]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
f2718367d1a06017c5b7a866756aa930382ad22c
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/crc-ccitt.h>
35 #include <linux/delay.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/eeprom_93cx6.h>
43
44 #include "rt2x00.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52  * Allow hardware encryption to be disabled.
53  */
54 static int modparam_nohwcrypt = 1;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
59 {
60         unsigned int i;
61         u32 reg;
62
63         /*
64          * SOC devices don't support MCU requests.
65          */
66         if (rt2x00_is_soc(rt2x00dev))
67                 return;
68
69         for (i = 0; i < 200; i++) {
70                 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71
72                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
75                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
76                         break;
77
78                 udelay(REGISTER_BUSY_DELAY);
79         }
80
81         if (i == 200)
82                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
83
84         rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
85         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
86 }
87
88 #ifdef CONFIG_RT2800PCI_SOC
89 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
90 {
91         u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
92
93         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
94 }
95 #else
96 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
97 {
98 }
99 #endif /* CONFIG_RT2800PCI_SOC */
100
101 #ifdef CONFIG_RT2800PCI_PCI
102 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
103 {
104         struct rt2x00_dev *rt2x00dev = eeprom->data;
105         u32 reg;
106
107         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
108
109         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
110         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
111         eeprom->reg_data_clock =
112             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
113         eeprom->reg_chip_select =
114             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
115 }
116
117 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
118 {
119         struct rt2x00_dev *rt2x00dev = eeprom->data;
120         u32 reg = 0;
121
122         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
125                            !!eeprom->reg_data_clock);
126         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
127                            !!eeprom->reg_chip_select);
128
129         rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
130 }
131
132 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
133 {
134         struct eeprom_93cx6 eeprom;
135         u32 reg;
136
137         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
138
139         eeprom.data = rt2x00dev;
140         eeprom.register_read = rt2800pci_eepromregister_read;
141         eeprom.register_write = rt2800pci_eepromregister_write;
142         eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
143             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
144         eeprom.reg_data_in = 0;
145         eeprom.reg_data_out = 0;
146         eeprom.reg_data_clock = 0;
147         eeprom.reg_chip_select = 0;
148
149         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
150                                EEPROM_SIZE / sizeof(u16));
151 }
152
153 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
154 {
155         return rt2800_efuse_detect(rt2x00dev);
156 }
157
158 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
159 {
160         rt2800_read_eeprom_efuse(rt2x00dev);
161 }
162 #else
163 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
164 {
165 }
166
167 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
168 {
169         return 0;
170 }
171
172 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
173 {
174 }
175 #endif /* CONFIG_RT2800PCI_PCI */
176
177 /*
178  * Firmware functions
179  */
180 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
181 {
182         return FIRMWARE_RT2860;
183 }
184
185 static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
186                                     const u8 *data, const size_t len)
187 {
188         u16 fw_crc;
189         u16 crc;
190
191         /*
192          * Only support 8kb firmware files.
193          */
194         if (len != 8192)
195                 return FW_BAD_LENGTH;
196
197         /*
198          * The last 2 bytes in the firmware array are the crc checksum itself,
199          * this means that we should never pass those 2 bytes to the crc
200          * algorithm.
201          */
202         fw_crc = (data[len - 2] << 8 | data[len - 1]);
203
204         /*
205          * Use the crc ccitt algorithm.
206          * This will return the same value as the legacy driver which
207          * used bit ordering reversion on the both the firmware bytes
208          * before input input as well as on the final output.
209          * Obviously using crc ccitt directly is much more efficient.
210          */
211         crc = crc_ccitt(~0, data, len - 2);
212
213         /*
214          * There is a small difference between the crc-itu-t + bitrev and
215          * the crc-ccitt crc calculation. In the latter method the 2 bytes
216          * will be swapped, use swab16 to convert the crc to the correct
217          * value.
218          */
219         crc = swab16(crc);
220
221         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
222 }
223
224 static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
225                                    const u8 *data, const size_t len)
226 {
227         unsigned int i;
228         u32 reg;
229
230         /*
231          * Wait for stable hardware.
232          */
233         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
234                 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
235                 if (reg && reg != ~0)
236                         break;
237                 msleep(1);
238         }
239
240         if (i == REGISTER_BUSY_COUNT) {
241                 ERROR(rt2x00dev, "Unstable hardware.\n");
242                 return -EBUSY;
243         }
244
245         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
246         rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
247
248         /*
249          * Disable DMA, will be reenabled later when enabling
250          * the radio.
251          */
252         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
253         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
254         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
255         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
256         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
257         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
258         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
259
260         /*
261          * enable Host program ram write selection
262          */
263         reg = 0;
264         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
265         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
266
267         /*
268          * Write firmware to device.
269          */
270         rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
271                                       data, len);
272
273         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
274         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
275
276         /*
277          * Wait for device to stabilize.
278          */
279         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
280                 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
281                 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
282                         break;
283                 msleep(1);
284         }
285
286         if (i == REGISTER_BUSY_COUNT) {
287                 ERROR(rt2x00dev, "PBF system register not ready.\n");
288                 return -EBUSY;
289         }
290
291         /*
292          * Disable interrupts
293          */
294         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
295
296         /*
297          * Initialize BBP R/W access agent
298          */
299         rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
300         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
301
302         return 0;
303 }
304
305 /*
306  * Initialization functions.
307  */
308 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
309 {
310         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
311         u32 word;
312
313         if (entry->queue->qid == QID_RX) {
314                 rt2x00_desc_read(entry_priv->desc, 1, &word);
315
316                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
317         } else {
318                 rt2x00_desc_read(entry_priv->desc, 1, &word);
319
320                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
321         }
322 }
323
324 static void rt2800pci_clear_entry(struct queue_entry *entry)
325 {
326         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
327         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
328         u32 word;
329
330         if (entry->queue->qid == QID_RX) {
331                 rt2x00_desc_read(entry_priv->desc, 0, &word);
332                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
333                 rt2x00_desc_write(entry_priv->desc, 0, word);
334
335                 rt2x00_desc_read(entry_priv->desc, 1, &word);
336                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
337                 rt2x00_desc_write(entry_priv->desc, 1, word);
338         } else {
339                 rt2x00_desc_read(entry_priv->desc, 1, &word);
340                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
341                 rt2x00_desc_write(entry_priv->desc, 1, word);
342         }
343 }
344
345 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
346 {
347         struct queue_entry_priv_pci *entry_priv;
348         u32 reg;
349
350         /*
351          * Initialize registers.
352          */
353         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
354         rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
355         rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
356         rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
357         rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
358
359         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
360         rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
361         rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
362         rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
363         rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
364
365         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
366         rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
367         rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
368         rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
369         rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
370
371         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
372         rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
373         rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
374         rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
375         rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
376
377         entry_priv = rt2x00dev->rx->entries[0].priv_data;
378         rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
379         rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
380         rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
381         rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
382
383         /*
384          * Enable global DMA configuration
385          */
386         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
387         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
388         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
389         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
390         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
391
392         rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
393
394         return 0;
395 }
396
397 /*
398  * Device state switch handlers.
399  */
400 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
401                                 enum dev_state state)
402 {
403         u32 reg;
404
405         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
406         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
407                            (state == STATE_RADIO_RX_ON) ||
408                            (state == STATE_RADIO_RX_ON_LINK));
409         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
410 }
411
412 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
413                                  enum dev_state state)
414 {
415         int mask = (state == STATE_RADIO_IRQ_ON);
416         u32 reg;
417
418         /*
419          * When interrupts are being enabled, the interrupt registers
420          * should clear the register to assure a clean state.
421          */
422         if (state == STATE_RADIO_IRQ_ON) {
423                 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
424                 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
425         }
426
427         rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
428         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
429         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
430         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
431         rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
432         rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
433         rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
434         rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
435         rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
436         rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
437         rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
438         rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
439         rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
440         rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
441         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
442         rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
443         rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
444         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
445         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
446         rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
447 }
448
449 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
450 {
451         u32 reg;
452         u16 word;
453
454         /*
455          * Initialize all registers.
456          */
457         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
458                      rt2800pci_init_queues(rt2x00dev) ||
459                      rt2800_init_registers(rt2x00dev) ||
460                      rt2800_wait_wpdma_ready(rt2x00dev) ||
461                      rt2800_init_bbp(rt2x00dev) ||
462                      rt2800_init_rfcsr(rt2x00dev)))
463                 return -EIO;
464
465         /*
466          * Send signal to firmware during boot time.
467          */
468         rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
469
470         /*
471          * Enable RX.
472          */
473         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
474         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
475         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
476         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
477
478         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
479         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
480         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
481         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
482         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
483         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
484
485         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
486         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
487         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
488         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
489
490         /*
491          * Initialize LED control
492          */
493         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
494         rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
495                               word & 0xff, (word >> 8) & 0xff);
496
497         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
498         rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
499                               word & 0xff, (word >> 8) & 0xff);
500
501         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
502         rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
503                               word & 0xff, (word >> 8) & 0xff);
504
505         return 0;
506 }
507
508 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
509 {
510         u32 reg;
511
512         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
513         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
514         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
515         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
516         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
517         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
518         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
519
520         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
521         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
522         rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
523
524         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
525
526         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
527         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
528         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
529         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
530         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
531         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
532         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
533         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
534         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
535
536         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
537         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
538
539         /* Wait for DMA, ignore error */
540         rt2800_wait_wpdma_ready(rt2x00dev);
541 }
542
543 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
544                                enum dev_state state)
545 {
546         /*
547          * Always put the device to sleep (even when we intend to wakeup!)
548          * if the device is booting and wasn't asleep it will return
549          * failure when attempting to wakeup.
550          */
551         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
552
553         if (state == STATE_AWAKE) {
554                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
555                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
556         }
557
558         return 0;
559 }
560
561 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
562                                       enum dev_state state)
563 {
564         int retval = 0;
565
566         switch (state) {
567         case STATE_RADIO_ON:
568                 /*
569                  * Before the radio can be enabled, the device first has
570                  * to be woken up. After that it needs a bit of time
571                  * to be fully awake and then the radio can be enabled.
572                  */
573                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
574                 msleep(1);
575                 retval = rt2800pci_enable_radio(rt2x00dev);
576                 break;
577         case STATE_RADIO_OFF:
578                 /*
579                  * After the radio has been disabled, the device should
580                  * be put to sleep for powersaving.
581                  */
582                 rt2800pci_disable_radio(rt2x00dev);
583                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
584                 break;
585         case STATE_RADIO_RX_ON:
586         case STATE_RADIO_RX_ON_LINK:
587         case STATE_RADIO_RX_OFF:
588         case STATE_RADIO_RX_OFF_LINK:
589                 rt2800pci_toggle_rx(rt2x00dev, state);
590                 break;
591         case STATE_RADIO_IRQ_ON:
592         case STATE_RADIO_IRQ_OFF:
593                 rt2800pci_toggle_irq(rt2x00dev, state);
594                 break;
595         case STATE_DEEP_SLEEP:
596         case STATE_SLEEP:
597         case STATE_STANDBY:
598         case STATE_AWAKE:
599                 retval = rt2800pci_set_state(rt2x00dev, state);
600                 break;
601         default:
602                 retval = -ENOTSUPP;
603                 break;
604         }
605
606         if (unlikely(retval))
607                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
608                       state, retval);
609
610         return retval;
611 }
612
613 /*
614  * TX descriptor initialization
615  */
616 static void rt2800pci_write_tx_datadesc(struct queue_entry* entry,
617                                          struct txentry_desc *txdesc)
618 {
619         rt2800_write_txwi((__le32 *) entry->skb->data, txdesc);
620 }
621
622
623 static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
624                                     struct sk_buff *skb,
625                                     struct txentry_desc *txdesc)
626 {
627         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
628         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
629         __le32 *txd = entry_priv->desc;
630         u32 word;
631
632         /*
633          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
634          * must contains a TXWI structure + 802.11 header + padding + 802.11
635          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
636          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
637          * data. It means that LAST_SEC0 is always 0.
638          */
639
640         /*
641          * Initialize TX descriptor
642          */
643         rt2x00_desc_read(txd, 0, &word);
644         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
645         rt2x00_desc_write(txd, 0, word);
646
647         rt2x00_desc_read(txd, 1, &word);
648         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
649         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
650                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
651         rt2x00_set_field32(&word, TXD_W1_BURST,
652                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
653         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
654         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
655         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
656         rt2x00_desc_write(txd, 1, word);
657
658         rt2x00_desc_read(txd, 2, &word);
659         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
660                            skbdesc->skb_dma + TXWI_DESC_SIZE);
661         rt2x00_desc_write(txd, 2, word);
662
663         rt2x00_desc_read(txd, 3, &word);
664         rt2x00_set_field32(&word, TXD_W3_WIV,
665                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
666         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
667         rt2x00_desc_write(txd, 3, word);
668
669         /*
670          * Register descriptor details in skb frame descriptor.
671          */
672         skbdesc->desc = txd;
673         skbdesc->desc_len = TXD_DESC_SIZE;
674 }
675
676 /*
677  * TX data initialization
678  */
679 static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
680                                     const enum data_queue_qid queue_idx)
681 {
682         struct data_queue *queue;
683         unsigned int idx, qidx = 0;
684
685         if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
686                 return;
687
688         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
689         idx = queue->index[Q_INDEX];
690
691         if (queue_idx == QID_MGMT)
692                 qidx = 5;
693         else
694                 qidx = queue_idx;
695
696         rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
697 }
698
699 static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
700                                     const enum data_queue_qid qid)
701 {
702         u32 reg;
703
704         if (qid == QID_BEACON) {
705                 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
706                 return;
707         }
708
709         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
710         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
711         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
712         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
713         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
714         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
715 }
716
717 /*
718  * RX control handlers
719  */
720 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
721                                   struct rxdone_entry_desc *rxdesc)
722 {
723         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
724         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
725         __le32 *rxd = entry_priv->desc;
726         u32 word;
727
728         rt2x00_desc_read(rxd, 3, &word);
729
730         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
731                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
732
733         /*
734          * Unfortunately we don't know the cipher type used during
735          * decryption. This prevents us from correct providing
736          * correct statistics through debugfs.
737          */
738         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
739
740         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
741                 /*
742                  * Hardware has stripped IV/EIV data from 802.11 frame during
743                  * decryption. Unfortunately the descriptor doesn't contain
744                  * any fields with the EIV/IV data either, so they can't
745                  * be restored by rt2x00lib.
746                  */
747                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
748
749                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
750                         rxdesc->flags |= RX_FLAG_DECRYPTED;
751                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
752                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
753         }
754
755         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
756                 rxdesc->dev_flags |= RXDONE_MY_BSS;
757
758         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
759                 rxdesc->dev_flags |= RXDONE_L2PAD;
760
761         /*
762          * Process the RXWI structure that is at the start of the buffer.
763          */
764         rt2800_process_rxwi(entry->skb, rxdesc);
765
766         /*
767          * Set RX IDX in register to inform hardware that we have handled
768          * this entry and it is available for reuse again.
769          */
770         rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
771 }
772
773 /*
774  * Interrupt functions.
775  */
776 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
777 {
778         struct data_queue *queue;
779         struct queue_entry *entry;
780         __le32 *txwi;
781         struct txdone_entry_desc txdesc;
782         u32 word;
783         u32 reg;
784         u32 old_reg;
785         int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
786         u16 mcs, real_mcs;
787
788         /*
789          * During each loop we will compare the freshly read
790          * TX_STA_FIFO register value with the value read from
791          * the previous loop. If the 2 values are equal then
792          * we should stop processing because the chance it
793          * quite big that the device has been unplugged and
794          * we risk going into an endless loop.
795          */
796         old_reg = 0;
797
798         while (1) {
799                 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
800                 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
801                         break;
802
803                 if (old_reg == reg)
804                         break;
805                 old_reg = reg;
806
807                 wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
808                 ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
809                 pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
810
811                 /*
812                  * Skip this entry when it contains an invalid
813                  * queue identication number.
814                  */
815                 if (pid <= 0 || pid > QID_RX)
816                         continue;
817
818                 queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
819                 if (unlikely(!queue))
820                         continue;
821
822                 /*
823                  * Inside each queue, we process each entry in a chronological
824                  * order. We first check that the queue is not empty.
825                  */
826                 if (rt2x00queue_empty(queue))
827                         continue;
828                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
829
830                 /* Check if we got a match by looking at WCID/ACK/PID
831                  * fields */
832                 txwi = (__le32 *) entry->skb->data;
833
834                 rt2x00_desc_read(txwi, 1, &word);
835                 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
836                 tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
837                 tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);
838
839                 if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
840                         WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
841
842                 /*
843                  * Obtain the status about this packet.
844                  */
845                 txdesc.flags = 0;
846                 rt2x00_desc_read(txwi, 0, &word);
847                 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
848                 real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
849
850                 /*
851                  * Ralink has a retry mechanism using a global fallback
852                  * table. We setup this fallback table to try the immediate
853                  * lower rate for all rates. In the TX_STA_FIFO, the MCS field
854                  * always contains the MCS used for the last transmission, be
855                  * it successful or not.
856                  */
857                 if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
858                         /*
859                          * Transmission succeeded. The number of retries is
860                          * mcs - real_mcs
861                          */
862                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
863                         txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
864                 } else {
865                         /*
866                          * Transmission failed. The number of retries is
867                          * always 7 in this case (for a total number of 8
868                          * frames sent).
869                          */
870                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
871                         txdesc.retry = 7;
872                 }
873
874                 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
875
876
877                 rt2x00pci_txdone(entry, &txdesc);
878         }
879 }
880
881 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
882 {
883         struct ieee80211_conf conf = { .flags = 0 };
884         struct rt2x00lib_conf libconf = { .conf = &conf };
885
886         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
887 }
888
889 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
890 {
891         struct rt2x00_dev *rt2x00dev = dev_instance;
892         u32 reg;
893
894         /* Read status and ACK all interrupts */
895         rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
896         rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
897
898         if (!reg)
899                 return IRQ_NONE;
900
901         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
902                 return IRQ_HANDLED;
903
904         /*
905          * 1 - Rx ring done interrupt.
906          */
907         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
908                 rt2x00pci_rxdone(rt2x00dev);
909
910         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
911                 rt2800pci_txdone(rt2x00dev);
912
913         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
914                 rt2800pci_wakeup(rt2x00dev);
915
916         return IRQ_HANDLED;
917 }
918
919 /*
920  * Device probe functions.
921  */
922 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
923 {
924         /*
925          * Read EEPROM into buffer
926          */
927         if (rt2x00_is_soc(rt2x00dev))
928                 rt2800pci_read_eeprom_soc(rt2x00dev);
929         else if (rt2800pci_efuse_detect(rt2x00dev))
930                 rt2800pci_read_eeprom_efuse(rt2x00dev);
931         else
932                 rt2800pci_read_eeprom_pci(rt2x00dev);
933
934         return rt2800_validate_eeprom(rt2x00dev);
935 }
936
937 static const struct rt2800_ops rt2800pci_rt2800_ops = {
938         .register_read          = rt2x00pci_register_read,
939         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
940         .register_write         = rt2x00pci_register_write,
941         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
942
943         .register_multiread     = rt2x00pci_register_multiread,
944         .register_multiwrite    = rt2x00pci_register_multiwrite,
945
946         .regbusy_read           = rt2x00pci_regbusy_read,
947 };
948
949 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
950 {
951         int retval;
952
953         rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
954
955         /*
956          * Allocate eeprom data.
957          */
958         retval = rt2800pci_validate_eeprom(rt2x00dev);
959         if (retval)
960                 return retval;
961
962         retval = rt2800_init_eeprom(rt2x00dev);
963         if (retval)
964                 return retval;
965
966         /*
967          * Initialize hw specifications.
968          */
969         retval = rt2800_probe_hw_mode(rt2x00dev);
970         if (retval)
971                 return retval;
972
973         /*
974          * This device has multiple filters for control frames
975          * and has a separate filter for PS Poll frames.
976          */
977         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
978         __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
979
980         /*
981          * This device requires firmware.
982          */
983         if (!rt2x00_is_soc(rt2x00dev))
984                 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
985         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
986         __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
987         if (!modparam_nohwcrypt)
988                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
989
990         /*
991          * Set the rssi offset.
992          */
993         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
994
995         return 0;
996 }
997
998 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
999         .irq_handler            = rt2800pci_interrupt,
1000         .probe_hw               = rt2800pci_probe_hw,
1001         .get_firmware_name      = rt2800pci_get_firmware_name,
1002         .check_firmware         = rt2800pci_check_firmware,
1003         .load_firmware          = rt2800pci_load_firmware,
1004         .initialize             = rt2x00pci_initialize,
1005         .uninitialize           = rt2x00pci_uninitialize,
1006         .get_entry_state        = rt2800pci_get_entry_state,
1007         .clear_entry            = rt2800pci_clear_entry,
1008         .set_device_state       = rt2800pci_set_device_state,
1009         .rfkill_poll            = rt2800_rfkill_poll,
1010         .link_stats             = rt2800_link_stats,
1011         .reset_tuner            = rt2800_reset_tuner,
1012         .link_tuner             = rt2800_link_tuner,
1013         .write_tx_desc          = rt2800pci_write_tx_desc,
1014         .write_tx_data          = rt2x00pci_write_tx_data,
1015         .write_tx_datadesc      = rt2800pci_write_tx_datadesc,
1016         .write_beacon           = rt2800_write_beacon,
1017         .kick_tx_queue          = rt2800pci_kick_tx_queue,
1018         .kill_tx_queue          = rt2800pci_kill_tx_queue,
1019         .fill_rxdone            = rt2800pci_fill_rxdone,
1020         .config_shared_key      = rt2800_config_shared_key,
1021         .config_pairwise_key    = rt2800_config_pairwise_key,
1022         .config_filter          = rt2800_config_filter,
1023         .config_intf            = rt2800_config_intf,
1024         .config_erp             = rt2800_config_erp,
1025         .config_ant             = rt2800_config_ant,
1026         .config                 = rt2800_config,
1027 };
1028
1029 static const struct data_queue_desc rt2800pci_queue_rx = {
1030         .entry_num              = RX_ENTRIES,
1031         .data_size              = AGGREGATION_SIZE,
1032         .desc_size              = RXD_DESC_SIZE,
1033         .priv_size              = sizeof(struct queue_entry_priv_pci),
1034 };
1035
1036 static const struct data_queue_desc rt2800pci_queue_tx = {
1037         .entry_num              = TX_ENTRIES,
1038         .data_size              = AGGREGATION_SIZE,
1039         .desc_size              = TXD_DESC_SIZE,
1040         .priv_size              = sizeof(struct queue_entry_priv_pci),
1041 };
1042
1043 static const struct data_queue_desc rt2800pci_queue_bcn = {
1044         .entry_num              = 8 * BEACON_ENTRIES,
1045         .data_size              = 0, /* No DMA required for beacons */
1046         .desc_size              = TXWI_DESC_SIZE,
1047         .priv_size              = sizeof(struct queue_entry_priv_pci),
1048 };
1049
1050 static const struct rt2x00_ops rt2800pci_ops = {
1051         .name                   = KBUILD_MODNAME,
1052         .max_sta_intf           = 1,
1053         .max_ap_intf            = 8,
1054         .eeprom_size            = EEPROM_SIZE,
1055         .rf_size                = RF_SIZE,
1056         .tx_queues              = NUM_TX_QUEUES,
1057         .extra_tx_headroom      = TXWI_DESC_SIZE,
1058         .rx                     = &rt2800pci_queue_rx,
1059         .tx                     = &rt2800pci_queue_tx,
1060         .bcn                    = &rt2800pci_queue_bcn,
1061         .lib                    = &rt2800pci_rt2x00_ops,
1062         .hw                     = &rt2800_mac80211_ops,
1063 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1064         .debugfs                = &rt2800_rt2x00debug,
1065 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1066 };
1067
1068 /*
1069  * RT2800pci module information.
1070  */
1071 #ifdef CONFIG_RT2800PCI_PCI
1072 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1073         { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1074         { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1075         { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1076         { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1077         { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1078         { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1079         { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1080         { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1081         { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1082         { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1083         { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1084         { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1085 #ifdef CONFIG_RT2800PCI_RT30XX
1086         { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1087         { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1088         { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1089         { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1090 #endif
1091 #ifdef CONFIG_RT2800PCI_RT35XX
1092         { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1093         { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1094         { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1095         { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1096         { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1097 #endif
1098         { 0, }
1099 };
1100 #endif /* CONFIG_RT2800PCI_PCI */
1101
1102 MODULE_AUTHOR(DRV_PROJECT);
1103 MODULE_VERSION(DRV_VERSION);
1104 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1105 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1106 #ifdef CONFIG_RT2800PCI_PCI
1107 MODULE_FIRMWARE(FIRMWARE_RT2860);
1108 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1109 #endif /* CONFIG_RT2800PCI_PCI */
1110 MODULE_LICENSE("GPL");
1111
1112 #ifdef CONFIG_RT2800PCI_SOC
1113 static int rt2800soc_probe(struct platform_device *pdev)
1114 {
1115         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1116 }
1117
1118 static struct platform_driver rt2800soc_driver = {
1119         .driver         = {
1120                 .name           = "rt2800_wmac",
1121                 .owner          = THIS_MODULE,
1122                 .mod_name       = KBUILD_MODNAME,
1123         },
1124         .probe          = rt2800soc_probe,
1125         .remove         = __devexit_p(rt2x00soc_remove),
1126         .suspend        = rt2x00soc_suspend,
1127         .resume         = rt2x00soc_resume,
1128 };
1129 #endif /* CONFIG_RT2800PCI_SOC */
1130
1131 #ifdef CONFIG_RT2800PCI_PCI
1132 static struct pci_driver rt2800pci_driver = {
1133         .name           = KBUILD_MODNAME,
1134         .id_table       = rt2800pci_device_table,
1135         .probe          = rt2x00pci_probe,
1136         .remove         = __devexit_p(rt2x00pci_remove),
1137         .suspend        = rt2x00pci_suspend,
1138         .resume         = rt2x00pci_resume,
1139 };
1140 #endif /* CONFIG_RT2800PCI_PCI */
1141
1142 static int __init rt2800pci_init(void)
1143 {
1144         int ret = 0;
1145
1146 #ifdef CONFIG_RT2800PCI_SOC
1147         ret = platform_driver_register(&rt2800soc_driver);
1148         if (ret)
1149                 return ret;
1150 #endif
1151 #ifdef CONFIG_RT2800PCI_PCI
1152         ret = pci_register_driver(&rt2800pci_driver);
1153         if (ret) {
1154 #ifdef CONFIG_RT2800PCI_SOC
1155                 platform_driver_unregister(&rt2800soc_driver);
1156 #endif
1157                 return ret;
1158         }
1159 #endif
1160
1161         return ret;
1162 }
1163
1164 static void __exit rt2800pci_exit(void)
1165 {
1166 #ifdef CONFIG_RT2800PCI_PCI
1167         pci_unregister_driver(&rt2800pci_driver);
1168 #endif
1169 #ifdef CONFIG_RT2800PCI_SOC
1170         platform_driver_unregister(&rt2800soc_driver);
1171 #endif
1172 }
1173
1174 module_init(rt2800pci_init);
1175 module_exit(rt2800pci_exit);