]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
b43: add hardware tkip
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Radio control handlers.
34  */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37         int status;
38
39         /*
40          * Don't enable the radio twice.
41          * And check if the hardware button has been disabled.
42          */
43         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
44                 return 0;
45
46         /*
47          * Initialize all data queues.
48          */
49         rt2x00queue_init_queues(rt2x00dev);
50
51         /*
52          * Enable radio.
53          */
54         status =
55             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
56         if (status)
57                 return status;
58
59         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
60
61         rt2x00leds_led_radio(rt2x00dev, true);
62         rt2x00led_led_activity(rt2x00dev, true);
63
64         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
65
66         /*
67          * Enable RX.
68          */
69         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
70
71         /*
72          * Start the TX queues.
73          */
74         ieee80211_wake_queues(rt2x00dev->hw);
75
76         return 0;
77 }
78
79 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
80 {
81         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
82                 return;
83
84         /*
85          * Stop the TX queues in mac80211.
86          */
87         ieee80211_stop_queues(rt2x00dev->hw);
88         rt2x00queue_stop_queues(rt2x00dev);
89
90         /*
91          * Disable RX.
92          */
93         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
94
95         /*
96          * Disable radio.
97          */
98         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
99         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
100         rt2x00led_led_activity(rt2x00dev, false);
101         rt2x00leds_led_radio(rt2x00dev, false);
102 }
103
104 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
105 {
106         /*
107          * When we are disabling the RX, we should also stop the link tuner.
108          */
109         if (state == STATE_RADIO_RX_OFF)
110                 rt2x00link_stop_tuner(rt2x00dev);
111
112         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
113
114         /*
115          * When we are enabling the RX, we should also start the link tuner.
116          */
117         if (state == STATE_RADIO_RX_ON)
118                 rt2x00link_start_tuner(rt2x00dev);
119 }
120
121 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
122                                           struct ieee80211_vif *vif)
123 {
124         struct rt2x00_dev *rt2x00dev = data;
125         struct rt2x00_intf *intf = vif_to_intf(vif);
126         int delayed_flags;
127
128         /*
129          * Copy all data we need during this action under the protection
130          * of a spinlock. Otherwise race conditions might occur which results
131          * into an invalid configuration.
132          */
133         spin_lock(&intf->lock);
134
135         delayed_flags = intf->delayed_flags;
136         intf->delayed_flags = 0;
137
138         spin_unlock(&intf->lock);
139
140         /*
141          * It is possible the radio was disabled while the work had been
142          * scheduled. If that happens we should return here immediately,
143          * note that in the spinlock protected area above the delayed_flags
144          * have been cleared correctly.
145          */
146         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
147                 return;
148
149         if (delayed_flags & DELAYED_UPDATE_BEACON)
150                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
151 }
152
153 static void rt2x00lib_intf_scheduled(struct work_struct *work)
154 {
155         struct rt2x00_dev *rt2x00dev =
156             container_of(work, struct rt2x00_dev, intf_work);
157
158         /*
159          * Iterate over each interface and perform the
160          * requested configurations.
161          */
162         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
163                                             rt2x00lib_intf_scheduled_iter,
164                                             rt2x00dev);
165 }
166
167 /*
168  * Interrupt context handlers.
169  */
170 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
171                                       struct ieee80211_vif *vif)
172 {
173         struct rt2x00_intf *intf = vif_to_intf(vif);
174
175         if (vif->type != NL80211_IFTYPE_AP &&
176             vif->type != NL80211_IFTYPE_ADHOC &&
177             vif->type != NL80211_IFTYPE_MESH_POINT &&
178             vif->type != NL80211_IFTYPE_WDS)
179                 return;
180
181         spin_lock(&intf->lock);
182         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
183         spin_unlock(&intf->lock);
184 }
185
186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
187 {
188         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189                 return;
190
191         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
192                                                    rt2x00lib_beacondone_iter,
193                                                    rt2x00dev);
194
195         ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
196 }
197 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
198
199 void rt2x00lib_txdone(struct queue_entry *entry,
200                       struct txdone_entry_desc *txdesc)
201 {
202         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
203         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
204         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
205         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
206         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
207         u8 rate_idx, rate_flags, retry_rates;
208         unsigned int i;
209
210         /*
211          * Unmap the skb.
212          */
213         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
214
215         /*
216          * Remove L2 padding which was added during
217          */
218         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
219                 rt2x00queue_payload_align(entry->skb, true, header_length);
220
221         /*
222          * If the IV/EIV data was stripped from the frame before it was
223          * passed to the hardware, we should now reinsert it again because
224          * mac80211 will expect the the same data to be present it the
225          * frame as it was passed to us.
226          */
227         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
228                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
229
230         /*
231          * Send frame to debugfs immediately, after this call is completed
232          * we are going to overwrite the skb->cb array.
233          */
234         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
235
236         /*
237          * Update TX statistics.
238          */
239         rt2x00dev->link.qual.tx_success +=
240             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
241             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
242         rt2x00dev->link.qual.tx_failed +=
243             test_bit(TXDONE_FAILURE, &txdesc->flags);
244
245         rate_idx = skbdesc->tx_rate_idx;
246         rate_flags = skbdesc->tx_rate_flags;
247         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
248             (txdesc->retry + 1) : 1;
249
250         /*
251          * Initialize TX status
252          */
253         memset(&tx_info->status, 0, sizeof(tx_info->status));
254         tx_info->status.ack_signal = 0;
255
256         /*
257          * Frame was send with retries, hardware tried
258          * different rates to send out the frame, at each
259          * retry it lowered the rate 1 step.
260          */
261         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
262                 tx_info->status.rates[i].idx = rate_idx - i;
263                 tx_info->status.rates[i].flags = rate_flags;
264                 tx_info->status.rates[i].count = 1;
265         }
266         if (i < (IEEE80211_TX_MAX_RATES -1))
267                 tx_info->status.rates[i].idx = -1; /* terminate */
268
269         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
270                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
271                                 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
272                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
273                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
274                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
275         }
276
277         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
278                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
279                                 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
280                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
281                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
282                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
283         }
284
285         /*
286          * Only send the status report to mac80211 when TX status was
287          * requested by it. If this was a extra frame coming through
288          * a mac80211 library call (RTS/CTS) then we should not send the
289          * status report back.
290          */
291         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
292                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
293         else
294                 dev_kfree_skb_irq(entry->skb);
295
296         /*
297          * Make this entry available for reuse.
298          */
299         entry->skb = NULL;
300         entry->flags = 0;
301
302         rt2x00dev->ops->lib->clear_entry(entry);
303
304         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
305         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
306
307         /*
308          * If the data queue was below the threshold before the txdone
309          * handler we must make sure the packet queue in the mac80211 stack
310          * is reenabled when the txdone handler has finished.
311          */
312         if (!rt2x00queue_threshold(entry->queue))
313                 ieee80211_wake_queue(rt2x00dev->hw, qid);
314 }
315 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
316
317 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
318                                         struct rxdone_entry_desc *rxdesc)
319 {
320         struct ieee80211_supported_band *sband;
321         const struct rt2x00_rate *rate;
322         unsigned int i;
323         int signal;
324         int type;
325
326         /*
327          * For non-HT rates the MCS value needs to contain the
328          * actually used rate modulation (CCK or OFDM).
329          */
330         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
331                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
332         else
333                 signal = rxdesc->signal;
334
335         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
336
337         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
338         for (i = 0; i < sband->n_bitrates; i++) {
339                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
340
341                 if (((type == RXDONE_SIGNAL_PLCP) &&
342                      (rate->plcp == signal)) ||
343                     ((type == RXDONE_SIGNAL_BITRATE) &&
344                       (rate->bitrate == signal)) ||
345                     ((type == RXDONE_SIGNAL_MCS) &&
346                       (rate->mcs == signal))) {
347                         return i;
348                 }
349         }
350
351         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
352                 "signal=0x%.4x, type=%d.\n", signal, type);
353         return 0;
354 }
355
356 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
357                       struct queue_entry *entry)
358 {
359         struct rxdone_entry_desc rxdesc;
360         struct sk_buff *skb;
361         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
362         unsigned int header_length;
363         bool l2pad;
364         int rate_idx;
365         /*
366          * Allocate a new sk_buffer. If no new buffer available, drop the
367          * received frame and reuse the existing buffer.
368          */
369         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
370         if (!skb)
371                 return;
372
373         /*
374          * Unmap the skb.
375          */
376         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
377
378         /*
379          * Extract the RXD details.
380          */
381         memset(&rxdesc, 0, sizeof(rxdesc));
382         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
383
384         /* Trim buffer to correct size */
385         skb_trim(entry->skb, rxdesc.size);
386
387         /*
388          * The data behind the ieee80211 header must be
389          * aligned on a 4 byte boundary.
390          */
391         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
392         l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
393
394         /*
395          * Hardware might have stripped the IV/EIV/ICV data,
396          * in that case it is possible that the data was
397          * provided seperately (through hardware descriptor)
398          * in which case we should reinsert the data into the frame.
399          */
400         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
401             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
402                 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
403                                           &rxdesc);
404         else
405                 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
406
407         /*
408          * Check if the frame was received using HT. In that case,
409          * the rate is the MCS index and should be passed to mac80211
410          * directly. Otherwise we need to translate the signal to
411          * the correct bitrate index.
412          */
413         if (rxdesc.rate_mode == RATE_MODE_CCK ||
414             rxdesc.rate_mode == RATE_MODE_OFDM) {
415                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
416         } else {
417                 rxdesc.flags |= RX_FLAG_HT;
418                 rate_idx = rxdesc.signal;
419         }
420
421         /*
422          * Update extra components
423          */
424         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
425         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
426
427         rx_status->mactime = rxdesc.timestamp;
428         rx_status->rate_idx = rate_idx;
429         rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
430         rx_status->signal = rxdesc.rssi;
431         rx_status->noise = rxdesc.noise;
432         rx_status->flag = rxdesc.flags;
433         rx_status->antenna = rt2x00dev->link.ant.active.rx;
434
435         /*
436          * Send frame to mac80211 & debugfs.
437          * mac80211 will clean up the skb structure.
438          */
439         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
440         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
441         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
442
443         /*
444          * Replace the skb with the freshly allocated one.
445          */
446         entry->skb = skb;
447         entry->flags = 0;
448
449         rt2x00dev->ops->lib->clear_entry(entry);
450
451         rt2x00queue_index_inc(entry->queue, Q_INDEX);
452 }
453 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
454
455 /*
456  * Driver initialization handlers.
457  */
458 const struct rt2x00_rate rt2x00_supported_rates[12] = {
459         {
460                 .flags = DEV_RATE_CCK,
461                 .bitrate = 10,
462                 .ratemask = BIT(0),
463                 .plcp = 0x00,
464                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
465         },
466         {
467                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
468                 .bitrate = 20,
469                 .ratemask = BIT(1),
470                 .plcp = 0x01,
471                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
472         },
473         {
474                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
475                 .bitrate = 55,
476                 .ratemask = BIT(2),
477                 .plcp = 0x02,
478                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
479         },
480         {
481                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
482                 .bitrate = 110,
483                 .ratemask = BIT(3),
484                 .plcp = 0x03,
485                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
486         },
487         {
488                 .flags = DEV_RATE_OFDM,
489                 .bitrate = 60,
490                 .ratemask = BIT(4),
491                 .plcp = 0x0b,
492                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
493         },
494         {
495                 .flags = DEV_RATE_OFDM,
496                 .bitrate = 90,
497                 .ratemask = BIT(5),
498                 .plcp = 0x0f,
499                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
500         },
501         {
502                 .flags = DEV_RATE_OFDM,
503                 .bitrate = 120,
504                 .ratemask = BIT(6),
505                 .plcp = 0x0a,
506                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
507         },
508         {
509                 .flags = DEV_RATE_OFDM,
510                 .bitrate = 180,
511                 .ratemask = BIT(7),
512                 .plcp = 0x0e,
513                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
514         },
515         {
516                 .flags = DEV_RATE_OFDM,
517                 .bitrate = 240,
518                 .ratemask = BIT(8),
519                 .plcp = 0x09,
520                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
521         },
522         {
523                 .flags = DEV_RATE_OFDM,
524                 .bitrate = 360,
525                 .ratemask = BIT(9),
526                 .plcp = 0x0d,
527                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
528         },
529         {
530                 .flags = DEV_RATE_OFDM,
531                 .bitrate = 480,
532                 .ratemask = BIT(10),
533                 .plcp = 0x08,
534                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
535         },
536         {
537                 .flags = DEV_RATE_OFDM,
538                 .bitrate = 540,
539                 .ratemask = BIT(11),
540                 .plcp = 0x0c,
541                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
542         },
543 };
544
545 static void rt2x00lib_channel(struct ieee80211_channel *entry,
546                               const int channel, const int tx_power,
547                               const int value)
548 {
549         entry->center_freq = ieee80211_channel_to_frequency(channel);
550         entry->hw_value = value;
551         entry->max_power = tx_power;
552         entry->max_antenna_gain = 0xff;
553 }
554
555 static void rt2x00lib_rate(struct ieee80211_rate *entry,
556                            const u16 index, const struct rt2x00_rate *rate)
557 {
558         entry->flags = 0;
559         entry->bitrate = rate->bitrate;
560         entry->hw_value =index;
561         entry->hw_value_short = index;
562
563         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
564                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
565 }
566
567 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
568                                     struct hw_mode_spec *spec)
569 {
570         struct ieee80211_hw *hw = rt2x00dev->hw;
571         struct ieee80211_channel *channels;
572         struct ieee80211_rate *rates;
573         unsigned int num_rates;
574         unsigned int i;
575
576         num_rates = 0;
577         if (spec->supported_rates & SUPPORT_RATE_CCK)
578                 num_rates += 4;
579         if (spec->supported_rates & SUPPORT_RATE_OFDM)
580                 num_rates += 8;
581
582         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
583         if (!channels)
584                 return -ENOMEM;
585
586         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
587         if (!rates)
588                 goto exit_free_channels;
589
590         /*
591          * Initialize Rate list.
592          */
593         for (i = 0; i < num_rates; i++)
594                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
595
596         /*
597          * Initialize Channel list.
598          */
599         for (i = 0; i < spec->num_channels; i++) {
600                 rt2x00lib_channel(&channels[i],
601                                   spec->channels[i].channel,
602                                   spec->channels_info[i].tx_power1, i);
603         }
604
605         /*
606          * Intitialize 802.11b, 802.11g
607          * Rates: CCK, OFDM.
608          * Channels: 2.4 GHz
609          */
610         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
611                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
612                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
613                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
614                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
615                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
616                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
617                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
618                        &spec->ht, sizeof(spec->ht));
619         }
620
621         /*
622          * Intitialize 802.11a
623          * Rates: OFDM.
624          * Channels: OFDM, UNII, HiperLAN2.
625          */
626         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
627                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
628                     spec->num_channels - 14;
629                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
630                     num_rates - 4;
631                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
632                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
633                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
634                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
635                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
636                        &spec->ht, sizeof(spec->ht));
637         }
638
639         return 0;
640
641  exit_free_channels:
642         kfree(channels);
643         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
644         return -ENOMEM;
645 }
646
647 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
648 {
649         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
650                 ieee80211_unregister_hw(rt2x00dev->hw);
651
652         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
653                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
654                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
655                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
656                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
657         }
658
659         kfree(rt2x00dev->spec.channels_info);
660 }
661
662 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
663 {
664         struct hw_mode_spec *spec = &rt2x00dev->spec;
665         int status;
666
667         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
668                 return 0;
669
670         /*
671          * Initialize HW modes.
672          */
673         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
674         if (status)
675                 return status;
676
677         /*
678          * Initialize HW fields.
679          */
680         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
681
682         /*
683          * Register HW.
684          */
685         status = ieee80211_register_hw(rt2x00dev->hw);
686         if (status)
687                 return status;
688
689         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
690
691         return 0;
692 }
693
694 /*
695  * Initialization/uninitialization handlers.
696  */
697 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
698 {
699         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
700                 return;
701
702         /*
703          * Unregister extra components.
704          */
705         rt2x00rfkill_unregister(rt2x00dev);
706
707         /*
708          * Allow the HW to uninitialize.
709          */
710         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
711
712         /*
713          * Free allocated queue entries.
714          */
715         rt2x00queue_uninitialize(rt2x00dev);
716 }
717
718 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
719 {
720         int status;
721
722         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
723                 return 0;
724
725         /*
726          * Allocate all queue entries.
727          */
728         status = rt2x00queue_initialize(rt2x00dev);
729         if (status)
730                 return status;
731
732         /*
733          * Initialize the device.
734          */
735         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
736         if (status) {
737                 rt2x00queue_uninitialize(rt2x00dev);
738                 return status;
739         }
740
741         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
742
743         /*
744          * Register the extra components.
745          */
746         rt2x00rfkill_register(rt2x00dev);
747
748         return 0;
749 }
750
751 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
752 {
753         int retval;
754
755         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
756                 return 0;
757
758         /*
759          * If this is the first interface which is added,
760          * we should load the firmware now.
761          */
762         retval = rt2x00lib_load_firmware(rt2x00dev);
763         if (retval)
764                 return retval;
765
766         /*
767          * Initialize the device.
768          */
769         retval = rt2x00lib_initialize(rt2x00dev);
770         if (retval)
771                 return retval;
772
773         rt2x00dev->intf_ap_count = 0;
774         rt2x00dev->intf_sta_count = 0;
775         rt2x00dev->intf_associated = 0;
776
777         /* Enable the radio */
778         retval = rt2x00lib_enable_radio(rt2x00dev);
779         if (retval) {
780                 rt2x00queue_uninitialize(rt2x00dev);
781                 return retval;
782         }
783
784         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
785
786         return 0;
787 }
788
789 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
790 {
791         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
792                 return;
793
794         /*
795          * Perhaps we can add something smarter here,
796          * but for now just disabling the radio should do.
797          */
798         rt2x00lib_disable_radio(rt2x00dev);
799
800         rt2x00dev->intf_ap_count = 0;
801         rt2x00dev->intf_sta_count = 0;
802         rt2x00dev->intf_associated = 0;
803 }
804
805 /*
806  * driver allocation handlers.
807  */
808 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
809 {
810         int retval = -ENOMEM;
811
812         mutex_init(&rt2x00dev->csr_mutex);
813
814         /*
815          * Make room for rt2x00_intf inside the per-interface
816          * structure ieee80211_vif.
817          */
818         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
819
820         /*
821          * Determine which operating modes are supported, all modes
822          * which require beaconing, depend on the availability of
823          * beacon entries.
824          */
825         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
826         if (rt2x00dev->ops->bcn->entry_num > 0)
827                 rt2x00dev->hw->wiphy->interface_modes |=
828                     BIT(NL80211_IFTYPE_ADHOC) |
829                     BIT(NL80211_IFTYPE_AP) |
830                     BIT(NL80211_IFTYPE_MESH_POINT) |
831                     BIT(NL80211_IFTYPE_WDS);
832
833         /*
834          * Let the driver probe the device to detect the capabilities.
835          */
836         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
837         if (retval) {
838                 ERROR(rt2x00dev, "Failed to allocate device.\n");
839                 goto exit;
840         }
841
842         /*
843          * Initialize configuration work.
844          */
845         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
846
847         /*
848          * Allocate queue array.
849          */
850         retval = rt2x00queue_allocate(rt2x00dev);
851         if (retval)
852                 goto exit;
853
854         /*
855          * Initialize ieee80211 structure.
856          */
857         retval = rt2x00lib_probe_hw(rt2x00dev);
858         if (retval) {
859                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
860                 goto exit;
861         }
862
863         /*
864          * Register extra components.
865          */
866         rt2x00link_register(rt2x00dev);
867         rt2x00leds_register(rt2x00dev);
868         rt2x00debug_register(rt2x00dev);
869
870         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
871
872         return 0;
873
874 exit:
875         rt2x00lib_remove_dev(rt2x00dev);
876
877         return retval;
878 }
879 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
880
881 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
882 {
883         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
884
885         /*
886          * Disable radio.
887          */
888         rt2x00lib_disable_radio(rt2x00dev);
889
890         /*
891          * Stop all work.
892          */
893         cancel_work_sync(&rt2x00dev->intf_work);
894
895         /*
896          * Uninitialize device.
897          */
898         rt2x00lib_uninitialize(rt2x00dev);
899
900         /*
901          * Free extra components
902          */
903         rt2x00debug_deregister(rt2x00dev);
904         rt2x00leds_unregister(rt2x00dev);
905
906         /*
907          * Free ieee80211_hw memory.
908          */
909         rt2x00lib_remove_hw(rt2x00dev);
910
911         /*
912          * Free firmware image.
913          */
914         rt2x00lib_free_firmware(rt2x00dev);
915
916         /*
917          * Free queue structures.
918          */
919         rt2x00queue_free(rt2x00dev);
920 }
921 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
922
923 /*
924  * Device state handlers
925  */
926 #ifdef CONFIG_PM
927 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
928 {
929         NOTICE(rt2x00dev, "Going to sleep.\n");
930
931         /*
932          * Prevent mac80211 from accessing driver while suspended.
933          */
934         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
935                 return 0;
936
937         /*
938          * Cleanup as much as possible.
939          */
940         rt2x00lib_uninitialize(rt2x00dev);
941
942         /*
943          * Suspend/disable extra components.
944          */
945         rt2x00leds_suspend(rt2x00dev);
946         rt2x00debug_deregister(rt2x00dev);
947
948         /*
949          * Set device mode to sleep for power management,
950          * on some hardware this call seems to consistently fail.
951          * From the specifications it is hard to tell why it fails,
952          * and if this is a "bad thing".
953          * Overall it is safe to just ignore the failure and
954          * continue suspending. The only downside is that the
955          * device will not be in optimal power save mode, but with
956          * the radio and the other components already disabled the
957          * device is as good as disabled.
958          */
959         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
960                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
961                         "continue suspending.\n");
962
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
966
967 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
968 {
969         NOTICE(rt2x00dev, "Waking up.\n");
970
971         /*
972          * Restore/enable extra components.
973          */
974         rt2x00debug_register(rt2x00dev);
975         rt2x00leds_resume(rt2x00dev);
976
977         /*
978          * We are ready again to receive requests from mac80211.
979          */
980         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
981
982         return 0;
983 }
984 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
985 #endif /* CONFIG_PM */
986
987 /*
988  * rt2x00lib module information.
989  */
990 MODULE_AUTHOR(DRV_PROJECT);
991 MODULE_VERSION(DRV_VERSION);
992 MODULE_DESCRIPTION("rt2x00 library");
993 MODULE_LICENSE("GPL");