x00mac_get_stats,
1042         .get_tkip_seq           = rt2800_get_tkip_seq,
1043         .set_rts_threshold      = rt2800_set_rts_threshold,
1044         .sta_add                = rt2x00mac_sta_add,
1045         .sta_remove             = rt2x00mac_sta_remove,
1046         .bss_info_changed       = rt2x00mac_bss_info_changed,
1047         .conf_tx                = rt2800_conf_tx,
1048         .get_tsf                = rt2800_get_tsf,
1049         .rfkill_poll            = rt2x00mac_rfkill_poll,
1050         .ampdu_action           = rt2800_ampdu_action,
1051         .flush                  = rt2x00mac_flush,
1052         .get_survey             = rt2800_get_survey,
1053         .get_ringparam          = rt2x00mac_get_ringparam,
1054         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1055 };
1056
1057 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1058         .register_read          = rt2x00pci_register_read,
1059         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1060         .register_write         = rt2x00pci_register_write,
1061         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1062         .register_multiread     = rt2x00pci_register_multiread,
1063         .register_multiwrite    = rt2x00pci_register_multiwrite,
1064         .regbusy_read           = rt2x00pci_regbusy_read,
1065         .drv_write_firmware     = rt2800pci_write_firmware,
1066         .drv_init_registers     = rt2800pci_init_registers,
1067         .drv_get_txwi           = rt2800pci_get_txwi,
1068 };
1069
1070 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1071         .irq_handler            = rt2800pci_interrupt,
1072         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1073         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1074         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1075         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1076         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1077         .probe_hw               = rt2800pci_probe_hw,
1078         .get_firmware_name      = rt2800pci_get_firmware_name,
1079         .check_firmware         = rt2800_check_firmware,
1080         .load_firmware          = rt2800_load_firmware,
1081         .initialize             = rt2x00pci_initialize,
1082         .uninitialize           = rt2x00pci_uninitialize,
1083         .get_entry_state        = rt2800pci_get_entry_state,
1084         .clear_entry            = rt2800pci_clear_entry,
1085         .set_device_state       = rt2800pci_set_device_state,
1086         .rfkill_poll            = rt2800_rfkill_poll,
1087         .link_stats             = rt2800_link_stats,
1088         .reset_tuner            = rt2800_reset_tuner,
1089         .link_tuner             = rt2800_link_tuner,
1090         .gain_calibration       = rt2800_gain_calibration,
1091         .vco_calibration        = rt2800_vco_calibration,
1092         .start_queue            = rt2800pci_start_queue,
1093         .kick_queue             = rt2800pci_kick_queue,
1094         .stop_queue             = rt2800pci_stop_queue,
1095         .flush_queue            = rt2x00pci_flush_queue,
1096         .write_tx_desc          = rt2800pci_write_tx_desc,
1097         .write_tx_data          = rt2800_write_tx_data,
1098         .write_beacon           = rt2800_write_beacon,
1099         .clear_beacon           = rt2800_clear_beacon,
1100         .fill_rxdone            = rt2800pci_fill_rxdone,
1101         .config_shared_key      = rt2800_config_shared_key,
1102         .config_pairwise_key    = rt2800_config_pairwise_key,
1103         .config_filter          = rt2800_config_filter,
1104         .config_intf            = rt2800_config_intf,
1105         .config_erp             = rt2800_config_erp,
1106         .config_ant             = rt2800_config_ant,
1107         .config                 = rt2800_config,
1108         .sta_add                = rt2800_sta_add,
1109         .sta_remove             = rt2800_sta_remove,
1110 };
1111
1112 static const struct data_queue_desc rt2800pci_queue_rx = {
1113         .entry_num              = 128,
1114         .data_size              = AGGREGATION_SIZE,
1115         .desc_size              = RXD_DESC_SIZE,
1116         .priv_size              = sizeof(struct queue_entry_priv_pci),
1117 };
1118
1119 static const struct data_queue_desc rt2800pci_queue_tx = {
1120         .entry_num              = 64,
1121         .data_size              = AGGREGATION_SIZE,
1122         .desc_size              = TXD_DESC_SIZE,
1123         .priv_size              = sizeof(struct queue_entry_priv_pci),
1124 };
1125
1126 static const struct data_queue_desc rt2800pci_queue_bcn = {
1127         .entry_num              = 8,
1128         .data_size              = 0, /* No DMA required for beacons */
1129         .desc_size              = TXWI_DESC_SIZE,
1130         .priv_size              = sizeof(struct queue_entry_priv_pci),
1131 };
1132
1133 static const struct rt2x00_ops rt2800pci_ops = {
1134         .name                   = KBUILD_MODNAME,
1135         .drv_data_size          = sizeof(struct rt2800_drv_data),
1136         .max_sta_intf           = 1,
1137         .max_ap_intf            = 8,
1138         .eeprom_size            = EEPROM_SIZE,
1139         .rf_size                = RF_SIZE,
1140         .tx_queues              = NUM_TX_QUEUES,
1141         .extra_tx_headroom      = TXWI_DESC_SIZE,
1142         .rx                     = &rt2800pci_queue_rx,
1143         .tx                     = &rt2800pci_queue_tx,
1144         .bcn                    = &rt2800pci_queue_bcn,
1145         .lib                    = &rt2800pci_rt2x00_ops,
1146         .drv                    = &rt2800pci_rt2800_ops,
1147         .hw                     = &rt2800pci_mac80211_ops,
1148 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1149         .debugfs                = &rt2800_rt2x00debug,
1150 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1151 };
1152
1153 /*
1154  * RT2800pci module information.
1155  */
1156 #ifdef CONFIG_PCI
1157 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1158         { PCI_DEVICE(0x1814, 0x0601) },
1159         { PCI_DEVICE(0x1814, 0x0681) },
1160         { PCI_DEVICE(0x1814, 0x0701) },
1161         { PCI_DEVICE(0x1814, 0x0781) },
1162         { PCI_DEVICE(0x1814, 0x3090) },
1163         { PCI_DEVICE(0x1814, 0x3091) },
1164         { PCI_DEVICE(0x1814, 0x3092) },
1165         { PCI_DEVICE(0x1432, 0x7708) },
1166         { PCI_DEVICE(0x1432, 0x7727) },
1167         { PCI_DEVICE(0x1432, 0x7728) },
1168         { PCI_DEVICE(0x1432, 0x7738) },
1169         { PCI_DEVICE(0x1432, 0x7748) },
1170         { PCI_DEVICE(0x1432, 0x7758) },
1171         { PCI_DEVICE(0x1432, 0x7768) },
1172         { PCI_DEVICE(0x1462, 0x891a) },
1173         { PCI_DEVICE(0x1a3b, 0x1059) },
1174 #ifdef CONFIG_RT2800PCI_RT33XX
1175         { PCI_DEVICE(0x1814, 0x3390) },
1176 #endif
1177 #ifdef CONFIG_RT2800PCI_RT35XX
1178         { PCI_DEVICE(0x1432, 0x7711) },
1179         { PCI_DEVICE(0x1432, 0x7722) },
1180         { PCI_DEVICE(0x1814, 0x3060) },
1181         { PCI_DEVICE(0x1814, 0x3062) },
1182         { PCI_DEVICE(0x1814, 0x3562) },
1183         { PCI_DEVICE(0x1814, 0x3592) },
1184         { PCI_DEVICE(0x1814, 0x3593) },
1185 #endif
1186 #ifdef CONFIG_RT2800PCI_RT53XX
1187         { PCI_DEVICE(0x1814, 0x5390) },
1188         { PCI_DEVICE(0x1814, 0x539a) },
1189         { PCI_DEVICE(0x1814, 0x539f) },
1190 #endif
1191         { 0, }
1192 };
1193 #endif /* CONFIG_PCI */
1194
1195 MODULE_AUTHOR(DRV_PROJECT);
1196 MODULE_VERSION(DRV_VERSION);
1197 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1198 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1199 #ifdef CONFIG_PCI
1200 MODULE_FIRMWARE(FIRMWARE_RT2860);
1201 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1202 #endif /* CONFIG_PCI */
1203 MODULE_LICENSE("GPL");
1204
1205 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1206 static int rt2800soc_probe(struct platform_device *pdev)
1207 {
1208         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1209 }
1210
1211 static struct platform_driver rt2800soc_driver = {
1212         .driver         = {
1213                 .name           = "rt2800_wmac",
1214                 .owner          = THIS_MODULE,
1215                 .mod_name       = KBUILD_MODNAME,
1216         },
1217         .probe          = rt2800soc_probe,
1218         .remove         = __devexit_p(rt2x00soc_remove),
1219         .suspend        = rt2x00soc_suspend,
1220         .resume         = rt2x00soc_resume,
1221 };
1222 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1223
1224 #ifdef CONFIG_PCI
1225 static int rt2800pci_probe(struct pci_dev *pci_dev,
1226                            const struct pci_device_id *id)
1227 {
1228         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1229 }
1230
1231 static struct pci_driver rt2800pci_driver = {
1232         .name           = KBUILD_MODNAME,
1233         .id_table       = rt2800pci_device_table,
1234         .probe          = rt2800pci_probe,
1235         .remove         = __devexit_p(rt2x00pci_remove),
1236         .suspend        = rt2x00pci_suspend,
1237         .resume         = rt2x00pci_resume,
1238 };
1239 #endif /* CONFIG_PCI */
1240
1241 static int __init rt2800pci_init(void)
1242 {
1243         int ret = 0;
1244
1245 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1246         ret = platform_driver_register(&rt2800soc_driver);
1247         if (ret)
1248                 return ret;
1249 #endif
1250 #ifdef CONFIG_PCI
1251         ret = pci_register_driver(&rt2800pci_driver);
1252         if (ret) {
1253 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1254                 platform_driver_unregister(&rt2800soc_driver);
1255 #endif
1256                 return ret;
1257         }
1258 #endif
1259
1260         return ret;
1261 }
1262
1263 static void __exit rt2800pci_exit(void)
1264 {
1265 #ifdef CONFIG_PCI
1266         pci_unregister_driver(&rt2800pci_driver);
1267 #endif
1268 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1269         platform_driver_unregister(&rt2800soc_driver);
1270 #endif
1271 }
1272
1273 module_init(rt2800pci_init);
1274 module_exit(rt2800pci_exit);