]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
Merge remote-tracking branch 'ipsec-next/master'
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00mmio.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
50
51 /*
52  * Allow hardware encryption to be disabled.
53  */
54 static bool modparam_nohwcrypt = false;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
57
58 static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
59 {
60         return modparam_nohwcrypt;
61 }
62
63 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
64 {
65         unsigned int i;
66         u32 reg;
67
68         /*
69          * SOC devices don't support MCU requests.
70          */
71         if (rt2x00_is_soc(rt2x00dev))
72                 return;
73
74         for (i = 0; i < 200; i++) {
75                 rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
76
77                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
78                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
79                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
80                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
81                         break;
82
83                 udelay(REGISTER_BUSY_DELAY);
84         }
85
86         if (i == 200)
87                 rt2x00_err(rt2x00dev, "MCU request failed, no response from hardware\n");
88
89         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
90         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
91 }
92
93 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
94 static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
95 {
96         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
97
98         if (!base_addr)
99                 return -ENOMEM;
100
101         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
102
103         iounmap(base_addr);
104         return 0;
105 }
106 #else
107 static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
108 {
109         return -ENOMEM;
110 }
111 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
112
113 #ifdef CONFIG_PCI
114 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
115 {
116         struct rt2x00_dev *rt2x00dev = eeprom->data;
117         u32 reg;
118
119         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
120
121         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
122         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
123         eeprom->reg_data_clock =
124             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
125         eeprom->reg_chip_select =
126             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
127 }
128
129 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
130 {
131         struct rt2x00_dev *rt2x00dev = eeprom->data;
132         u32 reg = 0;
133
134         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
135         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
136         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
137                            !!eeprom->reg_data_clock);
138         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
139                            !!eeprom->reg_chip_select);
140
141         rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
142 }
143
144 static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
145 {
146         struct eeprom_93cx6 eeprom;
147         u32 reg;
148
149         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
150
151         eeprom.data = rt2x00dev;
152         eeprom.register_read = rt2800pci_eepromregister_read;
153         eeprom.register_write = rt2800pci_eepromregister_write;
154         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
155         {
156         case 0:
157                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
158                 break;
159         case 1:
160                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
161                 break;
162         default:
163                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
164                 break;
165         }
166         eeprom.reg_data_in = 0;
167         eeprom.reg_data_out = 0;
168         eeprom.reg_data_clock = 0;
169         eeprom.reg_chip_select = 0;
170
171         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
172                                EEPROM_SIZE / sizeof(u16));
173
174         return 0;
175 }
176
177 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
178 {
179         return rt2800_efuse_detect(rt2x00dev);
180 }
181
182 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
183 {
184         return rt2800_read_eeprom_efuse(rt2x00dev);
185 }
186 #else
187 static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
188 {
189         return -EOPNOTSUPP;
190 }
191
192 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
193 {
194         return 0;
195 }
196
197 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
198 {
199         return -EOPNOTSUPP;
200 }
201 #endif /* CONFIG_PCI */
202
203 /*
204  * Queue handlers.
205  */
206 static void rt2800pci_start_queue(struct data_queue *queue)
207 {
208         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
209         u32 reg;
210
211         switch (queue->qid) {
212         case QID_RX:
213                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
214                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
215                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
216                 break;
217         case QID_BEACON:
218                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
219                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
220                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
221                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
222                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223
224                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
225                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
226                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
227                 break;
228         default:
229                 break;
230         }
231 }
232
233 static void rt2800pci_kick_queue(struct data_queue *queue)
234 {
235         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
236         struct queue_entry *entry;
237
238         switch (queue->qid) {
239         case QID_AC_VO:
240         case QID_AC_VI:
241         case QID_AC_BE:
242         case QID_AC_BK:
243                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
244                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
245                                           entry->entry_idx);
246                 break;
247         case QID_MGMT:
248                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
249                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
250                                           entry->entry_idx);
251                 break;
252         default:
253                 break;
254         }
255 }
256
257 static void rt2800pci_stop_queue(struct data_queue *queue)
258 {
259         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
260         u32 reg;
261
262         switch (queue->qid) {
263         case QID_RX:
264                 rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
265                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
266                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
267                 break;
268         case QID_BEACON:
269                 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
270                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
271                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
272                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
273                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
274
275                 rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
276                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
277                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
278
279                 /*
280                  * Wait for current invocation to finish. The tasklet
281                  * won't be scheduled anymore afterwards since we disabled
282                  * the TBTT and PRE TBTT timer.
283                  */
284                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
285                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
286
287                 break;
288         default:
289                 break;
290         }
291 }
292
293 /*
294  * Firmware functions
295  */
296 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
297 {
298         /*
299          * Chip rt3290 use specific 4KB firmware named rt3290.bin.
300          */
301         if (rt2x00_rt(rt2x00dev, RT3290))
302                 return FIRMWARE_RT3290;
303         else
304                 return FIRMWARE_RT2860;
305 }
306
307 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
308                                     const u8 *data, const size_t len)
309 {
310         u32 reg;
311
312         /*
313          * enable Host program ram write selection
314          */
315         reg = 0;
316         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
317         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
318
319         /*
320          * Write firmware to device.
321          */
322         rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
323                                        data, len);
324
325         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
326         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
327
328         rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
329         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
330
331         return 0;
332 }
333
334 /*
335  * Initialization functions.
336  */
337 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
338 {
339         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
340         u32 word;
341
342         if (entry->queue->qid == QID_RX) {
343                 rt2x00_desc_read(entry_priv->desc, 1, &word);
344
345                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
346         } else {
347                 rt2x00_desc_read(entry_priv->desc, 1, &word);
348
349                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
350         }
351 }
352
353 static void rt2800pci_clear_entry(struct queue_entry *entry)
354 {
355         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
356         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
357         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
358         u32 word;
359
360         if (entry->queue->qid == QID_RX) {
361                 rt2x00_desc_read(entry_priv->desc, 0, &word);
362                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
363                 rt2x00_desc_write(entry_priv->desc, 0, word);
364
365                 rt2x00_desc_read(entry_priv->desc, 1, &word);
366                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
367                 rt2x00_desc_write(entry_priv->desc, 1, word);
368
369                 /*
370                  * Set RX IDX in register to inform hardware that we have
371                  * handled this entry and it is available for reuse again.
372                  */
373                 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
374                                           entry->entry_idx);
375         } else {
376                 rt2x00_desc_read(entry_priv->desc, 1, &word);
377                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
378                 rt2x00_desc_write(entry_priv->desc, 1, word);
379         }
380 }
381
382 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
383 {
384         struct queue_entry_priv_mmio *entry_priv;
385
386         /*
387          * Initialize registers.
388          */
389         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
390         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
391                                   entry_priv->desc_dma);
392         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
393                                   rt2x00dev->tx[0].limit);
394         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
395         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
396
397         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
398         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
399                                   entry_priv->desc_dma);
400         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
401                                   rt2x00dev->tx[1].limit);
402         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
403         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
404
405         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
406         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
407                                   entry_priv->desc_dma);
408         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
409                                   rt2x00dev->tx[2].limit);
410         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
411         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
412
413         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
414         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
415                                   entry_priv->desc_dma);
416         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
417                                   rt2x00dev->tx[3].limit);
418         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
419         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
420
421         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
422         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
423         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
424         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
425
426         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
427         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
428         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
429         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
430
431         entry_priv = rt2x00dev->rx->entries[0].priv_data;
432         rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
433                                   entry_priv->desc_dma);
434         rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
435                                   rt2x00dev->rx[0].limit);
436         rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
437                                   rt2x00dev->rx[0].limit - 1);
438         rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
439
440         rt2800_disable_wpdma(rt2x00dev);
441
442         rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
443
444         return 0;
445 }
446
447 /*
448  * Device state switch handlers.
449  */
450 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
451                                  enum dev_state state)
452 {
453         u32 reg;
454         unsigned long flags;
455
456         /*
457          * When interrupts are being enabled, the interrupt registers
458          * should clear the register to assure a clean state.
459          */
460         if (state == STATE_RADIO_IRQ_ON) {
461                 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
462                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
463         }
464
465         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
466         reg = 0;
467         if (state == STATE_RADIO_IRQ_ON) {
468                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
469                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
470                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
471                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
472                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
473         }
474         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
475         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
476
477         if (state == STATE_RADIO_IRQ_OFF) {
478                 /*
479                  * Wait for possibly running tasklets to finish.
480                  */
481                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
482                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
483                 tasklet_kill(&rt2x00dev->autowake_tasklet);
484                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
485                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
486         }
487 }
488
489 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
490 {
491         u32 reg;
492
493         /*
494          * Reset DMA indexes
495          */
496         rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
497         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
498         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
499         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
500         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
501         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
502         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
503         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
504         rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
505
506         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
507         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
508
509         if (rt2x00_is_pcie(rt2x00dev) &&
510             (rt2x00_rt(rt2x00dev, RT3090) ||
511              rt2x00_rt(rt2x00dev, RT3390) ||
512              rt2x00_rt(rt2x00dev, RT3572) ||
513              rt2x00_rt(rt2x00dev, RT3593) ||
514              rt2x00_rt(rt2x00dev, RT5390) ||
515              rt2x00_rt(rt2x00dev, RT5392) ||
516              rt2x00_rt(rt2x00dev, RT5592))) {
517                 rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
518                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
519                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
520                 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
521         }
522
523         rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
524
525         reg = 0;
526         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
527         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
528         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
529
530         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
531
532         return 0;
533 }
534
535 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
536 {
537         int retval;
538
539         /* Wait for DMA, ignore error until we initialize queues. */
540         rt2800_wait_wpdma_ready(rt2x00dev);
541
542         if (unlikely(rt2800pci_init_queues(rt2x00dev)))
543                 return -EIO;
544
545         retval = rt2800_enable_radio(rt2x00dev);
546         if (retval)
547                 return retval;
548
549         /* After resume MCU_BOOT_SIGNAL will trash these. */
550         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
551         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
552
553         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
554         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
555
556         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
557         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
558
559         return retval;
560 }
561
562 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
563 {
564         if (rt2x00_is_soc(rt2x00dev)) {
565                 rt2800_disable_radio(rt2x00dev);
566                 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
567                 rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, 0);
568         }
569 }
570
571 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
572                                enum dev_state state)
573 {
574         if (state == STATE_AWAKE) {
575                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
576                                    0, 0x02);
577                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
578         } else if (state == STATE_SLEEP) {
579                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
580                                           0xffffffff);
581                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
582                                           0xffffffff);
583                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
584                                    0xff, 0x01);
585         }
586
587         return 0;
588 }
589
590 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
591                                       enum dev_state state)
592 {
593         int retval = 0;
594
595         switch (state) {
596         case STATE_RADIO_ON:
597                 retval = rt2800pci_enable_radio(rt2x00dev);
598                 break;
599         case STATE_RADIO_OFF:
600                 /*
601                  * After the radio has been disabled, the device should
602                  * be put to sleep for powersaving.
603                  */
604                 rt2800pci_disable_radio(rt2x00dev);
605                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
606                 break;
607         case STATE_RADIO_IRQ_ON:
608         case STATE_RADIO_IRQ_OFF:
609                 rt2800pci_toggle_irq(rt2x00dev, state);
610                 break;
611         case STATE_DEEP_SLEEP:
612         case STATE_SLEEP:
613         case STATE_STANDBY:
614         case STATE_AWAKE:
615                 retval = rt2800pci_set_state(rt2x00dev, state);
616                 break;
617         default:
618                 retval = -ENOTSUPP;
619                 break;
620         }
621
622         if (unlikely(retval))
623                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
624                            state, retval);
625
626         return retval;
627 }
628
629 /*
630  * TX descriptor initialization
631  */
632 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
633 {
634         return (__le32 *) entry->skb->data;
635 }
636
637 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
638                                     struct txentry_desc *txdesc)
639 {
640         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
641         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
642         __le32 *txd = entry_priv->desc;
643         u32 word;
644         const unsigned int txwi_size = entry->queue->winfo_size;
645
646         /*
647          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
648          * must contains a TXWI structure + 802.11 header + padding + 802.11
649          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
650          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
651          * data. It means that LAST_SEC0 is always 0.
652          */
653
654         /*
655          * Initialize TX descriptor
656          */
657         word = 0;
658         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
659         rt2x00_desc_write(txd, 0, word);
660
661         word = 0;
662         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
663         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
664                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
665         rt2x00_set_field32(&word, TXD_W1_BURST,
666                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
667         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
668         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
669         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
670         rt2x00_desc_write(txd, 1, word);
671
672         word = 0;
673         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
674                            skbdesc->skb_dma + txwi_size);
675         rt2x00_desc_write(txd, 2, word);
676
677         word = 0;
678         rt2x00_set_field32(&word, TXD_W3_WIV,
679                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
680         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
681         rt2x00_desc_write(txd, 3, word);
682
683         /*
684          * Register descriptor details in skb frame descriptor.
685          */
686         skbdesc->desc = txd;
687         skbdesc->desc_len = TXD_DESC_SIZE;
688 }
689
690 /*
691  * RX control handlers
692  */
693 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
694                                   struct rxdone_entry_desc *rxdesc)
695 {
696         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
697         __le32 *rxd = entry_priv->desc;
698         u32 word;
699
700         rt2x00_desc_read(rxd, 3, &word);
701
702         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
703                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
704
705         /*
706          * Unfortunately we don't know the cipher type used during
707          * decryption. This prevents us from correct providing
708          * correct statistics through debugfs.
709          */
710         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
711
712         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
713                 /*
714                  * Hardware has stripped IV/EIV data from 802.11 frame during
715                  * decryption. Unfortunately the descriptor doesn't contain
716                  * any fields with the EIV/IV data either, so they can't
717                  * be restored by rt2x00lib.
718                  */
719                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
720
721                 /*
722                  * The hardware has already checked the Michael Mic and has
723                  * stripped it from the frame. Signal this to mac80211.
724                  */
725                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
726
727                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
728                         rxdesc->flags |= RX_FLAG_DECRYPTED;
729                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
730                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
731         }
732
733         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
734                 rxdesc->dev_flags |= RXDONE_MY_BSS;
735
736         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
737                 rxdesc->dev_flags |= RXDONE_L2PAD;
738
739         /*
740          * Process the RXWI structure that is at the start of the buffer.
741          */
742         rt2800_process_rxwi(entry, rxdesc);
743 }
744
745 /*
746  * Interrupt functions.
747  */
748 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
749 {
750         struct ieee80211_conf conf = { .flags = 0 };
751         struct rt2x00lib_conf libconf = { .conf = &conf };
752
753         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
754 }
755
756 static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
757 {
758         __le32 *txwi;
759         u32 word;
760         int wcid, tx_wcid;
761
762         wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
763
764         txwi = rt2800_drv_get_txwi(entry);
765         rt2x00_desc_read(txwi, 1, &word);
766         tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
767
768         return (tx_wcid == wcid);
769 }
770
771 static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
772 {
773         u32 status = *(u32 *)data;
774
775         /*
776          * rt2800pci hardware might reorder frames when exchanging traffic
777          * with multiple BA enabled STAs.
778          *
779          * For example, a tx queue
780          *    [ STA1 | STA2 | STA1 | STA2 ]
781          * can result in tx status reports
782          *    [ STA1 | STA1 | STA2 | STA2 ]
783          * when the hw decides to aggregate the frames for STA1 into one AMPDU.
784          *
785          * To mitigate this effect, associate the tx status to the first frame
786          * in the tx queue with a matching wcid.
787          */
788         if (rt2800pci_txdone_entry_check(entry, status) &&
789             !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
790                 /*
791                  * Got a matching frame, associate the tx status with
792                  * the frame
793                  */
794                 entry->status = status;
795                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
796                 return true;
797         }
798
799         /* Check the next frame */
800         return false;
801 }
802
803 static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
804 {
805         u32 status = *(u32 *)data;
806
807         /*
808          * Find the first frame without tx status and assign this status to it
809          * regardless if it matches or not.
810          */
811         if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
812                 /*
813                  * Got a matching frame, associate the tx status with
814                  * the frame
815                  */
816                 entry->status = status;
817                 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
818                 return true;
819         }
820
821         /* Check the next frame */
822         return false;
823 }
824 static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
825                                              void *data)
826 {
827         if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
828                 rt2800_txdone_entry(entry, entry->status,
829                                     rt2800pci_get_txwi(entry));
830                 return false;
831         }
832
833         /* No more frames to release */
834         return true;
835 }
836
837 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
838 {
839         struct data_queue *queue;
840         u32 status;
841         u8 qid;
842         int max_tx_done = 16;
843
844         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
845                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
846                 if (unlikely(qid >= QID_RX)) {
847                         /*
848                          * Unknown queue, this shouldn't happen. Just drop
849                          * this tx status.
850                          */
851                         rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
852                                     qid);
853                         break;
854                 }
855
856                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
857                 if (unlikely(queue == NULL)) {
858                         /*
859                          * The queue is NULL, this shouldn't happen. Stop
860                          * processing here and drop the tx status
861                          */
862                         rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
863                                     qid);
864                         break;
865                 }
866
867                 if (unlikely(rt2x00queue_empty(queue))) {
868                         /*
869                          * The queue is empty. Stop processing here
870                          * and drop the tx status.
871                          */
872                         rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
873                                     qid);
874                         break;
875                 }
876
877                 /*
878                  * Let's associate this tx status with the first
879                  * matching frame.
880                  */
881                 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
882                                                 Q_INDEX, &status,
883                                                 rt2800pci_txdone_find_entry)) {
884                         /*
885                          * We cannot match the tx status to any frame, so just
886                          * use the first one.
887                          */
888                         if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
889                                                         Q_INDEX, &status,
890                                                         rt2800pci_txdone_match_first)) {
891                                 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
892                                             qid);
893                                 break;
894                         }
895                 }
896
897                 /*
898                  * Release all frames with a valid tx status.
899                  */
900                 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
901                                            Q_INDEX, NULL,
902                                            rt2800pci_txdone_release_entries);
903
904                 if (--max_tx_done == 0)
905                         break;
906         }
907
908         return !max_tx_done;
909 }
910
911 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
912                                               struct rt2x00_field32 irq_field)
913 {
914         u32 reg;
915
916         /*
917          * Enable a single interrupt. The interrupt mask register
918          * access needs locking.
919          */
920         spin_lock_irq(&rt2x00dev->irqmask_lock);
921         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
922         rt2x00_set_field32(&reg, irq_field, 1);
923         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
924         spin_unlock_irq(&rt2x00dev->irqmask_lock);
925 }
926
927 static void rt2800pci_txstatus_tasklet(unsigned long data)
928 {
929         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
930         if (rt2800pci_txdone(rt2x00dev))
931                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
932
933         /*
934          * No need to enable the tx status interrupt here as we always
935          * leave it enabled to minimize the possibility of a tx status
936          * register overflow. See comment in interrupt handler.
937          */
938 }
939
940 static void rt2800pci_pretbtt_tasklet(unsigned long data)
941 {
942         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
943         rt2x00lib_pretbtt(rt2x00dev);
944         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
945                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
946 }
947
948 static void rt2800pci_tbtt_tasklet(unsigned long data)
949 {
950         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
951         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
952         u32 reg;
953
954         rt2x00lib_beacondone(rt2x00dev);
955
956         if (rt2x00dev->intf_ap_count) {
957                 /*
958                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
959                  * causing beacon skew and as a result causing problems with
960                  * some powersaving clients over time. Shorten the beacon
961                  * interval every 64 beacons by 64us to mitigate this effect.
962                  */
963                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
964                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
965                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
966                                            (rt2x00dev->beacon_int * 16) - 1);
967                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
968                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
969                         rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
970                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
971                                            (rt2x00dev->beacon_int * 16));
972                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
973                 }
974                 drv_data->tbtt_tick++;
975                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
976         }
977
978         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
979                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
980 }
981
982 static void rt2800pci_rxdone_tasklet(unsigned long data)
983 {
984         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
985         if (rt2x00mmio_rxdone(rt2x00dev))
986                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
987         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
988                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
989 }
990
991 static void rt2800pci_autowake_tasklet(unsigned long data)
992 {
993         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
994         rt2800pci_wakeup(rt2x00dev);
995         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
996                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
997 }
998
999 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
1000 {
1001         u32 status;
1002         int i;
1003
1004         /*
1005          * The TX_FIFO_STATUS interrupt needs special care. We should
1006          * read TX_STA_FIFO but we should do it immediately as otherwise
1007          * the register can overflow and we would lose status reports.
1008          *
1009          * Hence, read the TX_STA_FIFO register and copy all tx status
1010          * reports into a kernel FIFO which is handled in the txstatus
1011          * tasklet. We use a tasklet to process the tx status reports
1012          * because we can schedule the tasklet multiple times (when the
1013          * interrupt fires again during tx status processing).
1014          *
1015          * Furthermore we don't disable the TX_FIFO_STATUS
1016          * interrupt here but leave it enabled so that the TX_STA_FIFO
1017          * can also be read while the tx status tasklet gets executed.
1018          *
1019          * Since we have only one producer and one consumer we don't
1020          * need to lock the kfifo.
1021          */
1022         for (i = 0; i < rt2x00dev->tx->limit; i++) {
1023                 rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
1024
1025                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
1026                         break;
1027
1028                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
1029                         rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
1030                         break;
1031                 }
1032         }
1033
1034         /* Schedule the tasklet for processing the tx status. */
1035         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1036 }
1037
1038 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
1039 {
1040         struct rt2x00_dev *rt2x00dev = dev_instance;
1041         u32 reg, mask;
1042
1043         /* Read status and ACK all interrupts */
1044         rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1045         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1046
1047         if (!reg)
1048                 return IRQ_NONE;
1049
1050         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1051                 return IRQ_HANDLED;
1052
1053         /*
1054          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
1055          * for interrupts and interrupt masks we can just use the value of
1056          * INT_SOURCE_CSR to create the interrupt mask.
1057          */
1058         mask = ~reg;
1059
1060         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
1061                 rt2800pci_txstatus_interrupt(rt2x00dev);
1062                 /*
1063                  * Never disable the TX_FIFO_STATUS interrupt.
1064                  */
1065                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
1066         }
1067
1068         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
1069                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
1070
1071         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
1072                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1073
1074         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
1075                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1076
1077         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
1078                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
1079
1080         /*
1081          * Disable all interrupts for which a tasklet was scheduled right now,
1082          * the tasklet will reenable the appropriate interrupts.
1083          */
1084         spin_lock(&rt2x00dev->irqmask_lock);
1085         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1086         reg &= mask;
1087         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1088         spin_unlock(&rt2x00dev->irqmask_lock);
1089
1090         return IRQ_HANDLED;
1091 }
1092
1093 /*
1094  * Device probe functions.
1095  */
1096 static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
1097 {
1098         int retval;
1099
1100         if (rt2x00_is_soc(rt2x00dev))
1101                 retval = rt2800pci_read_eeprom_soc(rt2x00dev);
1102         else if (rt2800pci_efuse_detect(rt2x00dev))
1103                 retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
1104         else
1105                 retval = rt2800pci_read_eeprom_pci(rt2x00dev);
1106
1107         return retval;
1108 }
1109
1110 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1111         .tx                     = rt2x00mac_tx,
1112         .start                  = rt2x00mac_start,
1113         .stop                   = rt2x00mac_stop,
1114         .add_interface          = rt2x00mac_add_interface,
1115         .remove_interface       = rt2x00mac_remove_interface,
1116         .config                 = rt2x00mac_config,
1117         .configure_filter       = rt2x00mac_configure_filter,
1118         .set_key                = rt2x00mac_set_key,
1119         .sw_scan_start          = rt2x00mac_sw_scan_start,
1120         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1121         .get_stats              = rt2x00mac_get_stats,
1122         .get_tkip_seq           = rt2800_get_tkip_seq,
1123         .set_rts_threshold      = rt2800_set_rts_threshold,
1124         .sta_add                = rt2x00mac_sta_add,
1125         .sta_remove             = rt2x00mac_sta_remove,
1126         .bss_info_changed       = rt2x00mac_bss_info_changed,
1127         .conf_tx                = rt2800_conf_tx,
1128         .get_tsf                = rt2800_get_tsf,
1129         .rfkill_poll            = rt2x00mac_rfkill_poll,
1130         .ampdu_action           = rt2800_ampdu_action,
1131         .flush                  = rt2x00mac_flush,
1132         .get_survey             = rt2800_get_survey,
1133         .get_ringparam          = rt2x00mac_get_ringparam,
1134         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1135 };
1136
1137 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1138         .register_read          = rt2x00mmio_register_read,
1139         .register_read_lock     = rt2x00mmio_register_read, /* same for PCI */
1140         .register_write         = rt2x00mmio_register_write,
1141         .register_write_lock    = rt2x00mmio_register_write, /* same for PCI */
1142         .register_multiread     = rt2x00mmio_register_multiread,
1143         .register_multiwrite    = rt2x00mmio_register_multiwrite,
1144         .regbusy_read           = rt2x00mmio_regbusy_read,
1145         .read_eeprom            = rt2800pci_read_eeprom,
1146         .hwcrypt_disabled       = rt2800pci_hwcrypt_disabled,
1147         .drv_write_firmware     = rt2800pci_write_firmware,
1148         .drv_init_registers     = rt2800pci_init_registers,
1149         .drv_get_txwi           = rt2800pci_get_txwi,
1150 };
1151
1152 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1153         .irq_handler            = rt2800pci_interrupt,
1154         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1155         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1156         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1157         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1158         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1159         .probe_hw               = rt2800_probe_hw,
1160         .get_firmware_name      = rt2800pci_get_firmware_name,
1161         .check_firmware         = rt2800_check_firmware,
1162         .load_firmware          = rt2800_load_firmware,
1163         .initialize             = rt2x00mmio_initialize,
1164         .uninitialize           = rt2x00mmio_uninitialize,
1165         .get_entry_state        = rt2800pci_get_entry_state,
1166         .clear_entry            = rt2800pci_clear_entry,
1167         .set_device_state       = rt2800pci_set_device_state,
1168         .rfkill_poll            = rt2800_rfkill_poll,
1169         .link_stats             = rt2800_link_stats,
1170         .reset_tuner            = rt2800_reset_tuner,
1171         .link_tuner             = rt2800_link_tuner,
1172         .gain_calibration       = rt2800_gain_calibration,
1173         .vco_calibration        = rt2800_vco_calibration,
1174         .start_queue            = rt2800pci_start_queue,
1175         .kick_queue             = rt2800pci_kick_queue,
1176         .stop_queue             = rt2800pci_stop_queue,
1177         .flush_queue            = rt2x00mmio_flush_queue,
1178         .write_tx_desc          = rt2800pci_write_tx_desc,
1179         .write_tx_data          = rt2800_write_tx_data,
1180         .write_beacon           = rt2800_write_beacon,
1181         .clear_beacon           = rt2800_clear_beacon,
1182         .fill_rxdone            = rt2800pci_fill_rxdone,
1183         .config_shared_key      = rt2800_config_shared_key,
1184         .config_pairwise_key    = rt2800_config_pairwise_key,
1185         .config_filter          = rt2800_config_filter,
1186         .config_intf            = rt2800_config_intf,
1187         .config_erp             = rt2800_config_erp,
1188         .config_ant             = rt2800_config_ant,
1189         .config                 = rt2800_config,
1190         .sta_add                = rt2800_sta_add,
1191         .sta_remove             = rt2800_sta_remove,
1192 };
1193
1194 static void rt2800pci_queue_init(struct data_queue *queue)
1195 {
1196         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1197         unsigned short txwi_size, rxwi_size;
1198
1199         rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
1200
1201         switch (queue->qid) {
1202         case QID_RX:
1203                 queue->limit = 128;
1204                 queue->data_size = AGGREGATION_SIZE;
1205                 queue->desc_size = RXD_DESC_SIZE;
1206                 queue->winfo_size = rxwi_size;
1207                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1208                 break;
1209
1210         case QID_AC_VO:
1211         case QID_AC_VI:
1212         case QID_AC_BE:
1213         case QID_AC_BK:
1214                 queue->limit = 64;
1215                 queue->data_size = AGGREGATION_SIZE;
1216                 queue->desc_size = TXD_DESC_SIZE;
1217                 queue->winfo_size = txwi_size;
1218                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1219                 break;
1220
1221         case QID_BEACON:
1222                 queue->limit = 8;
1223                 queue->data_size = 0; /* No DMA required for beacons */
1224                 queue->desc_size = TXD_DESC_SIZE;
1225                 queue->winfo_size = txwi_size;
1226                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1227                 break;
1228
1229         case QID_ATIM:
1230                 /* fallthrough */
1231         default:
1232                 BUG();
1233                 break;
1234         }
1235 }
1236
1237 static const struct rt2x00_ops rt2800pci_ops = {
1238         .name                   = KBUILD_MODNAME,
1239         .drv_data_size          = sizeof(struct rt2800_drv_data),
1240         .max_ap_intf            = 8,
1241         .eeprom_size            = EEPROM_SIZE,
1242         .rf_size                = RF_SIZE,
1243         .tx_queues              = NUM_TX_QUEUES,
1244         .queue_init             = rt2800pci_queue_init,
1245         .lib                    = &rt2800pci_rt2x00_ops,
1246         .drv                    = &rt2800pci_rt2800_ops,
1247         .hw                     = &rt2800pci_mac80211_ops,
1248 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1249         .debugfs                = &rt2800_rt2x00debug,
1250 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1251 };
1252
1253 /*
1254  * RT2800pci module information.
1255  */
1256 #ifdef CONFIG_PCI
1257 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1258         { PCI_DEVICE(0x1814, 0x0601) },
1259         { PCI_DEVICE(0x1814, 0x0681) },
1260         { PCI_DEVICE(0x1814, 0x0701) },
1261         { PCI_DEVICE(0x1814, 0x0781) },
1262         { PCI_DEVICE(0x1814, 0x3090) },
1263         { PCI_DEVICE(0x1814, 0x3091) },
1264         { PCI_DEVICE(0x1814, 0x3092) },
1265         { PCI_DEVICE(0x1432, 0x7708) },
1266         { PCI_DEVICE(0x1432, 0x7727) },
1267         { PCI_DEVICE(0x1432, 0x7728) },
1268         { PCI_DEVICE(0x1432, 0x7738) },
1269         { PCI_DEVICE(0x1432, 0x7748) },
1270         { PCI_DEVICE(0x1432, 0x7758) },
1271         { PCI_DEVICE(0x1432, 0x7768) },
1272         { PCI_DEVICE(0x1462, 0x891a) },
1273         { PCI_DEVICE(0x1a3b, 0x1059) },
1274 #ifdef CONFIG_RT2800PCI_RT3290
1275         { PCI_DEVICE(0x1814, 0x3290) },
1276 #endif
1277 #ifdef CONFIG_RT2800PCI_RT33XX
1278         { PCI_DEVICE(0x1814, 0x3390) },
1279 #endif
1280 #ifdef CONFIG_RT2800PCI_RT35XX
1281         { PCI_DEVICE(0x1432, 0x7711) },
1282         { PCI_DEVICE(0x1432, 0x7722) },
1283         { PCI_DEVICE(0x1814, 0x3060) },
1284         { PCI_DEVICE(0x1814, 0x3062) },
1285         { PCI_DEVICE(0x1814, 0x3562) },
1286         { PCI_DEVICE(0x1814, 0x3592) },
1287         { PCI_DEVICE(0x1814, 0x3593) },
1288         { PCI_DEVICE(0x1814, 0x359f) },
1289 #endif
1290 #ifdef CONFIG_RT2800PCI_RT53XX
1291         { PCI_DEVICE(0x1814, 0x5360) },
1292         { PCI_DEVICE(0x1814, 0x5362) },
1293         { PCI_DEVICE(0x1814, 0x5390) },
1294         { PCI_DEVICE(0x1814, 0x5392) },
1295         { PCI_DEVICE(0x1814, 0x539a) },
1296         { PCI_DEVICE(0x1814, 0x539b) },
1297         { PCI_DEVICE(0x1814, 0x539f) },
1298 #endif
1299         { 0, }
1300 };
1301 #endif /* CONFIG_PCI */
1302
1303 MODULE_AUTHOR(DRV_PROJECT);
1304 MODULE_VERSION(DRV_VERSION);
1305 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1306 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1307 #ifdef CONFIG_PCI
1308 MODULE_FIRMWARE(FIRMWARE_RT2860);
1309 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1310 #endif /* CONFIG_PCI */
1311 MODULE_LICENSE("GPL");
1312
1313 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1314 static int rt2800soc_probe(struct platform_device *pdev)
1315 {
1316         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1317 }
1318
1319 static struct platform_driver rt2800soc_driver = {
1320         .driver         = {
1321                 .name           = "rt2800_wmac",
1322                 .owner          = THIS_MODULE,
1323                 .mod_name       = KBUILD_MODNAME,
1324         },
1325         .probe          = rt2800soc_probe,
1326         .remove         = rt2x00soc_remove,
1327         .suspend        = rt2x00soc_suspend,
1328         .resume         = rt2x00soc_resume,
1329 };
1330 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
1331
1332 #ifdef CONFIG_PCI
1333 static int rt2800pci_probe(struct pci_dev *pci_dev,
1334                            const struct pci_device_id *id)
1335 {
1336         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1337 }
1338
1339 static struct pci_driver rt2800pci_driver = {
1340         .name           = KBUILD_MODNAME,
1341         .id_table       = rt2800pci_device_table,
1342         .probe          = rt2800pci_probe,
1343         .remove         = rt2x00pci_remove,
1344         .suspend        = rt2x00pci_suspend,
1345         .resume         = rt2x00pci_resume,
1346 };
1347 #endif /* CONFIG_PCI */
1348
1349 static int __init rt2800pci_init(void)
1350 {
1351         int ret = 0;
1352
1353 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1354         ret = platform_driver_register(&rt2800soc_driver);
1355         if (ret)
1356                 return ret;
1357 #endif
1358 #ifdef CONFIG_PCI
1359         ret = pci_register_driver(&rt2800pci_driver);
1360         if (ret) {
1361 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1362                 platform_driver_unregister(&rt2800soc_driver);
1363 #endif
1364                 return ret;
1365         }
1366 #endif
1367
1368         return ret;
1369 }
1370
1371 static void __exit rt2800pci_exit(void)
1372 {
1373 #ifdef CONFIG_PCI
1374         pci_unregister_driver(&rt2800pci_driver);
1375 #endif
1376 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1377         platform_driver_unregister(&rt2800soc_driver);
1378 #endif
1379 }
1380
1381 module_init(rt2800pci_init);
1382 module_exit(rt2800pci_exit);