]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00mmio.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52  * Allow hardware encryption to be disabled.
53  */
54 static bool modparam_nohwcrypt = false;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
59 {
60         return modparam_nohwcrypt;
61 }
62
63 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
64 {
65         unsigned int i;
66         u32 reg;
67
68         /*
69          * SOC devices don't support MCU requests.
70          */
71         if (rt2x00_is_soc(rt2x00dev))
72                 return;
73
74         for (i = 0; i < 200; i++) {
75                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
76
77                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
78                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
79                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
80                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
81                         break;
82
83                 udelay(REGISTER_BUSY_DELAY);
84         }
85
86         if (i == 200)
87                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
88
89         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
90         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
91 }
92
93 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
94 static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
95 {
96         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
97
98         if (!base_addr)
99                 return -ENOMEM;
100
101         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
102
103         iounmap(base_addr);
104         return 0;
105 }
106 #else
107 static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
108 {
109         return -ENOMEM;
110 }
111 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
112
113 #ifdef CONFIG_PCI
114 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
115 {
116         struct rt2x00_dev *rt2x00dev = eeprom->data;
117         u32 reg;
118
119         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
120
121         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
122         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
123         eeprom->reg_data_clock =
124             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
125         eeprom->reg_chip_select =
126             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
127 }
128
129 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
130 {
131         struct rt2x00_dev *rt2x00dev = eeprom->data;
132         u32 reg = 0;
133
134         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
135         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
136         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
137                            !!eeprom->reg_data_clock);
138         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
139                            !!eeprom->reg_chip_select);
140
141         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
142 }
143
144 static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
145 {
146         struct eeprom_93cx6 eeprom;
147         u32 reg;
148
149         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
150
151         eeprom.data = rt2x00dev;
152         eeprom.register_read = rt2800pci_eepromregister_read;
153         eeprom.register_write = rt2800pci_eepromregister_write;
154         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
155         {
156         case 0:
157                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
158                 break;
159         case 1:
160                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
161                 break;
162         default:
163                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
164                 break;
165         }
166         eeprom.reg_data_in = 0;
167         eeprom.reg_data_out = 0;
168         eeprom.reg_data_clock = 0;
169         eeprom.reg_chip_select = 0;
170
171         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
172                                EEPROM_SIZE / sizeof(u16));
173
174         return 0;
175 }
176
177 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
178 {
179         return rt2800_efuse_detect(rt2x00dev);
180 }
181
182 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
183 {
184         return rt2800_read_eeprom_efuse(rt2x00dev);
185 }
186 #else
187 static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
188 {
189         return -EOPNOTSUPP;
190 }
191
192 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
193 {
194         return 0;
195 }
196
197 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
198 {
199         return -EOPNOTSUPP;
200 }
201 #endif /* CONFIG_PCI */
202
203 /*
204  * Queue handlers.
205  */
206 static void rt2800pci_start_queue(struct data_queue *queue)
207 {
208         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
209         u32 reg;
210
211         switch (queue->qid) {
212         case QID_RX:
213                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
214                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
215                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
216                 break;
217         case QID_BEACON:
218                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
219                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
220                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
221                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
222                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223
224                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
225                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
226                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
227                 break;
228         default:
229                 break;
230         }
231 }
232
233 static void rt2800pci_kick_queue(struct data_queue *queue)
234 {
235         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
236         struct queue_entry *entry;
237
238         switch (queue->qid) {
239         case QID_AC_VO:
240         case QID_AC_VI:
241         case QID_AC_BE:
242         case QID_AC_BK:
243                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
244                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
245                                          entry->entry_idx);
246                 break;
247         case QID_MGMT:
248                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
249                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
250                                          entry->entry_idx);
251                 break;
252         default:
253                 break;
254         }
255 }
256
257 static void rt2800pci_stop_queue(struct data_queue *queue)
258 {
259         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
260         u32 reg;
261
262         switch (queue->qid) {
263         case QID_RX:
264                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
265                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
266                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
267                 break;
268         case QID_BEACON:
269                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
270                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
271                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
272                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
273                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
274
275                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
276                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
277                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
278
279                 /*
280                  * Wait for current invocation to finish. The tasklet
281                  * won't be scheduled anymore afterwards since we disabled
282                  * the TBTT and PRE TBTT timer.
283                  */
284                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
285                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
286
287                 break;
288         default:
289                 break;
290         }
291 }
292
293 /*
294  * Firmware functions
295  */
296 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
297 {
298         /*
299          * Chip rt3290 use specific 4KB firmware named rt3290.bin.
300          */
301         if (rt2x00_rt(rt2x00dev, RT3290))
302                 return FIRMWARE_RT3290;
303         else
304                 return FIRMWARE_RT2860;
305 }
306
307 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
308                                     const u8 *data, const size_t len)
309 {
310         u32 reg;
311
312         /*
313          * enable Host program ram write selection
314          */
315         reg = 0;
316         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
317         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
318
319         /*
320          * Write firmware to device.
321          */
322         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
323                                       data, len);
324
325         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
326         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
327
328         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
329         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
330
331         return 0;
332 }
333
334 /*
335  * Initialization functions.
336  */
337 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
338 {
339         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
340         u32 word;
341
342         if (entry->queue->qid == QID_RX) {
343                 rt2x00_desc_read(entry_priv->desc, 1, &word);
344
345                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
346         } else {
347                 rt2x00_desc_read(entry_priv->desc, 1, &word);
348
349                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
350         }
351 }
352
353 static void rt2800pci_clear_entry(struct queue_entry *entry)
354 {
355         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
356         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
357         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
358         u32 word;
359
360         if (entry->queue->qid == QID_RX) {
361                 rt2x00_desc_read(entry_priv->desc, 0, &word);
362                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
363                 rt2x00_desc_write(entry_priv->desc, 0, word);
364
365                 rt2x00_desc_read(entry_priv->desc, 1, &word);
366                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
367                 rt2x00_desc_write(entry_priv->desc, 1, word);
368
369                 /*
370                  * Set RX IDX in register to inform hardware that we have
371                  * handled this entry and it is available for reuse again.
372                  */
373                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
374                                       entry->entry_idx);
375         } else {
376                 rt2x00_desc_read(entry_priv->desc, 1, &word);
377                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
378                 rt2x00_desc_write(entry_priv->desc, 1, word);
379         }
380 }
381
382 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
383 {
384         struct queue_entry_priv_pci *entry_priv;
385
386         /*
387          * Initialize registers.
388          */
389         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
390         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
391         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
392                                  rt2x00dev->tx[0].limit);
393         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
394         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
395
396         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
397         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
398         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
399                                  rt2x00dev->tx[1].limit);
400         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
401         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
402
403         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
404         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
405         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
406                                  rt2x00dev->tx[2].limit);
407         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
408         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
409
410         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
411         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
412         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
413                                  rt2x00dev->tx[3].limit);
414         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
415         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
416
417         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
418         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
419         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
420         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
421
422         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
423         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
424         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
425         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
426
427         entry_priv = rt2x00dev->rx->entries[0].priv_data;
428         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
429         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
430                                  rt2x00dev->rx[0].limit);
431         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
432                                  rt2x00dev->rx[0].limit - 1);
433         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
434
435         rt2800_disable_wpdma(rt2x00dev);
436
437         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
438
439         return 0;
440 }
441
442 /*
443  * Device state switch handlers.
444  */
445 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
446                                  enum dev_state state)
447 {
448         u32 reg;
449         unsigned long flags;
450
451         /*
452          * When interrupts are being enabled, the interrupt registers
453          * should clear the register to assure a clean state.
454          */
455         if (state == STATE_RADIO_IRQ_ON) {
456                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
457                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
458         }
459
460         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
461         reg = 0;
462         if (state == STATE_RADIO_IRQ_ON) {
463                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
464                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
465                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
466                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
467                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
468         }
469         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
470         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
471
472         if (state == STATE_RADIO_IRQ_OFF) {
473                 /*
474                  * Wait for possibly running tasklets to finish.
475                  */
476                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
477                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
478                 tasklet_kill(&rt2x00dev->autowake_tasklet);
479                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
480                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
481         }
482 }
483
484 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
485 {
486         u32 reg;
487
488         /*
489          * Reset DMA indexes
490          */
491         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
492         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
493         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
494         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
495         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
496         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
497         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
498         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
499         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
500
501         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
502         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
503
504         if (rt2x00_is_pcie(rt2x00dev) &&
505             (rt2x00_rt(rt2x00dev, RT3572) ||
506              rt2x00_rt(rt2x00dev, RT5390) ||
507              rt2x00_rt(rt2x00dev, RT5392))) {
508                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
509                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
510                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
511                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
512         }
513
514         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
515
516         reg = 0;
517         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
518         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
519         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
520
521         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
522
523         return 0;
524 }
525
526 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
527 {
528         int retval;
529
530         /* Wait for DMA, ignore error until we initialize queues. */
531         rt2800_wait_wpdma_ready(rt2x00dev);
532
533         if (unlikely(rt2800pci_init_queues(rt2x00dev)))
534                 return -EIO;
535
536         retval = rt2800_enable_radio(rt2x00dev);
537         if (retval)
538                 return retval;
539
540         /* After resume MCU_BOOT_SIGNAL will trash these. */
541         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
542         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
543
544         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
545         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
546
547         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
548         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
549
550         return retval;
551 }
552
553 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
554 {
555         if (rt2x00_is_soc(rt2x00dev)) {
556                 rt2800_disable_radio(rt2x00dev);
557                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
558                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
559         }
560 }
561
562 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
563                                enum dev_state state)
564 {
565         if (state == STATE_AWAKE) {
566                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
567                                    0, 0x02);
568                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
569         } else if (state == STATE_SLEEP) {
570                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
571                                          0xffffffff);
572                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
573                                          0xffffffff);
574                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
575                                    0xff, 0x01);
576         }
577
578         return 0;
579 }
580
581 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
582                                       enum dev_state state)
583 {
584         int retval = 0;
585
586         switch (state) {
587         case STATE_RADIO_ON:
588                 retval = rt2800pci_enable_radio(rt2x00dev);
589                 break;
590         case STATE_RADIO_OFF:
591                 /*
592                  * After the radio has been disabled, the device should
593                  * be put to sleep for powersaving.
594                  */
595                 rt2800pci_disable_radio(rt2x00dev);
596                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
597                 break;
598         case STATE_RADIO_IRQ_ON:
599         case STATE_RADIO_IRQ_OFF:
600                 rt2800pci_toggle_irq(rt2x00dev, state);
601                 break;
602         case STATE_DEEP_SLEEP:
603         case STATE_SLEEP:
604         case STATE_STANDBY:
605         case STATE_AWAKE:
606                 retval = rt2800pci_set_state(rt2x00dev, state);
607                 break;
608         default:
609                 retval = -ENOTSUPP;
610                 break;
611         }
612
613         if (unlikely(retval))
614                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
615                       state, retval);
616
617         return retval;
618 }
619
620 /*
621  * TX descriptor initialization
622  */
623 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
624 {
625         return (__le32 *) entry->skb->data;
626 }
627
628 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
629                                     struct txentry_desc *txdesc)
630 {
631         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
632         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
633         __le32 *txd = entry_priv->desc;
634         u32 word;
635
636         /*
637          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
638          * must contains a TXWI structure + 802.11 header + padding + 802.11
639          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
640          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
641          * data. It means that LAST_SEC0 is always 0.
642          */
643
644         /*
645          * Initialize TX descriptor
646          */
647         word = 0;
648         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
649         rt2x00_desc_write(txd, 0, word);
650
651         word = 0;
652         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
653         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
654                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
655         rt2x00_set_field32(&word, TXD_W1_BURST,
656                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
657         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
658         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
659         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
660         rt2x00_desc_write(txd, 1, word);
661
662         word = 0;
663         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
664                            skbdesc->skb_dma + TXWI_DESC_SIZE);
665         rt2x00_desc_write(txd, 2, word);
666
667         word = 0;
668         rt2x00_set_field32(&word, TXD_W3_WIV,
669                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
670         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
671         rt2x00_desc_write(txd, 3, word);
672
673         /*
674          * Register descriptor details in skb frame descriptor.
675          */
676         skbdesc->desc = txd;
677         skbdesc->desc_len = TXD_DESC_SIZE;
678 }
679
680 /*
681  * RX control handlers
682  */
683 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
684                                   struct rxdone_entry_desc *rxdesc)
685 {
686         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
687         __le32 *rxd = entry_priv->desc;
688         u32 word;
689
690         rt2x00_desc_read(rxd, 3, &word);
691
692         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
693                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
694
695         /*
696          * Unfortunately we don't know the cipher type used during
697          * decryption. This prevents us from correct providing
698          * correct statistics through debugfs.
699          */
700         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
701
702         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
703                 /*
704                  * Hardware has stripped IV/EIV data from 802.11 frame during
705                  * decryption. Unfortunately the descriptor doesn't contain
706                  * any fields with the EIV/IV data either, so they can't
707                  * be restored by rt2x00lib.
708                  */
709                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
710
711                 /*
712                  * The hardware has already checked the Michael Mic and has
713                  * stripped it from the frame. Signal this to mac80211.
714                  */
715                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
716
717                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
718                         rxdesc->flags |= RX_FLAG_DECRYPTED;
719                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
720                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
721         }
722
723         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
724                 rxdesc->dev_flags |= RXDONE_MY_BSS;
725
726         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
727                 rxdesc->dev_flags |= RXDONE_L2PAD;
728
729         /*
730          * Process the RXWI structure that is at the start of the buffer.
731          */
732         rt2800_process_rxwi(entry, rxdesc);
733
734         /*
735          * Remove RXWI descriptor from start of buffer.
736          */
737         skb_pull(entry->skb, RXWI_DESC_SIZE);
738 }
739
740 /*
741  * Interrupt functions.
742  */
743 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
744 {
745         struct ieee80211_conf conf = { .flags = 0 };
746         struct rt2x00lib_conf libconf = { .conf = &conf };
747
748         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
749 }
750
751 static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
752 {
753         __le32 *txwi;
754         u32 word;
755         int wcid, tx_wcid;
756
757         wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
758
759         txwi = rt2800_drv_get_txwi(entry);
760         rt2x00_desc_read(txwi, 1, &word);
761         tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
762
763         return (tx_wcid == wcid);
764 }
765
766 static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
767 {
768         u32 status = *(u32 *)data;
769
770         /*
771          * rt2800pci hardware might reorder frames when exchanging traffic
772          * with multiple BA enabled STAs.
773          *
774          * For example, a tx queue
775          *    [ STA1 | STA2 | STA1 | STA2 ]
776          * can result in tx status reports
777          *    [ STA1 | STA1 | STA2 | STA2 ]
778          * when the hw decides to aggregate the frames for STA1 into one AMPDU.
779          *
780          * To mitigate this effect, associate the tx status to the first frame
781          * in the tx queue with a matching wcid.
782          */
783         if (rt2800pci_txdone_entry_check(entry, status) &&
784             !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
785                 /*
786                  * Got a matching frame, associate the tx status with
787                  * the frame
788                  */
789                 entry->status = status;
790                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
791                 return true;
792         }
793
794         /* Check the next frame */
795         return false;
796 }
797
798 static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
799 {
800         u32 status = *(u32 *)data;
801
802         /*
803          * Find the first frame without tx status and assign this status to it
804          * regardless if it matches or not.
805          */
806         if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
807                 /*
808                  * Got a matching frame, associate the tx status with
809                  * the frame
810                  */
811                 entry->status = status;
812                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
813                 return true;
814         }
815
816         /* Check the next frame */
817         return false;
818 }
819 static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
820                                              void *data)
821 {
822         if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
823                 rt2800_txdone_entry(entry, entry->status,
824                                     rt2800pci_get_txwi(entry));
825                 return false;
826         }
827
828         /* No more frames to release */
829         return true;
830 }
831
832 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
833 {
834         struct data_queue *queue;
835         u32 status;
836         u8 qid;
837         int max_tx_done = 16;
838
839         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
840                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
841                 if (unlikely(qid >= QID_RX)) {
842                         /*
843                          * Unknown queue, this shouldn't happen. Just drop
844                          * this tx status.
845                          */
846                         WARNING(rt2x00dev, "Got TX status report with "
847                                            "unexpected pid %u, dropping\n", qid);
848                         break;
849                 }
850
851                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
852                 if (unlikely(queue == NULL)) {
853                         /*
854                          * The queue is NULL, this shouldn't happen. Stop
855                          * processing here and drop the tx status
856                          */
857                         WARNING(rt2x00dev, "Got TX status for an unavailable "
858                                            "queue %u, dropping\n", qid);
859                         break;
860                 }
861
862                 if (unlikely(rt2x00queue_empty(queue))) {
863                         /*
864                          * The queue is empty. Stop processing here
865                          * and drop the tx status.
866                          */
867                         WARNING(rt2x00dev, "Got TX status for an empty "
868                                            "queue %u, dropping\n", qid);
869                         break;
870                 }
871
872                 /*
873                  * Let's associate this tx status with the first
874                  * matching frame.
875                  */
876                 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
877                                                 Q_INDEX, &status,
878                                                 rt2800pci_txdone_find_entry)) {
879                         /*
880                          * We cannot match the tx status to any frame, so just
881                          * use the first one.
882                          */
883                         if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
884                                                         Q_INDEX, &status,
885                                                         rt2800pci_txdone_match_first)) {
886                                 WARNING(rt2x00dev, "No frame found for TX "
887                                                    "status on queue %u, dropping\n",
888                                                    qid);
889                                 break;
890                         }
891                 }
892
893                 /*
894                  * Release all frames with a valid tx status.
895                  */
896                 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
897                                            Q_INDEX, NULL,
898                                            rt2800pci_txdone_release_entries);
899
900                 if (--max_tx_done == 0)
901                         break;
902         }
903
904         return !max_tx_done;
905 }
906
907 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
908                                               struct rt2x00_field32 irq_field)
909 {
910         u32 reg;
911
912         /*
913          * Enable a single interrupt. The interrupt mask register
914          * access needs locking.
915          */
916         spin_lock_irq(&rt2x00dev->irqmask_lock);
917         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
918         rt2x00_set_field32(&reg, irq_field, 1);
919         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
920         spin_unlock_irq(&rt2x00dev->irqmask_lock);
921 }
922
923 static void rt2800pci_txstatus_tasklet(unsigned long data)
924 {
925         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
926         if (rt2800pci_txdone(rt2x00dev))
927                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
928
929         /*
930          * No need to enable the tx status interrupt here as we always
931          * leave it enabled to minimize the possibility of a tx status
932          * register overflow. See comment in interrupt handler.
933          */
934 }
935
936 static void rt2800pci_pretbtt_tasklet(unsigned long data)
937 {
938         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
939         rt2x00lib_pretbtt(rt2x00dev);
940         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
941                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
942 }
943
944 static void rt2800pci_tbtt_tasklet(unsigned long data)
945 {
946         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
947         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
948         u32 reg;
949
950         rt2x00lib_beacondone(rt2x00dev);
951
952         if (rt2x00dev->intf_ap_count) {
953                 /*
954                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
955                  * causing beacon skew and as a result causing problems with
956                  * some powersaving clients over time. Shorten the beacon
957                  * interval every 64 beacons by 64us to mitigate this effect.
958                  */
959                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
960                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
961                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
962                                            (rt2x00dev->beacon_int * 16) - 1);
963                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
964                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
965                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
966                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
967                                            (rt2x00dev->beacon_int * 16));
968                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
969                 }
970                 drv_data->tbtt_tick++;
971                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
972         }
973
974         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
975                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
976 }
977
978 static void rt2800pci_rxdone_tasklet(unsigned long data)
979 {
980         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
981         if (rt2x00pci_rxdone(rt2x00dev))
982                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
983         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
984                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
985 }
986
987 static void rt2800pci_autowake_tasklet(unsigned long data)
988 {
989         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
990         rt2800pci_wakeup(rt2x00dev);
991         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
992                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
993 }
994
995 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
996 {
997         u32 status;
998         int i;
999
1000         /*
1001          * The TX_FIFO_STATUS interrupt needs special care. We should
1002          * read TX_STA_FIFO but we should do it immediately as otherwise
1003          * the register can overflow and we would lose status reports.
1004          *
1005          * Hence, read the TX_STA_FIFO register and copy all tx status
1006          * reports into a kernel FIFO which is handled in the txstatus
1007          * tasklet. We use a tasklet to process the tx status reports
1008          * because we can schedule the tasklet multiple times (when the
1009          * interrupt fires again during tx status processing).
1010          *
1011          * Furthermore we don't disable the TX_FIFO_STATUS
1012          * interrupt here but leave it enabled so that the TX_STA_FIFO
1013          * can also be read while the tx status tasklet gets executed.
1014          *
1015          * Since we have only one producer and one consumer we don't
1016          * need to lock the kfifo.
1017          */
1018         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
1019                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
1020
1021                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
1022                         break;
1023
1024                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
1025                         WARNING(rt2x00dev, "TX status FIFO overrun,"
1026                                 "drop tx status report.\n");
1027                         break;
1028                 }
1029         }
1030
1031         /* Schedule the tasklet for processing the tx status. */
1032         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1033 }
1034
1035 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
1036 {
1037         struct rt2x00_dev *rt2x00dev = dev_instance;
1038         u32 reg, mask;
1039
1040         /* Read status and ACK all interrupts */
1041         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1042         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1043
1044         if (!reg)
1045                 return IRQ_NONE;
1046
1047         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1048                 return IRQ_HANDLED;
1049
1050         /*
1051          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
1052          * for interrupts and interrupt masks we can just use the value of
1053          * INT_SOURCE_CSR to create the interrupt mask.
1054          */
1055         mask = ~reg;
1056
1057         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
1058                 rt2800pci_txstatus_interrupt(rt2x00dev);
1059                 /*
1060                  * Never disable the TX_FIFO_STATUS interrupt.
1061                  */
1062                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
1063         }
1064
1065         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
1066                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
1067
1068         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
1069                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1070
1071         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
1072                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1073
1074         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
1075                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
1076
1077         /*
1078          * Disable all interrupts for which a tasklet was scheduled right now,
1079          * the tasklet will reenable the appropriate interrupts.
1080          */
1081         spin_lock(&rt2x00dev->irqmask_lock);
1082         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1083         reg &= mask;
1084         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1085         spin_unlock(&rt2x00dev->irqmask_lock);
1086
1087         return IRQ_HANDLED;
1088 }
1089
1090 /*
1091  * Device probe functions.
1092  */
1093 static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
1094 {
1095         int retval;
1096
1097         if (rt2x00_is_soc(rt2x00dev))
1098                 retval = rt2800pci_read_eeprom_soc(rt2x00dev);
1099         else if (rt2800pci_efuse_detect(rt2x00dev))
1100                 retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
1101         else
1102                 retval = rt2800pci_read_eeprom_pci(rt2x00dev);
1103
1104         return retval;
1105 }
1106
1107 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1108         .tx                     = rt2x00mac_tx,
1109         .start                  = rt2x00mac_start,
1110         .stop                   = rt2x00mac_stop,
1111         .add_interface          = rt2x00mac_add_interface,
1112         .remove_interface       = rt2x00mac_remove_interface,
1113         .config                 = rt2x00mac_config,
1114         .configure_filter       = rt2x00mac_configure_filter,
1115         .set_key                = rt2x00mac_set_key,
1116         .sw_scan_start          = rt2x00mac_sw_scan_start,
1117         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1118         .get_stats              = rt2x00mac_get_stats,
1119         .get_tkip_seq           = rt2800_get_tkip_seq,
1120         .set_rts_threshold      = rt2800_set_rts_threshold,
1121         .sta_add                = rt2x00mac_sta_add,
1122         .sta_remove             = rt2x00mac_sta_remove,
1123         .bss_info_changed       = rt2x00mac_bss_info_changed,
1124         .conf_tx                = rt2800_conf_tx,
1125         .get_tsf                = rt2800_get_tsf,
1126         .rfkill_poll            = rt2x00mac_rfkill_poll,
1127         .ampdu_action           = rt2800_ampdu_action,
1128         .flush                  = rt2x00mac_flush,
1129         .get_survey             = rt2800_get_survey,
1130         .get_ringparam          = rt2x00mac_get_ringparam,
1131         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1132 };
1133
1134 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1135         .register_read          = rt2x00pci_register_read,
1136         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1137         .register_write         = rt2x00pci_register_write,
1138         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1139         .register_multiread     = rt2x00pci_register_multiread,
1140         .register_multiwrite    = rt2x00pci_register_multiwrite,
1141         .regbusy_read           = rt2x00pci_regbusy_read,
1142         .read_eeprom            = rt2800pci_read_eeprom,
1143         .hwcrypt_disabled       = rt2800pci_hwcrypt_disabled,
1144         .drv_write_firmware     = rt2800pci_write_firmware,
1145         .drv_init_registers     = rt2800pci_init_registers,
1146         .drv_get_txwi           = rt2800pci_get_txwi,
1147 };
1148
1149 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1150         .irq_handler            = rt2800pci_interrupt,
1151         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1152         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1153         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1154         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1155         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1156         .probe_hw               = rt2800_probe_hw,
1157         .get_firmware_name      = rt2800pci_get_firmware_name,
1158         .check_firmware         = rt2800_check_firmware,
1159         .load_firmware          = rt2800_load_firmware,
1160         .initialize             = rt2x00pci_initialize,
1161         .uninitialize           = rt2x00pci_uninitialize,
1162         .get_entry_state        = rt2800pci_get_entry_state,
1163         .clear_entry            = rt2800pci_clear_entry,
1164         .set_device_state       = rt2800pci_set_device_state,
1165         .rfkill_poll            = rt2800_rfkill_poll,
1166         .link_stats             = rt2800_link_stats,
1167         .reset_tuner            = rt2800_reset_tuner,
1168         .link_tuner             = rt2800_link_tuner,
1169         .gain_calibration       = rt2800_gain_calibration,
1170         .vco_calibration        = rt2800_vco_calibration,
1171         .start_queue            = rt2800pci_start_queue,
1172         .kick_queue             = rt2800pci_kick_queue,
1173         .stop_queue             = rt2800pci_stop_queue,
1174         .flush_queue            = rt2x00pci_flush_queue,
1175         .write_tx_desc          = rt2800pci_write_tx_desc,
1176         .write_tx_data          = rt2800_write_tx_data,
1177         .write_beacon           = rt2800_write_beacon,
1178         .clear_beacon           = rt2800_clear_beacon,
1179         .fill_rxdone            = rt2800pci_fill_rxdone,
1180         .config_shared_key      = rt2800_config_shared_key,
1181         .config_pairwise_key    = rt2800_config_pairwise_key,
1182         .config_filter          = rt2800_config_filter,
1183         .config_intf            = rt2800_config_intf,
1184         .config_erp             = rt2800_config_erp,
1185         .config_ant             = rt2800_config_ant,
1186         .config                 = rt2800_config,
1187         .sta_add                = rt2800_sta_add,
1188         .sta_remove             = rt2800_sta_remove,
1189 };
1190
1191 static const struct data_queue_desc rt2800pci_queue_rx = {
1192         .entry_num              = 128,
1193         .data_size              = AGGREGATION_SIZE,
1194         .desc_size              = RXD_DESC_SIZE,
1195         .priv_size              = sizeof(struct queue_entry_priv_pci),
1196 };
1197
1198 static const struct data_queue_desc rt2800pci_queue_tx = {
1199         .entry_num              = 64,
1200         .data_size              = AGGREGATION_SIZE,
1201         .desc_size              = TXD_DESC_SIZE,
1202         .priv_size              = sizeof(struct queue_entry_priv_pci),
1203 };
1204
1205 static const struct data_queue_desc rt2800pci_queue_bcn = {
1206         .entry_num              = 8,
1207         .data_size              = 0, /* No DMA required for beacons */
1208         .desc_size              = TXWI_DESC_SIZE,
1209         .priv_size              = sizeof(struct queue_entry_priv_pci),
1210 };
1211
1212 static const struct rt2x00_ops rt2800pci_ops = {
1213         .name                   = KBUILD_MODNAME,
1214         .drv_data_size          = sizeof(struct rt2800_drv_data),
1215         .max_ap_intf            = 8,
1216         .eeprom_size            = EEPROM_SIZE,
1217         .rf_size                = RF_SIZE,
1218         .tx_queues              = NUM_TX_QUEUES,
1219         .extra_tx_headroom      = TXWI_DESC_SIZE,
1220         .rx                     = &rt2800pci_queue_rx,
1221         .tx                     = &rt2800pci_queue_tx,
1222         .bcn                    = &rt2800pci_queue_bcn,
1223         .lib                    = &rt2800pci_rt2x00_ops,
1224         .drv                    = &rt2800pci_rt2800_ops,
1225         .hw                     = &rt2800pci_mac80211_ops,
1226 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1227         .debugfs                = &rt2800_rt2x00debug,
1228 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1229 };
1230
1231 /*
1232  * RT2800pci module information.
1233  */
1234 #ifdef CONFIG_PCI
1235 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1236         { PCI_DEVICE(0x1814, 0x0601) },
1237         { PCI_DEVICE(0x1814, 0x0681) },
1238         { PCI_DEVICE(0x1814, 0x0701) },
1239         { PCI_DEVICE(0x1814, 0x0781) },
1240         { PCI_DEVICE(0x1814, 0x3090) },
1241         { PCI_DEVICE(0x1814, 0x3091) },
1242         { PCI_DEVICE(0x1814, 0x3092) },
1243         { PCI_DEVICE(0x1432, 0x7708) },
1244         { PCI_DEVICE(0x1432, 0x7727) },
1245         { PCI_DEVICE(0x1432, 0x7728) },
1246         { PCI_DEVICE(0x1432, 0x7738) },
1247         { PCI_DEVICE(0x1432, 0x7748) },
1248         { PCI_DEVICE(0x1432, 0x7758) },
1249         { PCI_DEVICE(0x1432, 0x7768) },
1250         { PCI_DEVICE(0x1462, 0x891a) },
1251         { PCI_DEVICE(0x1a3b, 0x1059) },
1252 #ifdef CONFIG_RT2800PCI_RT3290
1253         { PCI_DEVICE(0x1814, 0x3290) },
1254 #endif
1255 #ifdef CONFIG_RT2800PCI_RT33XX
1256         { PCI_DEVICE(0x1814, 0x3390) },
1257 #endif
1258 #ifdef CONFIG_RT2800PCI_RT35XX
1259         { PCI_DEVICE(0x1432, 0x7711) },
1260         { PCI_DEVICE(0x1432, 0x7722) },
1261         { PCI_DEVICE(0x1814, 0x3060) },
1262         { PCI_DEVICE(0x1814, 0x3062) },
1263         { PCI_DEVICE(0x1814, 0x3562) },
1264         { PCI_DEVICE(0x1814, 0x3592) },
1265         { PCI_DEVICE(0x1814, 0x3593) },
1266         { PCI_DEVICE(0x1814, 0x359f) },
1267 #endif
1268 #ifdef CONFIG_RT2800PCI_RT53XX
1269         { PCI_DEVICE(0x1814, 0x5360) },
1270         { PCI_DEVICE(0x1814, 0x5362) },
1271         { PCI_DEVICE(0x1814, 0x5390) },
1272         { PCI_DEVICE(0x1814, 0x5392) },
1273         { PCI_DEVICE(0x1814, 0x539a) },
1274         { PCI_DEVICE(0x1814, 0x539b) },
1275         { PCI_DEVICE(0x1814, 0x539f) },
1276 #endif
1277         { 0, }
1278 };
1279 #endif /* CONFIG_PCI */
1280
1281 MODULE_AUTHOR(DRV_PROJECT);
1282 MODULE_VERSION(DRV_VERSION);
1283 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1284 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1285 #ifdef CONFIG_PCI
1286 MODULE_FIRMWARE(FIRMWARE_RT2860);
1287 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1288 #endif /* CONFIG_PCI */
1289 MODULE_LICENSE("GPL");
1290
1291 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1292 static int rt2800soc_probe(struct platform_device *pdev)
1293 {
1294         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1295 }
1296
1297 static struct platform_driver rt2800soc_driver = {
1298         .driver         = {
1299                 .name           = "rt2800_wmac",
1300                 .owner          = THIS_MODULE,
1301                 .mod_name       = KBUILD_MODNAME,
1302         },
1303         .probe          = rt2800soc_probe,
1304         .remove         = rt2x00soc_remove,
1305         .suspend        = rt2x00soc_suspend,
1306         .resume         = rt2x00soc_resume,
1307 };
1308 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
1309
1310 #ifdef CONFIG_PCI
1311 static int rt2800pci_probe(struct pci_dev *pci_dev,
1312                            const struct pci_device_id *id)
1313 {
1314         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1315 }
1316
1317 static struct pci_driver rt2800pci_driver = {
1318         .name           = KBUILD_MODNAME,
1319         .id_table       = rt2800pci_device_table,
1320         .probe          = rt2800pci_probe,
1321         .remove         = rt2x00pci_remove,
1322         .suspend        = rt2x00pci_suspend,
1323         .resume         = rt2x00pci_resume,
1324 };
1325 #endif /* CONFIG_PCI */
1326
1327 static int __init rt2800pci_init(void)
1328 {
1329         int ret = 0;
1330
1331 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1332         ret = platform_driver_register(&rt2800soc_driver);
1333         if (ret)
1334                 return ret;
1335 #endif
1336 #ifdef CONFIG_PCI
1337         ret = pci_register_driver(&rt2800pci_driver);
1338         if (ret) {
1339 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1340                 platform_driver_unregister(&rt2800soc_driver);
1341 #endif
1342                 return ret;
1343         }
1344 #endif
1345
1346         return ret;
1347 }
1348
1349 static void __exit rt2800pci_exit(void)
1350 {
1351 #ifdef CONFIG_PCI
1352         pci_unregister_driver(&rt2800pci_driver);
1353 #endif
1354 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1355         platform_driver_unregister(&rt2800soc_driver);
1356 #endif
1357 }
1358
1359 module_init(rt2800pci_init);
1360 module_exit(rt2800pci_exit);