]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
Merge branch 'fix' of git://git.kernel.org/pub/scm/linux/kernel/git/ycmiao/pxa-linux-2.6
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #ifdef CONFIG_RT2800PCI_SOC
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 }
94 #else
95 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
96 {
97 }
98 #endif /* CONFIG_RT2800PCI_SOC */
99
100 #ifdef CONFIG_RT2800PCI_PCI
101 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
102 {
103         struct rt2x00_dev *rt2x00dev = eeprom->data;
104         u32 reg;
105
106         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
107
108         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
109         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
110         eeprom->reg_data_clock =
111             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
112         eeprom->reg_chip_select =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
114 }
115
116 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
117 {
118         struct rt2x00_dev *rt2x00dev = eeprom->data;
119         u32 reg = 0;
120
121         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
122         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
124                            !!eeprom->reg_data_clock);
125         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
126                            !!eeprom->reg_chip_select);
127
128         rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
129 }
130
131 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
132 {
133         struct eeprom_93cx6 eeprom;
134         u32 reg;
135
136         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
137
138         eeprom.data = rt2x00dev;
139         eeprom.register_read = rt2800pci_eepromregister_read;
140         eeprom.register_write = rt2800pci_eepromregister_write;
141         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
142         {
143         case 0:
144                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
145                 break;
146         case 1:
147                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
148                 break;
149         default:
150                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
151                 break;
152         }
153         eeprom.reg_data_in = 0;
154         eeprom.reg_data_out = 0;
155         eeprom.reg_data_clock = 0;
156         eeprom.reg_chip_select = 0;
157
158         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
159                                EEPROM_SIZE / sizeof(u16));
160 }
161
162 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
163 {
164         return rt2800_efuse_detect(rt2x00dev);
165 }
166
167 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
168 {
169         rt2800_read_eeprom_efuse(rt2x00dev);
170 }
171 #else
172 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
173 {
174 }
175
176 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
177 {
178         return 0;
179 }
180
181 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
182 {
183 }
184 #endif /* CONFIG_RT2800PCI_PCI */
185
186 /*
187  * Firmware functions
188  */
189 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
190 {
191         return FIRMWARE_RT2860;
192 }
193
194 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
195                                     const u8 *data, const size_t len)
196 {
197         u32 reg;
198
199         /*
200          * enable Host program ram write selection
201          */
202         reg = 0;
203         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
204         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
205
206         /*
207          * Write firmware to device.
208          */
209         rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
210                                    data, len);
211
212         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
213         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
214
215         rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
216         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
217
218         return 0;
219 }
220
221 /*
222  * Initialization functions.
223  */
224 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
225 {
226         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
227         u32 word;
228
229         if (entry->queue->qid == QID_RX) {
230                 rt2x00_desc_read(entry_priv->desc, 1, &word);
231
232                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
233         } else {
234                 rt2x00_desc_read(entry_priv->desc, 1, &word);
235
236                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
237         }
238 }
239
240 static void rt2800pci_clear_entry(struct queue_entry *entry)
241 {
242         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
243         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
244         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
245         u32 word;
246
247         if (entry->queue->qid == QID_RX) {
248                 rt2x00_desc_read(entry_priv->desc, 0, &word);
249                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
250                 rt2x00_desc_write(entry_priv->desc, 0, word);
251
252                 rt2x00_desc_read(entry_priv->desc, 1, &word);
253                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
254                 rt2x00_desc_write(entry_priv->desc, 1, word);
255
256                 /*
257                  * Set RX IDX in register to inform hardware that we have
258                  * handled this entry and it is available for reuse again.
259                  */
260                 rt2800_register_write(rt2x00dev, RX_CRX_IDX,
261                                       entry->entry_idx);
262         } else {
263                 rt2x00_desc_read(entry_priv->desc, 1, &word);
264                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
265                 rt2x00_desc_write(entry_priv->desc, 1, word);
266         }
267 }
268
269 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
270 {
271         struct queue_entry_priv_pci *entry_priv;
272         u32 reg;
273
274         /*
275          * Initialize registers.
276          */
277         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
278         rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
279         rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
280         rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
281         rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
282
283         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
284         rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
285         rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
286         rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
287         rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
288
289         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
290         rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
291         rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
292         rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
293         rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
294
295         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
296         rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
297         rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
298         rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
299         rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
300
301         entry_priv = rt2x00dev->rx->entries[0].priv_data;
302         rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
303         rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
304         rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
305         rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
306
307         /*
308          * Enable global DMA configuration
309          */
310         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
311         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
312         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
313         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
314         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
315
316         rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
317
318         return 0;
319 }
320
321 /*
322  * Device state switch handlers.
323  */
324 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
325                                 enum dev_state state)
326 {
327         u32 reg;
328
329         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
330         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
331                            (state == STATE_RADIO_RX_ON) ||
332                            (state == STATE_RADIO_RX_ON_LINK));
333         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
334 }
335
336 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
337                                  enum dev_state state)
338 {
339         int mask = (state == STATE_RADIO_IRQ_ON) ||
340                    (state == STATE_RADIO_IRQ_ON_ISR);
341         u32 reg;
342
343         /*
344          * When interrupts are being enabled, the interrupt registers
345          * should clear the register to assure a clean state.
346          */
347         if (state == STATE_RADIO_IRQ_ON) {
348                 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
349                 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
350         }
351
352         rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
353         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
354         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
355         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
356         rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
357         rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
358         rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
359         rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
360         rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
361         rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
362         rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
363         rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
364         rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
365         rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
366         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
367         rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
368         rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
369         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
370         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
371         rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
372 }
373
374 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
375 {
376         u32 reg;
377
378         /*
379          * Reset DMA indexes
380          */
381         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
382         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
383         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
384         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
385         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
386         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
387         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
388         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
389         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
390
391         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
392         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
393
394         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
395
396         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
397         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
398         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
399         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
400
401         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
402
403         return 0;
404 }
405
406 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
407 {
408         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
409                      rt2800pci_init_queues(rt2x00dev)))
410                 return -EIO;
411
412         return rt2800_enable_radio(rt2x00dev);
413 }
414
415 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
416 {
417         u32 reg;
418
419         rt2800_disable_radio(rt2x00dev);
420
421         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
422
423         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
424         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
425         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
426         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
427         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
428         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
429         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
430         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
431         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
432
433         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
434         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
435 }
436
437 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
438                                enum dev_state state)
439 {
440         /*
441          * Always put the device to sleep (even when we intend to wakeup!)
442          * if the device is booting and wasn't asleep it will return
443          * failure when attempting to wakeup.
444          */
445         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
446
447         if (state == STATE_AWAKE) {
448                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
449                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
450         }
451
452         return 0;
453 }
454
455 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
456                                       enum dev_state state)
457 {
458         int retval = 0;
459
460         switch (state) {
461         case STATE_RADIO_ON:
462                 /*
463                  * Before the radio can be enabled, the device first has
464                  * to be woken up. After that it needs a bit of time
465                  * to be fully awake and then the radio can be enabled.
466                  */
467                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
468                 msleep(1);
469                 retval = rt2800pci_enable_radio(rt2x00dev);
470                 break;
471         case STATE_RADIO_OFF:
472                 /*
473                  * After the radio has been disabled, the device should
474                  * be put to sleep for powersaving.
475                  */
476                 rt2800pci_disable_radio(rt2x00dev);
477                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
478                 break;
479         case STATE_RADIO_RX_ON:
480         case STATE_RADIO_RX_ON_LINK:
481         case STATE_RADIO_RX_OFF:
482         case STATE_RADIO_RX_OFF_LINK:
483                 rt2800pci_toggle_rx(rt2x00dev, state);
484                 break;
485         case STATE_RADIO_IRQ_ON:
486         case STATE_RADIO_IRQ_ON_ISR:
487         case STATE_RADIO_IRQ_OFF:
488         case STATE_RADIO_IRQ_OFF_ISR:
489                 rt2800pci_toggle_irq(rt2x00dev, state);
490                 break;
491         case STATE_DEEP_SLEEP:
492         case STATE_SLEEP:
493         case STATE_STANDBY:
494         case STATE_AWAKE:
495                 retval = rt2800pci_set_state(rt2x00dev, state);
496                 break;
497         default:
498                 retval = -ENOTSUPP;
499                 break;
500         }
501
502         if (unlikely(retval))
503                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
504                       state, retval);
505
506         return retval;
507 }
508
509 /*
510  * TX descriptor initialization
511  */
512 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
513 {
514         return (__le32 *) entry->skb->data;
515 }
516
517 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
518                                     struct txentry_desc *txdesc)
519 {
520         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
521         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
522         __le32 *txd = entry_priv->desc;
523         u32 word;
524
525         /*
526          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
527          * must contains a TXWI structure + 802.11 header + padding + 802.11
528          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
529          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
530          * data. It means that LAST_SEC0 is always 0.
531          */
532
533         /*
534          * Initialize TX descriptor
535          */
536         rt2x00_desc_read(txd, 0, &word);
537         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
538         rt2x00_desc_write(txd, 0, word);
539
540         rt2x00_desc_read(txd, 1, &word);
541         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
542         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
543                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
544         rt2x00_set_field32(&word, TXD_W1_BURST,
545                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
546         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
547         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
548         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
549         rt2x00_desc_write(txd, 1, word);
550
551         rt2x00_desc_read(txd, 2, &word);
552         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
553                            skbdesc->skb_dma + TXWI_DESC_SIZE);
554         rt2x00_desc_write(txd, 2, word);
555
556         rt2x00_desc_read(txd, 3, &word);
557         rt2x00_set_field32(&word, TXD_W3_WIV,
558                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
559         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
560         rt2x00_desc_write(txd, 3, word);
561
562         /*
563          * Register descriptor details in skb frame descriptor.
564          */
565         skbdesc->desc = txd;
566         skbdesc->desc_len = TXD_DESC_SIZE;
567 }
568
569 /*
570  * TX data initialization
571  */
572 static void rt2800pci_kick_tx_queue(struct data_queue *queue)
573 {
574         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
575         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
576         unsigned int qidx;
577
578         if (queue->qid == QID_MGMT)
579                 qidx = 5;
580         else
581                 qidx = queue->qid;
582
583         rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
584 }
585
586 static void rt2800pci_kill_tx_queue(struct data_queue *queue)
587 {
588         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
589         u32 reg;
590
591         if (queue->qid == QID_BEACON) {
592                 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
593                 return;
594         }
595
596         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
597         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
598         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
599         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
600         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
601         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
602 }
603
604 /*
605  * RX control handlers
606  */
607 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
608                                   struct rxdone_entry_desc *rxdesc)
609 {
610         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
611         __le32 *rxd = entry_priv->desc;
612         u32 word;
613
614         rt2x00_desc_read(rxd, 3, &word);
615
616         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
617                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
618
619         /*
620          * Unfortunately we don't know the cipher type used during
621          * decryption. This prevents us from correct providing
622          * correct statistics through debugfs.
623          */
624         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
625
626         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
627                 /*
628                  * Hardware has stripped IV/EIV data from 802.11 frame during
629                  * decryption. Unfortunately the descriptor doesn't contain
630                  * any fields with the EIV/IV data either, so they can't
631                  * be restored by rt2x00lib.
632                  */
633                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
634
635                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
636                         rxdesc->flags |= RX_FLAG_DECRYPTED;
637                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
638                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
639         }
640
641         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
642                 rxdesc->dev_flags |= RXDONE_MY_BSS;
643
644         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
645                 rxdesc->dev_flags |= RXDONE_L2PAD;
646
647         /*
648          * Process the RXWI structure that is at the start of the buffer.
649          */
650         rt2800_process_rxwi(entry, rxdesc);
651 }
652
653 /*
654  * Interrupt functions.
655  */
656 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
657 {
658         struct ieee80211_conf conf = { .flags = 0 };
659         struct rt2x00lib_conf libconf = { .conf = &conf };
660
661         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
662 }
663
664 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
665 {
666         struct data_queue *queue;
667         struct queue_entry *entry;
668         u32 status;
669         u8 qid;
670
671         while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
672                 /* Now remove the tx status from the FIFO */
673                 if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
674                               sizeof(status)) != sizeof(status)) {
675                         WARN_ON(1);
676                         break;
677                 }
678
679                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
680                 if (qid >= QID_RX) {
681                         /*
682                          * Unknown queue, this shouldn't happen. Just drop
683                          * this tx status.
684                          */
685                         WARNING(rt2x00dev, "Got TX status report with "
686                                            "unexpected pid %u, dropping", qid);
687                         break;
688                 }
689
690                 queue = rt2x00queue_get_queue(rt2x00dev, qid);
691                 if (unlikely(queue == NULL)) {
692                         /*
693                          * The queue is NULL, this shouldn't happen. Stop
694                          * processing here and drop the tx status
695                          */
696                         WARNING(rt2x00dev, "Got TX status for an unavailable "
697                                            "queue %u, dropping", qid);
698                         break;
699                 }
700
701                 if (rt2x00queue_empty(queue)) {
702                         /*
703                          * The queue is empty. Stop processing here
704                          * and drop the tx status.
705                          */
706                         WARNING(rt2x00dev, "Got TX status for an empty "
707                                            "queue %u, dropping", qid);
708                         break;
709                 }
710
711                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
712                 rt2800_txdone_entry(entry, status);
713         }
714 }
715
716 static void rt2800pci_txstatus_tasklet(unsigned long data)
717 {
718         rt2800pci_txdone((struct rt2x00_dev *)data);
719 }
720
721 static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
722 {
723         struct rt2x00_dev *rt2x00dev = dev_instance;
724         u32 reg = rt2x00dev->irqvalue[0];
725
726         /*
727          * 1 - Pre TBTT interrupt.
728          */
729         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
730                 rt2x00lib_pretbtt(rt2x00dev);
731
732         /*
733          * 2 - Beacondone interrupt.
734          */
735         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
736                 rt2x00lib_beacondone(rt2x00dev);
737
738         /*
739          * 3 - Rx ring done interrupt.
740          */
741         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
742                 rt2x00pci_rxdone(rt2x00dev);
743
744         /*
745          * 4 - Auto wakeup interrupt.
746          */
747         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
748                 rt2800pci_wakeup(rt2x00dev);
749
750         /* Enable interrupts again. */
751         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
752                                               STATE_RADIO_IRQ_ON_ISR);
753
754         return IRQ_HANDLED;
755 }
756
757 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
758 {
759         u32 status;
760         int i;
761
762         /*
763          * The TX_FIFO_STATUS interrupt needs special care. We should
764          * read TX_STA_FIFO but we should do it immediately as otherwise
765          * the register can overflow and we would lose status reports.
766          *
767          * Hence, read the TX_STA_FIFO register and copy all tx status
768          * reports into a kernel FIFO which is handled in the txstatus
769          * tasklet. We use a tasklet to process the tx status reports
770          * because we can schedule the tasklet multiple times (when the
771          * interrupt fires again during tx status processing).
772          *
773          * Furthermore we don't disable the TX_FIFO_STATUS
774          * interrupt here but leave it enabled so that the TX_STA_FIFO
775          * can also be read while the interrupt thread gets executed.
776          *
777          * Since we have only one producer and one consumer we don't
778          * need to lock the kfifo.
779          */
780         for (i = 0; i < TX_ENTRIES; i++) {
781                 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
782
783                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
784                         break;
785
786                 if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
787                         WARNING(rt2x00dev, "TX status FIFO overrun,"
788                                 " drop tx status report.\n");
789                         break;
790                 }
791
792                 if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
793                              sizeof(status)) != sizeof(status)) {
794                         WARNING(rt2x00dev, "TX status FIFO overrun,"
795                                 "drop tx status report.\n");
796                         break;
797                 }
798         }
799
800         /* Schedule the tasklet for processing the tx status. */
801         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
802 }
803
804 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
805 {
806         struct rt2x00_dev *rt2x00dev = dev_instance;
807         u32 reg;
808         irqreturn_t ret = IRQ_HANDLED;
809
810         /* Read status and ACK all interrupts */
811         rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
812         rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
813
814         if (!reg)
815                 return IRQ_NONE;
816
817         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
818                 return IRQ_HANDLED;
819
820         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
821                 rt2800pci_txstatus_interrupt(rt2x00dev);
822
823         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
824             rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
825             rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
826             rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
827                 /*
828                  * All other interrupts are handled in the interrupt thread.
829                  * Store irqvalue for use in the interrupt thread.
830                  */
831                 rt2x00dev->irqvalue[0] = reg;
832
833                 /*
834                  * Disable interrupts, will be enabled again in the
835                  * interrupt thread.
836                 */
837                 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
838                                                       STATE_RADIO_IRQ_OFF_ISR);
839
840                 /*
841                  * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
842                  * tx status reports.
843                  */
844                 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
845                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
846                 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
847
848                 ret = IRQ_WAKE_THREAD;
849         }
850
851         return ret;
852 }
853
854 /*
855  * Device probe functions.
856  */
857 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
858 {
859         /*
860          * Read EEPROM into buffer
861          */
862         if (rt2x00_is_soc(rt2x00dev))
863                 rt2800pci_read_eeprom_soc(rt2x00dev);
864         else if (rt2800pci_efuse_detect(rt2x00dev))
865                 rt2800pci_read_eeprom_efuse(rt2x00dev);
866         else
867                 rt2800pci_read_eeprom_pci(rt2x00dev);
868
869         return rt2800_validate_eeprom(rt2x00dev);
870 }
871
872 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
873 {
874         int retval;
875
876         /*
877          * Allocate eeprom data.
878          */
879         retval = rt2800pci_validate_eeprom(rt2x00dev);
880         if (retval)
881                 return retval;
882
883         retval = rt2800_init_eeprom(rt2x00dev);
884         if (retval)
885                 return retval;
886
887         /*
888          * Initialize hw specifications.
889          */
890         retval = rt2800_probe_hw_mode(rt2x00dev);
891         if (retval)
892                 return retval;
893
894         /*
895          * This device has multiple filters for control frames
896          * and has a separate filter for PS Poll frames.
897          */
898         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
899         __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
900
901         /*
902          * This device has a pre tbtt interrupt and thus fetches
903          * a new beacon directly prior to transmission.
904          */
905         __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
906
907         /*
908          * This device requires firmware.
909          */
910         if (!rt2x00_is_soc(rt2x00dev))
911                 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
912         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
913         __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
914         __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
915         __set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
916         if (!modparam_nohwcrypt)
917                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
918         __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
919
920         /*
921          * Set the rssi offset.
922          */
923         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
924
925         return 0;
926 }
927
928 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
929         .tx                     = rt2x00mac_tx,
930         .start                  = rt2x00mac_start,
931         .stop                   = rt2x00mac_stop,
932         .add_interface          = rt2x00mac_add_interface,
933         .remove_interface       = rt2x00mac_remove_interface,
934         .config                 = rt2x00mac_config,
935         .configure_filter       = rt2x00mac_configure_filter,
936         .set_key                = rt2x00mac_set_key,
937         .sw_scan_start          = rt2x00mac_sw_scan_start,
938         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
939         .get_stats              = rt2x00mac_get_stats,
940         .get_tkip_seq           = rt2800_get_tkip_seq,
941         .set_rts_threshold      = rt2800_set_rts_threshold,
942         .bss_info_changed       = rt2x00mac_bss_info_changed,
943         .conf_tx                = rt2800_conf_tx,
944         .get_tsf                = rt2800_get_tsf,
945         .rfkill_poll            = rt2x00mac_rfkill_poll,
946         .ampdu_action           = rt2800_ampdu_action,
947 };
948
949 static const struct rt2800_ops rt2800pci_rt2800_ops = {
950         .register_read          = rt2x00pci_register_read,
951         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
952         .register_write         = rt2x00pci_register_write,
953         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
954         .register_multiread     = rt2x00pci_register_multiread,
955         .register_multiwrite    = rt2x00pci_register_multiwrite,
956         .regbusy_read           = rt2x00pci_regbusy_read,
957         .drv_write_firmware     = rt2800pci_write_firmware,
958         .drv_init_registers     = rt2800pci_init_registers,
959         .drv_get_txwi           = rt2800pci_get_txwi,
960 };
961
962 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
963         .irq_handler            = rt2800pci_interrupt,
964         .irq_handler_thread     = rt2800pci_interrupt_thread,
965         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
966         .probe_hw               = rt2800pci_probe_hw,
967         .get_firmware_name      = rt2800pci_get_firmware_name,
968         .check_firmware         = rt2800_check_firmware,
969         .load_firmware          = rt2800_load_firmware,
970         .initialize             = rt2x00pci_initialize,
971         .uninitialize           = rt2x00pci_uninitialize,
972         .get_entry_state        = rt2800pci_get_entry_state,
973         .clear_entry            = rt2800pci_clear_entry,
974         .set_device_state       = rt2800pci_set_device_state,
975         .rfkill_poll            = rt2800_rfkill_poll,
976         .link_stats             = rt2800_link_stats,
977         .reset_tuner            = rt2800_reset_tuner,
978         .link_tuner             = rt2800_link_tuner,
979         .write_tx_desc          = rt2800pci_write_tx_desc,
980         .write_tx_data          = rt2800_write_tx_data,
981         .write_beacon           = rt2800_write_beacon,
982         .kick_tx_queue          = rt2800pci_kick_tx_queue,
983         .kill_tx_queue          = rt2800pci_kill_tx_queue,
984         .fill_rxdone            = rt2800pci_fill_rxdone,
985         .config_shared_key      = rt2800_config_shared_key,
986         .config_pairwise_key    = rt2800_config_pairwise_key,
987         .config_filter          = rt2800_config_filter,
988         .config_intf            = rt2800_config_intf,
989         .config_erp             = rt2800_config_erp,
990         .config_ant             = rt2800_config_ant,
991         .config                 = rt2800_config,
992 };
993
994 static const struct data_queue_desc rt2800pci_queue_rx = {
995         .entry_num              = RX_ENTRIES,
996         .data_size              = AGGREGATION_SIZE,
997         .desc_size              = RXD_DESC_SIZE,
998         .priv_size              = sizeof(struct queue_entry_priv_pci),
999 };
1000
1001 static const struct data_queue_desc rt2800pci_queue_tx = {
1002         .entry_num              = TX_ENTRIES,
1003         .data_size              = AGGREGATION_SIZE,
1004         .desc_size              = TXD_DESC_SIZE,
1005         .priv_size              = sizeof(struct queue_entry_priv_pci),
1006 };
1007
1008 static const struct data_queue_desc rt2800pci_queue_bcn = {
1009         .entry_num              = 8 * BEACON_ENTRIES,
1010         .data_size              = 0, /* No DMA required for beacons */
1011         .desc_size              = TXWI_DESC_SIZE,
1012         .priv_size              = sizeof(struct queue_entry_priv_pci),
1013 };
1014
1015 static const struct rt2x00_ops rt2800pci_ops = {
1016         .name                   = KBUILD_MODNAME,
1017         .max_sta_intf           = 1,
1018         .max_ap_intf            = 8,
1019         .eeprom_size            = EEPROM_SIZE,
1020         .rf_size                = RF_SIZE,
1021         .tx_queues              = NUM_TX_QUEUES,
1022         .extra_tx_headroom      = TXWI_DESC_SIZE,
1023         .rx                     = &rt2800pci_queue_rx,
1024         .tx                     = &rt2800pci_queue_tx,
1025         .bcn                    = &rt2800pci_queue_bcn,
1026         .lib                    = &rt2800pci_rt2x00_ops,
1027         .drv                    = &rt2800pci_rt2800_ops,
1028         .hw                     = &rt2800pci_mac80211_ops,
1029 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1030         .debugfs                = &rt2800_rt2x00debug,
1031 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1032 };
1033
1034 /*
1035  * RT2800pci module information.
1036  */
1037 #ifdef CONFIG_RT2800PCI_PCI
1038 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1039         { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1040         { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1041         { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1042         { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1043         { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1044         { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1045         { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1046         { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1047         { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1048         { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1049         { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1050         { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1051 #ifdef CONFIG_RT2800PCI_RT30XX
1052         { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1053         { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1054         { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1055         { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1056 #endif
1057 #ifdef CONFIG_RT2800PCI_RT35XX
1058         { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1059         { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1060         { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1061         { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1062         { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1063 #endif
1064         { 0, }
1065 };
1066 #endif /* CONFIG_RT2800PCI_PCI */
1067
1068 MODULE_AUTHOR(DRV_PROJECT);
1069 MODULE_VERSION(DRV_VERSION);
1070 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1071 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1072 #ifdef CONFIG_RT2800PCI_PCI
1073 MODULE_FIRMWARE(FIRMWARE_RT2860);
1074 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1075 #endif /* CONFIG_RT2800PCI_PCI */
1076 MODULE_LICENSE("GPL");
1077
1078 #ifdef CONFIG_RT2800PCI_SOC
1079 static int rt2800soc_probe(struct platform_device *pdev)
1080 {
1081         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1082 }
1083
1084 static struct platform_driver rt2800soc_driver = {
1085         .driver         = {
1086                 .name           = "rt2800_wmac",
1087                 .owner          = THIS_MODULE,
1088                 .mod_name       = KBUILD_MODNAME,
1089         },
1090         .probe          = rt2800soc_probe,
1091         .remove         = __devexit_p(rt2x00soc_remove),
1092         .suspend        = rt2x00soc_suspend,
1093         .resume         = rt2x00soc_resume,
1094 };
1095 #endif /* CONFIG_RT2800PCI_SOC */
1096
1097 #ifdef CONFIG_RT2800PCI_PCI
1098 static struct pci_driver rt2800pci_driver = {
1099         .name           = KBUILD_MODNAME,
1100         .id_table       = rt2800pci_device_table,
1101         .probe          = rt2x00pci_probe,
1102         .remove         = __devexit_p(rt2x00pci_remove),
1103         .suspend        = rt2x00pci_suspend,
1104         .resume         = rt2x00pci_resume,
1105 };
1106 #endif /* CONFIG_RT2800PCI_PCI */
1107
1108 static int __init rt2800pci_init(void)
1109 {
1110         int ret = 0;
1111
1112 #ifdef CONFIG_RT2800PCI_SOC
1113         ret = platform_driver_register(&rt2800soc_driver);
1114         if (ret)
1115                 return ret;
1116 #endif
1117 #ifdef CONFIG_RT2800PCI_PCI
1118         ret = pci_register_driver(&rt2800pci_driver);
1119         if (ret) {
1120 #ifdef CONFIG_RT2800PCI_SOC
1121                 platform_driver_unregister(&rt2800soc_driver);
1122 #endif
1123                 return ret;
1124         }
1125 #endif
1126
1127         return ret;
1128 }
1129
1130 static void __exit rt2800pci_exit(void)
1131 {
1132 #ifdef CONFIG_RT2800PCI_PCI
1133         pci_unregister_driver(&rt2800pci_driver);
1134 #endif
1135 #ifdef CONFIG_RT2800PCI_SOC
1136         platform_driver_unregister(&rt2800soc_driver);
1137 #endif
1138 }
1139
1140 module_init(rt2800pci_init);
1141 module_exit(rt2800pci_exit);