]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
rt2x00: remove MCU requests for SoC platforms
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/crc-ccitt.h>
35 #include <linux/delay.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/eeprom_93cx6.h>
43
44 #include "rt2x00.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52  * Allow hardware encryption to be disabled.
53  */
54 static int modparam_nohwcrypt = 1;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
59 {
60         unsigned int i;
61         u32 reg;
62
63         /*
64          * SOC devices don't support MCU requests.
65          */
66         if (rt2x00_is_soc(rt2x00dev))
67                 return;
68
69         for (i = 0; i < 200; i++) {
70                 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71
72                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
75                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
76                         break;
77
78                 udelay(REGISTER_BUSY_DELAY);
79         }
80
81         if (i == 200)
82                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
83
84         rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
85         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
86 }
87
88 #ifdef CONFIG_RT2800PCI_SOC
89 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
90 {
91         u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
92
93         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
94 }
95 #else
96 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
97 {
98 }
99 #endif /* CONFIG_RT2800PCI_SOC */
100
101 #ifdef CONFIG_RT2800PCI_PCI
102 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
103 {
104         struct rt2x00_dev *rt2x00dev = eeprom->data;
105         u32 reg;
106
107         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
108
109         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
110         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
111         eeprom->reg_data_clock =
112             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
113         eeprom->reg_chip_select =
114             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
115 }
116
117 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
118 {
119         struct rt2x00_dev *rt2x00dev = eeprom->data;
120         u32 reg = 0;
121
122         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
125                            !!eeprom->reg_data_clock);
126         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
127                            !!eeprom->reg_chip_select);
128
129         rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
130 }
131
132 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
133 {
134         struct eeprom_93cx6 eeprom;
135         u32 reg;
136
137         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
138
139         eeprom.data = rt2x00dev;
140         eeprom.register_read = rt2800pci_eepromregister_read;
141         eeprom.register_write = rt2800pci_eepromregister_write;
142         eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
143             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
144         eeprom.reg_data_in = 0;
145         eeprom.reg_data_out = 0;
146         eeprom.reg_data_clock = 0;
147         eeprom.reg_chip_select = 0;
148
149         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
150                                EEPROM_SIZE / sizeof(u16));
151 }
152
153 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
154 {
155         return rt2800_efuse_detect(rt2x00dev);
156 }
157
158 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
159 {
160         rt2800_read_eeprom_efuse(rt2x00dev);
161 }
162 #else
163 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
164 {
165 }
166
167 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
168 {
169         return 0;
170 }
171
172 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
173 {
174 }
175 #endif /* CONFIG_RT2800PCI_PCI */
176
177 /*
178  * Firmware functions
179  */
180 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
181 {
182         return FIRMWARE_RT2860;
183 }
184
185 static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
186                                     const u8 *data, const size_t len)
187 {
188         u16 fw_crc;
189         u16 crc;
190
191         /*
192          * Only support 8kb firmware files.
193          */
194         if (len != 8192)
195                 return FW_BAD_LENGTH;
196
197         /*
198          * The last 2 bytes in the firmware array are the crc checksum itself,
199          * this means that we should never pass those 2 bytes to the crc
200          * algorithm.
201          */
202         fw_crc = (data[len - 2] << 8 | data[len - 1]);
203
204         /*
205          * Use the crc ccitt algorithm.
206          * This will return the same value as the legacy driver which
207          * used bit ordering reversion on the both the firmware bytes
208          * before input input as well as on the final output.
209          * Obviously using crc ccitt directly is much more efficient.
210          */
211         crc = crc_ccitt(~0, data, len - 2);
212
213         /*
214          * There is a small difference between the crc-itu-t + bitrev and
215          * the crc-ccitt crc calculation. In the latter method the 2 bytes
216          * will be swapped, use swab16 to convert the crc to the correct
217          * value.
218          */
219         crc = swab16(crc);
220
221         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
222 }
223
224 static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
225                                    const u8 *data, const size_t len)
226 {
227         unsigned int i;
228         u32 reg;
229
230         /*
231          * Wait for stable hardware.
232          */
233         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
234                 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
235                 if (reg && reg != ~0)
236                         break;
237                 msleep(1);
238         }
239
240         if (i == REGISTER_BUSY_COUNT) {
241                 ERROR(rt2x00dev, "Unstable hardware.\n");
242                 return -EBUSY;
243         }
244
245         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
246         rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
247
248         /*
249          * Disable DMA, will be reenabled later when enabling
250          * the radio.
251          */
252         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
253         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
254         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
255         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
256         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
257         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
258         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
259
260         /*
261          * enable Host program ram write selection
262          */
263         reg = 0;
264         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
265         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
266
267         /*
268          * Write firmware to device.
269          */
270         rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
271                                       data, len);
272
273         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
274         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
275
276         /*
277          * Wait for device to stabilize.
278          */
279         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
280                 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
281                 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
282                         break;
283                 msleep(1);
284         }
285
286         if (i == REGISTER_BUSY_COUNT) {
287                 ERROR(rt2x00dev, "PBF system register not ready.\n");
288                 return -EBUSY;
289         }
290
291         /*
292          * Disable interrupts
293          */
294         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
295
296         /*
297          * Initialize BBP R/W access agent
298          */
299         rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
300         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
301
302         return 0;
303 }
304
305 /*
306  * Initialization functions.
307  */
308 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
309 {
310         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
311         u32 word;
312
313         if (entry->queue->qid == QID_RX) {
314                 rt2x00_desc_read(entry_priv->desc, 1, &word);
315
316                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
317         } else {
318                 rt2x00_desc_read(entry_priv->desc, 1, &word);
319
320                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
321         }
322 }
323
324 static void rt2800pci_clear_entry(struct queue_entry *entry)
325 {
326         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
327         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
328         u32 word;
329
330         if (entry->queue->qid == QID_RX) {
331                 rt2x00_desc_read(entry_priv->desc, 0, &word);
332                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
333                 rt2x00_desc_write(entry_priv->desc, 0, word);
334
335                 rt2x00_desc_read(entry_priv->desc, 1, &word);
336                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
337                 rt2x00_desc_write(entry_priv->desc, 1, word);
338         } else {
339                 rt2x00_desc_read(entry_priv->desc, 1, &word);
340                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
341                 rt2x00_desc_write(entry_priv->desc, 1, word);
342         }
343 }
344
345 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
346 {
347         struct queue_entry_priv_pci *entry_priv;
348         u32 reg;
349
350         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
351         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
352         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
353         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
354         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
355         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
356         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
357         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
358         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
359
360         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
361         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
362
363         /*
364          * Initialize registers.
365          */
366         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
367         rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
368         rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
369         rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
370         rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
371
372         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
373         rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
374         rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
375         rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
376         rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
377
378         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
379         rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
380         rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
381         rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
382         rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
383
384         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
385         rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
386         rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
387         rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
388         rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
389
390         entry_priv = rt2x00dev->rx->entries[0].priv_data;
391         rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
392         rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
393         rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
394         rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
395
396         /*
397          * Enable global DMA configuration
398          */
399         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
400         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
401         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
402         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
403         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
404
405         rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
406
407         return 0;
408 }
409
410 /*
411  * Device state switch handlers.
412  */
413 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
414                                 enum dev_state state)
415 {
416         u32 reg;
417
418         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
419         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
420                            (state == STATE_RADIO_RX_ON) ||
421                            (state == STATE_RADIO_RX_ON_LINK));
422         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
423 }
424
425 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
426                                  enum dev_state state)
427 {
428         int mask = (state == STATE_RADIO_IRQ_ON);
429         u32 reg;
430
431         /*
432          * When interrupts are being enabled, the interrupt registers
433          * should clear the register to assure a clean state.
434          */
435         if (state == STATE_RADIO_IRQ_ON) {
436                 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
437                 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
438         }
439
440         rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
441         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
442         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
443         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
444         rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
445         rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
446         rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
447         rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
448         rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
449         rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
450         rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
451         rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
452         rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
453         rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
454         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
455         rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
456         rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
457         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
458         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
459         rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
460 }
461
462 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
463 {
464         u32 reg;
465         u16 word;
466
467         /*
468          * Initialize all registers.
469          */
470         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
471                      rt2800pci_init_queues(rt2x00dev) ||
472                      rt2800_init_registers(rt2x00dev) ||
473                      rt2800_wait_wpdma_ready(rt2x00dev) ||
474                      rt2800_init_bbp(rt2x00dev) ||
475                      rt2800_init_rfcsr(rt2x00dev)))
476                 return -EIO;
477
478         /*
479          * Send signal to firmware during boot time.
480          */
481         rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
482
483         /*
484          * Enable RX.
485          */
486         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
487         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
488         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
489         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
490
491         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
492         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
493         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
494         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
495         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
496         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
497
498         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
499         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
500         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
501         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
502
503         /*
504          * Initialize LED control
505          */
506         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
507         rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
508                               word & 0xff, (word >> 8) & 0xff);
509
510         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
511         rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
512                               word & 0xff, (word >> 8) & 0xff);
513
514         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
515         rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
516                               word & 0xff, (word >> 8) & 0xff);
517
518         return 0;
519 }
520
521 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
522 {
523         u32 reg;
524
525         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
526         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
527         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
528         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
529         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
530         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
531         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
532
533         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
534         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
535         rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
536
537         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
538
539         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
540         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
541         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
542         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
543         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
544         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
545         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
546         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
547         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
548
549         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
550         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
551
552         /* Wait for DMA, ignore error */
553         rt2800_wait_wpdma_ready(rt2x00dev);
554 }
555
556 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
557                                enum dev_state state)
558 {
559         /*
560          * Always put the device to sleep (even when we intend to wakeup!)
561          * if the device is booting and wasn't asleep it will return
562          * failure when attempting to wakeup.
563          */
564         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
565
566         if (state == STATE_AWAKE) {
567                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
568                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
569         }
570
571         return 0;
572 }
573
574 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
575                                       enum dev_state state)
576 {
577         int retval = 0;
578
579         switch (state) {
580         case STATE_RADIO_ON:
581                 /*
582                  * Before the radio can be enabled, the device first has
583                  * to be woken up. After that it needs a bit of time
584                  * to be fully awake and then the radio can be enabled.
585                  */
586                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
587                 msleep(1);
588                 retval = rt2800pci_enable_radio(rt2x00dev);
589                 break;
590         case STATE_RADIO_OFF:
591                 /*
592                  * After the radio has been disabled, the device should
593                  * be put to sleep for powersaving.
594                  */
595                 rt2800pci_disable_radio(rt2x00dev);
596                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
597                 break;
598         case STATE_RADIO_RX_ON:
599         case STATE_RADIO_RX_ON_LINK:
600         case STATE_RADIO_RX_OFF:
601         case STATE_RADIO_RX_OFF_LINK:
602                 rt2800pci_toggle_rx(rt2x00dev, state);
603                 break;
604         case STATE_RADIO_IRQ_ON:
605         case STATE_RADIO_IRQ_OFF:
606                 rt2800pci_toggle_irq(rt2x00dev, state);
607                 break;
608         case STATE_DEEP_SLEEP:
609         case STATE_SLEEP:
610         case STATE_STANDBY:
611         case STATE_AWAKE:
612                 retval = rt2800pci_set_state(rt2x00dev, state);
613                 break;
614         default:
615                 retval = -ENOTSUPP;
616                 break;
617         }
618
619         if (unlikely(retval))
620                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
621                       state, retval);
622
623         return retval;
624 }
625
626 /*
627  * TX descriptor initialization
628  */
629 static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
630                                     struct sk_buff *skb,
631                                     struct txentry_desc *txdesc)
632 {
633         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
634         __le32 *txd = skbdesc->desc;
635         __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->ops->extra_tx_headroom);
636         u32 word;
637
638         /*
639          * Initialize TX Info descriptor
640          */
641         rt2x00_desc_read(txwi, 0, &word);
642         rt2x00_set_field32(&word, TXWI_W0_FRAG,
643                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
644         rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
645         rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
646         rt2x00_set_field32(&word, TXWI_W0_TS,
647                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
648         rt2x00_set_field32(&word, TXWI_W0_AMPDU,
649                            test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
650         rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
651         rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
652         rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
653         rt2x00_set_field32(&word, TXWI_W0_BW,
654                            test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
655         rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
656                            test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
657         rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
658         rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
659         rt2x00_desc_write(txwi, 0, word);
660
661         rt2x00_desc_read(txwi, 1, &word);
662         rt2x00_set_field32(&word, TXWI_W1_ACK,
663                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
664         rt2x00_set_field32(&word, TXWI_W1_NSEQ,
665                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
666         rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
667         rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
668                            test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
669                            txdesc->key_idx : 0xff);
670         rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
671                            skb->len - txdesc->l2pad);
672         rt2x00_set_field32(&word, TXWI_W1_PACKETID,
673                            skbdesc->entry->queue->qid + 1);
674         rt2x00_desc_write(txwi, 1, word);
675
676         /*
677          * Always write 0 to IV/EIV fields, hardware will insert the IV
678          * from the IVEIV register when TXD_W3_WIV is set to 0.
679          * When TXD_W3_WIV is set to 1 it will use the IV data
680          * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
681          * crypto entry in the registers should be used to encrypt the frame.
682          */
683         _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
684         _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
685
686         /*
687          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
688          * must contains a TXWI structure + 802.11 header + padding + 802.11
689          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
690          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
691          * data. It means that LAST_SEC0 is always 0.
692          */
693
694         /*
695          * Initialize TX descriptor
696          */
697         rt2x00_desc_read(txd, 0, &word);
698         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
699         rt2x00_desc_write(txd, 0, word);
700
701         rt2x00_desc_read(txd, 1, &word);
702         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
703         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
704                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
705         rt2x00_set_field32(&word, TXD_W1_BURST,
706                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
707         rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
708                            rt2x00dev->ops->extra_tx_headroom);
709         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
710         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
711         rt2x00_desc_write(txd, 1, word);
712
713         rt2x00_desc_read(txd, 2, &word);
714         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
715                            skbdesc->skb_dma + rt2x00dev->ops->extra_tx_headroom);
716         rt2x00_desc_write(txd, 2, word);
717
718         rt2x00_desc_read(txd, 3, &word);
719         rt2x00_set_field32(&word, TXD_W3_WIV,
720                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
721         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
722         rt2x00_desc_write(txd, 3, word);
723 }
724
725 /*
726  * TX data initialization
727  */
728 static void rt2800pci_write_beacon(struct queue_entry *entry)
729 {
730         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
731         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
732         unsigned int beacon_base;
733         u32 reg;
734
735         /*
736          * Disable beaconing while we are reloading the beacon data,
737          * otherwise we might be sending out invalid data.
738          */
739         rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
740         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
741         rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
742
743         /*
744          * Write entire beacon with descriptor to register.
745          */
746         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
747         rt2800_register_multiwrite(rt2x00dev,
748                                       beacon_base,
749                                       skbdesc->desc, skbdesc->desc_len);
750         rt2800_register_multiwrite(rt2x00dev,
751                                       beacon_base + skbdesc->desc_len,
752                                       entry->skb->data, entry->skb->len);
753
754         /*
755          * Clean up beacon skb.
756          */
757         dev_kfree_skb_any(entry->skb);
758         entry->skb = NULL;
759 }
760
761 static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
762                                     const enum data_queue_qid queue_idx)
763 {
764         struct data_queue *queue;
765         unsigned int idx, qidx = 0;
766         u32 reg;
767
768         if (queue_idx == QID_BEACON) {
769                 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
770                 if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
771                         rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
772                         rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
773                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
774                         rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
775                 }
776                 return;
777         }
778
779         if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
780                 return;
781
782         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
783         idx = queue->index[Q_INDEX];
784
785         if (queue_idx == QID_MGMT)
786                 qidx = 5;
787         else
788                 qidx = queue_idx;
789
790         rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
791 }
792
793 static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
794                                     const enum data_queue_qid qid)
795 {
796         u32 reg;
797
798         if (qid == QID_BEACON) {
799                 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
800                 return;
801         }
802
803         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
804         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
805         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
806         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
807         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
808         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
809 }
810
811 /*
812  * RX control handlers
813  */
814 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
815                                   struct rxdone_entry_desc *rxdesc)
816 {
817         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
818         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
819         __le32 *rxd = entry_priv->desc;
820         __le32 *rxwi = (__le32 *)entry->skb->data;
821         u32 rxd3;
822         u32 rxwi0;
823         u32 rxwi1;
824         u32 rxwi2;
825         u32 rxwi3;
826
827         rt2x00_desc_read(rxd, 3, &rxd3);
828         rt2x00_desc_read(rxwi, 0, &rxwi0);
829         rt2x00_desc_read(rxwi, 1, &rxwi1);
830         rt2x00_desc_read(rxwi, 2, &rxwi2);
831         rt2x00_desc_read(rxwi, 3, &rxwi3);
832
833         if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
834                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
835
836         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
837                 /*
838                  * Unfortunately we don't know the cipher type used during
839                  * decryption. This prevents us from correct providing
840                  * correct statistics through debugfs.
841                  */
842                 rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
843                 rxdesc->cipher_status =
844                     rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
845         }
846
847         if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
848                 /*
849                  * Hardware has stripped IV/EIV data from 802.11 frame during
850                  * decryption. Unfortunately the descriptor doesn't contain
851                  * any fields with the EIV/IV data either, so they can't
852                  * be restored by rt2x00lib.
853                  */
854                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
855
856                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
857                         rxdesc->flags |= RX_FLAG_DECRYPTED;
858                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
859                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
860         }
861
862         if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
863                 rxdesc->dev_flags |= RXDONE_MY_BSS;
864
865         if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD))
866                 rxdesc->dev_flags |= RXDONE_L2PAD;
867
868         if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
869                 rxdesc->flags |= RX_FLAG_SHORT_GI;
870
871         if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
872                 rxdesc->flags |= RX_FLAG_40MHZ;
873
874         /*
875          * Detect RX rate, always use MCS as signal type.
876          */
877         rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
878         rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
879         rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
880
881         /*
882          * Mask of 0x8 bit to remove the short preamble flag.
883          */
884         if (rxdesc->rate_mode == RATE_MODE_CCK)
885                 rxdesc->signal &= ~0x8;
886
887         rxdesc->rssi =
888             (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
889              rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
890
891         rxdesc->noise =
892             (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
893              rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
894
895         rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
896
897         /*
898          * Set RX IDX in register to inform hardware that we have handled
899          * this entry and it is available for reuse again.
900          */
901         rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
902
903         /*
904          * Remove TXWI descriptor from start of buffer.
905          */
906         skb_pull(entry->skb, RXWI_DESC_SIZE);
907 }
908
909 /*
910  * Interrupt functions.
911  */
912 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
913 {
914         struct data_queue *queue;
915         struct queue_entry *entry;
916         __le32 *txwi;
917         struct txdone_entry_desc txdesc;
918         u32 word;
919         u32 reg;
920         u32 old_reg;
921         int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
922         u16 mcs, real_mcs;
923
924         /*
925          * During each loop we will compare the freshly read
926          * TX_STA_FIFO register value with the value read from
927          * the previous loop. If the 2 values are equal then
928          * we should stop processing because the chance it
929          * quite big that the device has been unplugged and
930          * we risk going into an endless loop.
931          */
932         old_reg = 0;
933
934         while (1) {
935                 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
936                 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
937                         break;
938
939                 if (old_reg == reg)
940                         break;
941                 old_reg = reg;
942
943                 wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
944                 ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
945                 pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
946
947                 /*
948                  * Skip this entry when it contains an invalid
949                  * queue identication number.
950                  */
951                 if (pid <= 0 || pid > QID_RX)
952                         continue;
953
954                 queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
955                 if (unlikely(!queue))
956                         continue;
957
958                 /*
959                  * Inside each queue, we process each entry in a chronological
960                  * order. We first check that the queue is not empty.
961                  */
962                 if (rt2x00queue_empty(queue))
963                         continue;
964                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
965
966                 /* Check if we got a match by looking at WCID/ACK/PID
967                  * fields */
968                 txwi = (__le32 *)(entry->skb->data -
969                                   rt2x00dev->ops->extra_tx_headroom);
970
971                 rt2x00_desc_read(txwi, 1, &word);
972                 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
973                 tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
974                 tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);
975
976                 if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
977                         WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
978
979                 /*
980                  * Obtain the status about this packet.
981                  */
982                 txdesc.flags = 0;
983                 rt2x00_desc_read(txwi, 0, &word);
984                 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
985                 real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
986
987                 /*
988                  * Ralink has a retry mechanism using a global fallback
989                  * table. We setup this fallback table to try the immediate
990                  * lower rate for all rates. In the TX_STA_FIFO, the MCS field
991                  * always contains the MCS used for the last transmission, be
992                  * it successful or not.
993                  */
994                 if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
995                         /*
996                          * Transmission succeeded. The number of retries is
997                          * mcs - real_mcs
998                          */
999                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1000                         txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
1001                 } else {
1002                         /*
1003                          * Transmission failed. The number of retries is
1004                          * always 7 in this case (for a total number of 8
1005                          * frames sent).
1006                          */
1007                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1008                         txdesc.retry = 7;
1009                 }
1010
1011                 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
1012
1013
1014                 rt2x00lib_txdone(entry, &txdesc);
1015         }
1016 }
1017
1018 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
1019 {
1020         struct rt2x00_dev *rt2x00dev = dev_instance;
1021         u32 reg;
1022
1023         /* Read status and ACK all interrupts */
1024         rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1025         rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1026
1027         if (!reg)
1028                 return IRQ_NONE;
1029
1030         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1031                 return IRQ_HANDLED;
1032
1033         /*
1034          * 1 - Rx ring done interrupt.
1035          */
1036         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
1037                 rt2x00pci_rxdone(rt2x00dev);
1038
1039         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
1040                 rt2800pci_txdone(rt2x00dev);
1041
1042         return IRQ_HANDLED;
1043 }
1044
1045 /*
1046  * Device probe functions.
1047  */
1048 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1049 {
1050         /*
1051          * Read EEPROM into buffer
1052          */
1053         if (rt2x00_is_soc(rt2x00dev))
1054                 rt2800pci_read_eeprom_soc(rt2x00dev);
1055         else if (rt2800pci_efuse_detect(rt2x00dev))
1056                 rt2800pci_read_eeprom_efuse(rt2x00dev);
1057         else
1058                 rt2800pci_read_eeprom_pci(rt2x00dev);
1059
1060         return rt2800_validate_eeprom(rt2x00dev);
1061 }
1062
1063 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1064         .register_read          = rt2x00pci_register_read,
1065         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1066         .register_write         = rt2x00pci_register_write,
1067         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1068
1069         .register_multiread     = rt2x00pci_register_multiread,
1070         .register_multiwrite    = rt2x00pci_register_multiwrite,
1071
1072         .regbusy_read           = rt2x00pci_regbusy_read,
1073 };
1074
1075 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1076 {
1077         int retval;
1078
1079         rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
1080
1081         /*
1082          * Allocate eeprom data.
1083          */
1084         retval = rt2800pci_validate_eeprom(rt2x00dev);
1085         if (retval)
1086                 return retval;
1087
1088         retval = rt2800_init_eeprom(rt2x00dev);
1089         if (retval)
1090                 return retval;
1091
1092         /*
1093          * Initialize hw specifications.
1094          */
1095         retval = rt2800_probe_hw_mode(rt2x00dev);
1096         if (retval)
1097                 return retval;
1098
1099         /*
1100          * This device has multiple filters for control frames
1101          * and has a separate filter for PS Poll frames.
1102          */
1103         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
1104         __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
1105
1106         /*
1107          * This device requires firmware.
1108          */
1109         if (!rt2x00_is_soc(rt2x00dev))
1110                 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
1111         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1112         __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
1113         if (!modparam_nohwcrypt)
1114                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1115
1116         /*
1117          * Set the rssi offset.
1118          */
1119         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1120
1121         return 0;
1122 }
1123
1124 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1125         .irq_handler            = rt2800pci_interrupt,
1126         .probe_hw               = rt2800pci_probe_hw,
1127         .get_firmware_name      = rt2800pci_get_firmware_name,
1128         .check_firmware         = rt2800pci_check_firmware,
1129         .load_firmware          = rt2800pci_load_firmware,
1130         .initialize             = rt2x00pci_initialize,
1131         .uninitialize           = rt2x00pci_uninitialize,
1132         .get_entry_state        = rt2800pci_get_entry_state,
1133         .clear_entry            = rt2800pci_clear_entry,
1134         .set_device_state       = rt2800pci_set_device_state,
1135         .rfkill_poll            = rt2800_rfkill_poll,
1136         .link_stats             = rt2800_link_stats,
1137         .reset_tuner            = rt2800_reset_tuner,
1138         .link_tuner             = rt2800_link_tuner,
1139         .write_tx_desc          = rt2800pci_write_tx_desc,
1140         .write_tx_data          = rt2x00pci_write_tx_data,
1141         .write_beacon           = rt2800pci_write_beacon,
1142         .kick_tx_queue          = rt2800pci_kick_tx_queue,
1143         .kill_tx_queue          = rt2800pci_kill_tx_queue,
1144         .fill_rxdone            = rt2800pci_fill_rxdone,
1145         .config_shared_key      = rt2800_config_shared_key,
1146         .config_pairwise_key    = rt2800_config_pairwise_key,
1147         .config_filter          = rt2800_config_filter,
1148         .config_intf            = rt2800_config_intf,
1149         .config_erp             = rt2800_config_erp,
1150         .config_ant             = rt2800_config_ant,
1151         .config                 = rt2800_config,
1152 };
1153
1154 static const struct data_queue_desc rt2800pci_queue_rx = {
1155         .entry_num              = RX_ENTRIES,
1156         .data_size              = AGGREGATION_SIZE,
1157         .desc_size              = RXD_DESC_SIZE,
1158         .priv_size              = sizeof(struct queue_entry_priv_pci),
1159 };
1160
1161 static const struct data_queue_desc rt2800pci_queue_tx = {
1162         .entry_num              = TX_ENTRIES,
1163         .data_size              = AGGREGATION_SIZE,
1164         .desc_size              = TXD_DESC_SIZE,
1165         .priv_size              = sizeof(struct queue_entry_priv_pci),
1166 };
1167
1168 static const struct data_queue_desc rt2800pci_queue_bcn = {
1169         .entry_num              = 8 * BEACON_ENTRIES,
1170         .data_size              = 0, /* No DMA required for beacons */
1171         .desc_size              = TXWI_DESC_SIZE,
1172         .priv_size              = sizeof(struct queue_entry_priv_pci),
1173 };
1174
1175 static const struct rt2x00_ops rt2800pci_ops = {
1176         .name                   = KBUILD_MODNAME,
1177         .max_sta_intf           = 1,
1178         .max_ap_intf            = 8,
1179         .eeprom_size            = EEPROM_SIZE,
1180         .rf_size                = RF_SIZE,
1181         .tx_queues              = NUM_TX_QUEUES,
1182         .extra_tx_headroom      = TXWI_DESC_SIZE,
1183         .rx                     = &rt2800pci_queue_rx,
1184         .tx                     = &rt2800pci_queue_tx,
1185         .bcn                    = &rt2800pci_queue_bcn,
1186         .lib                    = &rt2800pci_rt2x00_ops,
1187         .hw                     = &rt2800_mac80211_ops,
1188 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1189         .debugfs                = &rt2800_rt2x00debug,
1190 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1191 };
1192
1193 /*
1194  * RT2800pci module information.
1195  */
1196 #ifdef CONFIG_RT2800PCI_PCI
1197 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1198         { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1199         { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1200         { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1201         { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1202         { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1203         { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1204         { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1205         { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1206         { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1207         { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1208         { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1209         { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1210 #ifdef CONFIG_RT2800PCI_RT30XX
1211         { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1212         { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1213         { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1214         { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1215 #endif
1216 #ifdef CONFIG_RT2800PCI_RT35XX
1217         { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1218         { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1219         { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1220         { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1221         { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1222 #endif
1223         { 0, }
1224 };
1225 #endif /* CONFIG_RT2800PCI_PCI */
1226
1227 MODULE_AUTHOR(DRV_PROJECT);
1228 MODULE_VERSION(DRV_VERSION);
1229 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1230 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1231 #ifdef CONFIG_RT2800PCI_PCI
1232 MODULE_FIRMWARE(FIRMWARE_RT2860);
1233 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1234 #endif /* CONFIG_RT2800PCI_PCI */
1235 MODULE_LICENSE("GPL");
1236
1237 #ifdef CONFIG_RT2800PCI_SOC
1238 static int rt2800soc_probe(struct platform_device *pdev)
1239 {
1240         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1241 }
1242
1243 static struct platform_driver rt2800soc_driver = {
1244         .driver         = {
1245                 .name           = "rt2800_wmac",
1246                 .owner          = THIS_MODULE,
1247                 .mod_name       = KBUILD_MODNAME,
1248         },
1249         .probe          = rt2800soc_probe,
1250         .remove         = __devexit_p(rt2x00soc_remove),
1251         .suspend        = rt2x00soc_suspend,
1252         .resume         = rt2x00soc_resume,
1253 };
1254 #endif /* CONFIG_RT2800PCI_SOC */
1255
1256 #ifdef CONFIG_RT2800PCI_PCI
1257 static struct pci_driver rt2800pci_driver = {
1258         .name           = KBUILD_MODNAME,
1259         .id_table       = rt2800pci_device_table,
1260         .probe          = rt2x00pci_probe,
1261         .remove         = __devexit_p(rt2x00pci_remove),
1262         .suspend        = rt2x00pci_suspend,
1263         .resume         = rt2x00pci_resume,
1264 };
1265 #endif /* CONFIG_RT2800PCI_PCI */
1266
1267 static int __init rt2800pci_init(void)
1268 {
1269         int ret = 0;
1270
1271 #ifdef CONFIG_RT2800PCI_SOC
1272         ret = platform_driver_register(&rt2800soc_driver);
1273         if (ret)
1274                 return ret;
1275 #endif
1276 #ifdef CONFIG_RT2800PCI_PCI
1277         ret = pci_register_driver(&rt2800pci_driver);
1278         if (ret) {
1279 #ifdef CONFIG_RT2800PCI_SOC
1280                 platform_driver_unregister(&rt2800soc_driver);
1281 #endif
1282                 return ret;
1283         }
1284 #endif
1285
1286         return ret;
1287 }
1288
1289 static void __exit rt2800pci_exit(void)
1290 {
1291 #ifdef CONFIG_RT2800PCI_PCI
1292         pci_unregister_driver(&rt2800pci_driver);
1293 #endif
1294 #ifdef CONFIG_RT2800PCI_SOC
1295         platform_driver_unregister(&rt2800soc_driver);
1296 #endif
1297 }
1298
1299 module_init(rt2800pci_init);
1300 module_exit(rt2800pci_exit);